WO2018074427A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018074427A1
WO2018074427A1 PCT/JP2017/037405 JP2017037405W WO2018074427A1 WO 2018074427 A1 WO2018074427 A1 WO 2018074427A1 JP 2017037405 W JP2017037405 W JP 2017037405W WO 2018074427 A1 WO2018074427 A1 WO 2018074427A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
dummy
semiconductor substrate
gate
semiconductor device
Prior art date
Application number
PCT/JP2017/037405
Other languages
English (en)
French (fr)
Inventor
内藤 達也
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2018546330A priority Critical patent/JP6540906B2/ja
Priority to CN201780020128.6A priority patent/CN109075199B/zh
Publication of WO2018074427A1 publication Critical patent/WO2018074427A1/ja
Priority to US16/141,972 priority patent/US10741547B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 JP 2013-150000
  • Patent Document 2 JP 2016-092177
  • C CG collector-gate capacitance
  • C CE collector-emitter capacitance
  • a semiconductor device may include a semiconductor substrate, a base region, a gate trench portion, and a dummy trench portion.
  • the semiconductor substrate may be of the first conductivity type.
  • the base region may be provided on the surface side in the semiconductor substrate.
  • the base region may be of the second conductivity type.
  • the gate trench portion may be provided in the semiconductor substrate through the base region from the surface of the semiconductor substrate.
  • the gate trench part may have a gate conductive part.
  • the dummy trench portion may be provided in the semiconductor substrate through the base region from the surface of the semiconductor substrate.
  • the dummy trench part may include an upper dummy conductive part and a lower gate conductive part.
  • the upper dummy conductive part may have an emitter potential.
  • the lower gate conductive part may be located under the upper dummy conductive part.
  • the lower gate conductive portion may have a gate potential.
  • the lower gate conductive portion of the dummy trench portion may be connected to the gate conductive portion of the gate trench portion.
  • a plurality of gate trench portions and a plurality of dummy trench portions may surround the mesa region on the surface of the semiconductor substrate.
  • the mesa region may be provided in the transistor portion of the semiconductor device.
  • the mesa region may have a base region.
  • the dummy trench portion may have a first straight portion, a second straight portion, and an intersecting portion.
  • the first straight portion may extend in the first direction.
  • the second straight portion may extend in the second direction.
  • the second direction may be orthogonal to the first direction.
  • the first straight line portion and the second straight line portion may intersect at the intersection.
  • the plurality of mesa regions may be provided in a straight line in the first direction and the second direction.
  • the plurality of mesa regions each provided with a base region in the transistor portion of the semiconductor device may include a first group, a second group, and a third group.
  • each mesa region may be provided in a straight line in the first direction.
  • each mesa region may be provided in a straight line in the first direction.
  • each mesa region may be closest to the first group in the second direction.
  • each mesa region may be provided with a half-cycle shift from each other in the first direction with respect to each mesa region of the first group.
  • each mesa region may be provided in a straight line in the first direction.
  • each mesa region may be second closest to the first group in the second direction.
  • each mesa region may be provided side by side in the second direction with respect to each mesa region of the first group.
  • the dummy trench portion may be provided adjacent to a side parallel to the first direction of the mesa region on the surface of the semiconductor substrate.
  • the gate trench portion may be provided adjacent to a side parallel to the second direction of the mesa region on the surface of the semiconductor substrate.
  • the semiconductor device may further include a diode portion adjacent to the transistor portion of the semiconductor device.
  • Each of the plurality of dummy trench portions provided in the transistor portion and the diode portion may have a lower gate conductive portion.
  • the at least one dummy trench portion among the plurality of dummy trench portions may not have the lower gate conductive portion.
  • the semiconductor device may further include a diode portion adjacent to the transistor portion of the semiconductor device.
  • the plurality of second straight portions closest to the diode portion may be connected to each other in the second direction.
  • the plurality of second straight portions closest to the diode portion may not have the lower gate conductive portion.
  • the lower gate conductive portion of the dummy trench portion may be provided below the base region.
  • the dummy trench portion may have an upper insulating film and a lower insulating film.
  • the upper insulating film may be provided on the side portion and the bottom portion of the upper dummy conductive portion.
  • the lower insulating film may be provided on the side and bottom of the lower gate conductive portion.
  • the lower insulating film may be thicker than the upper insulating film.
  • the semiconductor substrate may have a drift region of the first conductivity type.
  • the drift region may be located below the base region.
  • the upper insulating film in the dummy trench portion does not have to be in contact with the drift region.
  • the lower insulating film of the dummy trench portion may be in contact with the drift region.
  • FIG. 1 is a top view of a semiconductor device 100 according to a first embodiment. It is a figure which shows the AA 'cross section of FIG. It is a figure which shows the BB 'cross section of FIG. It is a figure which shows CC 'cross section of FIG. It is a figure which shows the DD 'cross section of FIG. It is a figure which shows the mesa area
  • FIG. 6 is a view showing a modification of a dummy trench portion 30.
  • FIG. 1 is a top view of the semiconductor device 100 according to the first embodiment.
  • the semiconductor device 100 of this example includes an IGBT unit 80 provided with an IGBT (Insulated Gate Bipolar Transistor), and an FWD unit 90 provided with an FWD (Free Wheeling Diode).
  • the IGBT unit 80 is an example of a transistor unit.
  • Another example of the transistor portion may be a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the FWD unit 90 is an example of a diode unit.
  • the semiconductor device 100 of this example is an RC-IGBT (Reverse-Conducting IGBT) in which an IGBT unit 80 and an FWD unit 90 are integrally formed on one semiconductor substrate.
  • RC-IGBT Reverse-Conducting IGBT
  • the IGBT unit 80 in this example is adjacent to the FWD unit 90 in the X direction.
  • the X direction and the Y direction are directions orthogonal to each other.
  • the X direction is an example of the first direction
  • the Y direction is an example of the second direction.
  • the Z direction is a direction perpendicular to the XY plane.
  • the X direction, the Y direction, and the Z direction form a so-called right-handed system.
  • “upper” and “upper” mean a direction (+ Z direction) from the back surface of the semiconductor substrate toward the front surface.
  • “down” and “down” mean the ⁇ Z direction, which is the opposite direction to the + Z direction.
  • the top and bottom are merely convenient expressions for explaining the relative positional relationship.
  • the Z direction does not necessarily mean the direction of gravity or the direction perpendicular to the ground.
  • FIG. 1 shows an active region in the vicinity of an end portion of a semiconductor substrate, and other regions such as a center portion of the semiconductor substrate and an edge termination portion located at the end portion of the semiconductor substrate are omitted.
  • the semiconductor device 100 may have an edge termination portion that surrounds the active portion in a top view.
  • the active portion refers to a region including the IGBT portion 80 and the FWD portion 90.
  • the edge termination portion has a function of relaxing electric field concentration on the surface side of the semiconductor substrate.
  • the edge termination portion has, for example, a guard ring, a field plate, a RESURF, or a combination of two or more of these.
  • the semiconductor device 100 of this example includes an n + -type emitter region 12, a p ⁇ -type base region 14, a p + -type contact region 15, a p + -type well region 28, and a dummy trench on the surface side in the semiconductor substrate.
  • a portion 30, a gate trench portion 40, and a dummy trench portion 50 are provided.
  • n or p means that electrons or holes are majority carriers, respectively.
  • + means that the carrier concentration is higher than that in which it is not described, and ⁇ means that the carrier concentration is lower than that in which it is not described. To do.
  • the semiconductor substrate of this example is a first conductivity type silicon substrate, but may be a first conductivity type silicon carbide substrate or a first conductivity type gallium nitride substrate.
  • the first conductivity type is n-type
  • the semiconductor substrate of this example is an n ⁇ -type silicon substrate.
  • the second conductivity type base region 14 is provided in the IGBT unit 80 and the FWD unit 90.
  • the second conductivity type is p-type.
  • the substrates, regions, and other partial conductivity types described in each example may be opposite conductivity types.
  • FIG. 1 shows contact holes 64, 66, and 74 provided in the interlayer insulating film 26 provided on the surface of the semiconductor substrate, and a contact hole 68 provided in the interlayer insulating film 26 of the FWD portion 90.
  • Contact holes 64, 66 and 68 provide electrical connection between the emitter electrode 62 and the surface.
  • the contact hole 74 provides an electrical connection between the gate metal layer 72 and the surface.
  • the IGBT part 80 of this example has a plurality of mesa regions 19. Each mesa region 19 has a base region 14. Base region 14 of IGBT portion 80 is exposed on the surface of the semiconductor substrate in the peripheral portion of mesa region 19. The mesa region 19 of this example is surrounded on all sides by two gate trench portions 40 and two dummy trench portions 50 on the front surface of the semiconductor substrate. The dummy trench portion 30 of this example is adjacent to a side parallel to the X direction of the mesa region 19. Further, the gate trench portion of this example is provided adjacent to a side parallel to the Y direction of the mesa region 19. Note that the shape of the mesa region 19 in a top view is not limited to a rectangle, and may be a pentagon or more polygon.
  • the mesa region 19 of the IGBT unit 80 in this example has a plurality of emitter regions 12.
  • the emitter region 12 is exposed on the surface of the semiconductor substrate at the periphery of the mesa region 19.
  • the emitter region 12 of this example is provided near the midpoint of the mesa region 19 in the Y direction, and at the end of the mesa region 19 in the ⁇ X direction. That is, in this example, one mesa region 19 has two emitter regions 12.
  • the emitter region 12 of this example has a strip shape extending in the Y direction.
  • the mesa region 19 of the IGBT unit 80 in this example has a contact region 15.
  • Contact region 15 is exposed on the surface of the semiconductor substrate at the center of mesa region 19.
  • the contact region 15 is provided in a range smaller than the mesa region 19.
  • the contact region 15 in this example has a rectangular shape similar to the mesa region 19.
  • the contact region 15 in this example is exposed at the opening of the contact hole 64.
  • the contact hole 64 of this example has a rectangular shape similar to the mesa region 19, similar to the contact region 15.
  • the contact hole 64 has an opening inside the boundary line in FIG.
  • the emitter electrode 62 and the contact region 15 are connected to each other inside the contact hole 64.
  • the dummy trench portion 30 and the gate trench portion 40 are provided through the base region 14 from the surface side of the semiconductor substrate.
  • the phrase “the trench portion penetrates through the base region 14” refers to a situation in which the base region 14 provided on the entire surface side is separated by etching in a top view.
  • the dummy trench part 30 of this example has at least an upper insulating film 32 formed on the inner wall of the dummy trench and an upper dummy conductive part 34 formed inside the dummy trench whose inner wall is covered with the upper insulating film 32. .
  • Upper dummy conductive portion 34 is connected to emitter electrode 62 through contact hole 66.
  • the emitter electrode 62 of this example extends in the + Y direction from the well region 28 and covers the entire IGBT portion 80 and FWD portion 90.
  • the well region 28 is provided at a position in the ⁇ Y direction further than the base region 14 positioned at the end portion in the ⁇ Y direction.
  • the dummy trench portion 30 has a first straight portion 37, a second straight portion 38, and an intersecting portion 39.
  • a first straight portion 37, a second straight portion 38, and an intersecting portion 39 are shown in the dummy trench portion 30 adjacent to the mesa region 19 at the end portion in the ⁇ Y direction of the IGBT portion 80.
  • each dummy trench part 30 of the IGBT part 80 may have a similar first straight part 37, second straight part 38, and crossing part 39.
  • first straight line portion 37 shows one first straight line portion 37 and one second straight line portion 38 surrounded by dotted lines.
  • One intersection 39 is indicated by an arrow.
  • the first straight portion 37 extends in the X direction.
  • the second straight portion 38 extends in the Y direction.
  • a plurality of first straight portions 37 are orthogonal to one second straight portion 38.
  • a position where the first straight portion 37 and the second straight portion 38 intersect is referred to as a crossing portion 39.
  • the dummy trench of the dummy trench portion 30 has a predetermined depth.
  • the dummy trench portion 30 is provided in addition to the gate trench portion 40, a carrier accumulation effect in which holes are accumulated between the trenches can be obtained. Thereby, the on-voltage can be reduced.
  • the first straight portion 37 and the second straight portion 38 are not separated from each other and are orthogonal to each other at the intersecting portion 39, so that the carrier accumulation effect can be achieved as compared with the case where the intersecting portion 39 is not provided. Can be improved.
  • the dummy trench at the intersecting portion 39 may be deeper than the dummy trenches at the first straight portion 37 and the second straight portion 38. If the intersecting portion 39 is provided in the gate trench portion 40, the gate threshold voltage near the intersecting portion 39 may be different from the gate threshold voltages of the first straight portion 37 and the second straight portion 38. That is, the gate threshold voltage varies depending on the location of the gate trench portion 40. On the other hand, in this example, since the intersection part 39 is provided in the dummy trench part 30 and the intersection part 39 is not provided in the gate trench part 40, the problem that the gate threshold voltage fluctuates can be avoided.
  • the gate trench portion 40 includes an insulating film 42 formed on the inner wall of the gate trench, and a gate conductive portion 44 formed inside the gate trench whose inner wall is covered with the insulating film 42.
  • the gate conductive portion 44 has a function of controlling the IGBT channel.
  • the gate conductive portion 44 is connected to the gate metal layer 72 through the contact hole 74.
  • the gate metal layer 72 of this example covers at least part of the dummy trench portion 30 and the gate trench portion 40 located at the end portion in the ⁇ Y direction.
  • the gate metal layer 72 in this example is mainly provided on the well region 28.
  • a channel is formed in a region in contact with the gate trench portion 40 in the p-type base region formed below the emitter region 12. Is done.
  • a predetermined low potential for example, ground potential
  • a predetermined high potential for example, several tens to several thousand volts
  • the gate trench portion 40 can be made the dummy trench portion 30 by connecting the two first straight portions 37. Thereby, the ratio of the occupied area of the gate trench part 40 to the occupied area of the dummy trench part 30 can be easily adjusted.
  • the trench which the dummy trench part 30 and the gate trench part 40 of this example have is the same depth.
  • the gate trench portion 40 partially located below the gate metal layer 72 has a linear shape extending in the Y direction.
  • the two gate trench portions 40 may be connected in a U shape at the end portion in the ⁇ Y direction. That is, the two gate trench portions 40 partially located below the gate metal layer 72 may constitute a U-shaped long portion and be connected to each other by a U-shaped short portion.
  • the parasitic gate capacitance is increased by relatively increasing the ratio of the occupied area of the gate trench portion 40, and the parasitic gate capacitance is decreased by relatively increasing the ratio of the occupied area of the dummy trench portion 30. You can also.
  • the parasitic gate capacitance can be easily adjusted to a desired value at the design stage of the semiconductor device 100.
  • the FWD part 90 in the vicinity of the boundary part 85 between the IGBT part 80 and the FWD part 90 does not have the mesa region 19 surrounded on all sides by some trench part.
  • the base region 14 extends in the + Y direction.
  • the FWD unit 90 of this example includes a dummy trench unit 50.
  • the dummy trench portion 50 is adjacent to the base region 14 in the + X direction in the vicinity of the boundary portion 85 between the IGBT portion 80 and the FWD portion 90.
  • the dummy trench portion 50 has at least an insulating film 52 formed on the inner wall of the dummy trench and a dummy conductive portion 54 formed inside the dummy trench whose inner wall is covered with the insulating film 52.
  • the dummy conductive portion 54 is connected to the emitter electrode 62 through the contact hole 68.
  • a plurality of mesa regions 19 are provided in a region surrounded by the dummy trench portion 50.
  • Each mesa region 19 in the FWD unit 90 has a base region 14. Since the configuration of the base region 14 is the same as that of the base region 14 of the IGBT unit 80, a duplicate description is omitted. Note that the mesa region 19 of the FWD portion 90 does not have the emitter region 12 and the contact region 15.
  • FIG. 2 is a view showing a cross section taken along the line AA ′ of FIG.
  • the AA ′ cross section is a cross-sectional view passing through the IGBT portion 80 and the FWD portion 90.
  • E”, “G”, and “C” circled mean an emitter terminal, a gate terminal, and a collector terminal, respectively.
  • the emitter terminal is electrically connected to the emitter electrode 62 located on the surface of the semiconductor substrate 10.
  • the collector terminal is electrically connected to the collector electrode 24 located under the back surface of the semiconductor substrate 10.
  • the gate conductive portion 44 and the emitter electrode 62 are electrically separated from each other by the interlayer insulating film 26.
  • the semiconductor substrate 10 of this example has an n + -type accumulation region 16 on the back side of the base region 14 and on the front side of the bottom of the gate trench 46.
  • the storage area 16 in this example is provided across the IGBT unit 80 and the FWD unit 90.
  • the semiconductor substrate 10 has an n ⁇ type drift region 18 under the accumulation region 16. That is, the drift region 18 is located below the base region 14.
  • the semiconductor substrate 10 has an n-type buffer region 20 under the drift region 18.
  • the semiconductor substrate 10 has a p + -type collector region 22 below the buffer region 20 in the IGBT unit 80, and an n + -type cathode region 92 below the buffer region 20 in the FWD unit 90.
  • a collector electrode 24 is provided under the collector region 22 and the cathode region 92.
  • the IGBT unit 80 of this example is a projection region when the collector region 22 is projected in a direction perpendicular to the back surface of the semiconductor substrate 10 with respect to the front surface in the active region, and is the emitter region 12 and the contact region 15.
  • the predetermined unit configuration including the is located in a region regularly arranged.
  • the FWD section 90 of the present example projects the cathode region 92 in the active region in the direction of the back surface that coincides with the cathode region 92 or in the direction perpendicular to the back surface of the semiconductor substrate 10 with respect to the front surface. Located in the projection area.
  • the n-type impurity concentration of the buffer region 20 is higher than the n-type impurity concentration of the drift region 18.
  • the buffer region 20 may function as a field stop layer that prevents a depletion layer extending from the back side of the base region 14 from reaching the collector region 22.
  • a gate trench 46 in the gate trench portion 40 and a dummy trench 56 in the dummy trench portion 50 are shown.
  • the gate trench 46 and the dummy trench 56 indicate the outer shape of the trench portion formed by etching.
  • the gate trench 46 and the dummy trench 56 may have the same depth or different depths.
  • FIG. 3 is a diagram showing a BB ′ cross section of FIG.
  • the BB ′ cross section is a cross-sectional view passing through the dummy trench part 30 and the gate trench part 40 of the IGBT part 80.
  • “G” circled means a gate terminal. The gate terminal is electrically connected to the gate metal layer 72.
  • the dummy trench part 30 has an upper insulating film 32 and an upper dummy conductive part 34, and a lower insulating film 33 and a lower gate conductive part 35.
  • the lower gate conductive portion 35 is located below the upper dummy conductive portion 34.
  • the lower gate conductive portion 35 is provided inside a dummy trench whose inner wall is covered with the lower insulating film 33.
  • the upper dummy conductive portion 34 and the lower gate conductive portion 35 are electrically separated by the upper insulating film 32.
  • the lower gate conductive portion 35 is connected to the gate conductive portion 44 of the gate trench portion 40. Therefore, the lower gate conductive portion 35 has a gate potential. In contrast, the upper dummy conductive portion 34 has an emitter potential. In this example, the gate conductive portions 44 are not connected to each other via separate wiring and contact holes, and the gate conductive portions 44 are connected to each other via the lower gate conductive portion 35. Therefore, the semiconductor device 100 can be easily miniaturized. Become.
  • the C CE reduces C CG corresponds Therefore, an oscillation phenomenon (a phenomenon in which the output of the semiconductor device oscillates as the gate is turned on / off) easily occurs. If the switching speed of the gate is increased when C CG is reduced. As a result, the voltage change per unit time (dv / dt) becomes high, and an oscillation phenomenon occurs.
  • the dummy trench portion 30 of the IGBT portion 80 in this example has a split structure of the upper dummy conductive portion 34 and the lower gate conductive portion 35.
  • the dummy trench portion 30 Since the dummy trench portion 30 has the lower gate conductive portion 35, CCG is formed through the lower gate conductive portion 35. In this example, since CCG is provided in this way, even if the ratio of the occupation area of the dummy trench portion 30 to the gate trench portion 40 is increased, the dummy trench portion 30 does not have a conductive portion having a gate potential. Oscillation can be prevented from occurring.
  • FIG. 4 is a view showing a cross section along CC ′ in FIG. CC ′ cross-section is a cross-sectional view through the dummy trench portion 30 of the IGBT portion 80.
  • the lower gate conductive portion 35 may be provided below the base region 14.
  • the lower gate conductive portion 35 of this example is provided below the accumulation region 16. Accordingly, the bottom and side portions of the lower insulating film 33 enclosing the lower gate conductive portion 35 are in contact with the drift region 18.
  • the upper insulating film 32 does not contact the drift region 18.
  • the lowermost end of the upper dummy conductive portion 34 may be located between the upper end and the lower end of the accumulation region 16.
  • the potential of the upper dummy conductive portion 34 is the same as that of the emitter electrode 62.
  • the doping concentration of the n-type impurity in the drift region 18 is, for example, about 1 ⁇ 10 14 / cm 3 or less.
  • the holes enter the base region 14 through the hole inversion layer, and the conductivity modulation becomes difficult. This increases the turn-on time.
  • the accumulation region 16 has a higher doping concentration than the drift region 18, the voltage threshold value for forming a hole inversion layer is higher than the drift region 18. Therefore, if the lowermost end of the upper dummy conductive portion 34 is located between the upper end and the lower end of the accumulation region 16, the hole inversion layer is hardly formed, and the turn-on time can be shortened.
  • a dummy trench 36 and a gate trench 46 extending in the arrangement direction are formed on the surface of the semiconductor substrate 10.
  • an insulating film covering the inner walls of the dummy trench 36 and the gate trench 46 is formed.
  • the insulating film may be silicon dioxide.
  • polysilicon is formed in the dummy trench portion 30 and the gate trench portion 40. Thereby, the insulating film 42 and the gate conductive portion 44 in the gate trench portion 40 are formed.
  • the gate trench portion 40 and the like are covered with a mask material, and only the dummy trench portion 30 is exposed from the mask material. Then, the insulating film and polysilicon in the dummy trench portion 30 are partially removed by etching. After the etching, the polysilicon remaining in the dummy trench portion 30 becomes the lower gate conductive portion 35, and the insulating film remaining on the inner wall of the dummy trench 36 becomes the lower insulating film 33.
  • an insulating film is formed on the lower gate conductive portion 35.
  • the insulating film may also be silicon dioxide.
  • the upper insulating film 32 is formed.
  • polysilicon is formed in contact with the upper insulating film 32 in the dummy trench portion 30.
  • the polysilicon is removed leaving a portion to be the upper dummy conductive portion 34. Thereby, the structure shown in the YZ section of FIG. 4 can be formed.
  • FIG. 5 is a diagram showing a cross section along DD ′ of FIG.
  • the DD ′ cross section is a cross-sectional view passing through the dummy trench part 30 of the IGBT part 80 and the dummy trench part 50 of the FWD part 90.
  • the conductive part of the dummy trench part 30 in the IGBT part 80 has an upper dummy conductive part 34 and a lower gate conductive part 35.
  • the conductive part of the dummy trench part 50 of the FWD part 90 has only the dummy conductive part 54.
  • the dummy trench portion 50 may include an upper dummy conductive portion 34 and a lower gate conductive portion 35. That is, each of the dummy trench portions 30 and 50 in the IGBT portion 80 and the FWD portion 90 may have the upper dummy conductive portion 34 and the lower gate conductive portion 35. Thereby, the unbalance of the potential distribution on the surface side of the semiconductor substrate 10 can be eliminated.
  • FIG. 6A is a diagram showing the mesa region 19, the dummy trench portion 30, and the gate trench portion 40 in the first embodiment.
  • FIG. 6A only the mesa region 19, the dummy trench portion 30, and the gate trench portion 40 of the IGBT portion 80 are shown for the sake of explanation, and other configurations are omitted.
  • the boundary between the dummy trench portion 30 and the gate trench portion 40 is indicated by a dotted line.
  • the plurality of mesa regions 19 are provided in a so-called lattice shape. That is, the plurality of mesa regions 19 are provided in a straight line in the first direction and the second direction. That is, the mesa regions 19 arranged in the X direction have the same position in the Y direction of the mesa region 19. Further, the mesa regions 19 arranged in the Y direction have the same X-direction position of the mesa region 19. As described above, the dummy trench portion 30 and the gate trench portion 40 surround each mesa region 19, whereby a carrier accumulation effect can be obtained.
  • FIG. 6B is a diagram showing the mesa region 19, the dummy trench portion 30, and the gate trench portion 40 in the second modification of the first embodiment.
  • the boundary between the dummy trench portion 30 and the gate trench portion 40 is indicated by a solid line.
  • 6B also shows the mesa region 19, the dummy trench portion 30, and the gate trench portion 40 of the IGBT portion 80 as in FIG. 6A.
  • the plurality of mesa regions 19 are provided in a so-called staggered pattern.
  • the plurality of mesa regions 19 in this example include the first group 119-1, the second group 119-2 closest to the first group 119-1 in the + Y direction, and the first group in the + Y direction. And a third group 119-3 which is second closest to 119-1.
  • the mesa regions 19 are provided in a straight line in the X direction.
  • Each mesa region 19 of the second group 119-2 is provided with a half-cycle shift in the X direction with respect to each mesa region 19 of the first group 119-1.
  • region 19 of this example means the length between the centers of the mesa area
  • Half cycle means half the length of one cycle.
  • Each mesa region 19 of the third group 119-3 is aligned with each other in the Y direction with respect to each mesa region 19 of the first group 119-1.
  • the mesa regions 19 of the first group 119-1 and the third group 119-3 have the same center position in the X direction.
  • a fourth group 119-4 similar to the second group 119-2 may be provided adjacent to the third group 119-3 in the + Y direction.
  • the configuration of the first group 119-1 and the second group 119-2 may be periodically repeated in the Y direction.
  • the FWD unit 90 may also have the same arrangement of the mesa regions 19 as the IGBT unit 80.
  • the carrier accumulation effect can be obtained as in the example of FIG. 6A.
  • FIG. 7 is a view showing a modification of the dummy trench portion 30.
  • a boundary between the upper insulating film 32 and the lower insulating film 33 is indicated by a dotted line.
  • the upper insulating film 32 is provided on the side and bottom of the upper dummy conductive portion 34.
  • the lower insulating film 33 is provided between the bottom of the upper dummy conductive part 34 and the top of the lower gate conductive part 35, and on the side and bottom of the lower gate conductive part 35.
  • the thickness t 1 of the lower insulating film 33 in this example is thicker than the thickness t 2 of the upper insulating film 32. Also in the configuration, it is possible to ensure suppressing C CG oscillation phenomenon.
  • the depth from the surface to the bottom of the upper dummy conductive portions 34 and D 1, the depth from the surface to the top of the lower gate conductive portions 35 and D 2.
  • the depth D 2 is deeper than the depth D 1.
  • the depth D 1 in this example is deeper than the base region 14 and shallower than the boundary between the accumulation region 16 and the drift region 18. That is, the bottom of the upper dummy conductive portion 34 of this example is located in the same depth range as the accumulation region 16.
  • Top of the lower gate conductive portions 35 may be provided at a position deeper than the depth D 1.
  • FIG. 8 is a view showing a DD ′ section of the semiconductor device 100 according to the second embodiment.
  • At least one dummy trench portion 30 among the plurality of dummy trench portions 30 may not have the lower gate conductive portion 35.
  • the dummy trench portion 30 located at the end portion in the ⁇ Y direction does not have the lower gate conductive portion 35.
  • the dummy trench part 30 located at the end in the ⁇ Y direction has an insulating film 52 and a dummy conductive part 54 in the dummy trench 36, similarly to the dummy trench part 50.
  • the conductive parts are all dummy conductive parts 54 as in the dummy trench parts 30 and 50 of this example, a manufacturing method different from that of the first embodiment may be adopted. For example, all the polysilicon in the dummy trench portion 30 is removed by etching. Thereafter, the dummy conductive portion 54 may be formed by forming polysilicon in the entire dummy trench portion 30.
  • FIG. 9 is a top view of the semiconductor device 100 according to the third embodiment.
  • the first straight portion of the dummy trench portion 30 in the IGBT portion 80 extends in the + X direction and is connected to the dummy trench portion 50 in the FWD portion 90.
  • FIG. 10 is a view showing a DD ′ cross section of the semiconductor device 100 according to the third embodiment.
  • the dummy trench portion 30 of this example includes an upper dummy conductive portion 34 and a lower gate conductive portion 35 as in the first embodiment.
  • the lower gate conductive portion 35 terminates at the boundary portion 85.
  • the upper dummy conductive portion 34 is connected to the dummy conductive portion 54 in the FWD portion 90.
  • FIG. 11 is a top view of the semiconductor device 100 according to the fourth embodiment.
  • the dummy trench portion 30 is disposed at the boundary portion 85 and the gate trench portion 40 is not disposed. That is, among the plurality of dummy trench portions 30, the plurality of second straight portions 38 that are closest to the IGBT portion 80 may be connected to each other in the Y direction.
  • the dummy trench portion 30 at the boundary portion 85 does not have the lower gate conductive portion 35. That is, in this example, the dummy trench portion 30 in the boundary portion 85 includes the insulating film 52 and the dummy conductive portion 54, similarly to the dummy trench portion 50 in the FWD portion 90.
  • FIG. 12 is a view showing an FF ′ cross section of the semiconductor device 100 according to the fourth embodiment.
  • the upper dummy conductive portion 34 of the dummy trench portion 30 and the dummy conductive portion 54 of the dummy trench portion 30 at the boundary portion 85 are separated from each other.
  • the upper dummy conductive portion 34 may be connected to the dummy conductive portion 54 as indicated by a dotted line.
  • FIG. 13 is a top view of the semiconductor device 100 according to the fifth embodiment.
  • the mesa region 19 of the FWD unit 90 has the emitter region 12 similarly to the mesa region 19 of the IGBT unit 80.
  • the point which concerns differs from 1st Embodiment the same advantageous effect as 1st Embodiment can be acquired also in this example.
  • FIG. 14 is a top view of the semiconductor device 100 according to the sixth embodiment.
  • the interlayer insulating film 26 is omitted.
  • the dummy trench portions 30 and 50 in this example have a so-called stripe shape.
  • the dummy trench portions 30 and 50 in this example are provided in parallel to the Y direction.
  • the dummy trench portion 30 does not have the first straight portion 37 but has only the second straight portion 38. Therefore, the dummy trench portion 30 does not have the intersecting portion 39.
  • a contact hole 66 for electrically connecting the upper dummy conductive portion 34 and the emitter electrode 62 is provided on each second straight portion 38 of the plurality of dummy trench portions 30.
  • Gate trench 50 50 Dummy trench 52 52 Insulating film 54 Dummy conductive part 56 Dummy trench 62 Emitter 64 66, 6 ..Contact hole, 72 ..Gate metal layer, 74 ..Contact hole, 80 ..IGBT part, 85 ..Boundary part, 90 ..FWD part, 92 ..Cathode region, 100 ..Semiconductor device, 119 ⁇ group

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)

Abstract

ゲートトレンチ部に対してエミッタ電位である導電部を有するダミートレンチ部の比率を高くすると、コレクタ‐ゲート間容量(以下、CCG)が減り、コレクタ‐エミッタ間容量(以下、CCE)が増える。これにより、発振現象が生じやすくなる。第1導電型の半導体基板と、半導体基板内の表面側に設けられた第2導電型のベース領域と、半導体基板の表面からベース領域を貫通して半導体基板内に設けられ、ゲート導電部を有する、ゲートトレンチ部と、半導体基板の表面からベース領域を貫通して半導体基板内に設けられ、エミッタ電位を有する上部ダミー導電部と、上部ダミー導電部の下に位置しゲート電位を有する下部ゲート導電部とを含む、ダミートレンチ部とを備え、ダミートレンチ部の下部ゲート導電部は、ゲートトレンチ部のゲート導電部と接続する半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
 ゲートトレンチを矩形環状に設けることが知られている(例えば、特許文献1参照)。また、ゲートトレンチおよびダミートレンチをそれぞれ矩形環状に設けることが知られている(例えば、特許文献2参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特開2013-150000号公報
 [特許文献2] 特開2016-092177号公報
解決しようとする課題
 ゲートトレンチ部に対してエミッタ電位である導電部を有するダミートレンチ部の比率を高くすると、コレクタ‐ゲート間容量(以下、CCG)が減り、コレクタ‐エミッタ間容量(以下、CCE)が増える。これにより、発振現象が生じやすくなる。
一般的開示
 本発明の第1の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、ベース領域と、ゲートトレンチ部と、ダミートレンチ部とを備えてよい。半導体基板は、第1導電型であってよい。ベース領域は、半導体基板内の表面側に設けられてよい。ベース領域は、第2導電型であってよい。ゲートトレンチ部は、半導体基板の表面からベース領域を貫通して半導体基板内に設けられてよい。ゲートトレンチ部は、ゲート導電部を有してよい。ダミートレンチ部は、半導体基板の表面からベース領域を貫通して半導体基板内に設けられてよい。ダミートレンチ部は、上部ダミー導電部と、下部ゲート導電部とを含んでよい。上部ダミー導電部は、エミッタ電位を有してよい。下部ゲート導電部は、上部ダミー導電部の下に位置してよい。下部ゲート導電部は、ゲート電位を有してよい。ダミートレンチ部の下部ゲート導電部は、ゲートトレンチ部のゲート導電部と接続してよい。
 半導体基板の表面において、複数のゲートトレンチ部と複数のダミートレンチ部とが、メサ領域を囲んでよい。メサ領域は、半導体装置のトランジスタ部に設けられてよい。メサ領域は、ベース領域を有してよい。
 半導体基板の表面において、ダミートレンチ部は、第1の直線部と、第2の直線部と、交差部とを有してよい。第1の直線部は、第1方向に延伸してよい。第2の直線部は、第2方向に延伸してよい。第2方向は、第1方向に対して直交してよい。交差部において、第1の直線部と第2の直線部とが交わってよい。
 半導体基板の表面において、複数のメサ領域は、第1方向および第2方向に直線状に並んで設けられてよい。
 半導体基板の表面において、半導体装置のトランジスタ部に設けられベース領域を各々有する複数のメサ領域は、第1のグループと、第2のグループと、第3のグループとを含んでよい。第1のグループにおいて、各メサ領域は第1方向において直線状に並んで設けられてよい。第2のグループにおいて、各メサ領域は第1方向において直線状に並んで設けられてよい。第2のグループにおいて、各メサ領域は第2方向において第1のグループに対して最も近くてよい。第2のグループにおいて、各メサ領域は第1のグループの各メサ領域に対して第1方向において互いに半周期ずれて設けられてよい。第3のグループにおいて、各メサ領域は第1方向において直線状に並んで設けられてよい。第3のグループにおいて、各メサ領域は第2方向において第1のグループに対して2番目に近くてよい。第3のグループにおいて、各メサ領域は第1のグループの各メサ領域に対して第2方向において互いに並んで設けられてよい。
 ダミートレンチ部は、半導体基板の表面において、メサ領域の第1方向に平行な辺に隣接して設けられてよい。ゲートトレンチ部は、半導体基板の表面において、メサ領域の第2方向に平行な辺に隣接して設けられてよい。
 半導体装置は、半導体装置のトランジスタ部に隣接するダイオード部さらに備えてよい。トランジスタ部およびダイオード部に設けられた複数のダミートレンチ部の各々は、下部ゲート導電部を有してよい。
 複数のダミートレンチ部のうち少なくとも一つのダミートレンチ部は、下部ゲート導電部を有さなくてもよい。
 半導体装置は、半導体装置のトランジスタ部に隣接するダイオード部さらに備えてよい。トランジスタ部における複数のダミートレンチ部のうちダイオード部に最も近い複数の第2の直線部は、第2方向において隣接する第2の直線部同士が互いに連結してよい。ダイオード部に最も近い複数の第2の直線部は、下部ゲート導電部を有しなくてもよい。
 ダミートレンチ部の下部ゲート導電部は、ベース領域よりも下に設けられてよい。
 ダミートレンチ部は、上部絶縁膜と、下部絶縁膜とを有してよい。上部絶縁膜は、上部ダミー導電部の側部および底部に設けられてよい。下部絶縁膜は、下部ゲート導電部の側部および底部に設けられてよい。下部絶縁膜は、上部絶縁膜よりも厚くてよい。
 半導体基板は、第1導電型のドリフト領域を有してよい。ドリフト領域は、ベース領域よりも下に位置してよい。ダミートレンチ部の上部絶縁膜は、ドリフト領域に接触しなくてよい。ダミートレンチ部の下部絶縁膜は、ドリフト領域に接触してよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
第1実施形態における半導体装置100の上面図である。 図1のA‐A'断面を示す図である。 図1のB‐B'断面を示す図である。 図1のC‐C'断面を示す図である。 図1のD‐D'断面を示す図である。 第1実施形態における、メサ領域19、ダミートレンチ部30およびゲートトレンチ部40を示す図である。 第1実施形態の変形例における、メサ領域19、ダミートレンチ部30およびゲートトレンチ部40を示す図である。 ダミートレンチ部30の変形例を示す図である。 第2実施形態における半導体装置100のD‐D'断面を示す図である。 第3実施形態における半導体装置100の上面図である。 第3実施形態における半導体装置100のD‐D'断面を示す図である。 第4実施形態における半導体装置100の上面図である。 第4実施形態における半導体装置100のF‐F'断面を示す図である。 第5実施形態における半導体装置100の上面図である。 第6実施形態における半導体装置100の上面図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、第1実施形態における半導体装置100の上面図である。本例の半導体装置100は、IGBT(Insulated Gate Bipolar Transistor)が設けられたIGBT部80と、FWD(Free Wheeling Diode)が設けられたFWD部90とを有する。IGBT部80は、トランジスタ部の一例である。トランジスタ部の他の例は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であってもよい。FWD部90は、ダイオード部の一例である。本例の半導体装置100は、IGBT部80とFWD部90とを1つの半導体基板に一体形成したRC‐IGBT(Reverse‐Conducting IGBT)である。
 本例のIGBT部80は、X方向においてFWD部90に隣接する。本例において、X方向とY方向とは互いに直交する方向である。X方向は第1方向の一例であり、Y方向は第2方向の一例である。Z方向はX‐Y平面に垂直な方向である。X方向、Y方向およびZ方向は、いわゆる右手系を成す。なお、本例において「上」および「上方」は、半導体基板の裏面から表(おもて)面に向かう方向(+Z方向)を意味する。これに対して、「下」および「下方」は、+Z方向とは反対方向である-Z方向を意味する。本例において、上および下は相対的な位置関係を説明する便宜的な表現に過ぎない。Z方向は、必ずしも重力方向または地面に垂直な方向を意味しない。
 図1は、半導体基板の端部周辺における活性領域を示しており、半導体基板の中心部および半導体基板の端部に位置するエッジ終端部等の他の領域を省略している。半導体装置100は、上面視において活性部を囲むエッジ終端部を有してよい。本例において活性部とは、IGBT部80およびFWD部90を含む領域を指す。エッジ終端部は、半導体基板の表面側における電界集中を緩和する機能を有する。エッジ終端部は、例えば、ガードリング、フィールドプレート、リサーフまたはこれらの2種類以上を組み合わせた構造を有する。
 本例の半導体装置100は、半導体基板内の表面側において、n型のエミッタ領域12、p型のベース領域14、p型のコンタクト領域15、p型のウェル領域28、ダミートレンチ部30、ゲートトレンチ部40、および、ダミートレンチ部50を備える。なお、nまたはpは、それぞれ電子または正孔が多数キャリアであることを意味する。また、nまたはpの右肩に記載した+または-について、+はそれが記載されていないものよりもキャリア濃度が高く、-はそれが記載されていないものよりもキャリア濃度が低いことを意味する。
 本例の半導体基板は第1導電型のシリコン基板であるが、第1導電型の炭化シリコン基板または第1導電型の窒化ガリウム基板であってもよい。本例において第1導電型はn型であり、本例の半導体基板はn型のシリコン基板である。第2導電型のベース領域14は、IGBT部80およびFWD部90に設けられる。本例において、第2導電型はp型である。なお、各例において説明する基板、領域およびその他の部分導電型は、それぞれ逆の導電型であってもよい。
 図1においては、半導体基板の表面上に設けられた層間絶縁膜26に設けられたコンタクトホール64、66および74、ならびに、FWD部90の層間絶縁膜26に設けられたコンタクトホール68を示す。コンタクトホール64、66および68は、エミッタ電極62と表面との電気的接続を提供する。これに対して、コンタクトホール74は、ゲート金属層72と表面との電気的接続を提供する。
 [IGBT部80]本例のIGBT部80は、複数のメサ領域19を有する。各メサ領域19は、ベース領域14を有する。IGBT部80のベース領域14は、メサ領域19の周辺部において半導体基板の表面に露出する。本例のメサ領域19は、半導体基板のおもて面において、2つのゲートトレンチ部40および2つのダミートレンチ部50により四方を囲まれる。本例のダミートレンチ部30は、メサ領域19のX方向に平行な辺に隣接する。また、本例のゲートトレンチ部は、メサ領域19のY方向に平行な辺に隣接して設けられる。なお、上面視におけるメサ領域19の形状は、矩形に限定されず、五角形以上の多角形でもよい。
 本例のIGBT部80のメサ領域19は、複数のエミッタ領域12を有する。エミッタ領域12は、メサ領域19の周辺部において、半導体基板の表面に露出する。本例のエミッタ領域12は、メサ領域19のY方向の中点近傍であって、メサ領域19の±X方向端部に設けられる。つまり、本例においては、1つのメサ領域19が2つのエミッタ領域12を有する。本例のエミッタ領域12は、Y方向に延伸する帯形状を有する。
 本例のIGBT部80のメサ領域19は、コンタクト領域15を有する。コンタクト領域15は、メサ領域19の中央部において、半導体基板の表面に露出する。コンタクト領域15は、メサ領域19よりも小さい範囲に設けられる。本例のコンタクト領域15は、メサ領域19と相似な矩形形状を有する。本例のコンタクト領域15は、コンタクトホール64の開口部において露出する。なお、本例のコンタクトホール64は、コンタクト領域15と同様にメサ領域19と相似な矩形形状を有する。コンタクトホール64は、図1における境界線の内側に開口を有する。例えば、エミッタ電極62およびコンタクト領域15は、コンタクトホール64の内側において互いに接続する。
 ダミートレンチ部30およびゲートトレンチ部40は、半導体基板の表面側からベース領域14を貫通して設けられる。本例において、トレンチ部がベース領域14を貫通するとは、表面側の全体に設けられたベース領域14がエッチングにより上面視において分離された状況を指す。
 本例のダミートレンチ部30は、ダミートレンチの内壁に形成された上部絶縁膜32と、上部絶縁膜32で内壁が覆われたダミートレンチの内部に形成された上部ダミー導電部34とを少なくとも有する。上部ダミー導電部34は、コンタクトホール66を介してエミッタ電極62に接続する。なお、本例のエミッタ電極62は、ウェル領域28から+Y方向に延伸し、IGBT部80およびFWD部90の全体を覆う。なお、ウェル領域28は、-Y方向端部に位置するベース領域14よりもさらに-Y方向の位置に設けられる。
 ダミートレンチ部30は、第1の直線部37と、第2の直線部38と、交差部39とを有する。本例においては、IGBT部80の-Y方向端部のメサ領域19に隣接するダミートレンチ部30において、第1の直線部37と、第2の直線部38と、交差部39とを示す。ただし、IGBT部80の各ダミートレンチ部30は、同様な第1の直線部37と、第2の直線部38と、交差部39とを有してよい。
 1つの第1の直線部37および1つの第2の直線部38を点線により囲んで示す。また、1つの交差部39を矢印により示す。第1の直線部37は、X方向に延伸する。これに対して、第2の直線部38は、Y方向に延伸する。本例においては、1つの第2の直線部38に対して、複数の第1の直線部37が直交する。第1の直線部37と、第2の直線部38とが交わる位置を交差部39と称する。
 ダミートレンチ部30のダミートレンチは、所定の深さを有する。本例では、ゲートトレンチ部40に加えてダミートレンチ部30を設けるので、トレンチ間にホールが蓄積されるキャリア蓄積効果を得ることができる。これにより、オン電圧を低減することができる。また、本例のダミートレンチ部30は、第1の直線部37と第2の直線部38とを離間させず交差部39において直交させるので、交差部39を設けない場合に比べてキャリア蓄積効果を向上させることができる。
 なお、交差部39のダミートレンチは、第1の直線部37および第2の直線部38のダミートレンチよりも深くてよい。仮に、交差部39がゲートトレンチ部40に設けられる場合、交差部39近傍のゲート閾値電圧が、第1の直線部37および第2の直線部38のゲート閾値電圧とは異なり得る。つまり、ゲートトレンチ部40の場所によって、ゲート閾値電圧が変動する問題が生じる。これに対して本例においては、ダミートレンチ部30に交差部39を設けてゲートトレンチ部40には交差部39を設けないので、ゲート閾値電圧が変動する問題を回避することができる。
 ゲートトレンチ部40は、ゲートトレンチの内壁に形成された絶縁膜42と、絶縁膜42で内壁が覆われたゲートトレンチの内部に形成されたゲート導電部44とを有する。ゲート導電部44は、IGBTのチャネルを制御する機能を有する。ゲート導電部44は、コンタクトホール74を介してゲート金属層72に接続する。本例のゲート金属層72は、-Y方向の端部に位置するダミートレンチ部30およびゲートトレンチ部40の一部を少なくとも覆う。本例のゲート金属層72は、主にウェル領域28上に設けられる。
 ゲートトレンチ部40の内部に形成されたゲート導電部44に所定の電圧が印加されると、エミッタ領域12の下方に形成されたp型のベース領域においてゲートトレンチ部40と接する領域にチャネルが形成される。エミッタ電極62に所定の低電位(例えば、接地電位)が印加され、かつ、半導体基板の裏面に設けられたコレクタ電極に所定の高電位(例えば、数十ボルトから数千ボルト)が印加された場合にチャネルが形成されると、コレクタ電極からチャネルを経由してエミッタ電極62に電流が流れる。
 本例では、ダミートレンチ部30およびゲートトレンチ部40によってメサ領域19を囲むので、半導体装置100の設計段階において半導体基板の表面におけるゲートトレンチ部40の密度を容易に調整できる。具体的には、2つの第1の直線部37を連結させることにより、ゲートトレンチ部40をダミートレンチ部30とすることができる。これにより、ダミートレンチ部30の占有面積に対するゲートトレンチ部40の占有面積の比率を容易に調整することできる。なお、本例のダミートレンチ部30およびゲートトレンチ部40が有するトレンチは、同じ深さである。
 なお、本例において、部分的にゲート金属層72の下に位置するゲートトレンチ部40は、Y方向に延伸する直線形状である。ただし、2つの当該ゲートトレンチ部40は、-Y方向端部においてU字状に連結されてもよい。つまり、部分的にゲート金属層72の下に位置する2つのゲートトレンチ部40は、U字の長手部を構成して、U字の短手部により互いに連結されてもよい。
 また、ゲートトレンチ部40の占有面積の比率を相対的に増加させることにより寄生ゲート容量を増加させ、ダミートレンチ部30の占有面積の比率を相対的に増加させることにより寄生ゲート容量を低下させることもできる。このように、本例の半導体装置100においては、半導体装置100の設計段階において寄生ゲート容量を所望の値に容易に調整することができる。
 [FWD部90]本例において、IGBT部80とFWD部90との境界部85近傍におけるFWD部90は、四方を何らかのトレンチ部で囲まれたメサ領域19を有しない。境界部85近傍におけるFWD部90においては、ベース領域14が+Y方向に延伸する。本例のFWD部90は、ダミートレンチ部50を有する。ダミートレンチ部50は、IGBT部80とFWD部90との境界部85近傍におけるベース領域14の+X方向に隣接する。
 ダミートレンチ部50は、ダミートレンチの内壁に形成された絶縁膜52と、絶縁膜52で内壁が覆われたダミートレンチの内部に形成されたダミー導電部54とを少なくとも有する。ダミー導電部54は、コンタクトホール68を介してエミッタ電極62に接続する。ダミートレンチ部50に囲まれた領域には、複数のメサ領域19が設けられる。FWD部90における各メサ領域19は、ベース領域14を有する。ベース領域14の構成は、IGBT部80のベース領域14と同じであるので、重複説明を省略する。なお、FWD部90のメサ領域19は、エミッタ領域12およびコンタクト領域15を有しない。
 図2は、図1のA‐A'断面を示す図である。A‐A'断面は、IGBT部80およびFWD部90を通る断面図である。丸で囲んだ「E」、「G」および「C」は、それぞれ、エミッタ端子、ゲート端子およびコレクタ端子を意味する。エミッタ端子は、半導体基板10の表面上に位置するエミッタ電極62に電気的に接続する。これに対してコレクタ端子は、半導体基板10の裏面下に位置するコレクタ電極24に電気的に接続する。なお、ゲート導電部44とエミッタ電極62とは、層間絶縁膜26により互いに電気的に分離される。
 本例の半導体基板10は、ベース領域14よりも裏面側であってゲートトレンチ46の底部よりも表面側に、n型の蓄積領域16を有する。本例の蓄積領域16は、IGBT部80およびFWD部90に渡って設けられる。半導体基板10は、蓄積領域16の下にn型のドリフト領域18を有する。つまり、ドリフト領域18は、ベース領域14よりも下に位置する。また、半導体基板10は、ドリフト領域18の下にn型のバッファ領域20を有する。さらに、半導体基板10は、IGBT部80におけるバッファ領域20の下にp型のコレクタ領域22を有し、FWD部90におけるバッファ領域20の下にn型のカソード領域92を有する。また、コレクタ領域22およびカソード領域92の下にはコレクタ電極24が設けられる。本例のIGBT部80は、活性領域において、おもて面に対して半導体基板10の裏面に垂直な方向にコレクタ領域22を投影したときの投影領域であって、エミッタ領域12およびコンタクト領域15を含む所定の単位構成が規則的に配置された領域に位置する。また、本例のFWD部90は、活性領域において、カソード領域92に一致する裏面の領域、または、おもて面に対して半導体基板10の裏面に垂直な方向にカソード領域92を投影したときの投影領域に位置する。
 バッファ領域20のn型不純物濃度は、ドリフト領域18のn型不純物濃度よりも高い。バッファ領域20は、ベース領域14の裏面側から広がる空乏層が、コレクタ領域22に到達することを防ぐフィールドストップ層として機能してよい。なお、図2においては、ゲートトレンチ部40におけるゲートトレンチ46と、ダミートレンチ部50におけるダミートレンチ56とを示す。ゲートトレンチ46およびダミートレンチ56は、エッチングにより形成されたトレンチ部の外形を指す。ゲートトレンチ46とダミートレンチ56は、同じ深さでもよいし、異なる深さであってもよい。
 図3は、図1のB‐B'断面を示す図である。B‐B'断面は、IGBT部80のダミートレンチ部30およびゲートトレンチ部40を通る断面図である。丸で囲んだ「G」はゲート端子を意味する。ゲート端子は、ゲート金属層72に電気的に接続する。
 ダミートレンチ部30は、上部絶縁膜32および上部ダミー導電部34と、下部絶縁膜33および下部ゲート導電部35とを有する。下部ゲート導電部35は、上部ダミー導電部34の下に位置する。下部ゲート導電部35は、下部絶縁膜33で内壁が覆われたダミートレンチの内部に設けられる。上部ダミー導電部34と下部ゲート導電部35とは、上部絶縁膜32により電気的に分離される。
 下部ゲート導電部35は、ゲートトレンチ部40のゲート導電部44と接続する。それゆえ、下部ゲート導電部35はゲート電位を有する。これに対して、上部ダミー導電部34はエミッタ電位を有する。本例では、ゲート導電部44同士が別途の配線およびコンタクトホールを介して接続せず、下部ゲート導電部35を介してゲート導電部44同士が接続するので、半導体装置100の微細化が容易となる。
 仮に、ダミートレンチ部30の導電部が全てエミッタ電位の導電部である場合には、ゲートトレンチ部40に対するダミートレンチ部30の占有面積の比率を高くすると、対応してCCGが減りCCEが増えるので、発振現象(ゲートのオンオフに伴い半導体装置の出力が発振する現象)が生じやすくなる。仮に、CCGが減少するとゲートのスイッチングスピードが速くなる。これにより、単位時間当たりの電圧変化(dv/dt)が高くなるので発振現象が発生する。これに対して、本例におけるIGBT部80のダミートレンチ部30は、上部ダミー導電部34および下部ゲート導電部35のスプリット構造を有する。ダミートレンチ部30は下部ゲート導電部35を有するので、下部ゲート導電部35を介してCCGが形成される。本例ではこのようにCCGを設けるので、ダミートレンチ部30がゲート電位の導電部を有さない場合に比べて、ゲートトレンチ部40に対するダミートレンチ部30の占有面積の比率を高くしても発振現象が生じることを抑制することができる。
 図4は、図1のC‐C'断面を示す図である。C‐C'断面は、IGBT部80のダミートレンチ部30を通る断面図である。下部ゲート導電部35は、ベース領域14よりも下に設けられてよい。本例の下部ゲート導電部35は、蓄積領域16の下に設けられる。これに伴い、下部ゲート導電部35を被包する下部絶縁膜33の底部および側部は、ドリフト領域18に接触する。これに対して、上部絶縁膜32は、ドリフト領域18に接触しない。
 上部ダミー導電部34の最下端は、蓄積領域16の上端および下端の間に位置してよい。上部ダミー導電部34の電位はエミッタ電極62と同じである。また、ドリフト領域18におけるn型不純物のドーピング濃度は例えば1×1014/cm程度かそれ以下である。IGBTがターンオンするときには、電荷キャリア(電子、正孔)の影響によりドリフト領域18の電位が変動する。エミッタ電極と同電位の上部ダミー導電部34の最下端がドリフト領域18に達していると、ドリフト領域18に接するトレンチ部の側壁に、正孔の反転層が容易に形成される。この正孔の反転層を伝って、正孔がベース領域14に入り、伝導度変調がし難くなる。そのため、ターンオン時間が長くなる。一方、蓄積領域16はドリフト領域18よりもドーピング濃度が高いので、正孔の反転層ができる電圧閾値はドリフト領域18よりも高い。そのため、上部ダミー導電部34の最下端が蓄積領域16の上端および下端の間に位置すれば、正孔の反転層はほとんど形成されず、ターンオン時間を短縮できる。
 図4に示した、下部ゲート導電部35の製造方法の一例を説明する。まず、半導体基板10の表面に、配列方向において延伸するダミートレンチ36およびゲートトレンチ46を形成する。次に、ダミートレンチ36およびゲートトレンチ46の内壁を覆う絶縁膜を形成する。当該絶縁膜は、二酸化シリコンであってよい。次に、ダミートレンチ部30およびゲートトレンチ部40内にポリシリコンを形成する。これにより、ゲートトレンチ部40における絶縁膜42およびゲート導電部44を形成する。
 次に、ゲートトレンチ部40等をマスク材料で覆い、ダミートレンチ部30のみをマスク材料から露出させる。そして、エッチングにより、ダミートレンチ部30内の絶縁膜およびポリシリコンを部分的に除去する。エッチング後において、ダミートレンチ部30内に残ったポリシリコンが下部ゲート導電部35となり、ダミートレンチ36の内壁に残った絶縁膜が下部絶縁膜33となる。
 次に、下部ゲート導電部35上に絶縁膜を形成する。当該絶縁膜も、二酸化シリコンであってよい。これにより上部絶縁膜32を形成する。次に、ダミートレンチ部30内の上部絶縁膜32に接してポリシリコンを形成する。次に、上部ダミー導電部34となる部分を残して、ポリシリコンを除去する。これにより、図4のY‐Z断面に示した構造を形成できる。
 図5は、図1のD‐D'断面を示す図である。D‐D'断面は、IGBT部80のダミートレンチ部30およびFWD部90のダミートレンチ部50を通る断面図である。本例において、IGBT部80におけるダミートレンチ部30の導電部は、上部ダミー導電部34および下部ゲート導電部35を有する。これに対して、FWD部90のダミートレンチ部50の導電部は、ダミー導電部54のみを有する。
 第1実施形態の第1変形例として、ダミートレンチ部50が、上部ダミー導電部34と下部ゲート導電部35とを有してもよい。つまり、IGBT部80およびFWD部90におけるダミートレンチ部30および50の各々が、上部ダミー導電部34と下部ゲート導電部35を有してもよい。これにより、半導体基板10の表面側における電位分布のアンバランスを解消することができる。
 図6Aは、第1実施形態における、メサ領域19、ダミートレンチ部30およびゲートトレンチ部40を示す図である。図6Aにおいては、説明のために、IGBT部80のメサ領域19、ダミートレンチ部30およびゲートトレンチ部40のみを示し、他の構成を省略する。なお、ダミートレンチ部30とゲートトレンチ部40との境界を点線により示す。
 本例において、複数のメサ領域19は、いわゆる格子状に設けられる。つまり、複数のメサ領域19は、第1方向および第2方向に直線状に並んで設けられる。つまり、X方向に並んだ各メサ領域19は、メサ領域19のY方向位置が一致する。また、Y方向に並んだ各メサ領域19は、メサ領域19のX方向位置が一致する。このように、ダミートレンチ部30およびゲートトレンチ部40が、各メサ領域19を囲むことにより、キャリア蓄積効果を得ることができる。
 図6Bは、第1実施形態の第2変形例における、メサ領域19、ダミートレンチ部30およびゲートトレンチ部40を示す図である。なお、図6Bにおいては、説明を容易にするために、ダミートレンチ部30と、ゲートトレンチ部40との境界を実線により示す。図6Bにおいても、図6Aと同様に、IGBT部80のメサ領域19、ダミートレンチ部30およびゲートトレンチ部40を示す。
 本例において、複数のメサ領域19は、いわゆる千鳥格子状に設けられる。本例における複数のメサ領域19は、第1のグループ119‐1と、+Y方向において第1のグループ119‐1に対して最も近い第2のグループ119‐2と、+Y方向において第1のグループ119‐1に対して2番目に近い第3のグループ119‐3とを含む。
 第1のグループ119‐1、第2のグループ119‐2および第3のグループ119‐3においては、各メサ領域19がX方向において直線状に並んで設けられる。第2のグループ119‐2の各メサ領域19は、第1のグループ119‐1の各メサ領域19に対してX方向において互いに半周期ずれて設けられる。なお、本例のメサ領域19に関する1周期とは、X方向に隣接するメサ領域19の中心間の長さを意味する。半周期は当該1周期の半分の長さを意味する。
 第3のグループ119‐3の各メサ領域19は、第1のグループ119‐1の各メサ領域19に対してY方向において互いに並んでいる。本例において、第1のグループ119‐1および第3のグループ119‐3の各メサ領域19は、中心の位置がX方向において一致する。第3のグループ119‐3の+Y方向に隣接して、第2のグループ119‐2と同様の第4のグループ119‐4が設けられてよい。このように、第1のグループ119‐1および第2のグループ119‐2の構成が周期的にY方向に繰り返されてよい。なお、FWD部90も、IGBT部80と同様のメサ領域19の配置を有してよい。本例においても、図6Aの例と同様にキャリア蓄積効果を得ることができる。
 図7は、ダミートレンチ部30の変形例を示す図である。上部絶縁膜32と下部絶縁膜33との境界を点線により示す。ただし、上部絶縁膜32および下部絶縁膜33が同じ材料である場合、境界は観察できなくてもよい。上部絶縁膜32は、上部ダミー導電部34の側部および底部に設けられる。下部絶縁膜33は、上部ダミー導電部34の底部と下部ゲート導電部35の頂部との間に加えて、下部ゲート導電部35の側部および底部に設けられる。本例の下部絶縁膜33の厚みtは、上部絶縁膜32の厚みtよりも厚い。当該構成においても、発振現象を抑制するCCGを確保することができる。
 本例において、表面から上部ダミー導電部34の底部までの深さをDとし、表面から下部ゲート導電部35の頂部までの深さをDとする。本例において、深さDは、深さDよりも深い。本例の深さDは、ベース領域14よりも深く、蓄積領域16とドリフト領域18との境界よりも浅い。つまり、本例の上部ダミー導電部34の底部は、蓄積領域16と同じ深さ範囲に位置する。下部ゲート導電部35の頂部は、深さDよりも深い位置に設けられてよい。
 図8は、第2実施形態における半導体装置100のD‐D'断面を示す図である。複数のダミートレンチ部30のうち少なくとも一つのダミートレンチ部30は、下部ゲート導電部35を有さなくてもよい。本例において、-Y方向端部に位置するダミートレンチ部30は下部ゲート導電部35を有さない。-Y方向端部に位置するダミートレンチ部30は、ダミートレンチ36内において、ダミートレンチ部50と同様に、絶縁膜52とダミー導電部54とを有する。係る点が、第1実施形態と異なるが、本例においても第1実施形態と同様の有利な効果を得ることができる。また、本例と第1実施形態の変形例とを組み合わせてもよい。
 なお、本例のダミートレンチ部30および50のように、導電部を全てダミー導電部54とする場合には、第1実施例と異なる製造方法を採用してよい。例えば、エッチングにより、ダミートレンチ部30内のポリシリコンを全て除去する。その後、ダミートレンチ部30内の全体にポリシリコンを形成することにより、ダミー導電部54を形成してよい。
 図9は、第3実施形態における半導体装置100の上面図である。本例において、IGBT部80におけるダミートレンチ部30の第1直線部が、+X方向に延伸してFWD部90におけるダミートレンチ部50と連結する。
 図10は、第3実施形態における半導体装置100のD‐D'断面を示す図である。本例のダミートレンチ部30は、第1実施形態と同様に上部ダミー導電部34および下部ゲート導電部35を有する。下部ゲート導電部35は、境界部85において終端する。但し、上部ダミー導電部34は、FWD部90におけるダミー導電部54に連結する。係る点が、第1実施形態と異なるが、本例においても第1実施形態と同様の有利な効果を得ることができる。また、本例と第1実施形態の変形例および第2実施形態とを組み合わせてもよい。
 図11は、第4実施形態における半導体装置100の上面図である。本例においては、境界部85には、ダミートレンチ部30を配置し、ゲートトレンチ部40を配置しない。つまり、複数のダミートレンチ部30のうちIGBT部80に最も近い複数の第2の直線部38は、Y方向において隣接する第2の直線部38同士が互いに連結してよい。本例において、境界部85のダミートレンチ部30は、下部ゲート導電部35を有しない。つまり、本例において、境界部85のダミートレンチ部30は、FWD部90のダミートレンチ部50と同様に、絶縁膜52およびダミー導電部54を有する。
 図12は、第4実施形態における半導体装置100のF‐F'断面を示す図である。図12においては実線で示す様に、ダミートレンチ部30の上部ダミー導電部34と、境界部85におけるダミートレンチ部30のダミー導電部54とは、離間する。ただし、他の例においては、点線で示す様に、上部ダミー導電部34はダミー導電部54に連結してもよい。係る点が、第1実施形態と異なるが、本例においても第1実施形態と同様の有利な効果を得ることができる。また、本例と第1実施形態の変形例、第2実施形態および第3実施形態とを組み合わせてもよい。
 図13は、第5実施形態における半導体装置100の上面図である。本例は、FWD部90のメサ領域19が、IGBT部80のメサ領域19と同様にエミッタ領域12を有する。係る点が、第1実施形態と異なるが、本例においても第1実施形態と同様の有利な効果を得ることができる。また、本例と第1実施形態の変形例、第2実施形態、第3実施形態および第4実施形態とを組み合わせてもよい。
 図14は、第6実施形態における半導体装置100の上面図である。なお、図14においては、層間絶縁膜26を省略する。本例のダミートレンチ部30および50は、いわゆるストライプ形状を有する。本例のダミートレンチ部30および50は、Y方向に平行に設けられる。ダミートレンチ部30は、第1の直線部37を有せず、第2の直線部38のみを有する。それゆえ、ダミートレンチ部30は、交差部39を有しない。本例においては、複数のダミートレンチ部30の各第2の直線部38上に、上部ダミー導電部34とエミッタ電極62とが電気的に接続するためのコンタクトホール66が設けられる。係る点が、第1実施形態と異なるが、本例においても第1実施形態と同様の有利な効果を得ることができる。また、本例と第1実施形態の変形例とを組み合わせてもよい。本例と第4または第5実施形態を組み合わせてもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示していない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。
 10・・半導体基板、12・・エミッタ領域、14・・ベース領域、15・・コンタクト領域、16・・蓄積領域、18・・ドリフト領域、19・・メサ領域、20・・バッファ領域、22・・コレクタ領域、24・・コレクタ電極、26・・層間絶縁膜、28・・ウェル領域、30・・ダミートレンチ部、32・・上部絶縁膜、33・・下部絶縁膜、34・・上部ダミー導電部、35・・下部ゲート導電部、36・・ダミートレンチ、37・・第1の直線部、38・・第2の直線部、39・・交差部、40・・ゲートトレンチ部、42・・絶縁膜、44・・ゲート導電部、46・・ゲートトレンチ、50・・ダミートレンチ部、52・・絶縁膜、54・・ダミー導電部、56・・ダミートレンチ、62・・エミッタ電極、64、66、68・・コンタクトホール、72・・ゲート金属層、74・・コンタクトホール、80・・IGBT部、85・・境界部、90・・FWD部、92・・カソード領域、100・・半導体装置、119・・グループ

Claims (12)

  1.  第1導電型の半導体基板と、
     前記半導体基板内の表面側に設けられた第2導電型のベース領域と、
     前記半導体基板の表面から前記ベース領域を貫通して前記半導体基板内に設けられ、ゲート導電部を有する、ゲートトレンチ部と、
     前記半導体基板の表面から前記ベース領域を貫通して前記半導体基板内に設けられ、エミッタ電位を有する上部ダミー導電部と、前記上部ダミー導電部の下に位置しゲート電位を有する下部ゲート導電部とを含む、ダミートレンチ部と
    を備え、
     前記ダミートレンチ部の前記下部ゲート導電部は、前記ゲートトレンチ部の前記ゲート導電部と接続する
    半導体装置。
  2.  前記半導体基板の表面において、複数の前記ゲートトレンチ部と複数の前記ダミートレンチ部とが、前記半導体装置のトランジスタ部に設けられ前記ベース領域を有するメサ領域を囲んでいる
    請求項1に記載の半導体装置。
  3.  前記半導体基板の表面において、前記ダミートレンチ部は、
     第1方向に延伸する第1の直線部と、
     前記第1方向に対して直交する第2方向に延伸する第2の直線部と、
     前記第1の直線部と、前記第2の直線部とが交わる交差部と
    を有する
    請求項2に記載の半導体装置。
  4.  前記半導体基板の表面において、複数の前記メサ領域は、第1方向および第2方向に直線状に並んで設けられる請求項3に記載の半導体装置。
  5.  前記半導体基板の表面において、前記半導体装置のトランジスタ部に設けられ前記ベース領域を各々有する複数の前記メサ領域は、
     各メサ領域が前記第1方向において直線状に並んで設けられた第1のグループと、
     各メサ領域が、前記第1方向において直線状に並んで設けられ、前記第2方向において前記第1のグループに対して最も近く、前記第1のグループの各メサ領域に対して前記第1方向において互いに半周期ずれて設けられた、第2のグループと、
     各メサ領域が、前記第1方向において直線状に並んで設けられ、前記第2方向において前記第1のグループに対して2番目に近く、前記第1のグループの各メサ領域に対して前記第2方向において互いに並んで設けられた、第3のグループと
    を含む
    請求項3に記載の半導体装置。
  6.  前記ダミートレンチ部は、前記半導体基板の表面において、前記メサ領域の前記第1方向に平行な辺に隣接して設けられ、
     前記ゲートトレンチ部は、前記半導体基板の表面において、前記メサ領域の前記第2方向に平行な辺に隣接して設けられる
    請求項4または5に記載の半導体装置。
  7.  前記半導体装置のトランジスタ部に隣接するダイオード部さらに備え、
     前記トランジスタ部および前記ダイオード部に設けられた複数の前記ダミートレンチ部の各々は、前記下部ゲート導電部を有する
    請求項1から6のいずれか一項に記載の半導体装置。
  8.  複数の前記ダミートレンチ部のうち少なくとも一つの前記ダミートレンチ部は、前記下部ゲート導電部を有さない
    請求項3から6のいずれか一項に記載の半導体装置。
  9.  前記半導体装置のトランジスタ部に隣接するダイオード部さらに備え、
     前記トランジスタ部における複数の前記ダミートレンチ部のうち前記ダイオード部に最も近い複数の前記第2の直線部は、前記第2方向において隣接する第2の直線部同士が互いに連結し、前記下部ゲート導電部を有しない
    請求項3から6のいずれか一項に記載の半導体装置。
  10.  前記ダミートレンチ部の前記下部ゲート導電部は、前記ベース領域よりも下に設けられる
    請求項1から9のいずれか一項に記載の半導体装置。
  11.  前記ダミートレンチ部は、
     前記上部ダミー導電部の側部および底部に設けられる上部絶縁膜と、
     前記下部ゲート導電部の側部および底部に設けられ、前記上部絶縁膜よりも厚い下部絶縁膜と
    を有する
     請求項1から10のいずれか一項に記載の半導体装置。
  12.  前記半導体基板は、前記ベース領域よりも下に第1導電型のドリフト領域を有し、
     前記ダミートレンチ部の前記上部絶縁膜は、前記ドリフト領域に接触せず、
     前記ダミートレンチ部の前記下部絶縁膜は、前記ドリフト領域に接触する
    請求項11に記載の半導体装置。
PCT/JP2017/037405 2016-10-17 2017-10-16 半導体装置 WO2018074427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018546330A JP6540906B2 (ja) 2016-10-17 2017-10-16 半導体装置
CN201780020128.6A CN109075199B (zh) 2016-10-17 2017-10-16 半导体装置
US16/141,972 US10741547B2 (en) 2016-10-17 2018-09-26 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203433 2016-10-17
JP2016-203433 2016-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/141,972 Continuation US10741547B2 (en) 2016-10-17 2018-09-26 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2018074427A1 true WO2018074427A1 (ja) 2018-04-26

Family

ID=62018693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037405 WO2018074427A1 (ja) 2016-10-17 2017-10-16 半導体装置

Country Status (4)

Country Link
US (1) US10741547B2 (ja)
JP (1) JP6540906B2 (ja)
CN (1) CN109075199B (ja)
WO (1) WO2018074427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634947A (zh) * 2018-06-21 2019-12-31 奥特润株式会社 功率半导体器件及其制造方法
JP7447769B2 (ja) 2020-11-13 2024-03-12 三菱電機株式会社 半導体素子、半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097836A1 (ja) * 2017-11-16 2019-05-23 富士電機株式会社 半導体装置
DE102018130095B4 (de) * 2018-11-28 2021-10-28 Infineon Technologies Dresden GmbH & Co. KG Halbleiterleistungsschalter mit verbesserter Steuerbarkeit
CN111509028B (zh) * 2019-01-30 2023-03-14 力士科技股份有限公司 复合型沟槽式金氧半场效应晶体管及其制造方法
US11004945B2 (en) * 2019-05-21 2021-05-11 Infineon Technologies Austria Ag Semiconductor device with spicular-shaped field plate structures and a current spread region
JP7438080B2 (ja) * 2020-10-30 2024-02-26 三菱電機株式会社 半導体装置
WO2023041153A1 (en) * 2021-09-15 2023-03-23 Dynex Semiconductor Limited Igbt device with trench gate bus
CN116895690B (zh) * 2023-05-31 2024-03-08 海信家电集团股份有限公司 半导体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083963A (ja) * 2000-06-30 2002-03-22 Toshiba Corp 半導体素子
US20120104555A1 (en) * 2010-10-31 2012-05-03 Alpha And Omega Semiconductor Incorporated Topside structures for an insulated gate bipolar transistor (IGBT) device to achieve improved device performances
JP2014011212A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 半導体装置およびそれを用いた電力変換装置
WO2014097454A1 (ja) * 2012-12-20 2014-06-26 トヨタ自動車株式会社 半導体装置
WO2016014224A1 (en) * 2014-07-25 2016-01-28 United Silicon Carbide, Inc. Self-aligned shielded-gate trench mos-controlled silicon carbide switch with reduced miller capacitance and method of manufacturing the same
JP2016174029A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449354B2 (en) * 2006-01-05 2008-11-11 Fairchild Semiconductor Corporation Trench-gated FET for power device with active gate trenches and gate runner trench utilizing one-mask etch
DE102006056809B9 (de) * 2006-12-01 2009-01-15 Infineon Technologies Austria Ag Anschlussstruktur für ein elektronisches Bauelement
US8552535B2 (en) * 2008-11-14 2013-10-08 Semiconductor Components Industries, Llc Trench shielding structure for semiconductor device and method
CN104157685B (zh) * 2010-07-27 2018-01-16 株式会社电装 具有开关元件和续流二极管的半导体装置及其控制方法
JP5568036B2 (ja) 2011-03-09 2014-08-06 トヨタ自動車株式会社 Igbt
US8785278B2 (en) * 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
US9245985B2 (en) * 2012-03-28 2016-01-26 Infineon Technologies Americas Corp. IGBT with buried emitter electrode
US9455205B2 (en) * 2012-10-09 2016-09-27 Infineon Technologies Ag Semiconductor devices and processing methods
JP2013150000A (ja) 2013-03-25 2013-08-01 Toyota Motor Corp Igbt
EP2966683B1 (en) * 2013-10-04 2020-12-09 Fuji Electric Co., Ltd. Semiconductor device
JP6003961B2 (ja) 2014-11-04 2016-10-05 トヨタ自動車株式会社 半導体装置
KR102066310B1 (ko) * 2015-09-08 2020-01-15 매그나칩 반도체 유한회사 전력용 반도체 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083963A (ja) * 2000-06-30 2002-03-22 Toshiba Corp 半導体素子
US20120104555A1 (en) * 2010-10-31 2012-05-03 Alpha And Omega Semiconductor Incorporated Topside structures for an insulated gate bipolar transistor (IGBT) device to achieve improved device performances
JP2014011212A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 半導体装置およびそれを用いた電力変換装置
WO2014097454A1 (ja) * 2012-12-20 2014-06-26 トヨタ自動車株式会社 半導体装置
WO2016014224A1 (en) * 2014-07-25 2016-01-28 United Silicon Carbide, Inc. Self-aligned shielded-gate trench mos-controlled silicon carbide switch with reduced miller capacitance and method of manufacturing the same
JP2016174029A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634947A (zh) * 2018-06-21 2019-12-31 奥特润株式会社 功率半导体器件及其制造方法
CN110634947B (zh) * 2018-06-21 2023-06-27 现代摩比斯株式会社 功率半导体器件及其制造方法
JP7447769B2 (ja) 2020-11-13 2024-03-12 三菱電機株式会社 半導体素子、半導体装置

Also Published As

Publication number Publication date
US20190027472A1 (en) 2019-01-24
JPWO2018074427A1 (ja) 2019-03-07
CN109075199A (zh) 2018-12-21
US10741547B2 (en) 2020-08-11
JP6540906B2 (ja) 2019-07-10
CN109075199B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018074427A1 (ja) 半導体装置
US10818782B2 (en) Insulated-gate bipolar transistor (IGBT) including a branched gate trench
JP6844147B2 (ja) 半導体装置
US8975690B2 (en) Semiconductor device
US8232593B2 (en) Power semiconductor device
US11195941B2 (en) Semiconductor device
CN108417614B (zh) 半导体装置
JP5865618B2 (ja) 半導体装置
JP7435672B2 (ja) 半導体装置
US20110291157A1 (en) Lateral insulated gate bipolar transistor
JPWO2018151227A1 (ja) 半導体装置
JPWO2019116696A1 (ja) 半導体装置
US20110284923A1 (en) Semiconductor device and manufacturing method of the same
JP2020038986A (ja) 半導体装置
JP2020025050A (ja) 半導体装置
JP2019186312A (ja) 半導体装置
CN107845677B (zh) 半导体装置
US9905689B2 (en) Semiconductor device
JP7327672B2 (ja) 半導体装置
KR20160029630A (ko) 반도체 장치
JP2014154739A (ja) 半導体装置
JP6173987B2 (ja) 半導体装置
WO2018154963A1 (ja) 半導体装置
JP2013089874A (ja) 半導体装置
CN114667609A (zh) 垂直场效应晶体管和用于构造其的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018546330

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862367

Country of ref document: EP

Kind code of ref document: A1