WO2013104293A1 - 一种通信系统中的随机接入方法及装置 - Google Patents

一种通信系统中的随机接入方法及装置 Download PDF

Info

Publication number
WO2013104293A1
WO2013104293A1 PCT/CN2013/070174 CN2013070174W WO2013104293A1 WO 2013104293 A1 WO2013104293 A1 WO 2013104293A1 CN 2013070174 W CN2013070174 W CN 2013070174W WO 2013104293 A1 WO2013104293 A1 WO 2013104293A1
Authority
WO
WIPO (PCT)
Prior art keywords
zadoff
chu sequence
sequence
rtd
base station
Prior art date
Application number
PCT/CN2013/070174
Other languages
English (en)
French (fr)
Inventor
郭长玉
万莉
乐春晖
李靖
刘焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13735869.3A priority Critical patent/EP2804356B1/en
Priority to RU2014132694/07A priority patent/RU2584677C2/ru
Publication of WO2013104293A1 publication Critical patent/WO2013104293A1/zh
Priority to US14/326,273 priority patent/US9398617B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a random access method and apparatus.
  • the Random Access Channel is mainly used for initial access of User Equipment (UE), which does not carry any user data.
  • the signal transmitted by the UE on the RACH channel is a preamble sequence (Preamble Sequence, hereinafter referred to as Preamble), and the preamble sequence is a Zadoff-Chu sequence (hereinafter referred to as a ZC sequence).
  • Preamble Sequence hereinafter referred to as Preamble
  • ZC sequence Zadoff-Chu sequence
  • 3GPP TS 1 36.211 agreement Preamble P comprising a length of a cyclic prefix (Cyclic Prefix, hereinafter referred to CP) and a length of the T SEQ access sequence (Sequence, or the sequence of SEQ hereinafter) two portions .
  • the protocol specifies several different format parameter settings to match different cell radii, as shown in Table 1:
  • An embodiment of the present invention provides a method for processing random access in a communication system, including: receiving, by a base station, a first Zadoff-Chu sequence and a second Zadoff-Chu sequence sent by a user equipment, where the first Zadoff-Chu sequence is d The u value is smaller than the d u value of the second Zadoff-Chu sequence; the base station estimates the round-trip delay RTD error range of the user equipment according to the first Zadoff-Chu sequence, and is within the RTD error range according to the second Zadoff-Chu sequence Estimate the frequency offset of the RTD or user equipment uplink signal.
  • the base station can estimate the RTD of the UE with a certain moving speed or the frequency offset of its uplink signal.
  • a communication system random access processing apparatus including: a receiver, receiving, by a user equipment, a radio frequency signal including a first Zadoff-Chu sequence and a second Zadoff-Chu sequence, wherein the first Zadoff-Chu sequence d u d u value is less than the second value of the Zadoff-Chu sequence; baseband signal processing module, the radio frequency signal in the frequency domain time domain baseband; sequence detector module, according to the first Zadoff The -Chu sequence estimates the RTD error range, and identifies the RTD or user equipment uplink signal frequency offset within the RTD error range based on the second Zadoff-Chu sequence.
  • a further embodiment of the present invention provides a random access method for a user equipment, including: the user equipment sends a first Zadoff-Chu sequence and a second Zadoff-Chu sequence, wherein the first Zadoff-Chu sequence has a d u value smaller than a d u value of the second Zadoff-Chu sequence; the first Zadoff-Chu sequence is used by the base station to estimate a round trip delay RTD error range of the user equipment, and the second Zadoff-Chu sequence is used by the base station in the RTD error range Estimate the frequency offset of the RTD or user equipment uplink signal.
  • the base station when the user equipment is in motion, by transmitting two ZC sequences, the base station can be easily estimated to estimate the frequency offset of its RTD or its uplink signal.
  • a further embodiment of the present invention provides a user equipment for random access, comprising: a memory, storing a first Zadoff-Chu sequence and a second Zadoff-Chu sequence, wherein a d u value of the first Zadoff-Chu sequence is smaller than Determining a d u value of a second Zadoff-Chu sequence, the first Zadoff-Chu sequence is used to estimate an RTD error range, and the second Zadoff-Chu sequence is used to identify an RTD or user equipment uplink signal within an RTD error range Frequency offset; a baseband signal processing module performs time domain frequency domain baseband signal processing on the two Zadoff-Chu sequences.
  • Such a user equipment can facilitate the base station to estimate the frequency offset of its RTD or its uplink signal by transmitting two ZC sequences in the case of motion.
  • the invention solves the problem that the user equipment accesses the network under the condition of frequency offset.
  • FIG. 1 is a structural diagram of a prior art physical layer access sequence.
  • FIG. 2 is a schematic diagram of a mobile communication cell according to an embodiment.
  • Figure 3a is a schematic diagram of the power delay of the output of a 0-frequency offset sequence signal receiver.
  • Figure 3b is a schematic diagram of the power delay spectrum of a 100 Hz frequency offset sequence signal receiver output.
  • Figure 3c is a schematic diagram of the power delay spectrum of a 625 Hz frequency offset sequence signal receiver output.
  • Figure 3d is a schematic diagram of the power delay spectrum of a 950 Hz frequency offset sequence signal receiver output.
  • Figure 3e is a schematic diagram of the power delay spectrum of a 1250 Hz frequency offset sequence signal receiver output.
  • Figure 3f is a schematic diagram of the power delay spectrum of a 1875 Hz frequency offset sequence signal receiver output.
  • Figure 3g is a schematic diagram of the power delay spectrum of a 2500 Hz frequency offset sequence signal receiver output.
  • 4 is a schematic diagram of a base station receiver output of a UE signal in a frequency-free state.
  • Figure 5 is a schematic diagram of the base station receiver output of the UE signal in a frequency offset state.
  • FIG. 6a is a schematic diagram of a receiver output for implementing a sequence in which a UE transmits a small d u value.
  • FIG. 6b is a schematic diagram of a receiver output for implementing a sequence in which a UE transmits a large d u value.
  • Figure 7 is a schematic illustration of frequency offset estimation for an embodiment.
  • FIG. 8 is a structural diagram of an embodiment of a user equipment.
  • FIG. 9 is a flow chart of an embodiment of a user equipment.
  • FIG. 10 is a schematic structural diagram of a base station.
  • 11 is a flow chart of an embodiment of a base station method.
  • FIG. 12 is a schematic diagram of a correlation output of a UE signal frequency offset of 4.5 times.
  • Figure 13 is a schematic diagram of the correlation output of two sequences under the same RTD.
  • Figure 14 is a block diagram of another embodiment of a user equipment.
  • Figure 15 is a flow diagram of another embodiment of a user equipment.
  • Figure 16 is a block diagram showing another embodiment of a base station.
  • 17 is a flow chart of another embodiment of a base station method.
  • 18 is a timing diagram of an access sequence received by a base station of a large area.
  • Figure 19 is a timing diagram of the sample window after lengthening the CP.
  • Fig. 20 is a diagram showing an embodiment of detecting an ambiguity estimation deviation.
  • this embodiment provides a mobile communication system.
  • the system includes at least one base station (only one is shown) and at least one UE located within a cell covered by the base station.
  • the UE may be a mobile terminal, or a mobile phone (or "cellular" phone), or a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device or the like.
  • the base station may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE, TD-LTE (Time Division LTE), or a base station in other communication systems based on OFDM modulation technology, and based on Zadoff Base station in various communication systems of the random access channel of the Chu sequence.
  • eNB evolved base station
  • TD-LTE Time Division LTE
  • Zadoff Base station in various communication systems of the random access channel of the Chu sequence.
  • the base station provides multiple random access sequences for the UE to pick and use. If two UEs use the same random sequence at the same time, there is a possibility of conflict. When the UE needs random access, one of the random access sequences is selected and transmitted. When the receiver of the base station parses the random access sequence, it sends a response message to the UE using the random sequence. When multiple UEs use the same random access sequence, the conflict occurs that some UEs cannot successfully access. In the 3GPP TS 36.211 protocol definition, a total of 838 ZC root sequences are provided, and up to 64 access sequences can be configured in each communication cell.
  • One or more random access sequences may be derived from a single Zadoff-Chu sequence (this single Zadoff-Chu sequence may be referred to as a root sequence) by cyclic shift. Since the ZC sequence is an ideal autocorrelation sequence, it is non-zero only at a delay of zero, and the cross-correlation of other delays is a constant amplitude independent of the time delay.
  • the " th th ZC sequence is expressed as:
  • u is called the physical root sequence number, and n is an integer from 0 to N zc -1.
  • T SEQ 800 S. Also, depending on the needs of the communication system, T SEQ can take other lengths of time.
  • d u refers to the shift of the mirror peak of the receiver output to the round trip delay when the frequency offset is TSE Q.
  • N zc is a fixed value
  • d u is determined by the value of u
  • p is also determined by the value of u. Therefore, the sequence d u value of each physical root sequence number u can be regarded as a sequence. Its own characteristics.
  • the d u value of the ZC sequence is the number of sequence offset samples and can only be positive.
  • the p value is an integer of 1, 2, 3...838.
  • 3a, 3b, 3c, 3d, 3e, 3f, 3g are power delay words output by the UE random sequence received by the base station receiver related processing.
  • the power delay profile also called Power Delay Profile, is hereinafter referred to as PDP.
  • the random access sequence described herein is a Zadoff-Chu sequence (ZC sequence) whose physical root sequence number is 330 as defined by 3GPP TS 36.211. The p value of this sequence is 689 and the d u value is 150.
  • Figure 3a shows the output map of the receiver-related processing of the uplink access sequence station with a round-trip delay (RTD) of 410 s and a frequency offset of 0 Hz.
  • the sampling rate here and the base station's modulus of the signal are not a concept.
  • the time range corresponding to the entire horizontal axis is 800 ⁇ ⁇
  • one continuous time between consecutive samples is One unit time is 800/839 ⁇ ⁇ « 0.95 ⁇ ⁇ .
  • the peak of the receiver output is then unique and appears at the correct round trip delay point.
  • the RTD is 410 ⁇ s
  • the uplink access sequence with a frequency offset of 100 Hz is outputted by the base station receiver.
  • the correlation output map also contains a number of small energy peaks whose energy is not significantly comparable to the background noise, often filtered by the threshold.
  • the relevant output peaks described below herein refer to the significant peaks remaining after the threshold is determined.
  • there is a peak in addition to the round trip delay position, and there is a small mirror peak at d u 150 unit time before the peak. Due to the characteristics of the Zadoff-Chu sequence, in the case of positive frequency offset, the mirror peak shifts p samples to the right.
  • the sample with the horizontal axis of the PDP reading 838 shifts to the right by one unit time, and then shifts to 0, so such shift is also called cyclic shift.
  • the value of d u is determined by the characteristics of the selected sequence. For example, the effect of frequency offset on the position of the mirror peak: If the frequency offset of the uplink access sequence changes to 200 Hz or 400 Hz, except for one peak at the round trip delay position, the position of the mirror peak in the time axis will remain as shown in Figure 3b. The position does not change with the frequency.
  • the RTD is 410 ⁇ s
  • the uplink access sequence with a frequency offset of 625 Hz is outputted by the base station receiver.
  • the base station receiver In addition to the peak value of the round trip delay position, there are still mirror peaks of equal amplitude before the d u time unit. Since the subcarrier bandwidth of the RACH channel or the two subcarrier frequency intervals is 1250 Hz, 625 Hz is exactly half of the RACH channel carrier bandwidth, which is why two equal peaks occur.
  • the related receiver also outputs two smaller mirror peaks distributed on both sides of the above two peaks, and their distance from the above two peaks is d u , respectively .
  • the RTD is 410 ⁇ s
  • the uplink access sequence with a frequency offset of 950 Hz is processed by the base station receiver. Since the frequency offset of 950 Hz is closer to the subcarrier bandwidth of 1250 Hz (RACH) of the RACH channel, the peak peak position of the peak is shifted by d u time units than the round trip delay, and the peak with less energy appears in the round trip delay position. .
  • RACH subcarrier bandwidth of 1250 Hz
  • the RTD is 410 ⁇ s
  • the uplink access sequence with a frequency offset of 1250 Hz is processed by the base station receiver.
  • the frequency offset is caused by the relative motion between the UE and the base station antenna or the frequency source between the UE and the base station.
  • multiple frequency offset values are used to illustrate the impact on the relevant output, and the actual value is not limited. The scene frequency offset is only these.
  • the RTD is 410 s
  • the uplink access sequence with a frequency offset of 1875 Hz is outputted by the base station receiver.
  • four peaks were identified. Since the frequency offset falls at 1x the subcarrier bandwidth of 1250 Hz and twice the subcarrier bandwidth of 2 1250 Hz, the two peaks with large energy and nearly equal amplitude fall at the offset from the round trip delay. The position of d u and 2 times d u . The remaining two small peaks before and after the fall of each of the two larger peaks times d u 1 position. Because of the cyclic shift, the small peak that moves forward appears at the 3A position on the far right of the time axis. In this example, only a small peak appears in the real RTD position.
  • the RTD is 410 s
  • the frequency offset is 2500 Hz (that is, twice the ⁇ ).
  • the uplink access sequence is processed by the base station receiver. There is only one peak at this time, and this peak is shifted twice from the round-trip delay by d u
  • the d u value of each ZC sequence is determined by the inherent characteristics of each sequence.
  • the d u value of all physical root sequences is an integer value of (1, 419 ).
  • Table 2 shows the p-values and d u values corresponding to the partial root sequences.
  • UEs use the same access Sequence, different correlation outputs of base station receivers caused by different frequency offsets under the same round trip delay.
  • the base station receives the uplink RACH signal of the UE, and does not know the round-trip delay of the UE in advance, but estimates the round-trip delay of the UE by the characteristics of the sequence-related output shown in FIG. 3a to FIG. 3g. The following is illustrated by an example.
  • Figure 4 and Figure 5 show the base station receiver output results of the same access sequence, different RTDs, and different frequency offset state UE signals.
  • the peaks of the large energy in the two graphs are almost at the same time position, but in the situation described in Figure 5, the base station will not be able to identify which peak represents the true RTD?
  • an implementation of the embodiment of the present invention assumes that the frequency offset of the uplink signal of the UE is twice the RACH.
  • the UE first transmits a sequence with a small d u value.
  • a d u small sequence For convenience of description, the following is called a d u small sequence or a first Zadoff-Chu sequence.
  • the physical root sequence number is 1, 838, 419, 420, etc. access sequences.
  • the UE signal has a base station receiver related output in the case of frequency offset.
  • the high peak is not necessarily the exact RTD. Also because the d u small sequence is used in this embodiment, the real RTD is necessarily near this cluster peak. Therefore, this method can estimate an RTD error range.
  • the Message 3 message can be demodulated even if the RTD estimate has an error of several s.
  • the Message 3 message is also referred to below as Message 3.
  • the UE uses the d u large random access sequence for the second time in the same geographical position and motion state (ie, the same round trip delay and frequency offset), the output of the base station receiver, and each peak is on the time axis span.
  • the difference is d u unit time.
  • a random access sequence with a larger d u is also referred to as a second Zadoff-Chu sequence or a larger sequence of d u .
  • the UE sends the RTD of the access sequence twice
  • the estimated RTD error range shown in Figure 6a only one peak appears in the range of Figure 6b.
  • the time axis position of this peak 601 is the exact RTD, other The mirror peaks are caused by frequency offsets.
  • the accuracy of the RTD is estimated by the method shown in Fig. 6a and Fig. 6b to reach the granularity of each sample, that is, 800/839 (MS) - 0.95 ⁇ s
  • the second Zadoff-Chu sequence d u value is at least 2 times larger than the first Zadoff-Chu sequence d u value.
  • the base station receiver correlation output peak of the second Zadoff-Chu sequence may only have one peak within the RTD error range of Figure 6b.
  • the UE sends an access by two different sequences of d u, d u of the two sequences - small, a large deviation in the state of the solution is difficult to measure accurately RTD problem.
  • the sequence of transmission of the two sequences can be reversed, and the transmission continuity of the two sequences can be continuous transmission or first transmission and then another transmission. .
  • the base station broadcasts information of the RACH channel of the user equipment, such as initial access power, and selected access sequence, through a System Information Block ("SIB"). Therefore, the configuration parameters of the RACH channel of the present invention can also be broadcasted to the UE through the system message.
  • SIB System Information Block
  • the two access sequences, the sequence relationship of the two sequences, and the transmission timing of the present embodiment are broadcast to the UE through the system message. If it is a customized system, it may not need to be obtained from the broadcast channel, because such a system can let the UE and the base station know the parameters of the RACH channel through the pre-parameter configuration.
  • 7 is a schematic diagram of frequency offset estimation in an embodiment.
  • the receiver correlation peak shown in the figure is the output after cyclic left shift.
  • the distance shifted to the left of the loop may be the lower bound of the RTD error range estimated with the first Zadoff-Chu sequence.
  • a new zero point in accordance with the new zero point intervals are sequentially arranged d u window length of less than d u several windows: 0 Window, Window +1, +2 window. same, Window-1 and window-2 are arranged in reverse from the new 0 point.
  • the distance of the left shift of the loop can also be a preset value. According to the preset value, the left shift of the loop can make the correlation peaks of the first Zadoff-Chu sequence fall into the window 0 therein, so the preset value can be from a range. Select.
  • the Doppler shift of the uplink signal is estimated. 0 to a value in the range; if there are two valid peaks, the maximum peak is at window +1, the second largest peak
  • the UE estimates the Doppler frequency shift of uplink signal 4 ⁇ CH ⁇ ⁇ to a value within the range; and so on.
  • the Doppler shift of the uplink signal of the UE is estimated to be about 011 ; If there are two valid peaks, and the two effective peak sizes are close, one is within the window +1, the other
  • the Doppler shift of the uplink signal of the UE is about ⁇ 011 ; and so on.
  • frequency offset estimation can also be achieved by setting window 0, window +1, window-1, window +2, window-2 based on the RTD or RTD error range.
  • the base station may further identify a frequency offset corresponding to a peak of the correlation output power delay PDP of the second Zadoff-Chu sequence according to an RTD error range or an RTD, and estimate a frequency offset of the user equipment signal. After the frequency offset of the uplink signal of the UE is obtained, the desk can be corrected during demodulation, so that the base station can guarantee the demodulation performance of the message.
  • RTD is the delay distance calculated from the new 0 point.
  • the method of calculating the RTD is especially useful in the case of a frequency offset of an integer multiple ⁇ , because there is no peak at the RTD position, and the mirror peak falls at a position offset from the RTD by an integer multiple of d u .
  • the distance to the left of the loop can also take other values, as long as the peak can fall within the window of length less than d u .
  • the UE is described to transmit two random access sequences, one for estimating the RTD error range and the other for estimating the frequency offset or RTD of the UE signal.
  • the following describes an embodiment of the user equipment apparatus, the user equipment method, the base station apparatus, and the base station method.
  • FIG. 8 is an embodiment of a user equipment according to the present invention.
  • the memory stores a first sequence and a second ZC ZC sequence in the user equipment, a first ZC sequence d u d u smaller than the second value of the ZC sequence.
  • the two sequences are processed by a discrete Fourier transform (DFT) module and a RACH resource mapping module, and mapped to a frequency band in which the RACH channel is located to generate a frequency domain signal.
  • DFT discrete Fourier transform
  • RACH resource mapping module mapped to a frequency band in which the RACH channel is located to generate a frequency domain signal.
  • Described here is a general-purpose baseband module for frequency domain time domain processing of ZC sequences. Such baseband processing may also have other algorithms, such as: generating frequency domain signals by performing spectral filtering after filtering.
  • the time domain signal is then generated by the inverse discrete Fourier transform (IDFT) module, and finally transmitted on the antenna after being processed by the radio frequency module.
  • IDFT inverse discrete Fourier transform
  • the first ZC sequence is used by the base station to identify the RTD error range
  • the second ZC sequence is used to identify the exact RTD position or the frequency offset of the UE uplink signal.
  • the two ZC sequences can be obtained by the receiver from the broadcast channel in the communication cell, and the broadcast channel can also provide the following information: two access sequences, two sequence relationships, and transmission timing.
  • the UE obtains the sequence number of the ZC sequence from the broadcast channel, and the UE is configured with a ZC sequence generation module to generate a ZC sequence according to the ZC sequence number.
  • the two ZC sequences can also be obtained locally through configuration.
  • the system can configure the parameters of the RACH channel by both the UE and the base station through pre-configuration.
  • FIG. 9 is a flowchart of implementing a user equipment according to the present invention.
  • Step 901 The UE receives the cell access mode broadcasted by the system or the cell access mode agreed by the system and the system.
  • the UE acquires the RACH information of the current cell from the broadcast channel, and the broadcast channel can provide the following information: two access sequences, a sequence of two sequences, and a transmission timing. If the UE is a customized terminal, it may not need to be obtained from the broadcast channel, because the RACH access sequence and access mode can be configured locally in advance.
  • Step 902 obtaining or generating a first and a second ZC sequence ZC sequence, wherein the first ZC sequence d u is less than the second value of the ZC sequence d u;
  • Step 903 after DFT (Discrete Fourier Transform) operation; transforming the ZC sequence from the time domain to the frequency domain.
  • DFT Discrete Fourier Transform
  • Step 904 The frequency domain ZC sequence is mapped to the frequency band in which the RACH channel is located.
  • Step 905 then the frequency domain signal generated by the above step is further subjected to IDFT (Inverse Discrete Fourier Transform);
  • Step 906 generating a transmit signal to be transmitted on the antenna.
  • IDFT Inverse Discrete Fourier Transform
  • Step 906 generating a transmit signal to be transmitted on the antenna.
  • These two sequences are used by the base station to identify the RTD error range and the exact RTD position or the frequency offset of the UE uplink signal.
  • the base station receiver processing since the base station has the signal collection and storage functions, the two sequence transmission sequences can be reversed.
  • FIG. 10 A schematic structure of the present invention, a base station, the base station receiver hardware illustrates a UE state processing two access sequences.
  • the receiver receives the RACH signal sent by the terminal, including the first ZC sequence and the second ZC Sequence, wherein the first ZC sequence d u is less than the second value of the ZC sequence d u.
  • the frequency domain signal is generated from the time domain signal by the discrete Fourier transform DFT module, and the information on the RACH frequency domain resource is extracted by the subcarrier extraction module. What is described here is a general-purpose baseband module that performs frequency domain time domain processing on the ZC sequence. Such baseband processing may also have other algorithms, such as: filtering the frequency domain and then generating the frequency domain signal.
  • the signals received on the RACH channel are locally sequence-related, and then the detection sequence is output through the IDFT module.
  • the detection sequence is discriminated by the amplitude, a correlation peak is left, and the detection sequence output is similar to one of the various power delay spectra shown in Figures 3a to 3g.
  • the RTD error range is output after the first ZC sequence is detected by the sequence detection module. After the second ZC sequence is detected, the sequence detection module identifies the RTD value based on the first estimated RTD error range.
  • the sequence detection module estimates the frequency offset of the uplink signal of the UE by using the estimated RTD error range as an input.
  • the sequence detecting module After the second ZC sequence is detected, the sequence detecting module first obtains the RTD through the estimated RTD error range, and then uses the RTD as an input to estimate the frequency offset of the UE uplink signal.
  • the method of estimating the frequency offset can be implemented by hardware logic or a computer program. Referring to the implementation method described in FIG. 7, the description will not be repeated here.
  • the correlation of the local sequence can be implemented in the frequency domain, regardless of which possible variation mode, and finally the result of the correlation operation. Therefore, various possible baseband processing algorithms should fall within the scope of the present invention.
  • the RTD error range can be estimated by the first sequence, and then according to the range
  • the correlation output with the larger sequence of d u estimates the frequency offset of the RTD or UE uplink signal.
  • the base station includes a broadcast channel module for notifying the parameters of the UE RACH channel and the first ZC sequence and the second ZC sequence.
  • FIG. 11 is a flowchart of implementing a base station method according to the present invention.
  • Step 1101 Broadcast an access mode of the RACH channel on the broadcast channel, where the first ZC sequence and the second ZC sequence used by the RACH channel are included.
  • Number of RACH channel transmissions from the access sequence Upper point: It can be that the UE transmits twice or UE-time continuously.
  • the order of transmission of two different d u sequences is as follows: it can be d u small sequence first, or d u larger sequence first.
  • this transmission method requires the base station and the UE to be consistent with each other. Therefore, the RACH information as described above can be broadcast to the UE within the cell through the broadcast channel.
  • the RACH channel information can also be pre-configured through a customized UE and a base station.
  • Step 1102 The base station acquires a UE signal on the RACH channel. Accordingly, the signal sent by the UE is included in a first Zadoff-Chu sequence and a second Zadoff-Chu sequence, d u wherein a first Zadoff-Chu sequence d u value is smaller than the second Zadoff-Chu sequence;
  • Step 1103 The base station obtains an RTD error range by processing the first ZC sequence. If the d u of the used sequence is small, this RTD error range can be regarded as an approximate RTD, which can meet the demodulation needs. Since the transmission of the first ZC sequence and the second ZC sequence does not define a sequence, the base station's reception and processing of the first ZC sequence here does not depend on whether the UE transmits the second ZC sequence.
  • Step 1104 The base station obtains an accurate RTD by processing the second ZC sequence, and obtains a frequency offset of the uplink signal of the UE by processing the second ZC sequence.
  • the carrier frequency of a mobile communication system can range from a few hundred MHz to a few GHz, for example, the more common one is 850 MHz - 3.5 GHz.
  • the Doppler shift is maximized.
  • the UE since the downlink signal of the base station obtained by the UE in motion state has a Doppler frequency shift, the UE locks the carrier frequency of the base station with the frequency shift and performs uplink transmission, and the Doppler frequency shift received by the base station antenna is the superposition of the uplink and the downlink.
  • the maximum frequency offset of the uplink signal received by the base station is: 2000 ⁇ 6000 Hz.
  • the RACH subcarrier bandwidth is 1250 Hz.
  • Figure 12 is a graph showing the Doppler shift of 4.5 times in the same ZC sequence and the same RTD conditions as in the embodiment of Figures 3a to 3g.
  • the left shift of 4 times d u and 5 times d u position will appear two mirror peaks close to the energy.
  • the mirror peak shifted to the left by 6 times d u has moved to a position close to the real RTD. Therefore, by the method shown in FIG. 6a, a mirror peak having a cyclic shift exceeding 800 ⁇ ⁇ may occur in the range of the RTD error obtained by processing the first ZC sequence signal, which interferes with the recognition of the RTD.
  • the larger the d u value of the larger sequence is not as large as possible.
  • the selection is based on the fact that the offset peak does not cyclically overlap to the estimated RTD error range. For example, when the system allows the maximum frequency offset to be 2 times ⁇ , the mirror peaks may be at RTD, RTD-d u , RTD-2d u , RTD-3d u . D u upper limit for the peak RTD and RTD-3d u overlap does not occur, the better, intermediate d u retain the protective distance doubles, then so is larger sequence d u: 839/4 --2100
  • the upper limit value of d u d u d u larger sequence d u and a lower limit value of the sequence has a small mutual influence, after the introduction in the next section.
  • FIG. 13 is an output result of the uplink access of the UE signal of the same RTD and the same frequency offset with the d u small sequence and the larger d u sequence.
  • the peak indicated by the dashed line is the correlation result of the larger sequence of d u
  • the peak indicated by the solid line is the correlation result of the small sequence of d u .
  • This example is based system allows four times the maximum frequency deviation ⁇ / RACH, to mirror a larger sequence d u u small peak can be estimated from the sequences of d error range RTD distinguished, d u d u value larger sequence requires at least A value greater than 4 times the d u value of the d u small sequence. It is indicated that there is an interaction relationship between the lower limit of d u of the larger sequence of d u and the upper limit of d u of the small sequence of d u . Better, if the system allows a maximum frequency deviation is twice ⁇ ⁇ , at least larger sequence d u d u value must be greater than equal to 3 times the value of d u d u small series.
  • the above is the relationship between the two sequence d u values from the perspective of estimating the RTD.
  • a system with twice the frequency offset requires five windows to estimate the frequency offset. If the system is N times ⁇ /RACH, 2N+1 windows are needed.
  • the d u value of the second Zadoff-Chu sequence needs to be less than or equal to 839 / ( 2N + 1 ). This further reduces the number of optional Zadoff-Chu sequences.
  • the number of available d u small sequences and d u large sequences is limited, and one more, and the other one will be less.
  • the inventive scheme requires the use of one d u small sequence and one d u large sequence at a time, so an equal number of d u small sequences and d u larger sequences are usually arranged.
  • a more preferred method for selecting a larger d u sequence and a d u small sequence For a system with a maximum frequency offset of K times ⁇ /RACH, if the number of required sequences is N, the range of d u of all sequences is
  • the upper limit of the d u value of the corresponding d u small sequence is l/k of the lower limit of the d u value of the larger d u sequence.
  • a first ZC sequence group and a second ZC sequence group can be determined, and any one of the two groups can be paired with any one of the other groups.
  • a first ZC sequence group Preferably, a first ZC sequence group, a second ZC sequence group, wherein one of the sequence is fixed and one of the other group is paired.
  • Table 3 does not fully enumerate the available access sequence pairs.
  • a pair of a particular zc sequence and another particular zc sequence can also be generated.
  • the d u value difference of each pair of two ZC sequences can be determined separately, and does not need to correspond to the d u range of the entire sequence group described above, so this method can determine more sequence pairs, and is more flexible in practical use.
  • the above analysis of the d u value range for the d u small sequence (the first ZC sequence) and the d u larger sequence (the second ZC sequence ⁇ ) is only an example, in many sequences that satisfy this range. From , you can choose a sequence with better performance. Therefore, a similar scheme using only a part of the sequences within the above range is also the same as the present invention.
  • the following is a better integrated embodiment.
  • the ZC sequence is pre-classified, the d u small is classified into the first group, and the larger d u is classified into the second group.
  • the UE needs to send two random connections When entering the sequence, it is selected from two sequence groups.
  • the d u values of each sequence are equal, so it is possible to estimate the accuracy of the RTD error range using different sequences, but because of the many UE access requirements, it is impossible to select only the estimation.
  • the few sequences with the least precision the more sequences that are actually needed, the worse the accuracy of the sequence estimates that can be selected.
  • the maximum d u is 30, so as a whole of the set, their estimation accuracy can be expressed by the maximum d u .
  • the second group of sequences of this embodiment which have the common feature that d u is large.
  • the range of d u of the second set of sequences is 129-200, so when ⁇ is transmitted with one sequence in the second set, it can be guaranteed that there will be no two peaks in 129 unit time. In this way, when there are a large number of UE accesses in each cell, the access sequence needs to be invoked, which is facilitated by the normalization process.
  • FIG. 14 is a structural diagram of another user equipment implementation of the present invention.
  • the first ZC sequence group and the second ZC sequence group stored in the memory are two sets of sequences having different d u value characteristics, and when one of the groups is selected by the UE to be transmitted, and operated by a discrete Fourier transform (DFT) module,
  • DFT discrete Fourier transform
  • the RACH resource mapping module maps to the frequency band in which it is located, and then the signal in the frequency domain is transmitted on the antenna through the inverse discrete Fourier transform (IDFT) module to generate the time domain signal.
  • a sequence in another ZC sequence group is sent after similar signal processing.
  • These two sequences are used for the base station to identify the RTD error range and the frequency offset of the RTD or UE uplink signal, respectively.
  • the two sequences are derived from two groups, respectively, and may also be derived from a fixed pair of random access sequence pairs.
  • FIG. 15 is a flow chart showing another implementation of the user equipment of the present invention.
  • the method is further performed by the step 1502: acquiring one access sequence in each of the two sequence groups or selecting one access sequence pair from the access sequence pair to obtain two ZC access sequences, where one sequence has a small d u value, and another A sequence has a large d u value.
  • FIG. 16 is a structural diagram of another base station according to the present invention, and is also adapted to operate in a plurality of access sequence groups. On the basis of the apparatus of FIG. 10, two sequence group storage units are added for storing the first Zadoff-Chu sequence. Group and second Zadoff-Chu sequence set.
  • the base station selects an access sequence configured by the communication system from the two storage units as an input of the local sequence correlator. More preferably, the base station includes a broadcast channel module for notifying the parameters of the UE RACH channel and the first ZC sequence group and the second ZC sequence group.
  • the base station has a sequence pair storage unit for storing ZC sequence pairs, and each ZC sequence pair includes a first Zadoff-Chu sequence and a second Zadoff-Chu sequence.
  • FIG. 17 is a flowchart of an implementation of another method of a base station according to the present invention.
  • step 1703 is introduced: acquiring one access sequence or pairing from an access sequence in two sequence groups. Select one access sequence pair to get two ZC access sequences. In high-speed communication access systems, it is often accompanied by wide coverage.
  • the protocol limits the range of Timing Advanced (TA) to 0 ⁇ 1282, when the UE is located 100km away from the base station, the uplink signal will not be aligned at the eNodeB, thus destroying the orthogonality of the OFDM system. .
  • TA Timing Advanced
  • a better implementation method when the UE is outside 100km, can issue a larger TA and delay its uplink signal to a Slot alignment (under the Normal CP mode of the 3GPP protocol). Thereby the orthogonality of the OFDM symbols is maintained.
  • the Extended CP of the 3GPP protocol since the CP length of each symbol is the same, an integer number of SC-0FDM symbol alignments can be delayed.
  • the new embodiment here is one of the implementation methods for increasing cell coverage.
  • the scheme as shown in FIG. 18 can cover a range outside the range of 100 km, and the UE can sample the signal once after the normal RACH signal sampling time, and separately perform the two sampling signals with the local ZC sequence.
  • the communication cell is a cell radius of 200 kilometers.
  • T CP 21024 ⁇ .
  • the UE transmission delay is 100km and less than 100km, as long as the sample window 1 is set properly, since the CP part is generated by cyclic shift of the SEQ part, only one sample window 1 can sample to a complete cycle.
  • the transmission delay of the UE is between 100km and 200km, it is not possible to use only one window, and a new window 2 is added later.
  • Such two windows ensure that at least one signal can be sampled to a full cycle, so that coverage within a 200 km cell radius is completed.
  • it can be used to estimate any possible RTD error range or RTD in the cell.
  • the sampling window can both sample a periodic signal to the cell center UE, and can also sample a periodic signal of the UE at a cell edge of 200 km.
  • extending the CP creates a problem because the CP portion is a cyclic shift of the SEQ portion, and the signal in the UE sample window at 200 km is the same as the signal in the 19a segment. So how does a periodic signal from the base station distinguish between the signal of the sample window or the signal of the 19a segment? If it is a signal of the 19a segment, it is considered to be the RTD of the UE signal indicated by the broken line.
  • the estimated RTD may have a deviation of SEQ period (800 ⁇ ⁇ ), which can also be described as the ambiguity of the RTD estimate.
  • the base station estimates the value of an RTD through a sample window and sends it to the UE. If there is no message 3 that can be received by U ⁇ , then the RTD estimate value after the SEQ cycle adjustment is sent.
  • the SEQ cycle adjustment for the RTD is to increase the length of a SEQ period for an RTD value less than the SEQ period.
  • the UE after receiving the RTD sent by the base station, the UE establishes an uplink channel by using the timing of the RTD, and reports the message 3. If the UE finds that no further message is received by the base station, indicating that the base station fails to receive the message 3, the uplink timing is performed. Message 3 is reported again after a SEQ cycle adjustment.
  • the SEQ cycle adjustment for the RTD is to increase the length of a SEQ period for an RTD that is less than the SEQ period.
  • Both of these methods are used to overcome the ambiguity problem by scheduling at most two attempts. Although both methods bring a certain delay, they are not large.
  • the base station is extra
  • the signal of a window, this time the window is before the original window, the specific time period is a segment as shown in 20a in Fig. 20, that is, from the end of the reservation deviation to (800 ⁇ ⁇ - reservation deviation ).
  • the purpose of setting a small segment of the reservation bias is: Regardless of the actual RTD of the UE, the uplink signal of the UE can be sampled in the window as much as possible, otherwise the correlation peak energy after the relevant processing is not strong enough.
  • the true RTD should be considered to be less than the SEQ period (800 ⁇ ⁇ ), otherwise the true RTD should be greater than the SEQ period (800 ⁇ s). Based on this, the RTD estimate is corrected.
  • the methods and systems disclosed herein are merely exemplary in nature and that the processes involved are not limited to the order described herein, but may be adjusted according to the particular needs and the ease of implementation of the technology. In addition to the above-described examples, the methods and systems may include other processes and modules as desired for a particular application.
  • the technical solution of the present invention can be applied to various communication systems of LTE, TD-LTE (Time Division LTE), and other Zadoff-Chu sequence-based random access channels.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Abstract

本发明实施例涉及一种通信系统中随机接入的处理方法、装置、用户设备处理方法和装置,一种通信系统中随机接入的处理方法包括:基站接收用户设备发送的第一Zadoff-Chu序列和第二Zadoff-Chu序列,其中所述第一Zadoff-Chu序列的du值小于所述第二Zadoff-Chu序列的du值;基站根据所述第一Zadoff-Chu序列估计用户设备的往返延迟RTD误差范围,根据所述第二Zadoff-Chu序列在RTD误差范围内估计RTD或者用户设备上行信号的频偏。解决了存在频偏条件下用户设备接入网络的问题。

Description

一种通信系统中的随机接入方法及装置 本申请要求于 2012 年 1 月 9 日提交中国专利局、 申请号为 201210004747.5、 发明名称为 "一种通信系统中的随机接入方法及装置"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域, 更具体地说, 涉及一种随机接入方法及装 置。
背景技术
长期演进系统( Long Term Evolution, 以下简称 LTE )中, 随机接入信道 ( Random Access Channel , 以下简称 RACH ) 主要用于用户设备 ( User Equipment: UE ) 的初始化接入, 它不携带任何用户数据。 UE在 RACH信道 上发送的信号为前导序列 (Preamble Sequence, 以下简称 Preamble ) , 前导序 列为 Zadoff-Chu序列 (以下简称 ZC序列 ) 。 如图 1所示, 3GPP TS 36.211 协议规定, Preamble包括一段长度为 P循环前缀( Cyclic Prefix,以下简称 CP ) 和一段长度为 TSEQ的接入序列( Sequence, 以下简称序列或者 SEQ )两个部分。
同时, 协议规定了几种不同格式的参数设置, 匹配不同的小区半径, 如 表 1所示:
表 1
Figure imgf000003_0001
注: 7;是 LTE协议中的基本时间单位, rs = 1/(15000x 2048)5 LTE 系统对从 0 到 15km/h 的低速场景做优化, 更高的移动速度 ( 15~120km/h )下仍具有较高性能。 在 120km/h到 350km/h时仍能保持连接。 取决于不同系统载频特征, 当前标准允许 UE 的最高速度可以到 500km/h ( TS25.913-900 ) 。
但随着通信技术的发展, 以及用户对通信需求的提升, 运营商对于更高 速的交通工具有提供服务的需求,如飞行模式下的 LTE信号覆盖提出了需求。 对于飞行场景, UE移动速度更高, 最高可以达到 1200km/h, 因此在相同载频 下,多普勒频移更大; 另一方面,为降低布网成本,需要支持更大的小区半径, 甚至超过 200km, 大小区将导致往返传输延迟(Round Trip Delay, 以下简称 RTD或者往返延迟) 变大。 这些条件均对随机接入技术提出了挑战。
发明内容
本发明实施例提供一种通信系统中随机接入的处理方法, 包括: 基站接 收用户设备发送的第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中所述第 一 Zadoff-Chu序列的 du值小于所述第二 Zadoff-Chu序列的 du值;基站根据所 述第一 Zadoff-Chu序列估计用户设备的往返延迟 RTD误差范围,根据所述第 二 Zadoff-Chu序列在 RTD误差范围内估计 RTD或者用户设备上行信号的频 偏。
这样当小区覆盖范围比较大的时候, 基站可以估计出带有一定移动速度 的 UE的 RTD或者其上行信号的频偏。
本发明另一实施例提供一种通信系统随机接入处理装置, 包括: 接收器, 接收用户设备发来包括第一 Zadoff-Chu序列和第二 Zadoff-Chu序列的射频信 号,其中所述第一 Zadoff-Chu序列的 du值小于所述第二 Zadoff-Chu序列的 du 值; 基带信号处理模块, 对所述射频信号进行频域时域基带处理; 序列检测 模块, 根据所述第一 Zadoff-Chu序列估计 RTD 误差范围, 根据所述第二 Zadoff-Chu序列识别在 RTD误差范围内的 RTD或者用户设备上行信号频偏。
这样的基站可以进行大小区的覆盖,并能估计出带有一定移动速度的 UE 的 RTD或者其上行信号的频偏。 本发明又一实施例提供一种用户设备的随机接入方法, 包括: 用户设备 发送第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中所述第一 Zadoff-Chu 序列的 du值小于所述第二 Zadoff-Chu序列的 du值;所述第一 Zadoff-Chu序列 用于基站估计用户设备的往返延迟 RTD误差范围,所述第二 Zadoff-Chu序列 用于基站在 RTD误差范围内估计 RTD或者用户设备上行信号的频偏。
这样用户设备在运动的情况下, 通过发射两个 ZC序列, 可以便于基站 估计出其 RTD或者其上行信号的频偏。
本发明又一实施例提供一种随机接入的用户设备, 包括: 存储器, 存储 第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中所述第一 Zadoff-Chu序列 的 du值小于所述第二 Zadoff-Chu序列的 du值,所述第一 Zadoff-Chu序列用于 估计 RTD误差范围, 所述第二 Zadoff-Chu序列用于识别在 RTD误差范围内 的 RTD 或者用户设备上行信号频偏; 基带信号处理模块, 对所述两个 Zadoff-Chu序列进行时域频域基带信号处理。
这样的用户设备在运动的情况下, 通过发射两个 ZC序列, 可以便于基 站估计出其 RTD或者其上行信号的频偏。
以及相应的计算机程序产品、 系统方法、 系统装置, 本发明解决了存在 频偏条件下用户设备接入网络的问题。
附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动性的前提下, 还可以根据这些附图获得其他的类似方案。 图 1是现有技术物理层接入序列结构图。
图 2是一实施例的移动通信小区示意图。
图 3a是一 0频偏序列信号接收器输出的功率延迟语示意图。 图 3b 是一 100Hz频偏序列信号接收器输出的功率延迟谱示意图。
图 3c 是一 625Hz频偏序列信号接收器输出的功率延迟谱示意图。
图 3d是一 950Hz频偏序列信号接收器输出的功率延迟谱示意图。 图 3e 是一 1250Hz频偏序列信号接收器输出的功率延迟谱示意图。 图 3f 是一 1875Hz频偏序列信号接收器输出的功率延迟谱示意图。 图 3g是一 2500Hz频偏序列信号接收器输出的功率延迟谱示意图。 图 4 是 UE信号在无频偏状态下的基站接收器输出示意图。
图 5 是 UE信号在有频偏状态下的基站接收器输出示意图。
图 6a是一实施 UE发送 du值小的序列的接收器输出示意图。
图 6b 是一实施 UE发送 du值较大的序列的接收器输出示意图。
图 7 是一实施例频偏估计的示意图。
图 8是一种用户设备实施例的结构图。
图 9是一种用户设备实施例的流程图。
图 10是一种基站结构示意图。
图 11是一种基站方法实施例的流程图。
图 12是一实施 UE信号频偏为 4.5倍^^∞的相关输出示意图。
图 13是相同 RTD下两个序列的相关输出示意图。
图 14是另一种用户设备实施例的结构图。
图 15是另一种用户设备实施例的流程图。
图 16是另一种基站实施例的结构图。
图 17是另一种基站方法实施例的流程图。
图 18是大小区基站接收的接入序列定时示意图。
图 19是加长 CP后的釆样窗定时示意图。
图 20是检测二义性估计偏差的实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 如图 2所示, 本实施例提供的一种移动通信系统。 所述系统包括至少一 个基站(图中仅示出 1 个)和位于基站覆盖的小区内的至少一个 UE。 所述 UE可以是移动终端, 或者移动电话 (或称为"蜂窝"电话) , 或者具有移动终 端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车 载的移动装置等。
所述基站, 可以是 LTE、 TD-LTE ( Time Division LTE )中的演进型基站 ( eNB或 e-NodeB , evolutional Node B ) , 或者是基于 OFDM调制技术的其 他通信系统中的基站, 以及基于 Zadoff-Chu序列的随机接入信道的各种通信 系统中的基站。
以下是 RACH信道配置多个接入序列的分析。 基站提供多个随机接入序 列供 UE挑选使用, 如果两个 UE在同一时刻使用相同的随机序列, 则就有冲 突的可能。 当 UE需要随机接入时, 从随机接入序列中选用一个并将其传送。 当基站的接收器解析出随机接入序列,就向使用该随机序列的 UE发送响应消 息。 当多个 UE使用相同的随机接入序列, 发生的冲突导致有的 UE不能成功 接入。 在 3GPP TS 36.211协议定义中, 一共提供了 838个 ZC根序列, 在每 个通信小区内最多可配置 64个接入序列。
一个或者多个随机接入序列可以通过循环位移从单个 Zadoff-Chu序列 (这个单个 Zadoff-Chu序列可以称为根序列)得出。 由于 ZC序列是理想的 自相关序列, 仅在延时为 0 处是非零的, 其他延迟的互相关是与时间延迟无 关的恒定幅值。
根据 3GPP TS 36.211协议中随机接入序列的定义, 第 "th个 ZC序列表示 为:
,7Uin(n+\)
) = ^ Nzc , 0 < n < Nzc - l (公式一) u称为物理根序列号, n为 0到 Nzc-1的整数。
其中 Nzc是所产出 ZC序列的总样点数, 作为一种实施方式: Nzc=839。 不难理解的是 Nzc还可以取其它的数值。但为了便于说明本发明的实施例, 以 下所描述的 ZC序列的 Nzc都以 839为例进行说明。
当存在^ (单位为 Hz) 的频偏时, 有频偏的序列可以表示为: xu(n,Af) = ~J^^e^ Q≤n≤Nzc-\ (公式二) 其中 TSEQ是上述 ZC序列占用的时间长度。作为一种实施方式, 3GPPTS 36.211协议中定义: TSEQ=800 S。 同样, 根据通信系统的需要, TSEQ也可取 其它的时间长度。
A/=丄
当 TSEQ时, ¾ △/) =
Figure imgf000008_0001
du] " (公式三) 其中 含义如下:
Figure imgf000008_0002
(公式四)
, p为 画 d^ =l的最小非负整数
因此, du指的是当频偏为 TSEQ时接收器输出的镜像峰对于往返延迟的移 位。 当 Nzc为一固定值后, 根据公式三、 公式四可知, du由 u值决定, 同时 p 也是由 u值决定, 所以每个物理根序列号为 u的序列 du值可以看作为序列本 身的特性。 ZC序列的 du值是序列偏移样点数, 且只能为正值。 p值为 1、 2、 3...838的整数。
如图 3a、 3b、 3c、 3d、 3e、 3f、 3g为基站接收器相关处理接收的 UE随 机序列输出的功率延迟语。 功率延迟谱, 也叫 Power Delay Profile , 以下简称 PDP。 本所述随机接入序列为 3GPP TS 36.211定义的物理根序列号是 330的 Zadoff-Chu序列 (ZC序列) 。 这个序列的 p值是 689, du值是 150。
图 3a所示, 往返延时 (RTD)为 410 s, 频偏为 OHz的上行接入序列 站接收器相关处理的输出图。 图上横轴是功率延迟语样点, 839个样点对 应 Nzc=839的 ZC序列。这里的样点和基站对信号的模数釆样的釆样率不是一 个概念。 整个横轴对应的时间范围是 800μδ, 连续样点之间是一个单位时间, 一个单位时间为 800/839 μ δ « 0.95 μ δ。 这时接收器输出的峰值是唯一的并且 在正确的往返延迟点出现。
图 3b所示, RTD为 410 μ s, 频偏为 100Hz的上行接入序列被基站接收 器相关处理的输出图。 因为频偏的原因, 相关输出图还包含了许多能量小的 峰, 它们的能量和背景噪声相比并不显著, 常常通过判别门限将其滤除。 本 文以下描述的相关输出峰值都是指门限判别后剩下的显著峰值。 这时除了往 返延迟位置有一个峰值, 在该峰值之前 du=150个单位时间上还有一个小的镜 像峰值。 由于 Zadoff-Chu序列的特性, 在正频偏的情况下, 镜像峰会向右移 动 p个样点。这样 PDP横轴读数为 838的样点右移一个单位时间则移到 0点, 所以这样的移位也称为循环移位。镜像峰向右循环移位了 p=689个 PDP样点, 也等同于从往返延迟向左位移 839-p=150个样点。
从以上公式推导可知, du值是由所选序列的特性决定的。 举个例子说明 频偏对镜像峰位置的影响: 如果上行接入序列的频偏变化到 200Hz 或者 400Hz, 除往返延迟位置的一个峰, 另外镜像峰在时间轴的位置将保持在图 3b 所示的位置上, 而不会随频偏变化。
图 3c所示, RTD为 410 μ s, 频偏为 625Hz的上行接入序列被基站接收 器相关处理的输出图。这时除了往返延迟位置的峰值外, du个时间单位之前还 有一个幅度相等的镜像峰。 因为 RACH信道的子载波带宽或者两个子载波频 率间隔是 1250Hz, 625Hz正好是 RACH信道载波带宽的一半, 这是出现两个 相等的峰值的原因。 另外相关接收器还输出了两个较小的镜像峰, 分布在上 述两个峰值的两侧, 它们分别和上述两个峰值的距离都是 du
图 3d所示, RTD为 410 μ s, 频偏为 950Hz的上行接入序列被基站接收 器相关处理的输出图。 因为这时的频率偏移 950Hz更接近 RACH信道的子载 波带宽 1250Hz ( RACH ) , 峰值大的镜像峰位置比往返延迟前移了 du个时间 单位, 能量较小的峰才在往返延迟位置出现。
图 3e所示, RTD为 410 μ s, 频偏为 1250Hz的上行接入序列被基站接收 器相关处理的输出图。 这时镜像峰值从往返延迟完全平移了 du个时间单位。 如果从时间轴上直接读出峰值位置所在的时刻, 就是 410-du (800/839) - 267 μ δο 这样的镜像峰和 RTD = 267 μ δ、 没有频偏的信号输出结果看起来一样。 实际应用场景下, 频偏由 UE和基站天线之间的相对运动或者 UE和基 站之间频率源存在偏差导致, 这里举出多个频偏值来示意说明对相关输出的 影响, 并不限定实际场景频偏只有这几种。
图 3f所示, RTD为 410 s, 频偏为 1875Hz的上行接入序列被基站接收 器相关处理的输出图。 这时判别出 4个峰值。 因为频率偏移落在 1倍的子载 波带宽 1250Hz和两倍的子载波带宽 2 1250Hz的中点,所以两个能量较大并 且幅值接近相等的镜像峰落在了从往返延迟处偏移 1倍 du和 2倍 du的位置。 剩余的两个小的峰值落在了这两个较大峰值前后各 1倍 du的位置。 因为循环 移位, 前移的小峰出现在时间轴最右侧 3A的位置。 本示例中, 真实的 RTD 位置只出现了一个小的峰值。
图 3g所示, RTD为 410 s, 频偏为 2500Hz (也就是两倍的^^∞ ) 的 上行接入序列被基站接收器相关处理的输出图。 这时仅有一个峰值, 这个峰 值从往返延迟向前平移了 2倍的 du
各个 ZC序列的 du值是由各个序列的固有特性所决定的。 所有物理根序 列的 du值范围是(1 , 419 ) 的整数值。 表 2示出了部分根序列对应的 p值和 du值。
表 2 部分物理根序列对应的 p值和 du
Figure imgf000010_0001
以上基于图 3a到图 3g的分析公布了这样的一组例子: UE釆用同一接入 序列, 在同一往返延迟下, 不同的频偏引起的基站接收器不同的相关输出。 在实际工作中,基站接收了 UE的上行 RACH信号, 并不事先知道 UE的往返 延迟,而是通过图 3a到图 3g所示的序列相关输出的特点来估计出 UE往返延 迟。 以下通过例子说明。
图 4、 图 5所示是同一接入序列、 不同 RTD和不同频偏状态 UE信号的 基站接收器输出结果。 图 4所述例子是 RTD=4A、没有频偏 UE信号的基站接 收器相关输出。 图 5所述例子是 RTD=5A、具有频偏的 UE信号基站接收器相 关输出。 两图中大能量的峰值几乎在相同时间位置, 但在图 5所述的情形下, 基站将无法识别哪个峰代表真正的 RTD?
如图 6a、 图 6b是发明实施例的一种实现,假设实施例中 UE上行信号的 频偏为 2倍 RACH。 首先如图 6a, UE先釆用了 du值小的序列发送, 为了描述 方便, 以下称为 du小序列或者第一 Zadoff-Chu序列。 如表 2中物理根序列号 为 1、 838、 419、 420等等的接入序列。 UE信号有频偏情况下的基站接收器 相关的输出。 尽管各个峰值有大有小, 因为这些序列的 du值小, 一簇峰集中 在一个小的区间。 因为如图 3e所描述的峰值偏移现象, 其中高的峰值也不一 定就是准确的 RTD。也因为本实施例中使用了 du小序列,真实的 RTD必然在 这一簇峰值附近。 所以, 这一方法可以估计出一个的 RTD误差范围。
特别地,如图 6a所示,如果所釆用的物理才艮序列号为 1或者 838的序列, 其 du=l , 则三个峰值在时间上的散布为 2 x du = 2 x 800/839 ( μ δ ) - 1.9 μ δο 因为通信系统的每个 OFDM符号具有几十 μ s的时间长度, 即使 RTD估计值 有几 s的误差,也可以解调出 Message 3消息。 Message 3消息以下也称为消 息 3。 UE的接入过程有: UE发送前导序列; 基站给 UE发送 Message 2, 也 称为消息 2; UE根据 Message 2的指令发送 Message 3。因此对于 du=l的序列, 尽管是存在频偏的情况下, 可以一次估计出近似 RTD。 同理, du=2的序列虽 然精度有所下降, 但也基本可用于直接得出近似 RTD。
如图 6b , UE第二次釆用 du较大随机接入序列在同样的地理位置和运动 状态下 (即同样的往返延迟和频偏)基站接收器的输出, 各个峰值在时间轴 跨度上相差 du个单位时间。 为了描述方便, du较大的随机接入序列也称为第 二 Zadoff-Chu序列或者 du较大序列。 但因为 UE发送两次的接入序列的 RTD 一样, 参考图 6a所示的估计的 RTD误差范围, 在图 6b这样的范围内仅出现 了一个峰值,参考图 3a到图 3g的示意分析,这个峰 601的时间轴位置是准确 的 RTD, 其它镜像峰都是因为频偏引起。
不像通过 du =l或者 2的序列直接估计近似 RTD的方法, 通过图 6a、 图 6b展示的方法估计 RTD的精确程度将达到每个样点的粒度, 也就是 800/839 ( M S ) - 0.95 μ s„
通过以上分析,可以看出第一 Zadoff-Chu序列和第二 Zadoff-Chu序列的 du值之间存在约束关系。如果本实施例的频偏为 2倍的 Δ^Α∞ ,第二 Zadoff-Chu 序列 du值至少大于第一 Zadoff-Chu序列 du值的 2倍。 例如, 第一 Zadoff-Chu 序列的 du值为 1 , 则第二 Zadoff-Chu序列的 du值至少为 3 以上。 如, 第一 Zadoff-Chu序列的 du值为 5 , 则第二 Zadoff-Chu序列的 du值至少为 11以上。 这样第二 Zadoff-Chu序列的基站接收器相关输出峰值在图 6b中的 RTD误差 范围内只可能存在一个峰值。
UE通过两次发送不同 du的接入序列, 所述两个序列的 du—个小、 一个 较大, 解决了在频偏状态下 RTD难以测准的问题。 在基站接收器处理中, 因 为基站具有信号的釆集和存储功能, 因此这两个序列发送顺序可以对调, 两 个序列的发送连续性可以是连续传送或者先传送一个等会儿再传送另外一 个。
通常, 基站通过系统消息 ( System Information Block, 简称 "SIB" )广 播给用户设备 RACH信道的信息, 如初始接入功率、 所选的接入序列。 因此 本发明的 RACH信道的配置参数也可以通过系统消息广播给 UE,如本实施例 的两个接入序列、两个序列的先后关系以及发送定时通过系统消息广播给 UE。 如果是定制系统, 也可以无需从广播信道获取, 因为这样的系统可以通过预 先的参数配置, 让 UE和基站都知晓 RACH信道的参数。 如图 7是一实施例频偏估计的示意图, 图中展示的接收器相关峰是经过 循环左移后的输出。 循环左移的距离可以是用第一 Zadoff-Chu序列估计的 RTD误差范围的下限。 循环左移后新的 0点时间如图所示, 从新的 0点按照 du的间隔依次排列窗长小于 du的若干个窗: 窗口 0、 窗口 +1、 窗口 +2。 同样, 从新的 0点反向排列出窗口 -1、窗口 -2。循环左移的距离也可以是一个预设值, 按照这个预设值进行循环左移可以使第一 Zadoff-Chu序列的相关峰值全部落 入其中的窗口 0, 所以预设值可以从一个范围中选取。
本实例所釆用的第二 Zadoff-Chu序列的 p值 =167, du值 =167, 所以当有 正频偏时, 镜像峰值会向右偏移 167 个样点。 在每个检测窗口中找出一个最 大的峰值, 若某一峰值大于检测门限, 则认为是有效峰值。 如果存在两个或 两个以上的峰值, 取最大的两个峰值作为有效峰值。
如果有两个有效峰值时, 最大峰值位于窗口 0内, 次大峰值位于窗口 +1 丄 Δ · 内时,正如图 7所示的两个峰,则估计 UE上行信号的多普勒频移为 0到 范围内的一个值; 如果有两个有效峰值时, 最大峰值位于窗口 +1 , 次大峰值
3_Af
位于窗口 +2时,则估计 UE上行信号的多普勒频移为4 ^CH到 ^范围内的 一个值; 以此类推。
如果有两个有效峰值时, 且两个有效峰值大小接近, 一个位于窗口 0内, 丄 Δ · 另一个位于窗口 +1 内时, 则估计 UE上行信号的多普勒频移约为 ^011 ; 如 果有两个有效峰值时, 且两个有效峰值大小接近, 一个位于窗口 +1 内, 另一
3_Af
个位于窗口 +2内时, 则估计 UE上行信号的多普勒频移约为 ^011 ; 以此类 推。
如果有一个有效峰值, 且该峰值位于窗口 0内时, 则估计 UE上行信号 的多普勒频移 4 = 0; 如果有一个有效峰值, 且该峰值位于窗口 -1 内时, 则 4 . 如果有一个有效峰值, 且该峰值位于窗口 -2 内时, 则
~/ ΑΟΪ1 - 以此类推。
通过这个方法估计出的频率精度基本满足后面解调 Message 3消息的需 要。本实例 Zadoff-Chu序列的 p=167。如果使用 p=839-167=672的 Zadoff-Chu 序列, 还是正频偏, 则镜像峰相当于左移动 167个样点。 这时, 窗口 +1和窗 口 +2将依次从窗口 0向左侧排列, 所以, 窗口 +1 和窗口 +2并非都在窗口 -1 和窗口 _2的右边, 由 p值的取值范围确定。 更优的, 可以显而易见想到, 不 需要循环左移, 通过基于 RTD或者 RTD误差范围去设置窗口 0、 窗口 +1、 窗 口 -1、 窗口 +2、 窗口 -2, 也可以实现频偏估计。 基站还可以根据 RTD误差范 围或者 RTD,识别所述第二 Zadoff-Chu序列的相关输出功率延迟语 PDP的峰 所对应的频偏, 估计出用户设备信号的频偏。 UE上行信号的频偏得到后, 可 以在解调时进行纠偏, 会使基站保证对其消息的解调性能。
通过图 7同时说明一种计算 RTD的方法。 图中 RTD '是从新的 0点开始 计算的延迟距离, UE的 RTD可以由如下方法计算得到: RTD=循环左移的距 离 因为相邻的峰之间相差整数个 du, 所以 RTD,和 RTD2,基本相等。 从而 RTD也可通过如下方法计算得到: RTD= 环左移的距离 + RTD2,。 通过 RTD2,计算 RTD的方法在发生整数倍^^^的频偏情况下尤其适用, 因为这时 RTD位置上没有峰值, 镜像峰值落在和 RTD偏移了整数倍 du的位置上。
显然, 循环左移的距离还可以取其他值, 只要可以使峰值落在长度小于 du的窗口之内即可。 通过以上的一些实施例, 描述了 UE发送两个随机接入序列, 其中一个 用于估计 RTD误差范围, 另一个用于估计 UE信号的频偏或者 RTD的方法。 以下接着对用户设备装置、 用户设备方法、 基站装置、 基站方法的实施例进 行描述。
如图 8, 是本发明一种用户设备实施例。
用户设备中的存储器存储第一 ZC序列和第二 ZC序列, 第一 ZC序列的 du值小于第二 ZC序列的 du值。 两个序列依次经过离散傅立叶变换( DFT )模 块和 RACH资源映射模块的处理, 映射到 RACH信道所在的频段生成频域信 号。 这里所描述的是一种通用的基带模块对 ZC序列进行频域时域处理, 这样 的基带处理还可以有其它算法, 如: 通过上釆样滤波后再进行频谱搬移生成 频域信号。 接着通过逆离散傅立叶变换(IDFT )模块后生成时域信号, 最后 在射频模块进行处理后在天线上发射。 第一 ZC序列被用于基站识别 RTD误 差范围, 第二 ZC序列被用于识别精确的 RTD位置或者 UE上行信号的频偏。 在基站接收器处理中, 因为基站具有信号的釆集和存储功能, 因此这两 送一个等会儿再传送另外一个。两个 ZC序列可以通过接收器从通信小区内的 广播信道获取, 广播信道还可以提供如下信息: 两个接入序列、 两个序列的 先后关系以及发送定时。 UE从广播信道获取的往往是 ZC序列的序列号, UE 配置有一个 ZC序列产生模块根据 ZC序列号产生 ZC序列。 两个 ZC序列也 可以通过配置方式本地获取, 系统可以通过预先的参数配置, 让 UE和基站都 知晓 RACH信道的参数。
如图 9, 本发明一种用户设备实施流程图。
步骤 901: UE接收系统广播的小区接入方式或者釆用和系统约定的小区 接入方式。 UE从广播信道获取当前小区的 RACH信息, 广播信道可以提供如 下信息: 两个接入序列、 两个序列的先后关系以及发送定时。 如果 UE是定制 化的终端, 也可能无需从广播信道获取, 因为可以预先本地配置 RACH的接 入序列和接入方式。
步骤 902, 获取或者生成第一 ZC序列和第二 ZC序列, 其中第一 ZC序 列的 du值小于第二 ZC序列的 du值;
步骤 903 , 经过 DFT (离散傅立叶变换)操作; 将 ZC序列从时域变换 到频域。
步骤 904, 将频域的 ZC序列通过资源映射到 RACH信道所在的频段; 步骤 905, 然后以上步骤生成的频域信号再通过 IDFT (逆离散傅立叶变换); 步骤 906, 生成发射信号在天线上发射。 这两个序列被用于基站识别 RTD误 差范围和精确的 RTD位置或者 UE上行信号的频偏。 在基站接收器处理中, 因为基站具有信号的釆集和存储功能, 因此这两个序列发送顺序可以对调, 个。 、 、 , ' n ' 5 ' ' 如图 10, 本发明一种基站结构示意图, 示意了处理 UE两个接入序列的 基站接收器硬件状态。
接收器接收终端发来的 RACH信号, 其中包括第一 ZC序列和第二 ZC 序列, 其中第一 ZC序列的 du值小于第二 ZC序列的 du值。 通过离散傅立叶 变换 DFT模块从时域信号生成频域信号, 通过子载波抽取模块来提取 RACH 频域资源上的信息。这里所描述的是一种通用的基带模块对 ZC序列进行频域 时域处理, 这样的基带处理还可以有其它算法, 如: 下釆样滤波后再进行频 语搬移生成频域信号。接着根据接入信道配置的第一 ZC序列和第二 ZC序列, 分别对 RACH信道上接收的信号进行本地序列相关, 然后通过 IDFT模块输 出检测序列。 检测序列经过幅值判别后, 留下相关峰值, 检测序列输出类似 于图 3a到图 3g所展示的各种功率延迟谱中的一种。通过序列检测模块对第一 ZC序列进行检测后输出 RTD误差范围。 第二 ZC序列进行检测后, 序列检测 模块根据第一次估计的 RTD误差范围识别 RTD值。
另外, 第二 ZC序列进行检测后, 序列检测模块通过将估计的 RTD误差 范围作为输入, 估计出 UE上行信号的频偏。
还有另外一种工作状态, 第二 ZC序列进行检测后, 序列检测模块通过 估计的 RTD误差范围首先得到 RTD, 然后以 RTD作为输入, 估计出 UE上 行信号的频偏。 估计频偏的方法是可以通过硬件逻辑或者计算机程序实现, 可以参考图 7所描述的实施方法, 这里就不再重复描述。
对 RACH信道进行基带处理的方式还可以有多种变化方式, 如本地序列 的相关可以放到频域上去实现, 不管釆用哪种可能的变化方式, 最后还是输 出相关运算的结果。 因此各种可能的基带处理算法都应落入本发明的保护范 围之内。
在基站接收器处理的两次检测序列中, 因为第一 ZC序列是 du小序列, 第二 ZC序列是 du较大序列, 可以通过第一次序列估计出 RTD误差范围, 再 根据这个范围和 du较大序列的相关输出估计出 RTD或者 UE上行信号的频偏。
更优地, 基站包括一广播信道模块, 用来通知 UE RACH信道的参数以 及第一 ZC序列和第二 ZC序列。 如图 11 , 本发明一种基站方法实施流程图。
步骤 1101 ,在广播信道上广播 RACH信道的接入方式,其中包含 RACH 信道使用的第一 ZC序列和第二 ZC序列。 RACH信道从接入序列的发送次数 上分: 可以是 UE分两次发送或者 UE—次连续发送。 两种不同的 du序列发送 的先后顺序分: 可以是 du小序列先发, 或者是 du较大序列先发。 但这种发送 方式需要基站和 UE相互一致。 因此, 如上所述的 RACH信息可以通过广播 信道在小区内广播给 UE。 也可以通过定制的 UE和基站, 预先配置好 RACH 信道信息。
步骤 1102, 基站在 RACH信道上捕获 UE信号。 相应地, UE发送的信 号中包含第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中第一 Zadoff-Chu 序列的 du值小于第二 Zadoff-Chu序列的 du值;
步骤 1103 , 基站通过对第一 ZC序列的处理, 得到 RTD误差范围。 如果 使用序列的 du很小,这个 RTD误差范围可以看作近似 RTD,可以满足解调需 要。 因为第一 ZC序列、 第二 ZC序列的发送没有限定先后顺序, 因此这里基 站对第一 ZC序列的接收和处理不依赖于 UE是否发送第二 ZC序列。
步骤 1104, 基站通过对第二 ZC序列的处理, 可以得到精确的 RTD, 也 可以通过对第二 ZC序列的处理得到 UE上行信号的频偏。 移动通信系统的载频可以从几百 MHz 到几 GHz , 例如较常见的有 850MHz - 3.5GHz。 当 UE运动方向朝向或者背离基站天线方向, 这时多普勒 频移偏移最大。 又因为运动状态的 UE获得的基站下行信号时有多普勒频移, UE锁定带频移的基站载波频率再进行上行发射, 基站天线收到的多普勒频移 就是上行和下行的叠加。 例如对于釆用 900MHz - 2.7GHz载频的通讯系统, 当 UE对于基站天线的径向速度达到 1200km/h, 基站接收到的上行信号最大 频偏是: 2000 ~6000Hz。 根据 3GPP TS 36.211标准的定义, RACH子载波带 宽为 1250Hz。 这样基站接收器输出的相关结果就会产生 2到 5倍 du的偏移。
图 12是图 3a到图 3g实施例中相同的 ZC序列、 相同的 RTD条件下, 多普勒频移为 4.5倍 ^∞的结果。这时左移 4倍 du和 5倍 du位置上会出现两 个能量接近的镜像峰值。 因为偏移峰值在功率延迟谱上的循环位移特性, 会 导致左移 6倍 du的镜像峰已经移到了和真实的 RTD接近的位置。 因此通过图 6a的所示方法, 在处理第一 ZC序列信号得到的 RTD误差范围内就有可能出 现循环位移超过 800 μ δ的镜像峰, 干扰了对 RTD的识别。 因此, 在选用 du 较大序列的 du值也不是越大越好, 选择依据是使其偏移峰值不会循环交叠到 估计的 RTD误差范围区间。 例如, 当系统允许最大频率偏移为 2倍^^∞时, 镜像峰值可能在 RTD、 RTD-du、 RTD-2du、 RTD-3du的位置。 为了使 RTD和 RTD-3du的峰值不发生交叠, 更好的, 中间保留一倍 du的保护距离, 则这样 du较大序列的 du值上限是: 839/4 - 2100
du较大序列的 du值下限和 du小序列的 du值上限有相互影响, 放在下一 节后介绍。
如图 6a、 图 6b所示在频偏条件下输出的一组峰值, du越小越可以精确 估计 RTD误差范围, 所以第一 ZC序列的 du下限可以是 du=l。 但因为 du为 1 的序列只有两个, 当系统有大量 UE需要随机接入的时候, 就会序列不够, 从 而需要选 du值远比 1大的其他 Zadoff-Chu序列。
图 13是两个相同 RTD、 相同频偏的 UE信号用 du小序列和 du较大序列 发起上行接入在接收器的输出结果。 为了表示区别, 虚线表示的峰值是 du较 大序列的相关结果, 实线表示的峰值是 du小序列的相关结果。 对于 du较大序 列的结果, 除一个峰值落在一簇族 du小序列的峰值范围之内, 其他的峰值都 落在这簇 du小序列的峰值范围之外, 因此, 如果事先不知道真实的 RTD, 也 可以通过 du小序列峰值估计的 RTD误差范围,确定唯一的 du较大序列峰值落 在该范围内的位置是真实的 RTD。 这个例子基于系统允许最大频偏是 4 倍 Δ/RACH , 为了 du较大序列的镜像峰都能从 du小序列估计的 RTD误差范围区分 开, du较大序列的 du值至少需要大于 4倍 du小序列的 du值。说明 du较大序列 的 du下限和 du小序列的 du上限存在相互影响的关系。 更优的, 如果系统允许 最大频偏是 2倍 ^∞ , du较大序列的 du值至少需要大于等于 3倍 du小序列的 du值。
以上是从估计 RTD的角度说明两个序列 du值的相互关系。 参考图 7所 示的频偏估计方法, 两倍^^∞频偏的系统需要 5个窗口来估计频偏, 如果 N 倍 Δ/RACH频偏的系统, 则需要 2N+1个窗口。 第二 Zadoff-Chu序列的 du值需要 小于等于 839/ ( 2N+1 )。这样又进一步减少了可选的 Zadoff-Chu序列的数量。
更优的一种 du较大序列和 du小序列的选择方法。 对于最大频偏为 2倍 AAACH的系统, du较大序列取 du=167附近的序列。 如果所需序列的数量为 N, 则所选序列的 du的范围是 ( 167-4N/5-167+N/5 ) 。 相应的 du小序列的 du上限 可以通过如图 7所示的方法确定,也就是 du小序列的 du上限要小于 du较大序 列的 du上限的五分之一。 du小序列的 du值下限是 1。 从上可知, 可用的 du小 序列和 du较大序列的数量是受到限制的, 而且一个多, 另外一个就会少。 本 发明方案需要一次使用一个 du小序列和一个 du较大序列, 因此通常配置相等 数量的 du小序列和 du较大序列。
更优的一种 du较大序列和 du小序列的选择方法, 对于最大频偏为 K倍 Δ/RACH的系统, 如果所需序列的数量为 N , 则所有序列的 du的范围是
S39 - 2KN 839 + N
2K + \ ' 2Κ + \ 。 相应的 du小序列的 du值上限为 du较大序列的 du值下限 的 l/k。
通过如上方法, 可以确定一个第一 ZC序列组, 一个第二 ZC序列组, 这 两组中的任意一个序列可以和另外组的任意一个序列配对使用。
较优的, 可以确定一个第一 ZC序列组, 一个第二 ZC序列组, 其中一组 中的一个序列固定和另外一组中的一个序列配对使用。 表 3 是不完全列举了 可用的接入序列对。
表 3配对的物理根序列号及其 p值和 du
Figure imgf000019_0001
较优的,还可以生成一个特定的 zc序列和另外一个特定的 zc序列的对。 这样每对两个 ZC序列的 du值差值可以单独确定, 而不需要对应到上述整个 序列组的 du范围, 因而这个方法可以确定出更多的序列对, 在实际使用中更 灵活。
显而易见的是, 以上对 du小序列 (第一 ZC序列)和 du较大序列 (第二 ZC序歹 )的 du值范围的分析只是一个例子, 在满足这个范围之内的很多序列 中, 从中可以选出性能更好的序列。 因此, 只选用上述范围内的一部分序列 的类似方案也是釆用和本发明相同的构思。 以下是一个更优的综合实施例。 为了让系统可以工作在多 UE的情况下, 将 ZC序列预先进行归类, 将 du小的归为第一组, du较大的归为第二组, 当 UE需要发送两次随机接入序列时分别从两个序列组中选取。在第一序列组中 , 不是每个序列的 du值都相等, 因此使用不同的序列可能估计出 RTD误差范围 的精度是不同的, 但因为系统很多 UE接入的需要, 不可能仅仅选择估计精度 最小的几个序列, 实际上需要的序列越多, 能选到的序列估计精度就会越差。 在第一组中, 4叚设最大的 du为 30, 因此作为集合的整体, 他们的估计精度就 可以用最大 du来表示。本实施例的第二组的序列,它们共同的特点是 du较大。 例如第二组序列的 du的范围是 129-200,因此当釆用第二组中的一个序列发送 时, 可以保证在 129单位时间内不会有两个峰值。 这样在每个小区有大量 UE 接入需要调用接入序列时会因为规一化处理带来便利。
如图 14, 本发明另一种用户设备实施结构图。 存储器存储的第一 ZC序 列组和第二 ZC序列组是具有不同 du值特征的两组序列, 当其中一组中的一 个序列被 UE选择来发送,经过离散傅立叶变换(DFT )模块操作,通过 RACH 资源映射模块映射到所在的频段, 然后频域的信号再通过逆离散傅立叶变换 ( IDFT )模块后生成时域信号在天线上发射。 另一 ZC序列组中的一个序列 通过类似的信号处理后被发送。 这两个序列分别被用于基站识别 RTD误差范 围以及 RTD或者 UE上行信号的频偏。 两个序列分别来源于两个组, 也可以 来源于固定配对的随机接入序列对。
图 15本发明另一种用户设备实施流程图。为适应多个接入序列组的工作 方式, 引入步骤 1502: 在两个序列组中各获取一个接入序列或者从接入序列 对中选取一个接入序列对, 得到两个 ZC接入序列, 其中一个序列的 du值小, 另一个序列的 du值较大。 如图 16本发明另一种基站实施结构图,也是为适应多个接入序列组的工 作方式, 在图 10 的装置基础上, 增加两个序列组存储单元用于存储第一 Zadoff-Chu序列组和第二 Zadoff-Chu序列组。 当对 RACH信道的上行信号做 相关处理的时候, 基站分别从两个存储单元中选取通信系统配置的接入序列, 作为本地序列相关器的输入。 更优地, 基站包括一广播信道模块, 用来通知 UE RACH信道的参数以及第一 ZC序列组和第二 ZC序列组。
另一种实施方式, 基站内具有一个序列对存储单元用于存储 ZC序列对, 每一个 ZC序列对包括第一 Zadoff-Chu序列和第二 Zadoff-Chu序列。 如图 17本发明另一种基站方法实施流程图,也是为适应多个接入序列组 的工作方式, 引入步骤 1703: 在两个序列组中各获取一个接入序列或者从接 入序列对中选取一个接入序列对, 得到两个 ZC接入序列。 在高速的通信接入系统中, 也常常伴随着广覆盖。 由于协议将时间提前 ( Timing Advanced, 以下简称 TA )的范围限制在了 0~1282, 当 UE位于距离 基站 100km 以外时, 上行信号将无法在 eNodeB 处保持对齐, 从而破坏了 OFDM 系统的正交性。 为了突破现有协议限制, 这里一个更优的实施方式, 当 UE处于 100km以外时, 可以通过下发更大的 TA, 将其上行信号延后一个 Slot对齐( 3GPP协议的 Normal CP方式下),从而保持 OFDM符号的正交性。 对于 3GPP协议的 Extended CP, 由于每个符号的 CP长度均相同, 可以延后 整数个 SC-0FDM符号对齐。
这里新的实施例为增大小区覆盖的实施方法之一。 对于大小区的覆盖, 如图 18所述方案可覆盖到 100km范围以外的范围, UE可以在正常 RACH信 号釆样时刻后再釆样一次信号, 将两次釆样的信号分别与本地 ZC序列做相 关。 例如,通信小区是 200公里的小区半径。按图 1所示的 RACH信道结构, 当釆用 format 3 , TCP = 21024 · 。 当 UE传输延迟是 100km以及 100km以内, 只要釆样窗口 1设置合理, 因为 CP部分是 SEQ部分循环移位生成的, 只要 一个釆样窗口 1 就可以釆样到一个完整周期的信号。 但当 UE的传输延迟在 100km-200km之间, 则无法只通过一个窗口釆样, 在后面再增加一个釆样窗 口 2。 这样两个窗口保证至少一个可以釆样到一个完整周期的信号, 所以完成 了 200km小区半径内覆盖。 相应的, 也就可以用于估计小区内任意可能 RTD 误差范围或 RTD。
但有的基站因为硬件或者处理能力的限制, 只能处理一个釆样窗口。 又 一个实施例如图 19所示, 通过延长 CP的长度, 釆样窗既能釆样到小区中心 UE的一个周期信号, 也能够釆样到小区边缘 200km处 UE的一个周期信号。 但延长 CP产生了一个问题, 因为 CP部分是 SEQ部分的循环移位,在 200km 处的 UE釆样窗口内的信号和 19a段的信号是一样的。这样基站釆样到的一个 周期信号如何区分是釆样窗口的信号还是 19a段的信号? 如果是 19a段的信 号, 则被认为是虚线所表示的 UE信号的 RTD。 这样, 估计的 RTD可能存在 一个 SEQ周期 (800 μ δ ) 的偏差, 以下也可描述为 RTD估计的二义性。
这样的偏差可以通过以下方法消除。
1 )基站通过一个釆样窗口估计出一个 RTD的值后, 发给 UE, 如果后面 没有能接收到 U Ε上报的消息 3 ,则再发做了一个 SEQ周期调整后的 RTD估 计值。 所述对 RTD做一个 SEQ周期调整, 就是对小于 SEQ周期的 RTD值增 加一个 SEQ周期的时间长度。
或者, 2 ) UE接收到基站发送的 RTD后, 通过这个 RTD的定时建立上 行信道, 上报消息 3 , 如果 UE发现没有收到基站进一步的消息, 说明基站没 有能收到消息 3 , 则对上行定时进行一个 SEQ周期调整后再次上报消息 3。所 述对 RTD做一个 SEQ周期调整,就是对小于 SEQ周期的 RTD增加一个 SEQ 周期的时间长度。
这两个方法都是通过调度, 最多做两次尝试就可以克服二义性问题, 虽 然这两种方法都带来一定的延迟, 但都不大。
这样的二义性偏差还可以通过以下方法消除。如图 20所示,基站额外再 釆样一个窗口的信号, 这次釆样的窗口在原釆样窗之前, 具体的时间段是如 图 20中的 20a所示的一段, 也就是从预留偏差结束到 (800μδ-预留偏差) 。 设置一小段预留偏差的目的是: 不管 UE实际的 RTD如何, 尽可能在窗口内 都能釆样到 UE的上行信号, 否则相关处理后输出相关峰值能量不够强。如果 可以检测出信号的能量则认为真实的 RTD应该小于 SEQ周期(800 μ δ ) , 否 则真实的 RTD应该大于 SEQ周期 ( 800 μ s ) 。 以此为依据去修正 RTD估计 值。 本领域普通技术人员可以理解, 本文中所公开的方法和系统仅为示例性 质, 并且方法所包含的过程并非限于文中所述的顺序, 而是可以根据具体需 要以及技术实现的便利性进行调整。 除了上述例举的内容之外, 根据具体应 用场合的需要, 所述方法和系统还可以包括其他过程和模块。 本发明的技术 方案可以用于 LTE、 TD-LTE ( Time Division LTE )、以及其他基于 Zadoff-Chu 序列的随机接入信道的各种通信系统。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超 出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器 (ROM ) 、 电可编程 ROM、 电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或技术领域内所公知的任意 其它形式的存储介质中。
尽管已示出和描述了本发明的一些实施例, 但本领域技术人员应理解, 在不脱离本发明的原理和精神的情况下, 可对这些实施例进行各种修改, 这 样的修改应落入本发明的范围内。

Claims

权 利 要 求 书
1. 一种通信系统中随机接入的处理方法, 包括:
基站接收用户设备发送的第一 Zadoff-Chu序列和第二 Zadoff-Chu序 列, 其中所述第一 Zadoff-Chu序列的 du值小于所述第二 Zadoff-Chu序列 的 du值;
基站根据所述第一 Zadoff-Chu序列估计用户设备的往返延迟 RTD误 差范围, 根据所述第二 Zadoff-Chu序列在 RTD误差范围内估计 RTD或者 用户设备上行信号的频偏。
2. 如权利要求 1所述的方法, 其特征在于, 所述第一 Zadoff-Chu序 歹 du值和所述第二 Zadoff-Chu序列 du值的差值由系统允许的最大频偏对 于接入信道子载波带宽的倍数确定。
3. 如权利要求 2所述的方法, 其特征在于, 所述第二 Zadoff-Chu序 列 du值至少大于系统最大频偏对于接入信道子载波带宽倍数和所述第一 Zadoff-Chu序列 du值的乘积。
4. 如权利要求 1 所述的方法, 其特征在于, 基站通过广播信道通知 用户设备所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
5. 如权利要求 1所述的方法, 基站通知用户设备第一 Zadoff-Chu序 列组和第二 Zadoff-Chu序列组, 每个组包含若干个 Zadoff-Chu序列, 其中 所述第一 Zadoff-Chu 序列属于所述第一 Zadoff-Chu 序列组, 所述第二 Zadoff-Chu序列属于所述第二 Zadoff-Chu序列组。
6. 如权利要求 5 所述的方法, 其特征在于, 系统允许的最大频偏对 于接入信道子载波带宽的倍数为两倍, 所述第二 Zadoff-Chu序列组的各个 序列 du值在 167附近或者所述第二 Zadoff-Chu序列组的各个序列 du值落 在 ( 167-4N/5 , 167+N/5 ) 的范围, N为所述第二 Zadoff-Chu序列组的序 列数量。
7. 如权利要求 5 所述的方法, 其特征在于, 系统允许的最大频偏对 于接入信道子载波带宽的倍数为 K倍,所述第二 Zadoff-Chu序列组序列的
S39 - 2KN 839 + N
du值落在 2^ + 1 ' 2K + \ 的范围, Ν为所述第二 Zadoff-Chu序列组的序 列数量。
8. 如权利要求 4 所述的方法, 基站通过广播信道通知用户设备若干 个 Zadoff-Chu序列对,其中一个序列对包含所述第一 Zadoff-Chu序列和所 述第二 Zadoff-Chu序列。
9. 如权利要求 1-8任意一项所述的方法, 其特征在于, 基站存储用户 设备使用的所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
10. 如权利要求 1所述的方法,其特征在于,基站根据 RTD误差范围, 偏, 估计用户设备信号的频偏。
11. 如权利要求 10 所述的方法, 其特征在于, 识别所述第二 Zadoff-Chu序列的相关输出功率延迟谱 PDP的峰所对应的频偏, 包括: 基 站根据 RTD误差范围下限对所述第二 Zadoff-Chu序列的相关输出功率延 迟谱 PDP进行循环左移, 找出 1或者 2个最大峰值所在的频率偏移窗口。
12. 如权利要求 1所述的方法, 其特征在于, 进一步包括: 基站分别 釆集一个釆样窗口的 UE信号, 然后在这个釆样窗口定时前或后再釆集一 个窗口的信号, 用于判断 RTD是否存在一个接入序列 SEQ周期的偏差。
13. 如权利要求 1 所述的方法, 其特征在于, 基站得到 RTD误差范 围或者 RTD之后, 基站将 RTD误差范围或者 RTD下发给 UE, 等待接收 UE发送的消息 3 ,
如果基站不能接收到所述消息 3 , 以 RTD误差范围加上一个 SEQ周 期或者 RTD加上一个 SEQ周期下发给 UE, 并等待接收 UE的消息 3。
14. 权利要求 1-13任一项所述的方法, 可应用于 LTE或者 TD-LTE 通信系统。
15. 一种计算机程序产品, 包括计算机代码部分, 所述计算机代码部 分可在无线通信网络设备中执行,用于执行权利要求 1至 14其中之一所述 的方法。
16. 一种通信系统随机接入处理装置, 包括:
接收器, 接收用户设备发来包括第一 Zadoff-Chu 序列和第二 Zadoff-Chu序列的射频信号,其中所述第一 Zadoff-Chu序列的 du值小于所 述第二 Zadoff-Chu序列的 du值;
基带信号处理模块, 对所述射频信号进行频域时域基带处理; 序列检测模块, 根据所述第一 Zadoff-Chu序列估计 RTD误差范围, 根据所述第二 Zadoff-Chu序列识别在 RTD误差范围内的 RTD或者用户设 备上行信号频偏。
17. 如权利要求 16 所述的装置, 其特征在于, 所述第一 Zadoff-Chu 序列的 du值和所述第二 Zadoff-Chu序列的 du值相差由系统允许的最大频 偏对于接入信道子载波带宽的倍数确定。
18. 如权利要求 17 所述的装置, 其特征在于, 所述第二 Zadoff-Chu 序列的 du值至少大于系统最大频偏对于接入信道子载波带宽倍数和所述第 一 Zadoff-Chu序列 du值的乘积。
19. 如权利要求 16所述的装置, 其特征在于, 还包括广播信道模块, 用于通知用户设备所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
20. 如权利要求 16 所述的装置, 其特征在于, 通知用户设备第一 Zadoff-Chu 序列组和第二 Zadoff-Chu 序列组, 每个组包含若干个
Zadoff-Chu序列, 其中所述第一 Zadoff-Chu序列属于所述第一 Zadoff-Chu 序列组, 所述第二 Zadoff-Chu序列属于所述第二 Zadoff-Chu序列组。
21. 如权利要求 20 所述的装置, 其特征在于, 系统允许的最大频偏 对于接入信道子载波带宽的倍数为两倍, 所述第二 Zadoff-Chu序列组的各 个序列 du值在 167附近或者所述第二 Zadoff-Chu序列组的各个序列 du值 落在 ( 167-4N/5 , 167+N/5 ) 的范围, N为所述第二 Zadoff-Chu序列组的 序列数量。
22. 如权利要求 20 所述的装置, 其特征在于, 系统允许的最大频偏 对于接入信道子载波带宽的倍数为 K倍,所述第二 Zadoff-Chu序列组的各
S39 - 2KN 839 + N
个序列 du值落在 2^ + 1 ' 2K + \ 的范围, Ν为所述第二 Zadoff-Chu序列 组的序列数量。
23. 如权利要求 19 所述的装置, 所述广播信道模块, 用于通知用户 设备若干个 Zadoff-Chu序列对, 其中一个序列对包含所述第一 Zadoff-Chu 序列和所述第二 Zadoff-Chu序列。
24. 如权利要求 16 所述的装置, 其特征在于, 所述序列检测模块, 还用于通过估计的 RTD误差范围, 识别所述第二 Zadoff-Chu序列的相关 输出功率延迟谱 PDP的峰所对应的频偏, 估计用户设备信号的频偏。
25. 如权利要求 24 所述的装置, 其特征在于, 所述序列检测模块, 根据 RTD误差范围下限对所述第二 Zadoff-Chu序列的相关输出功率延迟 谱 PDP进行循环左移, 找出 1或者 2个最大峰值所在的频率偏移窗口, 估 计用户设备信号的频偏。
26. 如权利要求 16 所述的装置, 其特征在于, 还包括釆样模块, 用 于釆集一个釆样窗口的 UE信号, 然后在这个釆样窗口定时前或后再釆集 一个窗口的信号, 用于判断 RTD是否存在一个 SEQ周期的偏差。
27. 如权利要求 16所述的装置, 其特征在于, 基站得到 RTD误差范 围或者 RTD之后, 基站将 RTD误差范围或者 RTD下发给 UE, 等待接收 UE发送的消息 3 ,
如果基站不能接收到所述消息 3 , 以 RTD误差范围加上一个 SEQ周 期或者 RTD加上一个 SEQ周期下发给 UE, 并等待接收 UE的消息 3。
28. 权利要求 16-27所述的装置, 可应用于 LTE或者 TD-LTE通信系 统。
29. 一种用户设备的随机接入方法, 包括:
用户设备发送第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中所 述第一 Zadoff-Chu序列的 du值小于所述第二 Zadoff-Chu序列的 du值; 所述第一 Zadoff-Chu序列用于基站估计用户设备的往返延迟 RTD误 差范围, 所述第二 Zadoff-Chu序列用于基站在 RTD误差范围内估计 RTD 或者用户设备上行信号的频偏。
30. 如权利要求 29所述的方法, 进一步包括:
用户设备接收到基站发来的 RTD信息, 以 RTD或者 RTD进行一个 SEQ周期的调整为定时发送上行消息 3。
31. 如权利要求 29 所述的方法, 其特征在于, 用户设备接收基站广 播信道通知, 得到所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
32. 如权利要求 29-31所述的方法之一, 其特征在于, 用户设备通过 存储器存储的所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
33. 一种计算机程序产品, 包括计算机代码部分, 所述计算机代码部 分可在用户设备中执行,用于执行权利要求 29至 32其中之一所述的方法。
34. —种用户设备, 包括:
存储器, 存储第一 Zadoff-Chu序列和第二 Zadoff-Chu序列, 其中所 述第一 Zadoff-Chu序列的 du值小于所述第二 Zadoff-Chu序列的 du值, 所 述第一 Zadoff-Chu序列用于估计 RTD误差范围, 所述第二 Zadoff-Chu序 列用于识别在 RTD误差范围内的 RTD或者用户设备上行信号频偏;
基带信号处理模块,对所述两个 Zadoff-Chu序列进行时域频域基带信 号处理。
35. 如权利要求 34所述的用户设备, 进一步包括:
接收器, 接收到基站发来的 RTD信息,
发送模块, 以 RTD或者 RTD做一个 SEQ周期的调整为定时发送上 行消息 3。
36. 如权利要求 34 所述的用户设备, 其特征在于, 接收器接收基站 广播信道通知的所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
37. 如权利要求 34-36所述的用户设备之一,其特征在于, Zadoff-Chu 序列产生模块产生所述第一 Zadoff-Chu序列和所述第二 Zadoff-Chu序列。
38. 一种随机接入的系统方法, 包括:
权利要求 1至 15其中之一所述的基站方法和权利要求 29至 33其中 之一所述的用户设备方法。
39. —种随机接入的系统, 包括:
权利要求 16至 28其中之一所述的基站和权利要求 34至 37其中之一 所述的用户设备。
PCT/CN2013/070174 2012-01-09 2013-01-07 一种通信系统中的随机接入方法及装置 WO2013104293A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13735869.3A EP2804356B1 (en) 2012-01-09 2013-01-07 Method and apparatus for random access in communication system
RU2014132694/07A RU2584677C2 (ru) 2012-01-09 2013-01-07 Способы и устройство для произвольного доступа в системе связи
US14/326,273 US9398617B2 (en) 2012-01-09 2014-07-08 Methods and apparatus for random access in a communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210004747.5A CN103200694B (zh) 2012-01-09 2012-01-09 一种通信系统中的随机接入方法及装置
CN201210004747.5 2012-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/326,273 Continuation US9398617B2 (en) 2012-01-09 2014-07-08 Methods and apparatus for random access in a communication system

Publications (1)

Publication Number Publication Date
WO2013104293A1 true WO2013104293A1 (zh) 2013-07-18

Family

ID=48723008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070174 WO2013104293A1 (zh) 2012-01-09 2013-01-07 一种通信系统中的随机接入方法及装置

Country Status (5)

Country Link
US (1) US9398617B2 (zh)
EP (1) EP2804356B1 (zh)
CN (1) CN103200694B (zh)
RU (1) RU2584677C2 (zh)
WO (1) WO2013104293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727155C1 (ru) * 2017-03-20 2020-07-21 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и пользовательское оборудование для передачи преамбулы произвольного доступа, способ и базовая станция для приема преамбулы произвольного доступа

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581944B (zh) * 2012-08-07 2016-12-07 华为技术有限公司 超高速随机接入处理方法、装置及系统
RU2658551C1 (ru) * 2014-06-03 2018-06-22 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство для генерирования последовательности zc канала случайного доступа
JP6611923B2 (ja) * 2015-09-25 2019-11-27 華為技術有限公司 ランダムアクセス系列生成方法、デバイス及びシステム
CN106559373A (zh) * 2015-09-28 2017-04-05 普天信息技术有限公司 一种适合离散频谱的sc-ofdm信号收发方法、装置及系统
US10389558B2 (en) * 2016-10-03 2019-08-20 Mediatek Inc. Method and apparatus for synchronization
CN109952750B (zh) * 2016-11-11 2022-07-22 瑞典爱立信有限公司 具有Zadoff-Chu序列的参考信号设计
JP6713427B2 (ja) * 2017-03-27 2020-06-24 日立オートモティブシステムズ株式会社 負荷駆動システムおよび負荷駆動方法
US10568143B2 (en) * 2017-03-28 2020-02-18 Cohere Technologies, Inc. Windowed sequence for random access method and apparatus
CN110547034B (zh) * 2017-04-26 2022-07-29 华为技术有限公司 数据传输方法、设备及系统
CN109391342B (zh) * 2017-08-04 2020-10-23 华为技术有限公司 一种数据传输方法、相关设备及系统
CN111988862B (zh) * 2019-05-21 2022-07-19 大唐移动通信设备有限公司 随机接入信道的选择、配置方法、接入设备及网络设备
CN110493820B (zh) * 2019-09-24 2022-12-20 辰芯科技有限公司 一种传输时延评估方法、装置、通信节点和存储介质
WO2021093146A1 (en) * 2020-01-03 2021-05-20 Zte Corporation Root selection for random access
CN112887241B (zh) * 2021-04-29 2021-07-16 成都星联芯通科技有限公司 频偏估计方法、装置、通信设备及存储介质
CN117222041B (zh) * 2023-11-09 2024-03-15 深圳国人无线通信有限公司 5G小基站系统中PRACH信号preamble相关峰的检测方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689882A (zh) * 2008-10-10 2010-03-31 Zte维创通讯公司 用于估计和校正lte中的频率偏移的装置和方法
CN102255722A (zh) * 2006-01-18 2011-11-23 华为技术有限公司 改进通讯系统中同步和信息传输的方法
CN102263767A (zh) * 2011-08-30 2011-11-30 北京北方烽火科技有限公司 应用于无线通信的帧同步、频偏估计方法与装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2434346C2 (ru) * 2007-01-05 2011-11-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ установки циклического сдвига с учетом сдвига частоты
ES2385168T3 (es) 2007-01-05 2012-07-19 Lg Electronics, Inc. Procedimiento para establecer el desplazamiento cíclico considerando el desplazamiento de la frecuencia
US7792212B2 (en) * 2007-01-05 2010-09-07 Lg Electronics, Inc. Method for setting cyclic shift considering frequency offset
US8144819B2 (en) * 2007-04-30 2012-03-27 Telefonaktiebolaget L M Ericsson (Publ) Synchronization for chirp sequences
US20090073944A1 (en) * 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
US8249029B2 (en) * 2008-03-28 2012-08-21 Qualcomm Incorporated Low reuse preamble for a wireless communication network
US20110086658A1 (en) * 2008-06-12 2011-04-14 Telefonaktiebolaget L M Ericsson (Publ) Random Access Mode Control Method and Entity
RU2434246C1 (ru) 2010-03-16 2011-11-20 Сергей Борисович Курсин Способ съемки рельефа дна акватории и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255722A (zh) * 2006-01-18 2011-11-23 华为技术有限公司 改进通讯系统中同步和信息传输的方法
CN101689882A (zh) * 2008-10-10 2010-03-31 Zte维创通讯公司 用于估计和校正lte中的频率偏移的装置和方法
CN102263767A (zh) * 2011-08-30 2011-11-30 北京北方烽火科技有限公司 应用于无线通信的帧同步、频偏估计方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2804356A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727155C1 (ru) * 2017-03-20 2020-07-21 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и пользовательское оборудование для передачи преамбулы произвольного доступа, способ и базовая станция для приема преамбулы произвольного доступа
US11184210B2 (en) 2017-03-20 2021-11-23 Lg Electronics Inc. Method and user equipment for transmitting random access preamble, and method and base station for receiving random access preamble

Also Published As

Publication number Publication date
RU2584677C2 (ru) 2016-05-20
US9398617B2 (en) 2016-07-19
RU2014132694A (ru) 2016-02-27
CN103200694B (zh) 2017-04-12
EP2804356A1 (en) 2014-11-19
EP2804356A4 (en) 2014-12-17
US20140321398A1 (en) 2014-10-30
EP2804356B1 (en) 2017-08-02
CN103200694A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2013104293A1 (zh) 一种通信系统中的随机接入方法及装置
JP6031137B2 (ja) 無線通信システムにおける距離範囲拡大のための構成可能なランダム・アクセス・チャネル構造
KR101817290B1 (ko) Lte 통신 시스템의 물리 랜덤 액세스 채널 프리앰블 감지 방법 및 장치
US9479218B2 (en) Methods for LTE cell search with large frequency offset
CN101473620B (zh) Ofdm通信系统中利用同步信道获得邻近小区测量的方法和设备
US20160330700A1 (en) Method and apparatus for transmitting data between wireless devices in wireless communication system
CN110445596B (zh) 同步信号的发送方法、接收方法及装置
WO2018018417A1 (zh) 信息传输方法和信息传输设备
US8797994B2 (en) Frequency offset estimation method, communication apparatus, wireless communication system, and program
CN107820273B (zh) 一种检测D2D中sidelink的同步信号的方法及装置
JP5648500B2 (ja) 送信装置、送信方法、受信装置、及び受信方法
WO2014169576A1 (en) Secondary cell synchronization for carrier aggregation
WO2012027880A1 (en) Methods and apparatus for carrier frequency offset estimation and carrier frequency offset correction
EP3577870A1 (en) Coherent detection of large physical random access control channel (prach) delays
CN106792778B (zh) 一种测量lte系统中上行srs信号功率的方法及装置
GB2583691A (en) Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks
US11870632B2 (en) Method, device and apparatus for time division duplex synchronization for distributed antenna system, and medium
WO2014081421A1 (en) Apparatus and method for robust sequence design to enable cross technology signal detection
CN107466462B (zh) 用于精确时偏估计的方法和装置
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
JP2016213530A (ja) セルサーチ方法及びユーザ装置
CN110741581A (zh) 一种在设备到设备通信链路中处理接收信道信号的方法
CN113784421A (zh) 一种基于5g运营信号的信道录制方法、装置、介质和终端
KR101683295B1 (ko) 이동통신시스템에서 otdoa 추정 장치 및 방법
CN107113780A (zh) 一种数据传输方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014132694

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013735869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013735869

Country of ref document: EP