WO2018049931A1 - 一种检测D2D中sidelink的同步信号的方法及装置 - Google Patents

一种检测D2D中sidelink的同步信号的方法及装置 Download PDF

Info

Publication number
WO2018049931A1
WO2018049931A1 PCT/CN2017/095016 CN2017095016W WO2018049931A1 WO 2018049931 A1 WO2018049931 A1 WO 2018049931A1 CN 2017095016 W CN2017095016 W CN 2017095016W WO 2018049931 A1 WO2018049931 A1 WO 2018049931A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssss
symbol
psss
information
frequency offset
Prior art date
Application number
PCT/CN2017/095016
Other languages
English (en)
French (fr)
Inventor
易立强
李焱
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018049931A1 publication Critical patent/WO2018049931A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for detecting a synchronization signal of a side link in a D2D, and a computer storage medium.
  • D2D Device-to-Device
  • the so-called D2D means that the service data is not forwarded by the base station, but is directly transmitted by the source user equipment to the target user equipment through the air interface.
  • This communication mode is different from the traditional cellular system communication mode.
  • the D2D technology has a short link distance and high channel quality, and can satisfy the information sharing service between adjacent users, and provides a high-speed, low-latency, low-power transmission service.
  • the introduction of a D2D heterogeneous network in a cellular network can flexibly expand the network structure and cover the network dead zone. At the same time, it can improve the cell edge communication quality by multiplexing cellular network resources, and improve user experience and system capacity.
  • the premise of data transmission between the source user equipment and the target user equipment is that the time-frequency synchronization at both ends of the transmission and reception is first implemented.
  • the D2D terminal may periodically transmit the synchronization signal as a synchronization reference source in partial coverage or no coverage, or be indicated by the network as a synchronization reference of other D2D UEs.
  • Receiving D2D sync signals will be more versatile than LTE sync There are challenges.
  • a new sub-link Sidelink synchronization signal is designed for D2D synchronization in the 3GPP standard protocol.
  • the Sidelink synchronization signal is composed of a primary sidelink synchronization signal (PSSS) and a secondary sidelink synchronization signal (SSSS), as shown in FIG.
  • PSSS primary sidelink synchronization signal
  • SSSS secondary sidelink synchronization signal
  • the Sidelink synchronization signal is transmitted on two adjacent Single-Carrier Frequency-Division Multiple Access (SC-FDMA) symbols in the same subframe.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • SSSS signal detection is one of the important steps in synchronization, mainly for the detection of SL-ID by Sidelink. Since the SSSS design does not adopt the same design method of LTE, the SSSS symbol and the PSSS symbol are far apart, and the channel estimation of the PSSS symbol cannot be used for coherent detection to obtain better performance; only the non-coherent detection method can be used.
  • the SSSS non-coherent detection is sensitive to timing, frequency offset and coherent bandwidth, and the performance will be greatly affected by direct detection. Further, in order to reduce the peak-to-average ratio PAPR, the SSSS symbol has a power backoff relative to the PSSS symbol, and the SSSS detection will be more challenged. Therefore, there is a need for a technical solution for detecting a synchronization signal of a side link in D2D to implement detection of SSSS in D2D.
  • embodiments of the present invention are directed to a method and apparatus for detecting a secondary sidelink synchronization signal in D2D, and a computer storage medium, which can accurately detect SSSS in D2D.
  • an embodiment of the present invention provides a method for detecting a secondary sidelink synchronization signal in D2D, where the method includes:
  • the adjusting information of the SSSS is obtained by performing channel impulse response estimation on the PSSS symbol, and the SSSS symbol is adjusted according to the adjustment information to obtain an accurate SSSS symbol, including:
  • the fine timing deviation information of the SSSS is obtained by performing channel impulse response estimation on the PSSS symbol, and the SSSS symbol is periodically adjusted according to the fine timing deviation information to obtain the precise SSSS symbol.
  • the adjusting information of the SSSS is obtained by performing channel impulse response estimation on the PSSS symbol, and the SSSS symbol is adjusted according to the adjustment information to obtain an accurate SSSS symbol, including:
  • Timing offset information and integer multiple frequency offset information of the SSSS by performing channel impulse response estimation on the PSSS symbol; timing adjusting the SSSS symbol according to the fine timing deviation information, and according to the integer multiple
  • the frequency offset information performs frequency offset compensation on the SSSS symbol to obtain the precise SSSS symbol.
  • the method further includes:
  • the method further includes:
  • obtaining the fine timing offset value of the SSSS by performing channel impulse response estimation on the PSSS symbol includes: performing Fourier transform on the PSSS symbol, correlation processing with the PSSS sequence, and Fourier The inverse timing deviation, the energy calculation, the accumulation calculation, and the peak search result in the fine timing deviation of the SSSS.
  • the sidelink identifier SL-ID includes: performing Fourier transform on the precise SSSS symbol, correlation processing with the SSSS sequence, energy normalization processing, accumulation calculation, and peak search to obtain the SL-ID of the SSSS.
  • the embodiment of the present invention further provides an apparatus for detecting a secondary sidelink synchronization signal in a D2D, where the apparatus includes: an acquisition module, an adjustment module, and a determination module;
  • the acquiring module is configured to obtain a primary sidelink synchronization signal PSSS symbol and a secondary sidelink synchronization signal SSSS symbol, where the adjustment module is configured to obtain the SSSS adjustment information by performing channel impulse response estimation on the PSSS symbol, according to the The adjusting information is adjusted to obtain the precise SSSS symbol, and the determining module is configured to obtain the sidelink identifier SL-ID of the SSSS by detecting the precise SSSS symbol.
  • the adjusting module is specifically configured to: obtain timing deviation information of the SSSS by performing channel impulse response estimation on the PSSS symbol, and perform timing adjustment on the SSSS symbol according to the fine timing deviation information.
  • the precise SSSS symbol is specifically configured to: obtain timing deviation information of the SSSS by performing channel impulse response estimation on the PSSS symbol, and perform timing adjustment on the SSSS symbol according to the fine timing deviation information. The precise SSSS symbol.
  • the adjusting module is specifically configured to: obtain timing deviation information and integer multiple frequency offset information of the SSSS by performing channel impulse response estimation on the PSSS symbol; and according to the fine timing deviation information,
  • the SSSS symbol performs timing adjustment, and performs frequency offset compensation on the SSSS symbol according to the integer multiple frequency offset information to obtain the precise SSSS symbol.
  • the device further includes: a fractional frequency offset module configured to:
  • the adjustment module is further configured to:
  • the adjusting module estimates channel impulse response by using the PSSS symbol.
  • Obtaining the fine timing offset value of the SSSS includes: performing Fourier transform on the PSSS symbol, correlation processing with the PSSS sequence, inverse Fourier transform, energy calculation, accumulation calculation, and peak search to obtain the SSSS Fine timing offset value.
  • the determining module is specifically configured to:
  • the SL-ID of the SSSS is obtained by performing Fourier transform, correlation processing with the SSSS sequence, energy normalization processing, accumulation calculation, and peak search on the precise SSSS symbols in sequence.
  • the obtaining module, the adjusting module, and the determining module may use a central processing unit (CPU), a digital signal processor (DSP), or a programmable logic array (FPGA) when performing processing. , Field-Programmable Gate Array) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA programmable logic array
  • the embodiment of the invention further provides a computer storage medium, wherein the computer executable instructions are configured to perform the foregoing method for detecting a secondary sidelink synchronization signal in the D2D.
  • a method for detecting a secondary sidelink synchronization signal in D2D acquiring a primary sidelink synchronization signal PSSS symbol and a secondary sidelink synchronization signal SSSS symbol according to an embodiment of the present invention; obtaining an adjustment of the SSSS by performing channel impulse response estimation on the PSSS symbol The information is adjusted according to the adjustment information to obtain an accurate SSSS symbol; and the sidelink identifier SL-ID of the SSSS is obtained by detecting the precise SSSS symbol.
  • the PSSS symbol is processed by the channel impulse response estimation, and the acquired SSSS adjustment information is adjusted by the acquired adjustment information to detect the SL-ID, thereby effectively improving the SSSS detection performance.
  • FIG. 1 is a schematic structural diagram of a Sidelink synchronization signal
  • FIG. 2 is a schematic flowchart of a method for detecting a secondary sidelink synchronization signal in D2D according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for determining an SL-ID according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic flowchart of a method for detecting a secondary sidelink synchronization signal in D2D according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic flowchart of a method for detecting a secondary sidelink synchronization signal in D2D according to Embodiment 4 of the present invention
  • FIG. 6 is a schematic structural diagram of an apparatus for detecting a secondary sidelink synchronization signal in D2D according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural diagram of another apparatus for detecting a secondary sidelink synchronization signal in D2D according to Embodiment 5 of the present invention.
  • FIG. 2 A method for detecting a secondary sidelink synchronization signal in D2D is shown in FIG. 2, and the method includes:
  • the time-frequency synchronization of the two ends of the transmission and reception is first performed.
  • the D2D synchronization signal is received by one end, the D2D synchronization signal is parsed as a detection terminal to obtain the PSSS symbol and SSSS carried in the D2D synchronization signal.
  • the PSSS symbol is a PSSS time domain symbol and the SSSS symbol is an SSSS time domain symbol.
  • the detecting terminal of the received D2D synchronization signal may be located outside the coverage area or may be located in the coverage area; wherein the coverage is the coverage of the cellular network of the base station (eg, eNodeB), and the detection of the received D2D synchronization signal
  • the terminal may be located within the coverage of the base station cellular network or may be located outside the coverage of the base station cellular network.
  • the ID of the sidelink includes 336, which is represented by 0-335, of which 336
  • the SIL-ID is divided into two sets, the first set identifier is 0-167, represented by id_net, and the second set identifier is 168-335, represented by id_oon.
  • the sequence detection value of the PSSS includes two different values, respectively indicating that the sidelink synchronization signals are located in different sets. Specifically, when the PSSS is 0, the SL-ID is indicated to be located in the first set, and the terminal transmitting the signal is sent.
  • the timing reference is a base station; when the PSSS is 1, the SL-ID is indicated to be in the second set, and the transmission timing reference of the terminal characterizing the transmitted signal is not the base station.
  • the channel information of the SSSS is obtained by performing channel impulse response estimation on the PSSS symbol, and adjusting the SSSS symbol according to the adjustment information to obtain an accurate SSSS symbol includes the following situations:
  • the channel impulse response is estimated for the PSSS symbol, and the adjustment information of the SSSS is obtained, wherein the adjustment information includes at least the SSSS fine timing deviation information, and may also include SSVS adjustment of integer multiple frequency offset information, PSSS sequence detection value, and the like. information.
  • the PSSS symbol for performing channel impulse response estimation may be PSSS after coarse timing and fractional frequency offset adjustment.
  • the SSSS adjustment information is obtained by performing channel impulse response estimation on the PSSS symbols.
  • the detection information may be different according to the network environment in which the detection terminal is located. Specifically, when the detection terminal is a terminal within the coverage range, the acquired adjustment information is the SSSS fine timing deviation information, and when the detection terminal is a terminal outside the coverage range, the acquisition is performed.
  • the adjustment information may include integer multiple frequency offset information in addition to the SSSS precise timing deviation information. Further, the PSSS sequence detection value may also be included.
  • the acquired SSSS symbols are correspondingly adjusted according to the obtained adjustment information.
  • the timing adjustment of the SSSS symbol is performed by using the obtained fine timing deviation information; wherein, when the timing adjustment is performed, the adjusted The SSSS symbol can be an SSSS symbol obtained using coarse timing.
  • the SSSS symbol is frequency offset compensated by using the obtained integer multiple frequency offset information to obtain the precise SSSS symbol.
  • the obtaining the fine timing offset value of the SSSS by performing channel impulse response estimation on the PSSS symbol includes: performing Fourier transform on the PSSS symbol, correlation processing with the PSSS sequence, and Fourier inverse
  • the fine timing offset value of the SSSS is obtained after the transformation, the energy calculation, the accumulation calculation, and the peak search.
  • the PSSS sequence is a PSSS sequence indicated by a ZC (Zadoff-Chu) code root.
  • the frequency offset compensation for the SSSS includes frequency offset compensation of integer multiple frequency offset information and frequency offset compensation of fractional frequency offset information.
  • the sidelink identifier SL-ID of the SSSS obtained by detecting the precise SSSS symbol includes: The precise SSSS symbol is subjected to Fourier transform, correlation processing with the SSSS sequence, energy normalization processing, accumulation calculation, and peak search to obtain the SL-ID of the SSSS.
  • the method further includes: obtaining a sequence detection value of the PSSS by performing channel impulse response estimation on the PSSS symbol; determining a set corresponding to the sequence detection value of the PSSS, determining, in the set according to the SSSS group number Said SL-ID.
  • the SSSS group number is a value obtained by performing Fourier transform, correlation processing with the SSSS sequence, energy normalization processing, accumulation calculation, and peak search on the precise SSSS symbols in sequence.
  • the sequence detection value of the PSSS can represent whether the SL-ID of the SSSS received by the current detection terminal belongs to the first set or the second set.
  • the PSSS sequence detection value indicates that the SL-ID is located in the first set, then the first set is The position corresponding to the SSSS group number is the currently detected SL-ID; when the PSSS sequence detection value indicates that the SL-ID is located in the second set, the position corresponding to the SSSS group number in the second set is currently detected. The resulting SL-ID.
  • the sequence detection value of the PSSS is obtained by performing channel impulse response estimation on the PSSS symbol
  • the SSSS symbol is correlated with the SSSS sequence in determining the SL-ID according to the precise SSSS symbol
  • the SSSS sequence is determined using sequence detection values of the PSSS obtained by channel impulse response estimation of the PSSS symbols. It should be noted that, here, when determining the SSSS sequence for performing the correlation processing, the sequence detection value of the PSSS obtained by performing channel impulse response estimation on the PSSS symbol may be used, and the sequence of the PSSS determined by other methods may also be used.
  • the detected value is not limited in the embodiment of the present invention.
  • the SSSS group number obtained after the peak search is the SL-ID.
  • the SL-ID is determined based on the SSSS group number obtained after the peak search and the sequence detection value of the PSSS.
  • the detecting terminal when it is located near the edge of the network coverage, it may receive the transmitting terminal signal from the direct or indirect base station as the transmission timing reference, or may receive the transmission from the outside of the coverage not using the base station as the transmission timing reference.
  • Detection terminal can The synchronization source is selected according to the priority specified by the protocol. For example, the transmitting terminal that directly or indirectly uses the base station as the transmission timing reference has higher priority than the transmitting terminal that does not use the base station as the transmission timing reference.
  • the method includes:
  • the SSSS fine timing deviation information is obtained by estimating the channel impulse response of the PSSS, and after the fine timing deviation information is obtained, the fine timing deviation information is obtained.
  • the acquired SSSS symbol is fine-tuned to obtain the adjusted SSSS symbol, and the SL-ID can be determined by performing correlation detection on the SSSS.
  • the SSSS fine timing deviation information is obtained by estimating the channel impulse response of the PSSS, and the PSSS sequence detection value and the integer multiple frequency offset information are also obtained; the fine timing deviation information, the PSSS The sequence detection value and the integer multiple frequency offset information are used as adjustment information to adjust the SSSS symbol to obtain an accurate SSSS symbol and an SSSS sequence, thereby obtaining an accurate SL-ID through correlation detection of the SSSS symbol, which enables the detection terminal to complete the transmission of the signal.
  • Timing refers to the identification of the terminal for data synchronization.
  • the method for detecting the SSSS in the D2D provided by the embodiment of the present invention is further described in the specific application scenario in which the detecting terminal is located outside the coverage area.
  • the processing steps of the SSSS detection are as shown in FIG. 4 . Specifically include:
  • S401 Perform channel impulse response estimation by using the acquired PSSS symbol to obtain an SSSS symbol. Fine timing, PSSS sequence detection value, and integer multiple frequency offset information. Specifically include:
  • the PSSS symbol is acquired before the channel impulse response estimation is performed on the PSSS symbol.
  • the acquired PSSS symbols are PSSS signals that have undergone coarse timing adjustment and fractional offset compensation.
  • the coarse timing and fractional frequency offset information may be provided by a pre-module, which may perform PSSS autocorrelation processing, but is not limited thereto.
  • the half-subcarrier frequency shift ⁇ f/2 is removed for the PSSS signal, and ⁇ f is the subcarrier frequency interval:
  • Y PSSS i (k)
  • ( ⁇ ) N represents a cyclic shift with a period of N
  • b represents a maximum integer multiple of the frequency offset to be estimated with respect to the subcarrier spacing.
  • C u,s is converted to the time domain by IFFT, and a channel impulse response is obtained.
  • the channel impulse response is concentrated in the short interval of h u,s (n) obtained, and the channel impulse response region [-L 2 , L 1 ] is obtained, and the energy is obtained to obtain
  • the inter-symbol, inter-antenna, and Sidelink synchronization signal transmission periods are accumulated to obtain i, p, q represent the symbol indication, the antenna indication, and the accumulation period indication, respectively, and P and Q represent the number of antennas and the number of accumulation periods, respectively.
  • the fine timing deviation value ⁇ is obtained from the position within the search peak [-L 2 , L 1 ], and the search peak corresponds.
  • the used PSSS sequence obtains the integer octave offset value of the PSSS sequence detection value u and the integer octave offset value corresponding to the search peak.
  • i, p, q represent the symbol indication, the antenna indication, and the accumulation period indication, respectively
  • P and Q represent the number of antennas and the number of accumulation periods, respectively.
  • the CP mode used by the fine timing offset values ⁇ and D2D corresponds to the PSSS and SSSS sample distances, and the fine timing position of the SSSS symbol can be obtained.
  • the detected integer octave offset is s ⁇ f.
  • S402. Determine the SL-ID by performing correlation detection on the timing adjustment and the frequency offset compensation SSSS symbol.
  • the SSSS symbol is adjusted according to the detected fine timing deviation information of the SSSS, and the frequency offset compensation is performed by using the detected frequency offset information.
  • the frequency offset compensation includes integer frequency offset compensation of integer multiple frequency offset information.
  • the fractional frequency offset compensation of the initial estimated fractional frequency offset provided by the pre-module is performed by using the detected frequency offset information.
  • the SSSS correlation detection may be non-coherent detection or differential detection, but is not limited thereto.
  • the segment is related, that is, the SSSS local code is divided into M segments, and each segment is separately processed.
  • the correlation value energy value is subjected to frequency domain SSSS symbol energy normalization processing, which can avoid the influence of SSSS symbol power backoff on SSSS detection performance.
  • M denotes the number of segments
  • B denotes the length of the segment
  • i, p, q denote symbol indication, antenna indication and accumulation period indication, respectively
  • P, Q denote antenna number and accumulation period, respectively number.
  • the initial frequency offset can reach ⁇ 10 PPM, and the terminal that transmits the D2D signal may reach 20 PPM.
  • the fractional frequency offset there may still be an integer multiple frequency offset, which causes the SSSS detection to fail.
  • SSSS non-coherent detection is very sensitive to timing, and a small amount of timing sample deviation will cause a sharp deterioration in performance, which is difficult to meet system requirements.
  • the channel impulse response estimation is performed by using the PSSS symbol, and the timing deviation and the integer multiple frequency offset are accurately obtained, thereby adjusting and compensating the SSSS symbols, thereby improving the SSSS detection success rate.
  • the method for detecting the SSSS in the D2D provided by the embodiment of the present invention is further described in the specific application scenario in which the detecting terminal is located in the coverage area.
  • the D2D terminal in the coverage area has already obtained frequency synchronization with the network, and has little influence on D2D reception.
  • the processing steps of the SSSS detection in this case are as shown in FIG. 5, and specifically include:
  • the PSSS symbol is obtained according to the pre-module providing coarse timing.
  • the pre-module may be a PSSS cross-correlation process, but is not limited thereto.
  • Y PSSS (k) After the time domain to frequency domain conversion, the false subcarriers are removed to obtain Y PSSS (k), where k is the subcarrier label. If Representing the local PSSS code indicated by the ZC code root detected by the pre-module PSSS sequence, performing conjugate multiplication processing on Y PSSS (k)
  • Channel impulse response is concentrated in the obtained In the shorter interval, obtain the value of the channel impulse response region [-L 2 , L 1 ], and obtain the energy.
  • p, q represent the antenna indication and the accumulation period indication, respectively
  • P and Q represent the number of antennas and the number of accumulation periods, respectively.
  • the CP mode used by the fine timing offset values ⁇ and D2D corresponds to the PSSS and SSSS sample distances, and the fine timing position of the SSSS symbol can be obtained.
  • the SSSS symbol is obtained by performing fine timing adjustment based on the detected fine timing deviation information.
  • Time domain symbols can be accumulated and averaged
  • the correlation value energy value is subjected to frequency domain SSSS symbol energy normalization processing, which can avoid the influence of SSSS symbol power backoff on SSSS detection performance.
  • M denotes the number of segments
  • B denotes the length of the segment
  • p denotes an antenna indication and an accumulation period indication, respectively
  • P and Q denote the number of antennas and the number of accumulated cycles, respectively.
  • the detecting terminal Since the detecting terminal is located in the coverage area, the detecting terminal can select to receive the transmitting terminal signal with the higher priority of the base station as the transmission timing reference, and the obtained SL-ID is
  • the PSSS sequence detection information may be known in advance in the prior art, or may be used to obtain PSSS sequence detection information obtained by channel impulse response estimation of PSSS symbols. For example, in the method shown in FIG. 4, the PSSS sequence detection information obtained by estimating the channel impulse response of the PSSS symbol is used.
  • the PSSS sequence detection information can be obtained by other methods, and when the SSSS detection is performed, the PSSS sequence detection information is considered to be known in advance.
  • an embodiment of the present invention further provides an apparatus for detecting SSSS in D2D.
  • the device includes: an obtaining module 601, an adjusting module 602, and a determining module 603;
  • the obtaining module 601 is configured to acquire a primary sidelink synchronization signal PSSS symbol and a secondary sidelink synchronization signal SSSS symbol;
  • the adjusting module 602 is configured to obtain the adjustment information of the SSSS by performing channel impulse response estimation on the PSSS symbol, and adjust the SSSS symbol according to the adjustment information to obtain an accurate SSSS symbol;
  • the adjusting module 602 obtains the fine timing offset value of the SSSS by performing channel impulse response estimation on the PSSS symbol, including: performing Fourier transform on the PSSS symbol, correlation processing with the PSSS sequence, and Fourier.
  • the fine timing offset value of the SSSS is obtained after inverse transform, energy calculation, accumulation calculation, and peak search.
  • the determining module 603 is configured to obtain the sidelink identifier SL-ID of the SSSS by detecting the precise SSSS symbol.
  • the determining module 603 is specifically configured to: perform Fourier transform, correlation processing with the SSSS sequence, energy normalization processing, accumulation calculation, and peak search on the precise SSSS symbol to obtain the SL-ID of the SSSS.
  • the adjustment module 602 can be specifically configured to: perform channel rushing on the PSSS symbol
  • the excitation response is estimated to obtain fine timing deviation information of the SSSS, and the SSSS symbol is periodically adjusted according to the fine timing deviation information to obtain the precise SSSS symbol.
  • the adjusting module 602 may be specifically configured to: obtain timing deviation information and integer multiple frequency offset information of the SSSS by performing channel impulse response estimation on the PSSS symbol; and time the SSSS symbol according to the fine timing deviation information Adjusting, and performing frequency offset compensation on the SSSS symbols according to the integer multiple frequency offset information to obtain the precise SSSS symbols.
  • the adjustment module 602 is further configured to: obtain a sequence detection value of the PSSS by performing channel impulse response estimation on the PSSS symbol; correspondingly, the determining module 603 is configured to determine a set corresponding to the sequence detection value of the PSSS, according to the SSSS The group number determines the SL-ID in the set.
  • the apparatus further includes: a fractional frequency offset module 604 configured to: acquire fractional frequency offset information; perform frequency offset compensation on the SSSS symbols according to the fractional frequency offset information.
  • a fractional frequency offset module 604 configured to: acquire fractional frequency offset information; perform frequency offset compensation on the SSSS symbols according to the fractional frequency offset information.
  • the apparatus for detecting the SSSS in the D2D may be implemented by a processor and a memory, wherein the memory has computer executable instructions; the processor is configured to execute the following according to the computer executable instructions. Operation: acquiring a primary sidelink synchronization signal PSSS symbol and a secondary sidelink synchronization signal SSSS symbol; obtaining channel SS impulse response estimation by using the channel impulse response to the PSSS symbol, and adjusting the SSSS symbol according to the adjustment information Precise SSSS symbol; the sidelink identifier SL-ID of the SSSS is obtained by detecting the precise SSSS symbol.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer executable instructions are configured to perform the foregoing method for detecting a secondary sidelink synchronization signal in the D2D.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种检测D2D中辅sidelink同步信号的方法,所述方法包括:获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。本发明实施例还公开了一种检测D2D中辅sidelink同步信号的装置、计算机存储介质。

Description

一种检测D2D中sidelink的同步信号的方法及装置
相关申请的交叉引用
本申请基于申请号为201610824964.7、申请日为2016年09月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,尤其涉及一种检测D2D中sidelink的同步信号的方法及装置、计算机存储介质。
背景技术
随着移动通信的迅速发展,以基站为中心的传统蜂窝网络系统的通信方式存在了局限,设备到设备(Device-to-Device,D2D)的通信模式日益受到广泛关注。所谓D2D,是指业务数据不经过基站的转发,而是直接由源用户设备通过空口传输给目标用户设备,这种通信模式区别于传统蜂窝系统通信模式。D2D技术具有链路距离短,信道质量高,可以满足临近用户之间的信息共享业务,提供高速率、低时延、低功耗的传输服务。在蜂窝网络中引入D2D异构网络,可以使网络结构灵活拓展,覆盖网络盲区,同时还可以通过复用蜂窝网络资源改善小区边缘通信质量,提高用户体验与系统容量。
D2D通信中,源用户设备和目标用户设备进行数据传输的前提是首先要实现收发两端的时频同步。不像过去的LTE终端,D2D终端在部分覆盖或者无覆盖情况可周期性发送同步信号作为同步参考源,或者被网络指示作为其他D2D UE的同步参考。接收D2D同步信号相比LTE同步将更加具 有挑战。3GPP标准协议中为D2D同步设计了新的副链路Sidelink同步信号。Sidelink同步信号由主Sidelink同步信号(primary sidelink synchronization signal,PSSS)和辅Sidelink同步信号(subsidiary sidelink synchronization signal,SSSS)组成,具体如图1所示。Sidelink同步信号在相同子帧中两个相邻的单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号上发送。
SSSS信号检测作为同步中重要步骤之一,主要为Sidelink标识SL-ID的检测。由于SSSS设计并未采用LTE相同的设计方法,SSSS符号和PSSS符号相隔较远,不能利用PSSS符号的信道估计进行相干检测获得较好的性能;而只能采用非相干检测方法。而SSSS非相干检测对定时,频偏和相干带宽等敏感,直接检测则性能将受到很大影响。进一步,为了降低峰均比PAPR,SSSS符号相对PSSS符号有功率回退,SSSS检测将更加受到挑战。因此,亟需一种检测D2D中sidelink的同步信号的技术方案,实现对D2D中的SSSS的检测。
发明内容
有鉴于此,本发明实施例希望提供一种检测D2D中辅sidelink同步信号的方法及装置、计算机存储介质,能够实现对D2D中的SSSS的精确检测。
本发明实施例的技术方案是这样实现的:
一方面,本发明实施例提供一种检测D2D中辅sidelink同步信号的方法,所述方法包括:
获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
上述方案中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号包括:
通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
上述方案中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号包括:
通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
上述方案中,所述方法还包括:
获取分数频偏信息;根据所述分数频偏信息对所述SSSS符号进行频偏补偿。
上述方案中,所述方法还包括:
通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。
上述方案中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差值包括:依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。
上述方案中,所述通过对所述精确SSSS符号的检测得到SSSS的 sidelink标识SL-ID包括:依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
另一方面,本发明实施例还提供一种检测D2D中辅sidelink同步信号的装置,所述装置包括:获取模块、调整模块、确定模块;其中,
所述获取模块,配置为获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;所述调整模块,配置为通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;所述确定模块,配置为通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
上述方案中,所述调整模块具体配置为:通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
上述方案中,所述调整模块具体配置为:通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
上述方案中,所述装置还包括:分数频偏模块,配置为:
获取分数频偏信息;根据所述分数频偏信息对所述SSSS符号进行频偏补偿。
上述方案中,所述调整模块还配置为:
通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。
上述方案中,所述调整模块通过对所述PSSS符号进行信道冲激响应估 计获得所述SSSS的精定时偏差值包括:依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。
上述方案中,所述确定模块具体配置为:
依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
所述获取模块、所述调整模块、所述确定模块在执行处理时,可以采用中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Singnal Processor)或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。
本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令配置执行上述检测D2D中辅sidelink同步信号的方法。
本发明实施例的一种检测D2D中辅sidelink同步信号的方法,获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。如此,通过信道冲激响应估计对PSSS符号进行处理,获取的SSSS的调整信息,通过获取的调整信息对SSSS符号进行调整后,从而检测确定SL-ID,能够有效地提高SSSS检测性能。
附图说明
图1为Sidelink同步信号结构示意图;
图2为本发明实施例一提供的检测D2D中辅sidelink同步信号的方法的流程示意图;
图3为本发明实施例二提供的确定SL-ID的方法的流程示意图;
图4为本发明实施例三提供的检测D2D中辅sidelink同步信号的方法的流程示意图;
图5为本发明实施例四提供的检测D2D中辅sidelink同步信号的方法的流程示意图;
图6为本发明实施例五提供的一种检测D2D中辅sidelink同步信号的装置的结构示意图;
图7为本发明实施例五提供的另一种检测D2D中辅sidelink同步信号的装置的结构示意图。
具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
实施例一
本发明实施例一提供一种检测D2D中辅sidelink同步信号的方法如图2所示,所述方法包括:
S201、获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;
当源用户设备和目标用户设备进行D2D通信时,首先进行收发两端的时频同步,当一端接收D2D同步信号后,作为检测终端对D2D同步信号进行解析获取D2D同步信号中携带的PSSS符号和SSSS符号;其中,PSSS符号为PSSS时域符号,SSSS符号为SSSS时域符号。
这里,接收到的D2D同步信号的检测终端可能位于覆盖范围外,也可能位于覆盖范围内;其中,覆盖范围为基站(比如:eNodeB)蜂窝网络的覆盖范围,及接收到的D2D同步信号的检测终端可位于基站蜂窝网络的覆盖范围内,也可能位于基站蜂窝网络的覆盖范围外。
这里,sidelink的ID包括336个,通过0-335来表示,其中该336个 SIL-ID分为两个集合,第一个集合标识为0-167,用id_net表示,第二个集合标识168-335,用id_oon表示。
PSSS的序列检测值包括两个不同的值,分别指示sidelink同步信号位于不同的集合中,具体的,当PSSS为0时,则指示SL-ID位于第一个集合,表征发送信号的终端的发送定时参考为基站;当PSSS为1时,则指示SL-ID位于第二个集合中,表征发送信号的终端的发送定时参考不是基站。
S202、通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;
具体的,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号包括以下几种情况:
(1)通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
(2)通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
当获取PSSS符号后,对PSSS符号进行信道冲激响应估计,得到SSSS的调整信息,其中,调整信息至少包括SSSS精定时偏差信息,还可包括整数倍频偏信息、PSSS序列检测值等SSSS调整信息。这里,对PSSS符号进行信道冲激响应估计时,进行信道冲激响应估计的PSSS符号可为进行粗定时和分数频偏调整后的PSSS。
这里,通过对PSSS符号进行信道冲激响应估计获得SSSS的调整信息 可根据检测终端所处的网络环境不同而不同,具体的,当检测终端为覆盖范围内的终端时,获取的调整信息为SSSS精定时偏差信息,当检测终端为覆盖范围外的终端时,获取的调整信息除SSSS精确定时偏差信息以外,还可包括整数倍频偏信息,进一步的,还可包括PSSS序列检测值。
在对SSSS进行调整得到精确SSSS符号的过程中,根据得到的调整信息不同,对获取的SSSS符号进行对应的调整。
当对PSSS符号进行信道冲激响应估计后获得的SSSS的调整信息为精定时偏差信息时,利用获得的精定时偏差信息对SSSS符号进行定时调整;其中,这里在进行定时调整时,所调整的SSSS符号可为利用粗定时所获取的SSSS符号。
当对PSSS符号进行信道冲激响应估计后获得的SSSS的调整信息包括整数倍频偏信息时,利用获得的整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
这里,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差值包括:依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。其中,PSSS序列为ZC(Zadoff-Chu)码根指示的PSSS序列。
在对SSSS符号进行频偏补偿时,还包括:获取分数频偏信息;根据所述分数频偏信息对所述SSSS符号进行频偏补偿。这里,对SSSS进行的频偏补偿包括整数倍频偏信息的频偏补偿和分数频偏信息的频偏补偿。
S203、通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
当得到精确SSSS符号时,检测该SSSS的SL-ID,这里,所述通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID包括:依次对 所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
所述方法还包括:通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。其中,SSSS组号为依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到的数值。
这里,该PSSS的序列检测值能够表征当前检测终端接收到的SSSS的SL-ID属于第一集合还是第二集合,当PSSS序列检测值指示SL-ID位于第一集合时,则第一集合中的SSSS组号对应的位置即为当前所检测得到的SL-ID;当PSSS序列检测值指示SL-ID位于第二集合时,则第二集合中的SSSS组号对应的位置即为当前所检测得到的SL-ID。
其中,当通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值后,在根据精确SSSS符号确定SL-ID的过程中对SSSS符号进行与SSSS序列的相关处理时,可利用通过对PSSS符号进行信道冲激响应估计获得的PSSS的序列检测值确定SSSS序列。需要说明的是,这里,在确定进行相关处理的SSSS序列时,可使用通过对所述PSSS符号进行信道冲激响应估计获得的PSSS的序列检测值,也可使用通过其他方法确定的PSSS的序列检测值,在本发明实施例中并无限定。
这里,当检测终端位于覆盖范围内时,峰值搜索后得到的SSSS组号即为SL-ID。当检测终端位于覆盖范围外时,根据峰值搜索后得到的SSSS组号和PSSS的序列检测值确定SL-ID。
在实际使用中,当检测终端位于网络覆盖范围边缘附近,既可能接收到来自直接或者间接以基站为发送定时参考的发送终端信号,也可能接受来自覆盖范围外不以基站作为发送定时参考的发送终端信号。检测终端可 以依据协议规定的优先级选择同步源,例如直接或者间接以基站为发送定时参考的发送终端优先级高于不以基站作为发送定时参考的发送终端。
实施例二
在本发明实施例中,对检测D2D中SSSS的过程中的SL-ID的方法进行说明,如图3所示,所述方法包括:
S301、由获取的PSSS符号进行信道冲激响应估计,得到SSSS符号的精定时偏差信息;
S302、通过对SSSS符号进行定时调整的SSSS符号进行相关检测求得SL-ID。
这里,对于检测终端而言,不管检测终端属于覆盖范围内还是覆盖范围外,通过对PSSS进行信道冲激响应估计得到SSSS的精定时偏差信息,得到精定时偏差信息后,由精定时偏差信息对获取的SSSS符号进行精定时调整,得到调整后的SSSS符号,通过对SSSS进行相关检测,即可确定该SL-ID。
这里,当检测终端处于覆盖范围外时,通过对PSSS进行信道冲激响应估计得到SSSS的精定时偏差信息的同时,还获得PSSS序列检测值和整数倍频偏信息;将精定时偏差信息、PSSS序列检测值以及整数倍频偏信息作为调整信息对SSSS符号进行调整,获得精确的SSSS符号和SSSS序列,从而通过SSSS符号的相关检测,得到准确的SL-ID,能够使得检测终端完成发送信号的定时参考终端的识别,进行数据同步。
实施例三
在本发明实施例中,以检测终端位于覆盖范围外为具体的应用场景对本发明实施例提供的检测D2D中SSSS的方法进行进一步说明,这种情况下SSSS检测的处理步骤如图4所示,具体包括:
S401、通过获取的PSSS符号进行信道冲激响应估计,得到SSSS符号 的精定时、PSSS序列检测值以及整数倍频偏信息。具体包括:
(1)获取PSSS符号;
这里,对PSSS符号进行信道冲激响应估计之前,先获取PSSS符号。获取的PSSS符号为经过粗定时调整和分数偏移补偿的PSSS信号,粗定时和分数频偏信息可由前置模块提供,该前置模块可以进行PSSS自相关处理,但不局限于此。
这里,获取的PSSS符号用yPSSS,i(n),i=0,1;n=0,1,...,N-1表示,i为PSSS符号指示,N=128。
(2)去除1/2子载波频率频移;
对PSSS信号去除半个子载波频率频移Δf/2,Δf为子载波频率间隔:
y′PSSS,i(n)=yPSSS,i(n)·e-jπn/N i=0,1;n=0,1,...,N-1。
(3)FFT;
将时域信号转换到频域,得到
Figure PCTCN2017095016-appb-000001
(4)与PSSS序列的相关处理;
经过时域到频域的转换后,去除虚假子载波,得到YPSSS,i(k),k为子载波标号。若Xu代表ZC(Zadoff-Chu)码根指示的PSSS序列,u=26,37,对YPSSS,i(k)进行循环移位为s的循环共轭相乘处理:
Figure PCTCN2017095016-appb-000002
其中(·)N表示以周期为N的循环移位,b表示待估计的频偏相对于子载波间隔的最大整数倍值。
(5)IFFT;
进行与PSSS序列的共轭相乘处理后,经过IFFT将Cu,s转换到时域,则 得到信道冲激响应,
Figure PCTCN2017095016-appb-000003
(6)能量计算;
信道冲激响应集中在求得的hu,s(n)较短区间内,获取信道冲激响应区域[-L2,L1]值,求取能量得到|hu,s(n)|2
(7)累加计算;
对能量计算的值,进行符号间、天线间和Sidelink同步信号发送周期间累加,得到
Figure PCTCN2017095016-appb-000004
i,p,q分别表示符号指示、天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。
(8)峰值搜索;
对2种PSSS序列下2b+1种整数倍频偏数值的累加区域能量值进行峰值搜索,则由搜索峰值所在[-L2,L1]内位置求得精定时偏差值Δτ,搜索峰值对应使用的PSSS序列得到PSSS序列检测值u和搜索峰值对应所在的整数倍频偏数值得到整数倍频偏数值s
Figure PCTCN2017095016-appb-000005
式中,i,p,q分别表示符号指示、天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。
由精定时偏差值Δτ和D2D使用的CP模式对应PSSS和SSSS样点距离,可获得SSSS符号的精定时位置。检测的整数倍频偏为s·Δf。
S402、通过对定时调整和频偏补偿后的SSSS符号进行相关检测求得SL-ID。
(1)获取SSSS符号;
该SSSS符号为依据检测到的SSSS的精定时偏差信息进行了调整,且同时采用检测到的频偏信息进行了频偏补偿,这里,该频偏补偿包含整数倍频偏信息的整数频偏补偿以及前置模块提供的初始估计的分数频偏的分数频偏补偿。
假定获取的SSSS符号用ySSSS,i(n),i=0,1;n=0,1,...,N-1表示,i为SSSS符号指示,N=128。
(2)去除1/2子载波频率频移;
对SSSS信号去除半个子载波频率频移Δf/2,Δf为子载波频率间隔
y′SSSS,i(n)=ySSSS,i(n)·e-jπn/N i=0,1;n=0,1,...,N-1。
(3)FFT;
将时域信号转换到频域,得到
Figure PCTCN2017095016-appb-000006
(4)与SSSS序列的相关处理;
经过时域到频域的转换后,去除虚假子载波,得到YSSSS,i(k),k为子载波标号。SSSS相关检测可以是非相干检测,也可以是差分检测,但不局限于此。下面以非相干检测方法为例,若Xv表示第v组SSSS码,其中v=0,1,...,167,对得到的频域SSSS和SSSS本地码分段相关,所述的分段相关,即将SSSS本地码划分为M段,每段分别进行相关处理。
(5)能量归一化处理;
相关值能量值进行频域SSSS符号能量归一化处理,能避免由于SSSS符号功率回退对SSSS检测性能的影响。
(6)累加计算;
完成符号间、天线间和Sidelink同步信号发送周期间累加:
Figure PCTCN2017095016-appb-000007
式中,m表示相关分段指示,M表示分段个数,B表示段的长度;i,p,q分别表示符号指示、天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。
(7)峰值搜索
对累加计算后的结果进行峰值搜索得到SSSS组号,
Figure PCTCN2017095016-appb-000008
进而可得到SL-ID,即
Figure PCTCN2017095016-appb-000009
在覆盖范围外的D2D终端,由于并未与网络取得基本同步,初始频偏可以达到±10PPM,相对于发送D2D信号的终端可能到达20PPM。在去除分数频偏基础下,可能仍然存在整数倍频偏,造成SSSS检测失败。另外,SSSS非相干检测对定时非常敏感,极少量定时样点偏差将造成性能急剧恶化,难以满足系统需求。而本发明实施例提供的SSSS的检测方法,利用PSSS符号进行信道冲激响应估计,精准的得到了定时偏差和整数倍频偏,进而对SSSS符号进行调整和补偿,从而提高SSSS的检测成功率。
实施例四
在本发明实施例中,以检测终端位于覆盖范围内为具体的应用场景对本发明实施例提供的检测D2D中SSSS的方法进行进一步说明。这里,在覆盖范围内D2D终端,已经与网络取得频率同步,对D2D接收影响较小。这种情况下SSSS检测的处理步骤如图5所示,具体包括:
S501、通过获取的PSSS符号进行信道冲激响应估计,得到SSSS符号 的精定时。过程如下:
(1)获取PSSS符号;
同覆盖范围外的终端,该PSSS符号依据前置模块提供粗定时得到。所述的前置模块可以是PSSS互相关处理,但不局限于此。
这里,获取的PSSS符号用yPSSS,i(n),i=0,1;n=0,1,...,N-1表示,i为PSSS符号指示,N=128。由于频率同步基本已经获得,时域的符号可以进行累加平均处理
Figure PCTCN2017095016-appb-000010
(2)去除1/2子载波频率频移;
去除半个子载波频率频移Δf/2,Δf为子载波频率间隔
y′PSSS(n)=yPSSS(n)·e-jπn/N n=0,1,...,N-1
(3)FFT;
将时域信号转换到频域,得到
Figure PCTCN2017095016-appb-000011
(4)与PSSS序列的相关处理;
经过时域到频域的转换后,去除虚假子载波,得到YPSSS(k),k为子载波标号。若
Figure PCTCN2017095016-appb-000012
代表前置模块PSSS序列检测到的ZC码根指示的本地的PSSS码,对YPSSS(k)进行共轭相乘处理
Figure PCTCN2017095016-appb-000013
(5)IFFT;
进行与PSSS序列的相关处理后,经过IFFT将
Figure PCTCN2017095016-appb-000014
转换到时域,则得到信道冲激响应,
Figure PCTCN2017095016-appb-000015
(6)能量计算;
信道冲激响应集中在求得的
Figure PCTCN2017095016-appb-000016
较短区间内,获取信道冲激响应区域[-L2,L1]值,求取能量得到
Figure PCTCN2017095016-appb-000017
(7)累加计算;
进行天线间和Sidelink同步信号发送周期间累加,得到
Figure PCTCN2017095016-appb-000018
(8)峰值搜索;
进行峰值搜索,则求得精定时偏差值Δτ
Figure PCTCN2017095016-appb-000019
式中,p,q分别表示天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。由精定时偏差值Δτ和D2D使用的CP模式对应PSSS和SSSS样点距离,可获得SSSS符号的精定时位置。
S502、通过对定时调整后的SSSS符号进行相关检测求得SL-ID。
(1)获取SSSS符号;
该SSSS符号依据检测到精定时偏差信息进行精定时调整后得到。
假定获取的时域SSSS符号用ySSSS,i(n),i=0,1;n=0,1,...,N-1表示,i为SSSS符号指示,N=128。时域的符号可以进行累加平均处理
Figure PCTCN2017095016-appb-000020
(2)去除1/2子载波频率频移;
去除半个子载波频率频移Δf/2,Δf为子载波频率间隔
y′SSSS(n)=ySSSS(n)·e-jπn/N n=0,1,....,N-1。
(3)FFT;
将时域信号转换到频域,得到
Figure PCTCN2017095016-appb-000021
(4)与SSSS序列的相关处理;
经过时域到频域的转换后,去除虚假子载波,得到YSSSS(k),k为子载波标号。SSSS相关检测可以是非相干检测,也可以是差分检测,但不局限于此。下面以非相干检测方法,若Xv表示第v组SSSS码,其中v=0,1,...,167,对得到的频域SSSS和SSSS本地码分段相关。
(5)能量归一化处理;
相关值能量值进行频域SSSS符号能量归一化处理,能避免由于SSSS符号功率回退对SSSS检测性能的影响。
(6)累加计算;
完成符号间、天线间和Sidelink同步信号发送周期间累加:
Figure PCTCN2017095016-appb-000022
式中,m表示相关分段指示,M表示分段个数,B表示段的长度;p,q分别表示天线指示和累加周期指示,P,Q分别表示天线数和累加周期数。
(7)峰值搜索;
进行峰值搜索得到SSSS组号,
Figure PCTCN2017095016-appb-000023
由于检测终端位于覆盖范围内,检测终端可以选则接收优先级较高的以基站为发送定时参考的发送终端信号,这样得到的SL-ID为
Figure PCTCN2017095016-appb-000024
需要说明的是,在本发明实施例中,当检测终端位于覆盖范围外时, PSSS序列检测信息可使用现有技术中预先获知的,也可使用通过对PSSS符号进行信道冲激响应估计后获得的PSSS序列检测信息。例如:在如图4所示的方法中,使用的是通过对PSSS符号进行信道冲激响应估计后获得的PSSS序列检测信息。当终端位于覆盖范围内时,如图5所示,可通过其他的方法获知PSSS序列检测信息,则在进行SSSS检测时,认为该PSSS序列检测信息为预先获知的。
实施例五
为实现上述检测D2D中SSSS的方法,本发明实施例还提供一种检测D2D中SSSS的装置。如图6所示,所述装置包括:获取模块601、调整模块602、确定模块603;其中,
获取模块601,配置为获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;
调整模块602,配置为通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;
其中,调整模块602通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差值包括:依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。
确定模块603,配置为通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
其中,确定模块603具体配置为:依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
这里,调整模块602可具体配置为:通过对所述PSSS符号进行信道冲 激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
调整模块602可具体配置为:通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
调整模块602还配置为:通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;相应的,确定模块603配置为确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。
如图7所示,所述装置还包括:分数频偏模块604,配置为:获取分数频偏信息;根据所述分数频偏信息对所述SSSS符号进行频偏补偿。
在本发明实施例中,本发明实施例提供的检测D2D中SSSS的装置可通过一处理器和存储器实现,其中,存储器中有计算机可执行指令;处理器用于根据所述计算机可执行指令执行以下操作:获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令配置执行上述检测D2D中辅sidelink同步信号的方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
采用本发明实施例,获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。如此,通过信道冲激响应估计对PSSS符号进行处理,获取的SSSS的调整信息,通过获取的调整信息对SSSS符号进行调整后,从而检测确定SL-ID,能够有效地提高SSSS检测性能。

Claims (15)

  1. 一种检测D2D中辅sidelink同步信号的方法,所述方法包括:
    获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;
    通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;
    通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
  2. 根据权利要求1所述的方法,其中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号包括:
    通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
  3. 根据权利要求1所述的方法,其中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号包括:
    通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;
    根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    获取分数频偏信息;
    根据所述分数频偏信息对所述SSSS符号进行频偏补偿。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;
    确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。
  6. 根据权利要求1所述的方法,其中,所述通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差值包括:
    依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。
  7. 根据权利要求1所述的方法,其中,所述通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID包括:
    依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
  8. 一种检测D2D中辅sidelink同步信号的装置,所述装置包括:获取模块、调整模块、确定模块;其中,
    所述获取模块,配置为获取主sidelink同步信号PSSS符号和辅sidelink同步信号SSSS符号;
    所述调整模块,配置为通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的调整信息,根据所述调整信息对所述SSSS符号进行调整得到精确SSSS符号;
    所述确定模块,配置为通过对所述精确SSSS符号的检测得到SSSS的sidelink标识SL-ID。
  9. 根据权利要求8所述的装置,其中,所述调整模块具体配置为:
    通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息,根据所述精定时偏差信息对所述SSSS符号进行定时调整得到所述精确SSSS符号。
  10. 根据权利要求8所述的装置,其中,所述调整模块具体配置为:
    通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差信息和整数倍频偏信息;
    根据所述精定时偏差信息对所述SSSS符号进行定时调整,并根据所述整数倍频偏信息对所述SSSS符号进行频偏补偿,得到所述精确SSSS符号。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:分数频偏模块,配置为:
    获取分数频偏信息;
    根据所述分数频偏信息对所述SSSS符号进行频偏补偿。
  12. 根据权利要求8所述的装置,其中,所述调整模块还配置为:
    通过对所述PSSS符号进行信道冲激响应估计获得所述PSSS的序列检测值;
    确定所述PSSS的序列检测值对应的集合,根据SSSS组号在所述集合中确定所述SL-ID。
  13. 根据权利要求8所述的装置,其中,所述调整模块通过对所述PSSS符号进行信道冲激响应估计获得所述SSSS的精定时偏差值包括:
    依次对所述PSSS符号进行傅里叶变换、与PSSS序列的相关处理、傅里叶逆变换、能量计算、累加计算以及峰值搜索后得到所述SSSS的精定时偏差值。
  14. 根据权利要求8所述的装置,其中,所述确定模块具体配置为:
    依次对所述精确SSSS符号进行傅里叶变换、与SSSS序列的相关处理、能量归一化处理、累加计算以及峰值搜索后得到所述SSSS的SL-ID。
  15. 一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令配置执行上述权利要求1-7任一项检测D2D中辅sidelink同步信号的方法。
PCT/CN2017/095016 2016-09-14 2017-07-28 一种检测D2D中sidelink的同步信号的方法及装置 WO2018049931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610824964.7A CN107820273B (zh) 2016-09-14 2016-09-14 一种检测D2D中sidelink的同步信号的方法及装置
CN201610824964.7 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018049931A1 true WO2018049931A1 (zh) 2018-03-22

Family

ID=61600698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095016 WO2018049931A1 (zh) 2016-09-14 2017-07-28 一种检测D2D中sidelink的同步信号的方法及装置

Country Status (2)

Country Link
CN (1) CN107820273B (zh)
WO (1) WO2018049931A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287345A (zh) * 2019-01-11 2021-08-20 诺基亚通信公司 侧链路同步更新

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392431A (zh) 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统
CN110971281B (zh) * 2018-09-28 2021-11-23 大唐移动通信设备有限公司 一种波束扫描方法、波束配置方法、终端及网络设备
CN111050298B (zh) * 2018-10-15 2021-10-22 华为技术有限公司 一种同步信号的发送方法和通信设备
CN111565447B (zh) * 2019-02-14 2022-09-09 大唐移动通信设备有限公司 一种同步广播信息的发送方法、接收方法及设备
US11533692B2 (en) * 2019-06-13 2022-12-20 Qualcomm Incorporated Device-to-device synchronization in wireless communications
EP4037423A4 (en) * 2019-09-29 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. SIDELINK OPERATION PROCESSING METHOD AND DEVICE, AND STORAGE MEDIUM
CN111629351B (zh) * 2020-05-12 2022-03-08 上海大学 用于车联网智能交通系统的终端辅助同步方法及系统
TWI783580B (zh) * 2020-08-03 2022-11-11 新加坡商聯發科技(新加坡)私人有限公司 側行鏈路同步之方法
WO2022027189A1 (en) * 2020-08-03 2022-02-10 Mediatek Singapore Pte. Ltd. Enhancements for sl synchronization
CN114726701B (zh) * 2022-05-16 2022-08-12 为准(北京)电子科技有限公司 频偏估计方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659675A (zh) * 2014-09-23 2016-06-08 华为技术有限公司 发射器,接收器,和用于发送/接收同步信号的方法
US20160174174A1 (en) * 2014-12-16 2016-06-16 Lg Electronics Inc. Method and apparatus for detecting synchronization signal in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659675A (zh) * 2014-09-23 2016-06-08 华为技术有限公司 发射器,接收器,和用于发送/接收同步信号的方法
US20160174174A1 (en) * 2014-12-16 2016-06-16 Lg Electronics Inc. Method and apparatus for detecting synchronization signal in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Signal Design for D2D Synchronization", 3GPP TSG-RAN WG1 #78 R1-142964, 22 August 2014 (2014-08-22), pages 1 - 10, XP050788444 *
HUAWEI ET AL.: "D2DSS Design", 3GPP TSG RAN WG 1 MEETING #77 R1-142340, 23 May 2014 (2014-05-23), pages 1 - 11, XP050787934 *
HUAWEI ET AL.: "Remaining Details of D2D Synchronization Signals", 3GPP TSG RAN WG 1 MEETING #78 R1-142843, vol. RAN WG 1, 8 October 2014 (2014-10-08), pages 1 - 19, XP050815244 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287345A (zh) * 2019-01-11 2021-08-20 诺基亚通信公司 侧链路同步更新

Also Published As

Publication number Publication date
CN107820273A (zh) 2018-03-20
CN107820273B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2018049931A1 (zh) 一种检测D2D中sidelink的同步信号的方法及装置
WO2018072521A1 (zh) 检测主sidelink同步信号的方法、装置及存储介质
EP3453218B1 (en) Preamble detection and time-of-arrival estimation for a single- tone frequency hopping random access preamble
KR101817290B1 (ko) Lte 통신 시스템의 물리 랜덤 액세스 채널 프리앰블 감지 방법 및 장치
US20190239249A1 (en) Processing of random access preamble sequences
JP6262849B2 (ja) 送信機、受信機、および同期信号を送信/受信するための方法
US11812416B2 (en) Coherent detection of large physical random access control channel (PRACH) delays
CN104618289B (zh) 用于主同步信号检测的方法及装置
CN110493820B (zh) 一种传输时延评估方法、装置、通信节点和存储介质
WO2015139590A1 (zh) 一种频偏估计和补偿的方法及装置
WO2013104293A1 (zh) 一种通信系统中的随机接入方法及装置
CN103929825A (zh) 基于zc序列的多用户检测方法
WO2017211212A1 (zh) 干扰源小区的定位方法、装置及基站
JP2008172751A (ja) 移動通信システム、信号転送方法、および受信装置
CN101552635A (zh) 一种频偏捕获的方法及装置
US9503996B2 (en) Method and apparatus for cell search and synchronization in mobile communication
CN103108337B (zh) 一种随机接入信号的检测方法、装置及基站
WO2017181352A1 (en) Timing offset estimation in an ofdm-based system by sinr measurement
CN101702705A (zh) 用于多载波系统的同步方法及系统
CN108738124B (zh) 一种定时同步方法和装置
CN103346985B (zh) 一种用于td-lte系统中时频参数快速估计的方法
KR20080031111A (ko) 이동통신시스템 및 이의 신호이송방법
CN103095627A (zh) 一种正交频分复用技术系统同步方法和电子设备
US9860861B2 (en) Timing offset estimation in an OFDM-based system by SINR measurement
US20220394780A1 (en) Random access preamble detection for propagation delay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850133

Country of ref document: EP

Kind code of ref document: A1