WO2018072521A1 - 检测主sidelink同步信号的方法、装置及存储介质 - Google Patents

检测主sidelink同步信号的方法、装置及存储介质 Download PDF

Info

Publication number
WO2018072521A1
WO2018072521A1 PCT/CN2017/095190 CN2017095190W WO2018072521A1 WO 2018072521 A1 WO2018072521 A1 WO 2018072521A1 CN 2017095190 W CN2017095190 W CN 2017095190W WO 2018072521 A1 WO2018072521 A1 WO 2018072521A1
Authority
WO
WIPO (PCT)
Prior art keywords
psss
symbol
frequency offset
length
compensated
Prior art date
Application number
PCT/CN2017/095190
Other languages
English (en)
French (fr)
Inventor
易立强
李焱
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018072521A1 publication Critical patent/WO2018072521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/266Fine or fractional frequency offset determination and synchronisation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, apparatus, and computer storage medium for detecting a primary sidelink synchronization signal in D2D.
  • D2D Device-to-Device
  • the so-called D2D means that the service data is not forwarded by the base station, but is directly transmitted by the source user equipment to the target user equipment through the air interface.
  • This communication mode is different from the traditional cellular system communication mode.
  • the D2D technology has a short link distance and high channel quality, and can satisfy the information sharing service between adjacent users, and provides a high-speed, low-latency, low-power transmission service.
  • the introduction of a D2D heterogeneous network in a cellular network can flexibly expand the network structure and cover the network dead zone. At the same time, it can improve the cell edge communication quality by multiplexing cellular network resources, and improve user experience and system capacity.
  • the premise of data transmission between the source user equipment and the target user equipment is that the time-frequency synchronization at both ends of the transmission and reception is first implemented.
  • the D2D terminal can periodically send the synchronization signal as a synchronization reference source in partial coverage or no coverage, or be indicated by the network as another D2D user terminal (UE, User). Equipment) synchronization reference.
  • UE User
  • Equipment D2D user terminal
  • Receiving D2D sync signals will be more challenging than LTE synchronization.
  • a new sub-link Sidelink synchronization signal is designed for D2D synchronization in the 3GPP standard protocol.
  • the Sidelink Synchronization Signal consists of a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS), as shown in Figure 1.
  • the Sidelink synchronization signal is transmitted on two adjacent Single-Carrier Frequency-Division Multiple Access (SC-FDMA) symbols in the same subframe.
  • the left side diagram in FIG. 1 is a schematic diagram of the position of the PSSS and the SSSS in the time slot in the length of the regular cyclic prefix (CP, Cyclic Prefix); the right side view in FIG. 1 shows the PSSS and the SSSS in the time slot in the extended CP length. Schematic diagram of the location in .
  • PSBCH Physical transport channel
  • DMRS demodulation reference signal
  • GAP guard band GAP
  • PSSS detection is mainly used for identification of id_net or id_oon group number, initial frequency offset and symbol timing in SLID.
  • the initial frequency offset may reach +/- 10 PPM.
  • the initial frequency offset is even larger, which may reach +/-20 PPM, which will have a great impact on the detection of the sync signal. How to efficiently detect PSSS is a very challenging problem.
  • the primary synchronization signal (PSS) detection method in LTE is used, for example, the preset carrier frequency offset and the local PSS code cross-correlation detection are combined, and in order to obtain better performance, more carrier frequencies need to be set. It is assumed that this will increase the computational complexity or time consumption, and it is difficult to achieve high efficiency. It also includes a joint detection of the difference between the group number and the integer multiple frequency offset of the PSS in the frequency domain. Although the method is not affected by the timing, there are disadvantages that the different integer octave bias correlation peaks are close, so that it cannot be better. Performance. Therefore, there is a need for a technical solution for detecting a primary sidelink synchronization signal in D2D, which enables efficient and accurate detection of PSSS in D2D.
  • PSS primary synchronization signal
  • the embodiments of the present invention provide a method, a device, and a computer storage medium for detecting a primary idelink synchronization signal in D2D, which can implement efficient and accurate detection of PSSS in D2D.
  • an embodiment of the present invention provides a method for detecting a primary sidelink synchronization signal in a D2D, the method comprising:
  • a received signal including a sidelink synchronization signal SSS symbol, acquiring a length of a cyclic prefix of the SSS symbol and a length of the SSS symbol, and obtaining a primary sidelink synchronization according to a length of the cyclic prefix, a length of the SSS symbol, and the received signal Coarse timing information and fractional frequency offset information of the signal PSSS;
  • Performing joint detection on the compensated PSSS symbols results in a sequence detection value of the PSSS.
  • obtaining the coarse timing information and the fractional frequency offset information of the PSSS according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal include:
  • the fractional frequency offset information is determined according to the coarse timing information of the PSSS.
  • determining the fractional frequency offset information according to the coarse timing information of the PSSS includes:
  • the synchronization signal is accumulated and combined during the transmission period, and the combined correlation value is obtained to obtain the fractional frequency offset information.
  • the compensated PSSS symbols according to the coarse timing information and the fractional frequency offset information include:
  • performing joint detection on the compensated PSSS symbols to obtain a sequence detection value of the PSSS includes:
  • the compensated PSSS symbols are sequentially subjected to removing half subcarrier frequency frequency shift, Fourier transform, cyclic shift, correlation processing with PSSS sequence, inverse Fourier transform, energy calculation, accumulation calculation, and peak search. Sequence detection value of PSSS.
  • performing joint detection on the compensated PSSS symbols to obtain a sequence detection value of the PSSS includes:
  • Performing the first correlation processing result by performing the correlation processing of removing the half subcarrier frequency frequency shift, the Fourier transform, the cyclic shift, and the first group of PSSS sequences by sequentially performing the compensated PSSS symbols;
  • the second correlation processing result is The compensated PSSS symbols sequentially perform a result of removing half subcarrier frequency shift, Fourier transform, cyclic shift, and correlation processing with the second set of PSSS sequences;
  • a peak search is performed on the accumulated value including the first accumulated value and the second accumulated value to obtain a sequence detection value of the PSSS.
  • joint detection of the compensated PSSS symbols also obtains PSSS. Fine timing deviation information and integer multiple frequency offset information.
  • the embodiment of the present invention further provides an apparatus for detecting a primary sidelink synchronization signal, where the apparatus includes: a receiving unit, a compensation unit, and a detecting unit;
  • the receiving unit is configured to receive a received signal including a sidelink synchronization signal SSS symbol, obtain a length of a cyclic prefix of the SSS symbol, and a length of the SSS symbol, according to a length of the cyclic prefix, a length of the SSS symbol And obtaining, by the received signal, coarse timing information and fractional frequency offset information of the primary sidelink synchronization signal PSSS;
  • the compensation unit is configured to obtain a compensated PSSS symbol according to the coarse timing information and the fractional frequency offset information
  • the detecting unit is configured to perform joint detection on the compensated PSSS symbols to obtain a sequence detection value of the PSSS.
  • the receiving unit obtains the coarse timing information and the fractional frequency offset information of the PSSS according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal, and is configured to:
  • the fractional frequency offset information is determined according to the coarse timing information of the PSSS.
  • the receiving unit determines the fractional frequency offset information according to the coarse timing information of the PSSS, and is configured to:
  • the compensation unit is configured to:
  • the detecting unit is configured to:
  • the compensated PSSS symbols are sequentially subjected to removing half subcarrier frequency frequency shift, Fourier transform, cyclic shift, correlation processing with PSSS sequence, inverse Fourier transform, energy calculation, accumulation calculation, and peak search. Sequence detection value of PSSS.
  • the detecting unit is configured to:
  • Performing the first correlation processing result by performing the correlation processing of removing the half subcarrier frequency frequency shift, the Fourier transform, the cyclic shift, and the first group of PSSS sequences by sequentially performing the compensated PSSS symbols;
  • the second correlation processing result is The compensated PSSS symbols sequentially perform a result of removing half subcarrier frequency shift, Fourier transform, cyclic shift, and correlation processing with the second set of PSSS sequences;
  • a peak search is performed on the accumulated value including the first accumulated value and the second accumulated value to obtain a sequence detection value of the PSSS.
  • the detecting unit is configured to perform joint detection on the compensated PSSS symbols to obtain fine timing deviation information and integer multiple frequency offset information of the PSSS.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing method for detecting a primary sidelink synchronization signal.
  • the length of the cyclic prefix, the length of the SSS symbol, and the received signal result in coarse timing information and fractional frequency offset information of the PSSS.
  • the coarse timing information and the fractional frequency offset information of the PSSS are determined by the length of the cyclic prefix of the SSS symbol, the length of the SSS symbol, and the received signal.
  • the compensated PSSS through the coarse timing information and the fractional frequency offset information, perform the combined detection of the SLID group number, the integer multiple frequency offset and the PSSS symbol fine timing on the compensated PSSS symbol, complete the detection of the PSSS, and overcome the timing.
  • the influence of frequency offset on the performance of PSSS detection improves the accuracy of PSSS detection, and the computational complexity is low, which improves the efficiency of detecting PSSS.
  • FIG. 1 is a schematic structural diagram of a Sidelink synchronization signal
  • FIG. 2 is a schematic flowchart of a method for detecting a primary sidelink synchronization signal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for detecting a primary sidelink synchronization signal according to Embodiment 2 of the present invention
  • FIG. 4 is a flow chart of a method for detecting a primary sidelink synchronization signal according to Embodiment 2 of the present invention.
  • FIG. 5 is a flow chart of a method for detecting a PSSS according to an accurate PSSS symbol according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic structural diagram of an apparatus for detecting a primary sidelink synchronization signal according to Embodiment 3 of the present invention.
  • Embodiment 1 of the present invention provides a method for detecting a primary sidelink synchronization signal, and specifically, a method for detecting a primary sidelink synchronization signal in D2D. As shown in FIG. 2, the method includes:
  • S201 Receive a received signal that includes an SSS symbol, obtain a length of a cyclic prefix of the SSS symbol, and a length of the SSS symbol, and obtain a primary sidelink synchronization signal according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal.
  • PSSS coarse timing information and fractional frequency offset information
  • the time-frequency synchronization of the two ends of the transmission and reception is first performed.
  • the D2D signal is received by one end, the receiving end of the detection terminal performs synchronization signal detection on the received D2D signal to complete synchronization, and receives the synchronization signal.
  • the D2D signal as a received signal includes SSS symbols for sidelink synchronization. According to the agreement, as shown in Figure 1, the SSS symbol includes two identical PSSSs and two identical SSSSs.
  • the transmitting end repeatedly transmits two PSSSs and SSSSs when the SSS symbols are transmitted in the synchronization subframe, and the same length of the cyclic prefix is sent before the PSSS symbol and the SSSS symbol of the synchronization symbol, and the length of the specific cyclic prefix is sent by the signaling. It is determined that the length of the SSS symbol is a known amount of the system, wherein the length of the PSSS symbol and the length of the SSSS symbol are equal, collectively referred to as the length of the SSS symbol.
  • the length of the cyclic prefix of the SSS symbol and the length of the SSS symbol are acquired.
  • the initial position of the SSS symbol is not determined, that is, the specific position of the PSSS symbol and the SSSS symbol in the received signal is not determined.
  • the coarse timing information and the fractional frequency offset information of the PSSS are obtained according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal. : performing autocorrelation processing of the time domain symbol including the cyclic prefix on the received signal by using the length of the cyclic prefix and the length of the SSS symbol and performing energy normalization, and using the first PSSS symbol and the first SSSS symbol.
  • the normalized values with long intervals are combined, and the energy is accumulated between the antennas and the synchronization signal transmission period, and the peak search is performed.
  • the coarse timing information to the PSSS; the fractional frequency offset information is determined according to the coarse timing information of the PSSS.
  • an autocorrelation process of a time domain symbol including a cyclic prefix is performed on the received signal, and energy normalization is performed simultaneously, and a normalized value of a long interval between the first PSSS symbol and the first SSSS symbol is combined, and The energy is accumulated between the antennas and the synchronization signal transmission period, and the coarse timing information of the PSSS is obtained by the peak search, and the score multiple frequency offset information is obtained according to the coarse timing information of the PSSS.
  • the time domain symbol including the cyclic prefix is subjected to autocorrelation processing on the received signal, and the sum of the length of the cyclic prefix and the length of the SSS symbol may be used as the displacement value, and the displacement value is the correlation value.
  • Autocorrelation processing is performed on the time domain symbols of the received signal.
  • the interval between the first PSSS and the second PSSS is the displacement value
  • the displacement value is used as the correlation value to autocorrelate the received signal.
  • the autocorrelation is performed on the PSSS and the SSSS is autocorrelated.
  • the correlation result is obtained by performing autocorrelation processing of the time domain symbol on the received signal with the displacement value as the correlation value; performing energy estimation on the time domain symbol including the cyclic prefix to obtain an energy value, and comparing the correlation result according to the energy value Performing energy normalization to obtain a normalized result; performing normalized correlation values of PSSS and SSSS intervals according to the normalized result to obtain energy, and performing peak search on the energy to obtain the coarse timing information; And obtaining the fractional frequency offset information according to the coarse timing information.
  • the autocorrelation processing is performed on the received PSSS symbol and the SSSS symbol by using the displacement value, that is, the autocorrelation processing is performed on the received signal by using the displacement value, and the correlation result is obtained; while the correlation result is obtained, the time of receiving the signal including the cyclic prefix is obtained.
  • the domain symbol performs energy estimation, that is, energy estimation is performed on the signal on which the displacement value is obtained, and the energy is normalized according to the obtained energy value to obtain a normalized result.
  • the number of samples between the first PSSS and the first SSSS is obtained, and the PSSS and SSSS intervals are obtained, and the results of the normalized correlation values of the PSSS and the SSSS interval are combined.
  • the energy value is obtained by accumulating the energy between the antenna and the Sidelink synchronization signal transmission period, and the peak value of the obtained energy value is used to obtain the maximum peak value of the energy value.
  • the maximum peak position is the cyclic prefix of the PSSS symbol. At the starting position, the maximum peak value of the obtained energy value is the coarse timing information of the PSSS.
  • determining the fractional frequency offset information according to the coarse timing information includes: obtaining a PSSS symbol according to the coarse timing information of the PSSS and the received signal; and obtaining, according to the coarse timing information Generating a correlation value between a PSSS symbol including a cyclic prefix and an SSSS symbol including a cyclic prefix, and performing cumulative summation between the antenna and the Sidelink synchronization signal transmission period on the normalized correlation value, and obtaining the combined correlation value Fractional octave bias information.
  • the PSSS symbol is obtained by using the coarse timing information and the received signal; and the PSSS symbol is compensated by the fractional frequency offset information to obtain the compensated PSSS symbol.
  • the position of the PSSS symbol in the received signal can be determined, the PSSS symbol is detected, and the fractional frequency offset information is used as the initial frequency offset to perform frequency offset compensation on the detected PSSS symbol, and the compensated PSSS symbol.
  • the compensated PSSS symbol is obtained in S202, the compensated PSSS symbol is jointly detected to obtain a sequence detection value of the PSSS, that is, a SLID group number.
  • the process of jointly detecting the compensated PSSS symbols to obtain the SLID group number can be implemented in the following two ways:
  • the joint detection of the compensated PSSS symbols includes: sequentially removing half of the subcarrier frequency frequency shift, Fourier transform, cyclic shift, and the PSSS symbols after the compensation.
  • the sequence detection value of the PSSS is obtained after the correlation processing with the PSSS sequence, the inverse Fourier transform, the energy calculation, the accumulation calculation, and the peak search.
  • Manner 2 performing joint detection on the compensated PSSS symbols may further include:
  • an inverse Fourier transform FFT, an energy calculation, and an accumulation calculation are performed to obtain a first accumulated value
  • a second correlation processing result is obtained according to the first correlation processing result
  • the second correlation processing result is subjected to an inverse Fourier transform IFFT Calculating, calculating, and accumulating the second accumulated value
  • the second correlation processing result is that the compensated PSSS symbols are sequentially removed by half subcarrier frequency frequency shift, Fourier transform, cyclic shift, and the second group
  • the result of the correlation processing of the PSSS sequence performing a peak search on the accumulated value including the first accumulated value and the second accumulated value to obtain a sequence detection value of the PSSS.
  • the PSSS sequence is a PSSS sequence indicated by the ZC code root, and the timing reference type used by the transmitting signal terminal corresponds to a different group of PSSS sequences, wherein the transmission timing reference of the transmitting signal terminal is a base station, corresponding to the first group of PSSS sequences, and sent.
  • the transmission timing reference of the signal terminal is not a base station, and corresponds to the second group of PSSS sequences.
  • the receiving terminal outside the initial coverage needs to perform timing reference UE selection, and performs related processing separately with the two sets of PSSS sequences.
  • the compensated PSSS symbols are sequentially subjected to removal of half subcarrier frequency frequency shift, Fourier transform, cyclic shift, and correlation processing with the PSSS sequence to obtain correlation processing.
  • correlation processing is performed with the first group of PSSS sequences and the second group of PSSS sequences, respectively;
  • the conjugate multiplication of a set of codes can be simply obtained.
  • Another set of conjugate multiplication results therefore, in the second mode, the compensated PSSS symbols are sequentially removed by half subcarrier frequency shift, Fourier transform, cyclic shift, and the first group
  • the second correlation processing result is obtained according to the first correlation processing result, where the second correlation processing result sequentially removes the half subcarrier frequency frequency for the compensated PSSS symbol.
  • the PSSS symbol sequentially performs a plurality of steps of removing half subcarrier frequency shift, Fourier transform, cyclic shift, and correlation processing with the second set of PSSS sequences. Therefore, in the case where the PSSS sequence detection value is also obtained, Greatly reduced the amount of calculations.
  • the sequence detection value of the detected PSSS is the SL-ID group number, which is used to indicate whether the received SL-ID is located in the first set or the second set, wherein the SL-ID includes 336, which is represented by 0-335.
  • the 336 SIL-IDs are divided into two sets, the first set identifier is 0-167, and the second set identifier is 168-335.
  • the sequence detection value of the PSSS includes two different values, respectively indicating that the sidelink synchronization signals are located in different sets. Specifically, when the PSSS is 0, the SL-ID is indicated to be located in the first set, and the terminal that signals the signal is represented.
  • the transmission timing reference is a base station; when the PSSS is 1, the SL-ID is indicated to be in the second set, and the transmission timing reference of the terminal characterizing the transmitted signal is not the base station.
  • determining, according to the coarse timing information and the SSS signal, the PSSS symbol in S202 and the step of determining the fractional frequency offset information according to the coarse timing information of the PSSS in S201 The step of the coarse timing information of the PSSS and the step of obtaining the PSSS symbol by the SSS symbol may be performed once.
  • joint detection of the compensated PSSS symbols also obtains fine timing deviation information and integer multiple frequency offset information of the PSSS.
  • the obtained PSSS fine timing offset and integer double frequency offset information can adjust the SSSS symbols in the received signal to obtain accurate SSSS symbols.
  • the SSSS symbols are finely adjusted according to the fine timing deviation information.
  • the method for detecting a PSSS receives a received signal including a sidelink synchronization signal SSS symbol, and obtains a length of a cyclic prefix of the SSS symbol and a length of the SSS symbol, according to a length of the cyclic prefix, Decoding the length of the SSS symbol and the received signal to obtain coarse timing information and fractional frequency offset information of the primary sidelink synchronization signal PSSS; and obtaining the compensated PSSS symbol according to the coarse timing information and the fractional frequency offset information; Therefore, by using the repeated transmission characteristics of PSSS and SSSS symbols in the D2D system, the PSSS coarse timing information is obtained by including the time domain symbols of the CP, and the fractional frequency offset of the PSSS symbols determined by the coarse timing information is obtained by the fractional frequency offset estimation.
  • the compensated PSSS symbol is obtained, and then the SLID group number, the integer multiple frequency offset and the fine timing joint detection are performed in the time domain, thereby completing the PSSS detection, and obtaining the SLID group number and the integer multiple frequency. Partial and fine timing.
  • the time domain channel impulse response energy is measured, and the area window protection is existed, which is insensitive to the coarse timing deviation;
  • the maximum likelihood estimation of the residual integer frequency offset is performed to overcome the influence of the frequency offset and has better performance. Joint detection only processes PSSS symbols, avoiding long-term data processing on PSSS symbols, greatly reducing computational complexity.
  • the method includes:
  • the received time domain signal includes an SSS symbol, and the SSS symbol is included.
  • the frame structure is as shown in FIG. 1.
  • the protocol specifies that the synchronization subframe includes two repeated PSSS symbols and two repeated SSSS symbols, and the SSS symbol is sent before the cyclic prefix of the same length, and the length of the specific cyclic prefix is determined by the letter. Order to issue.
  • the correlation processing result is obtained by performing correlation processing on the received time domain symbols including the CP by using the repeated transmission characteristics of the PSSS and the SSSS symbols by using the length of the cyclic prefix and the length of the SSS symbol:
  • N L is the number of time domain symbol samples including the CP, that is, the sum of the number of time domain symbol samples and the number of cyclic prefix samples of the SSS.
  • the received time domain symbol including the CP is correlated to obtain a correlation value, and the first PSSS and the second PSSS in the SSS signal are correlated, and the first SSSS and the second SSSS in the SSS signal are correlated, which is equivalent to Autocorrelation of PSSS symbols, autocorrelation of SSSS symbols.
  • the calculation of the energy estimate R(d) can also be obtained by using a recursive formula.
  • the normalized correlation values of the interval between the first PSSS symbol and the first SSSS symbol being N S may be added, and the inter-antenna and Sidelink synchronization signal transmission periods may be accumulated. Take energy to get C(d):
  • p, q represent the antenna indication and the accumulation period indication, respectively
  • P and Q represent the number of antennas and the number of accumulation periods, respectively.
  • the resulting coarse timing position This is the coarse timing information of the PSSS.
  • the PSSS symbol including the CP and the SSSS symbol including the CP are respectively obtained by using the PSSS symbol coarse timing position, and the energy normalization correlation value is performed by the antenna indication p and the accumulation period indication q.
  • the fractional frequency offset can be obtained:
  • ⁇ f is the subcarrier frequency interval
  • N is the number of time domain symbol samples without CP, that is, the number of symbol samples of the PSSS.
  • PSSS symbols are acquired.
  • the PSSS symbol is obtained according to the coarse timing information calculated in S301, and the obtained PSSS symbol is subjected to fractional offset compensation by the fractional multiplication information to obtain the compensated PSSS symbol.
  • the SLID group number, the integer multiple frequency offset and the fine timing joint detection are performed on the compensated PSSS symbol to obtain the SLID group number, the integer multiple frequency offset and the PSSS fine timing.
  • the SLID group number, the integer multiple frequency offset, and the fine timing joint detection are performed on the compensated PSSS symbol to obtain the SLID group number, the integer multiple frequency offset, and the PSSS fine timing.
  • the compensated time domain is assumed.
  • fractional frequency offset and the removal of half of the subcarrier frequency shift can be combined and processed.
  • ( ⁇ ) N represents a cyclic shift with a period of N
  • b represents a maximum integer multiple of the frequency offset to be estimated with respect to the subcarrier spacing.
  • the first correlation result obtained by multiplying the conjugate of one set of codes can simply obtain the second correlation result of the other set of code conjugate multiplication results, for example,
  • ( ⁇ ) re , ( ⁇ ) im respectively represent the complex number The real and imaginary parts. This greatly reduces the amount of computation.
  • i, p, q represent the symbol indication, the antenna indication, and the accumulation period indication, respectively
  • P and Q represent the number of antennas and the number of accumulation periods, respectively.
  • the fine timing position of the symbol can be obtained from the fine timing offset value ⁇ .
  • the detected integer octave offset is s ⁇ f.
  • the area window protection is present, which is insensitive to the coarse timing deviation; the joint detection is after the fractional frequency offset compensation, and the residual integer frequency is The maximum likelihood estimation is performed to overcome the influence of frequency offset and has better performance. Joint detection only processes PSSS symbols, avoiding long-term data processing on PSSS symbols, greatly reducing computational complexity.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing method for detecting a primary link sidelink synchronization signal.
  • a received signal including a sidelink synchronization signal SSS symbol, acquiring a length of a cyclic prefix of the SSS symbol and a length of the SSS symbol, and obtaining a primary sidelink synchronization according to a length of the cyclic prefix, a length of the SSS symbol, and the received signal Coarse timing information and fractional frequency offset information of the signal PSSS;
  • Performing joint detection on the compensated PSSS symbols results in a sequence detection value of the PSSS.
  • the method for detecting the primary link sidelink synchronization signal provided by the embodiment of the present invention is implemented, for example, as shown in FIG. 2 .
  • the storage medium comprises a volatile random access memory (RAM), a read only memory (ROM), an electrically erasable programmable read only memory (EEPROM), a flash memory or other memory technology, a read only optical disk (CD-ROM) ), digital versatile disc (DVD) or other medium that is accessed.
  • RAM volatile random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other memory technology
  • CD-ROM read only optical disk
  • DVD digital versatile disc
  • the embodiment of the present invention further provides a device for detecting a primary and secondary link sidelink synchronization signal, that is, a PSSS, specifically, a PSSS in the D2D.
  • the device includes: a receiving unit 601, a compensation unit 602, and a detecting unit 603;
  • the receiving unit 601 is configured to receive a received signal including a sidelink synchronization signal SSS symbol, obtain a length of a cyclic prefix of the SSS symbol, and a length of the SSS symbol, according to a length of the cyclic prefix, a length of the SSS symbol, and the Receiving a signal to obtain coarse timing information and fractional frequency offset information of the primary sidelink synchronization signal PSSS;
  • the compensation unit 602 is configured to obtain the compensated PSSS symbol according to the coarse timing information and the fractional frequency offset information;
  • the detecting unit 603 is configured to perform joint detection on the compensated PSSS symbols to obtain a sequence detection value of the PSSS.
  • the receiving unit 601 obtains the coarse timing information and the fractional frequency offset information of the PSSS according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal, including:
  • the determining, by the receiving unit 601, the fractional frequency offset information according to the coarse timing information of the PSSS includes: obtaining a PSSS symbol according to the coarse timing information of the PSSS and the received signal; and obtaining a inclusion loop according to the coarse timing information. a normalized correlation value of a prefixed PSSS symbol and an SSSS symbol including a cyclic prefix, and performing cumulative summation between the antenna and the Sidelink synchronization signal transmission period on the normalized correlation value, and obtaining the score from the combined correlation value Several times the frequency offset information.
  • the compensation unit 602 is configured to: obtain a PSSS symbol according to the coarse timing information of the PSSS and the received signal; and compensate the PSSS symbol by the fractional frequency offset information. The compensated PSSS symbol.
  • the detecting unit 603 is configured to: sequentially perform half-subcarrier frequency shifting, Fourier transform, cyclic shift, and correlation processing with the PSSS sequence on the compensated PSSS symbols, and The inverse detection of the leaf, the energy calculation, the accumulation calculation, and the peak search result in the sequence detection value of the PSSS.
  • the detecting unit 603 is configured to sequentially perform half-subcarrier frequency shifting, Fourier transform, cyclic shift, and correlation processing with the first group of PSSS sequences on the compensated PSSS symbols. Obtaining a first correlation processing result; performing an inverse Fourier transform, an energy calculation, and an accumulation calculation on the first correlation processing result to obtain a first accumulated value; and obtaining a second correlation processing result according to the first correlation processing result, The second correlation processing result performs inverse Fourier transform, energy calculation, and accumulation calculation to obtain a second accumulated value; wherein, the second correlation processing result is that the compensated PSSS symbols are sequentially removed to remove half of the subcarrier frequency frequency shift, and Fu a result of the correlation processing of the kernel transform, the cyclic shift, and the second set of PSSS sequences; performing a peak search on the accumulated value including the first accumulated value and the second accumulated value to obtain a sequence detected value of the PSSS.
  • the detecting unit 603 performs joint detection on the compensated PSSS symbols.
  • the fine timing deviation information and the integer multiple frequency offset information of the PSSS are also obtained.
  • the receiving unit 601, the compensation unit 602, and the detecting unit 603 may each be a central processing unit (CPU), or a digital signal processing (DSP), or a microprocessor (MPU, Micro Processor Unit), or Field Programmable Gate Array (FPGA).
  • CPU central processing unit
  • DSP digital signal processing
  • MPU Micro Processor Unit
  • FPGA Field Programmable Gate Array
  • the receiving module 601 in the device can be implemented in a practical application by a communication module (including: a basic communication suite, an operating system, a communication module, a standardized interface and a protocol, etc.) and a transceiver antenna.
  • a communication module including: a basic communication suite, an operating system, a communication module, a standardized interface and a protocol, etc.
  • a transceiver antenna included in the device.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the received signal including the SSS symbol is received, the length of the cyclic prefix of the SSS symbol and the length of the SSS symbol are obtained, and the coarse timing information and the score of the PSSS are obtained according to the length of the cyclic prefix, the length of the SSS symbol, and the received signal.
  • Multiplier information is obtained using the characteristics of the two repeated PSSS and the two repeated SSSS in the SSS symbol, the coarse timing information and the fractional frequency offset information of the PSSS are determined by the length of the cyclic prefix of the SSS symbol, the length of the SSS symbol, and the received signal.
  • the compensated PSSS through the coarse timing information and the fractional frequency offset information, perform the combined detection of the SLID group number, the integer multiple frequency offset and the PSSS symbol fine timing on the compensated PSSS symbol, complete the detection of the PSSS, and overcome the timing.
  • the influence of frequency offset on the performance of PSSS detection improves the accuracy of PSSS detection, and the computational complexity is low, which improves the efficiency of detecting PSSS.

Abstract

本发明公开了一种检测主sidelink同步信号的方法,所述方法包括:接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。本发明还公开了一种检测主sidelink同步信号的装置和计算机存储介质。

Description

检测主sidelink同步信号的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201610903106.1、申请日为2016年10月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本发明涉及通信领域,尤其涉及一种检测D2D中主sidelink同步信号的方法、装置及计算机存储介质。
背景技术
随着移动通信的迅速发展,以基站为中心的传统蜂窝网络系统的通信方式存在了局限,设备到设备(Device-to-Device,D2D)的通信模式日益受到广泛关注。所谓D2D,是指业务数据不经过基站的转发,而是直接由源用户设备通过空口传输给目标用户设备,这种通信模式区别于传统蜂窝系统通信模式。D2D技术具有链路距离短,信道质量高,可以满足临近用户之间的信息共享业务,提供高速率、低时延、低功耗的传输服务。在蜂窝网络中引入D2D异构网络,可以使网络结构灵活拓展,覆盖网络盲区,同时还可以通过复用蜂窝网络资源改善小区边缘通信质量,提高用户体验与系统容量。
D2D通信中,源用户设备和目标用户设备进行数据传输的前提是首先要实现收发两端的时频同步。不像过去的长期演进(LTE,Long Term Evolution)终端,D2D终端在部分覆盖或者无覆盖情况可周期性发送同步信号作为同步参考源,或者被网络指示作为其他D2D用户终端(UE,User  Equipment)的同步参考。接收D2D同步信号相比LTE同步将更加具有挑战。3GPP标准协议中为D2D同步设计了新的副链路Sidelink同步信号。Sidelink同步信号SSS(Sidelink Synchronization Signal,SSS)由主Sidelink同步信号(Primary Sidelink Synchronization Signal,PSSS)和辅Sidelink同步信号(Secondary Sidelink Synchronization Signal,SSSS)组成,具体如图1所示。Sidelink同步信号在相同子帧中两个相邻的单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号上发送。图1中的左侧图为在常规循环前缀(CP,Cyclic Prefix)长度中PSSS、SSSS在时隙中的位置示意图;图1中的右侧图为在扩展CP长度中PSSS、SSSS在时隙中的位置示意图。对于图1中物理传输信道PSBCH、解调参考信号DMRS、保护带GAP等的说明及作用请参见相关说明,此处不赘述。
PSSS检测作为同步信号检测中重要步骤之一,主要用于SLID内id_net或者id_oon组号、初始频偏及符号定时的识别等。一个典型的UE,初始频偏可能达到+/-10PPM。而对于D2D UE来说,初始频偏则更大,可能达到+/-20PPM,这将对同步信号的检测产生很大影响。如何高效的对PSSS进行检测是一个非常具有挑战的问题。
目前,沿用LTE中主同步信号(Primary Synchronization Signal,PSS)检测方法,比如采用预置假设载波频偏与本地PSS码互相关联合检测,为了获取较好的性能,则需要设置较多的载波频偏假设,这样将较大的增加运算复杂度或者时间消耗,难以达到高效性。还包括一种在频域进行差分相关完成PSS的组号和整数倍频偏的联合检测,虽然该方法不受定时影响,但存在不同整数倍频偏相关峰值接近的缺点,从而不能获得较好的性能。因此,亟需一种检测D2D中主sidelink同步信号的技术方案,实现对D2D中的PSSS的高效精确的检测。
发明内容
有鉴于此,本发明实施例在于提供一种检测D2D中主idelink同步信号的方法、装置及计算机存储介质,能够实现对D2D中的PSSS的高效精确的检测。
本发明实施例的技术方案是这样实现的:
一方面,本发明实施例提供一种检测D2D中主sidelink同步信号的方法,所述方法包括:
接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
在上述方案中,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息包括:
利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号的自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息;
根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
在上述方案中,根据所述PSSS的粗定时信息确定所述分数倍频偏信息包括:
根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号的归一化相关值,对所述归一化相关值进行天线间和Sidelink 同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏信息。
在上述方案中,根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号包括:
根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
由所述分数倍频偏信息对所述PSSS符号进行补偿得到所述补偿后的PSSS符号。
在上述方案中,对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值包括:
对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
在上述方案中,对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值包括:
对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;
将所述第一相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第一累加值;
根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;
对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
在上述方案中,对所述补偿后的PSSS符号进行联合检测还得到PSSS 的精定时偏差信息和整数倍频偏信息。
另一方面,本发明实施例还提供一种检测主sidelink同步信号的装置,所述装置包括:接收单元、补偿单元及检测单元;其中,
所述接收单元,配置为接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和所述SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
所述补偿单元,配置为根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
所述检测单元,配置为对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
在上述方案中,所述接收单元根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息,配置为:
利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号的自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息;
根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
在上述方案中,所述接收单元根据所述PSSS的粗定时信息确定所述分数倍频偏信息,配置为:
根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号的归一化相关值,对所述归一化相关值进行天线间和Sidelink同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏 信息。
在上述方案中,所述补偿单元,配置为:
根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
由所述分数倍频偏信息对所述PSSS符号进行补偿得到所述补偿后的PSSS符号。
在上述方案中,所述检测单元,配置为:
对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
在上述方案中,所述检测单元,配置为:
对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;
将所述第一相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第一累加值;
根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;
对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
在上述方案中,所述检测单元,配置为对所述补偿后的PSSS符号进行联合检测还得到PSSS的精定时偏差信息和整数倍频偏信息。
第三方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的检测主sidelink同步信号的方法。
本发明实施例的一种检测主sidelink同步信号的方法、装置和计算机存储介质,接收包括SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和所述SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息。如此,利用SSS符号中具有两个重复的PSSS和两个重复的SSSS的特性,通过SSS符号的循环前缀的长度、SSS符号的长度和接收信号确定PSSS的粗定时信息和分数倍频偏信息,并通过粗定时信息和分数倍频偏信息得到补偿后的PSSS,对补偿后的PSSS符号进行SLID组号、整数倍频偏和PSSS符号精定时联合检测,完成PSSS的检测,克服了定时和频偏对PSSS检测性能的影响,提高PSSS检测的精度,同时运算复杂度低,提高检测PSSS的效率。
附图说明
图1为Sidelink同步信号结构示意图;
图2为本发明实施例一提供的检测主sidelink同步信号的方法的流程示意图;
图3为本发明实施例二提供的检测主sidelink同步信号的方法的流程示意图;
图4为本发明实施例二提供的检测主sidelink同步信号的方法的流程框图;
图5为本发明实施例二提供的根据精确PSSS符号检测PSSS的方法的流程框图;
图6为本发明实施例三提供的一种检测主sidelink同步信号的装置的结构示意图。
具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
实施例一
本发明实施例一提供一种检测主sidelink同步信号的方法、具体是检测D2D中主sidelink同步信号的方法,如图2所示,所述方法包括:
S201、接收包含SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
当源用户设备和目标用户设备进行D2D通信时,首先进行收发两端的时频同步,当一端接收D2D信号后,作为检测终端的接收端对接收的D2D信号进行同步信号检测以完成同步,接收到的D2D信号作为接收信号包括进行sidelink同步的SSS符号。根据协议的规定,如图1所示,SSS符号中包括两个相同的PSSS和两个相同的SSSS。这里,发送端在同步子帧发送SSS符号时,分别重复发送两个PSSS和SSSS,并且作为同步符号的PSSS符号和SSSS符号之前发送相同长度的循环前缀,具体循环前缀的长度由信令下发确定,SSS符号的长度则为系统已知量,其中,PSSS符号的长度和SSSS符号的长度相等,统称为SSS符号的长度。
当接收到包含SSS符号的接收信号时,获取所述SSS符号的循环前缀的长度和SSS符号的长度。此时,并不确定SSS符号的初始位置,即不确定接收信号中PSSS符号、SSSS符号的具体的位置。
在获取到SSS符号的循环前缀的长度、SSS符号的长度后,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息包括:利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号的自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得 到PSSS的粗定时信息;根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
这里,对所述接收信号进行包含循环前缀的时域符号的自相关处理,同时进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息,依据PSSS的粗定时信息进而求得分数倍频偏信息。其中,在具体的计算时,对所述接收信号进行包含循环前缀的时域符号进行自相关处理具体可为以循环前缀的长度和SSS符号的长度之和作为位移数值,以位移数值为相关值对所述接收信号的时域符号进行自相关处理。这里,基于第一PSSS和第二PSSS之间的间隔长为位移数值,第一SSSS和第二SSSS之间的间隔长为位移数值,则以位移数值为相关值对接收信号进行自相关,相当于将PSSS进行自相关、将SSSS进行自相关。
更具体的,以位移数值为相关值对接收信号进行时域符号的自相关处理得到相关结果;对包含循环前缀的时域符号进行能量估计得到能量值,根据所述能量值对所述相关结果进行能量归一化得到归一化结果;根据所述归一化结果进行PSSS和SSSS间隔长的归一化相关值累加合并求取能量,对所述能量进行峰值搜索得到所述粗定时信息;根据所述粗定时信息得到所述分数倍频偏信息。
在利用位移数值对接收的PSSS符号和SSSS符号进行自相关处理,即利用位移数值对接收信号进行自相关处理后,得到相关结果;在得到相关结果的同时,对包括循环前缀的接收信号的时域符号进行能量估计,即对进行了位移数值的信号进行能量估计得到能量值,根据得到的能量值对相关结果进行能量归一化得到归一化结果。
这里,获取第一个PSSS和第一个SSSS之间的样点个数,得到PSSS和SSSS间隔长,将PSSS和SSSS间隔长的归一化相关值结果进行合并, 并对合并值进行天线间和Sidelink同步信号发送周期间累加求取能量得到能量值,对得到的能量值进行峰值搜索求得能量值的最大峰值,这里,最大峰值位置是PSSS符号的循环前缀的开始位置,则求得的能量值的最大峰值即得到PSSS的粗定时信息。
当得到PSSS的粗定时信息后,根据所述粗定时信息确定所述分数倍频偏信息包括:根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号归一化相关值,对所述归一化相关值进行天线间和Sidelink同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏信息。
S202、根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
具体的,当得到粗定时信息和分数倍频偏信息后,通过粗定时信息和所述接收信号得到PSSS符号;由分数倍频偏信息对所述PSSS符号进行补偿得到补偿后的PSSS符号。
当得到粗定时信息后,可以确定出PSSS符号在接收信号中位置,检测出PSSS符号,并将分数倍频偏信息作为初始频偏对检测出的PSSS符号进行频偏补偿,得到补偿后的PSSS符号。
S203、对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
当S202中得到补偿后的PSSS符号后,对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值即SLID组号。
这里,对所述补偿后PSSS符号进行联合检测得到SLID组号的过程中可通过以下两种方式实现:
方式一:对所述补偿后的PSSS符号进行联合检测包括:对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、 与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
方式二:对所述补偿后的PSSS符号进行联合检测还可以包括:
对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;将所述第一相关处理结果进行傅里叶逆变换FFT、能量计算、累加计算得到第一累加值;根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换IFFT、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
其中,PSSS序列为ZC码根指示的PSSS序列,基于发送信号终端所采用的定时参考类型对应不同组的PSSS序列,其中,发送信号终端的发送定时参考为基站,对应第一组PSSS序列,发送信号终端的发送定时参考不是基站,对应第二组PSSS序列。初始覆盖范围外的接收终端,需要进行定时参考UE选择,与两组PSSS序列分别进行相关处理。
这里,在方式一中,分别对在得到相关处理结果之前,将补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理得到相关处理结果,在与PSSS序列的相关处理中,分别与第一组PSSS序列和第二组PSSS序列进行相关处理;
相比较于方式一而言,在方式二中,由于包括第一组和第二组的两组PSSS序列码互为共轭关系,在计算过程,通过一组码的共轭相乘可以简单得到另外一组共轭相乘结果,因此,在方式二中,通过对补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组 PSSS序列的相关处理得到第一相关处理结果后,根据所述第一相关处理结果得到第二相关处理结果,这里,第二相关处理结果为所述补偿的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;这样,在增加一个根据第一相关处理结果得到第二相关处理结果的步骤的同时,省去了将精确PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的多个步骤,因此,方式二在同样得到PSSS序列检测值的情况下,极大地缩减了运算量。
检测得到的PSSS的序列检测值即为SL-ID组号,用于表明接收到的SL-ID位于第一集合还是第二集合,其中,SL-ID包括336个,通过0-335来表示,其中该336个SIL-ID分为两个集合,第一个集合标识为0-167,第二个集合标识168-335。这里,PSSS的序列检测值包括两个不同的值,分别指示sidelink同步信号位于不同的集合中,具体的,当PSSS为0时,则指示SL-ID位于第一个集合,表征发送信号的终端的发送定时参考为基站;当PSSS为1时,则指示SL-ID位于第二个集合中,表征发送信号的终端的发送定时参考不是基站。
需要说明的是,在本发明实施例中,S202中的根据粗定时信息和SSS信号确定PSSS符号和S201中的根据所述PSSS的粗定时信息确定所述分数倍频偏信息步骤中的根据所述PSSS的粗定时信息和所述SSS符号获得PSSS符号的步骤执行一次即可。
在本发明实施例中,对补偿后的PSSS符号进行联合检测还得到PSSS的精定时偏差信息和整数倍频偏信息。这里,得到的PSSS精定时偏差和整数倍频偏信息能够对接收信号中的SSSS符号进行调整,以得到精确SSSS符号,具体的,根据所述精定时偏差信息对所述SSSS符号进行精定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确 SSSS符号,根据得到的精确SSSS符号进行SSSS的检测。
通过本发明实施例提供的检测PSSS的方法,接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和所述SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;从而利用D2D系统中PSSS和SSSS符号的重复发送特性,通过包含CP的时域符号获得PSSS粗定时信息,进而由分数倍频偏估计求得粗定时信息确定的PSSS符号的分数倍频偏,去除估计的分数倍频偏后得到补偿后的PSSS符号,再在时域上进行SLID组号、整数倍频偏和精定时联合检测,从而完成PSSS检测,得到SLID组号、整数倍频偏和精定时。作为一个可选的实施例,在得到根据补偿的PSSS符号计算PSSS序列检测值的联合检测中,度量的是时域信道冲激响应能量,其存在区域窗口保护,对粗定时偏差不敏感;联合检测在分数倍频偏补偿之后,对残留的整数频偏进行极大似然估计,克服频偏的影响,具有较好性能。联合检测仅对PSSS符号进行处理,避免了对PSSS符号周期长数据处理,极大地降低了运算复杂度。
实施例二
在本发明实施例中,以具体的场景为例,对本发明实施例提供的检测D2D中PSSS的过程中进行描述说明,如图3所示,所述方法包括:
S301、利用D2D系统中PSSS符号和SSSS符号的重复发送特性通过相关及合并求取PSSS粗定时和分数倍频偏;
S302、对分数倍频偏补偿后的PSSS符号在时域进行SLID组号、整数倍频偏和精定时联合检测。
这里,可通过如图4所示的处理流程对图3所示的方法进行具体的描述,在S301中,如图4所示,接收到时域信号中包含SSS符号,SSS符号 的帧结构如图1所示,协议中规定同步子帧中包括两个重复的PSSS符号、两个重复的SSSS符号,并且,SSS符号之前发送相同长度的循环前缀,具体循环前缀的长度由信令下发确定。其中,利用PSSS和SSSS符号的重复发送特性,通过循环前缀的长度、SSS符号的长度对接收的包含CP的时域符号进行相关处理得到相关处理结果即相关值:
Figure PCTCN2017095190-appb-000001
其中y(·)表示接收的时域数据,NL为包含CP的时域符号样点个数,即一个时域符号样点个数和所述SSS的循环前缀样点个数之和。
这里,对接收的包含CP的时域符号进行相关处理得到相关值,将SSS信号中的第一PSSS和第二PSSS进行相关,将SSS信号中的第一SSSS和第二SSSS进行相关,相当于PSSS符号的自相关,SSSS符号的自相关。
P(d)的计算可以使用递推式求得,简化运算
P(d+1)=P(d)+y*(d+NL)·y(d+2NL)-y*(d)·y(d+NL)
同时对接收的包含CP的时域符号进行能量估计:
Figure PCTCN2017095190-appb-000002
其中,能量估计R(d)的计算也可以使用递推式求得,
R(d+1)=R(d)+|y(d+2NL)|2-|y(d+NL)|2
并将相关值归一化处理:
Figure PCTCN2017095190-appb-000003
考虑到PSSS和SSSS符号都为重复发送,可将第一PSSS符号和第一SSSS符号之间间隔为NS的归一化相关值相加,并进行天线间和Sidelink同步信号发送周期间累加求取能量得到C(d):
Figure PCTCN2017095190-appb-000004
这里p,q分别表示天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。
求得的C(d)最大峰值位置也即PSSS符号的粗定时位置
Figure PCTCN2017095190-appb-000005
Figure PCTCN2017095190-appb-000006
这里,得到的粗定时位置
Figure PCTCN2017095190-appb-000007
即为PSSS的粗定时信息。
利用PSSS符号粗定时位置分别得到包含CP的PSSS符号和包含CP的SSSS符号,进行天线指示p和累加周期指示q对应能量归一化相关值
Figure PCTCN2017095190-appb-000008
进而可得到分数倍频偏:
Figure PCTCN2017095190-appb-000009
其中Δf为子载波频率间隔,N为不含CP的时域符号样点数,即PSSS的符号样点个数。
在S302中,如图4所示,获取PSSS符号。根据S301中计算得到的粗定时信息得到PSSS符号,由分数倍频信息对得到的PSSS符号进行分数偏补偿得到补偿后的PSSS符号。
当得到补偿后的PSSS符号后,对补偿后的PSSS符号进行SLID组号、整数倍频偏和精定时联合检测得到SLID组号、整数倍频偏和PSSS精定时。
具体的,对补偿后的PSSS符号进行SLID组号、整数倍频偏和精定时联合检测得到SLID组号、整数倍频偏和PSSS精定时的过程如图5所示,假定补偿后的时域PSSS符号用yPSSS,i(n),i=0,1;n=0,1,...,N-1表示,i为PSSS符号指示,N=128。
去除半个子载波频率频移Δf/2,Δf为子载波频率间隔:
y′PSSS,i(n)=yPSSS,i(n)·e-jπn/N i=0,1;n=0,1,...,N-1
实际应用中,可以将分数倍频偏和去除半个子载波频率频移合并在一起处理。
进行傅里叶变换FFT,将时域信号转换到频域,得到
Figure PCTCN2017095190-appb-000010
将进行傅里叶变换后的频域信号去除虚假子载波,得到YPSSS,i(k),k为子载波标号。
此时,若Xu代表ZC码根指示的PSSS码序列,u=26,37,对YPSSS,i(k)进行循环移位为s的循环共轭相乘处理,:
Figure PCTCN2017095190-appb-000011
其中,(·)N表示以周期为N的循环移位,b表示待估计的频偏相对于子载波间隔的最大整数倍值。
这里,如图5所示中虚线部分所示,在具体实施过程中,由于u=26,37两组PSSS码序列互为共轭关系,即
Figure PCTCN2017095190-appb-000012
在计算过程,可以通过其中一组码的共轭相乘得到的第一相关结果可以简单得到另外一组码共轭相乘结果第二相关结果,例如,
Figure PCTCN2017095190-appb-000013
Figure PCTCN2017095190-appb-000014
实数乘法可以复用,实数乘法项通过重新组合相加,可由与u=26共轭相乘结果简单得到u=37共轭相乘结果,式中(·)re,(·)im分别表示复数的实部和虚部。这样极大地缩减了运算量。
对第一相关结果和第二相关结果分别执行傅里叶逆变换IFFT、能量计算、累加计算的步骤,并在针对所有的累加值进行峰值搜索得到PSSS的序列检测值、整数倍频偏信息和精定时信息。
进行傅里叶逆变换,将Cu,s转换到时域,则得到信道冲激响应,
Figure PCTCN2017095190-appb-000015
获取信道冲激响应区域[-L2,L1]值,求取能量。并进行符号间、天线间和Sidelink同步信号发送周期间累加,进行峰值搜索,其中区域[-L2,L1]仅为N中很少一部分,运算和搜索的复杂度较低。这样,求得精定时偏差值Δτ,PSSS序列检测值u和整数倍频偏数值s:
Figure PCTCN2017095190-appb-000016
式中,i,p,q分别表示符号指示、天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。由精定时偏差值Δτ可获得符号的精定时位置。检测的整数倍频偏为s·Δf。
在发明实施例中,由于联合检测中度量的是时域信道冲激响应能量,其存在区域窗口保护,对粗定时偏差不敏感;联合检测在分数倍频偏补偿之后,对残留的整数频偏进行极大似然估计,克服频偏的影响,具有较好性能。联合检测仅对PSSS符号进行处理,避免了对PSSS符号周期长数据处理,极大地降低了运算复杂度。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的检测主副链路sidelink同步信号的方法。
具体的,所述计算机可执行指令被处理器运行时,执行:
接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
具体的,本发明实施例的提供的计算机存储介质中存储的计算机可执行指令被处理器执行时用于实现本发明实施例提供的检测主副链路sidelink同步信号的方法,例如,如图2~图5任一附图所示的方法。
其中,所述存储介质包括易挥发性随机存取存储器(RAM)、只读存储器(ROM)、电可擦可编程只读存储器(EEPROM)、闪存或其他存储器技术、只读光盘(CD-ROM)、数字通用盘(DVD)或其他被访问的他介质。
实施例三
为实现上述检测D2D中PSSS的方法,本发明实施例还提供一种检测主副链路sidelink同步信号即PSSS、具体是检测D2D中PSSS的装置。如图6所示,所述装置包括:接收单元601、补偿单元602及检测单元603;其中,
接收单元601,配置为接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
补偿单元602,配置为根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
检测单元603,配置为对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
这里,接收单元601根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息包括:
利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号进行自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同 步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息;根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
其中,接收单元601根据所述PSSS的粗定时信息确定所述分数倍频偏信息包括:根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号的归一化相关值,对所述归一化相关值进行天线间和Sidelink同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏信息。
在一个优选的实施例中,补偿单元602,配置为:根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;由所述分数倍频偏信息对所述PSSS符号进行补偿得到所述补偿后的PSSS符号。
在一个优选的实施例中,检测单元603配置为:对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
在一个优选的实施例中,检测单元603配置为:对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;将所述第一相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第一累加值;根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
本发明实施例中,检测单元603对所述补偿后的PSSS符号进行联合检 测还得到PSSS的精定时偏差信息和整数倍频偏信息。
在实际应用中,所述接收单元601、补偿单元602及检测单元603均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或微处理器(MPU,Micro Processor Unit)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现。
所述装置中的接收模块601在实际应用中可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例中,接收包括SSS符号的接收信号,获取SSS符号的循环前缀的长度和SSS符号的长度,根据循环前缀的长度、SSS符号的长度和接收信号得到PSSS的粗定时信息和分数倍频偏信息。如此,利用SSS符号中具有两个重复的PSSS和两个重复的SSSS的特性,通过SSS符号的循环前缀的长度、SSS符号的长度和接收信号确定PSSS的粗定时信息和分数倍频偏信息,并通过粗定时信息和分数倍频偏信息得到补偿后的PSSS,对补偿后的PSSS符号进行SLID组号、整数倍频偏和PSSS符号精定时联合检测,完成PSSS的检测,克服了定时和频偏对PSSS检测性能的影响,提高PSSS检测的精度,同时运算复杂度低,提高检测PSSS的效率。

Claims (15)

  1. 一种检测主副链路sidelink同步信号的方法,所述方法包括:
    接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
    根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
    对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
  2. 根据权利要求1所述的方法,其中,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息包括:
    利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号的自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息;
    根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
  3. 根据权利要求2所述的方法,其中,根据所述PSSS的粗定时信息确定所述分数倍频偏信息包括:
    根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
    根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号的归一化相关值,对所述归一化相关值进行天线间和Sidelink同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏信息。
  4. 根据权利要求1所述的方法,其中,根据所述粗定时信息和所述分 数倍频偏信息得到补偿后的PSSS符号包括:
    根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
    由所述分数倍频偏信息对所述PSSS符号进行补偿得到所述补偿后的PSSS符号。
  5. 根据权利要求1所述的方法,其中,对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值包括:
    对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
  6. 根据权利要求1所述的方法,其中,对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值包括:
    对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;
    将所述第一相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第一累加值;
    根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;
    对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
  7. 根据权利要求1所述的方法,其中,对所述补偿后的PSSS符号进行联合检测还得到PSSS的精定时偏差信息和整数倍频偏信息。
  8. 一种检测主sidelink同步信号的装置,所述装置包括:接收单元、补偿单元及检测单元;其中,
    所述接收单元,配置为接收包括sidelink同步信号SSS符号的接收信号,获取所述SSS符号的循环前缀的长度和所述SSS符号的长度,根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到主sidelink同步信号PSSS的粗定时信息和分数倍频偏信息;
    所述补偿单元,配置为根据所述粗定时信息和所述分数倍频偏信息得到补偿后的PSSS符号;
    所述检测单元,配置为对所述补偿后的PSSS符号进行联合检测得到PSSS的序列检测值。
  9. 根据权利要求8所述的装置,其中,所述接收单元根据所述循环前缀的长度、所述SSS符号的长度和所述接收信号得到PSSS的粗定时信息和分数倍频偏信息包括:
    利用所述循环前缀的长度和所述SSS符号的长度对所述接收信号进行包含循环前缀的时域符号的自相关处理并进行能量归一化,将第一PSSS符号和第一SSSS符号之间间隔长的归一化值进行合并,并进行天线间和同步信号发送周期间累加求能量,通过峰值搜索得到PSSS的粗定时信息;
    根据所述PSSS的粗定时信息确定所述分数倍频偏信息。
  10. 根据权利要求9所述的装置,其中,所述接收单元根据所述PSSS的粗定时信息确定所述分数倍频偏信息包括:
    根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
    根据所述粗定时信息得到包含循环前缀的PSSS符号和包含循环前缀的SSSS符号的归一化相关值,对所述归一化相关值进行天线间和Sidelink同步信号发送周期间累加合并,由合并的相关值求取得到所述分数倍频偏信息。
  11. 根据权利要求8所述的装置,其中,所述补偿单元,还配置为:
    根据所述PSSS的粗定时信息和所述接收信号得到PSSS符号;
    由所述分数倍频偏信息对所述PSSS符号进行补偿得到所述补偿后的PSSS符号。
  12. 根据权利要求8所述的装置,其中,所述检测单元,还配置为:
    对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到PSSS的序列检测值。
  13. 根据权利要求8所述的装置,其中,所述检测单元,还配置为:
    对所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第一组PSSS序列的相关处理得到第一相关处理结果;
    将所述第一相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第一累加值;
    根据所述第一相关处理结果得到第二相关处理结果,将所述第二相关处理结果进行傅里叶逆变换、能量计算、累加计算得到第二累加值;其中,第二相关处理结果为所述补偿后的PSSS符号依次进行去除半个子载波频率频移、傅里叶变换、循环移位、与第二组PSSS序列的相关处理的结果;
    对包括所述第一累加值和第二累加值的累加值进行峰值搜索得到PSSS的序列检测值。
  14. 根据权利要求8所述的装置,其中,所述检测单元对所述补偿后的PSSS符号进行联合检测还得到PSSS的精定时偏差信息和整数倍频偏信息。
  15. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至7任一项所述的检测主sidelink同步信号的方法。
PCT/CN2017/095190 2016-10-17 2017-07-31 检测主sidelink同步信号的方法、装置及存储介质 WO2018072521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903106.1A CN107959922B (zh) 2016-10-17 2016-10-17 一种检测D2D中主sidelink同步信号的方法及装置
CN201610903106.1 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072521A1 true WO2018072521A1 (zh) 2018-04-26

Family

ID=61953749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095190 WO2018072521A1 (zh) 2016-10-17 2017-07-31 检测主sidelink同步信号的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN107959922B (zh)
WO (1) WO2018072521A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557349A (zh) * 2018-05-31 2019-12-10 上海矽久微电子有限公司 一种分层结构同步信号的生成和接收方法以及接收装置
CN111355568A (zh) * 2018-12-21 2020-06-30 深圳市中兴微电子技术有限公司 具有时间重复特性的同步码的差分处理方法和装置
CN111539323A (zh) * 2020-04-22 2020-08-14 中国人民解放军战略支援部队信息工程大学 一种循环前缀线性调频信号的频率估计方法与装置
WO2020252319A3 (en) * 2019-06-13 2021-02-04 Qualcomm Incorporated Device-to-device synchronization in wireless communications
CN113453316A (zh) * 2021-06-22 2021-09-28 Oppo广东移动通信有限公司 一种频点搜索方法、装置及存储介质
CN113890803A (zh) * 2021-09-28 2022-01-04 中信科移动通信技术股份有限公司 一种通信下行同步方法及系统
CN114554525A (zh) * 2022-02-22 2022-05-27 上海星思半导体有限责任公司 信号处理方法、装置、电子设备、存储介质及程序产品
CN114826846A (zh) * 2021-01-28 2022-07-29 宸芯科技有限公司 频偏抵消序列的生成方法、装置、设备及介质
CN115175378A (zh) * 2022-06-22 2022-10-11 南京邮电大学 基于srsRAN的天地融合5G终端模拟器及实现方法
CN115208725A (zh) * 2022-05-07 2022-10-18 中国人民解放军国防科技大学 一种联合ofdm同步与信息调制的方法、装置及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757290B (zh) * 2019-03-28 2024-01-30 华为技术有限公司 一种配置信息的发送或接收方法、终端装置、网络装置及系统
WO2021056564A1 (zh) * 2019-09-29 2021-04-01 北京小米移动软件有限公司 直连通信操作处理方法、装置及存储介质
CN111245585B (zh) * 2020-01-10 2023-05-12 北京紫光展锐通信技术有限公司 信息发送方法及装置、参数确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379082A (zh) * 2012-04-25 2013-10-30 马维尔国际有限公司 Lte通信系统中的时频同步方法和装置
CN103441778A (zh) * 2013-08-30 2013-12-11 电子科技大学 一种基于cp平顶法的td-lte小区搜索同步方法
CN104065604A (zh) * 2013-03-21 2014-09-24 联想(北京)有限公司 信号同步方法、接收端及系统
WO2016036141A1 (ko) * 2014-09-02 2016-03-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656700B (zh) * 2008-08-19 2013-03-20 中兴通讯股份有限公司 长期演进系统小区初始搜索循环前缀类型检测方法及装置
CN101447970B (zh) * 2008-11-14 2011-06-29 中国人民解放军理工大学 利用训练序列进行lofdm系统定时和载波同步的方法
CN102413079B (zh) * 2011-11-10 2014-09-03 复旦大学 3gpp-lte系统下行链路初始分数频偏估计方法
US9888450B2 (en) * 2014-12-16 2018-02-06 Lg Electronics Inc. Method and apparatus for detecting synchronization signal in wireless communication system
US10390319B2 (en) * 2015-04-10 2019-08-20 Kyocera Corporation Device to-device synchronization signal (D2DSS) resource management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379082A (zh) * 2012-04-25 2013-10-30 马维尔国际有限公司 Lte通信系统中的时频同步方法和装置
CN104065604A (zh) * 2013-03-21 2014-09-24 联想(北京)有限公司 信号同步方法、接收端及系统
CN103441778A (zh) * 2013-08-30 2013-12-11 电子科技大学 一种基于cp平顶法的td-lte小区搜索同步方法
WO2016036141A1 (ko) * 2014-09-02 2016-03-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557349A (zh) * 2018-05-31 2019-12-10 上海矽久微电子有限公司 一种分层结构同步信号的生成和接收方法以及接收装置
CN111355568A (zh) * 2018-12-21 2020-06-30 深圳市中兴微电子技术有限公司 具有时间重复特性的同步码的差分处理方法和装置
CN111355568B (zh) * 2018-12-21 2022-03-25 深圳市中兴微电子技术有限公司 具有时间重复特性的同步码的差分处理方法和装置
WO2020252319A3 (en) * 2019-06-13 2021-02-04 Qualcomm Incorporated Device-to-device synchronization in wireless communications
CN113940118A (zh) * 2019-06-13 2022-01-14 高通股份有限公司 无线通信中的设备到设备同步
US11533692B2 (en) 2019-06-13 2022-12-20 Qualcomm Incorporated Device-to-device synchronization in wireless communications
CN111539323A (zh) * 2020-04-22 2020-08-14 中国人民解放军战略支援部队信息工程大学 一种循环前缀线性调频信号的频率估计方法与装置
CN111539323B (zh) * 2020-04-22 2024-03-15 中国人民解放军战略支援部队信息工程大学 一种循环前缀线性调频信号的频率估计方法与装置
CN114826846A (zh) * 2021-01-28 2022-07-29 宸芯科技有限公司 频偏抵消序列的生成方法、装置、设备及介质
CN113453316A (zh) * 2021-06-22 2021-09-28 Oppo广东移动通信有限公司 一种频点搜索方法、装置及存储介质
CN113890803B (zh) * 2021-09-28 2023-09-29 中信科移动通信技术股份有限公司 一种通信下行同步方法及系统
CN113890803A (zh) * 2021-09-28 2022-01-04 中信科移动通信技术股份有限公司 一种通信下行同步方法及系统
CN114554525A (zh) * 2022-02-22 2022-05-27 上海星思半导体有限责任公司 信号处理方法、装置、电子设备、存储介质及程序产品
CN114554525B (zh) * 2022-02-22 2024-02-06 上海星思半导体有限责任公司 信号处理方法、装置、电子设备及存储介质
CN115208725A (zh) * 2022-05-07 2022-10-18 中国人民解放军国防科技大学 一种联合ofdm同步与信息调制的方法、装置及介质
CN115208725B (zh) * 2022-05-07 2024-02-02 中国人民解放军国防科技大学 一种联合ofdm同步与信息调制的方法、装置及介质
CN115175378A (zh) * 2022-06-22 2022-10-11 南京邮电大学 基于srsRAN的天地融合5G终端模拟器及实现方法

Also Published As

Publication number Publication date
CN107959922A (zh) 2018-04-24
CN107959922B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2018072521A1 (zh) 检测主sidelink同步信号的方法、装置及存储介质
WO2018049931A1 (zh) 一种检测D2D中sidelink的同步信号的方法及装置
US9717100B2 (en) Detecting physical random access channel preambles in a long term evolution communication system
US20190239249A1 (en) Processing of random access preamble sequences
US11259259B2 (en) Transmitter, receiver and methods for transmitting/ receiving synchronisation signals
JP5612224B2 (ja) プライマリ同期信号検出方法および装置
US9961655B1 (en) Method and apparatus for low complexity frequency synchronization in LTE wireless communication systems
CN102209052A (zh) 一种随机接入信号的频偏补偿方法和装置
US9674808B1 (en) Method and apparatus for early frequency synchronization in LTE wireless communication systems
WO2018131375A1 (ja) 基地局、同期信号送信方法、ユーザ端末及びセルサーチ方法
US20130094619A1 (en) Systems and methods for packet detection
JP2016213530A (ja) セルサーチ方法及びユーザ装置
CN110402552B (zh) 具有用于低复杂度小区检测的同步信号序列结构的方法和装置
CN101702705B (zh) 用于多载波系统的同步方法及系统
US9503996B2 (en) Method and apparatus for cell search and synchronization in mobile communication
CN103108337B (zh) 一种随机接入信号的检测方法、装置及基站
CN108738124B (zh) 一种定时同步方法和装置
JP6437577B2 (ja) ランダムアクセス信号の検出方法、装置及びシステム
US20220394780A1 (en) Random access preamble detection for propagation delay
JP6559763B2 (ja) 送信機、受信機、および同期信号を送信/受信するための方法
WO2022053552A1 (en) Detection of single-tone frequency hopping random access preamble
CN102469574A (zh) 一种lte系统中基于时域接收信号的定时同步方法与装置
JPWO2009066528A1 (ja) 受信電力推定方法および受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862368

Country of ref document: EP

Kind code of ref document: A1