WO2018018417A1 - 信息传输方法和信息传输设备 - Google Patents

信息传输方法和信息传输设备 Download PDF

Info

Publication number
WO2018018417A1
WO2018018417A1 PCT/CN2016/091721 CN2016091721W WO2018018417A1 WO 2018018417 A1 WO2018018417 A1 WO 2018018417A1 CN 2016091721 W CN2016091721 W CN 2016091721W WO 2018018417 A1 WO2018018417 A1 WO 2018018417A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
basic parameter
parameter set
primary
subset
Prior art date
Application number
PCT/CN2016/091721
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/314,831 priority Critical patent/US11032784B2/en
Priority to CN202110513436.0A priority patent/CN113329485A/zh
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CA3031986A priority patent/CA3031986C/en
Priority to AU2016416149A priority patent/AU2016416149B2/en
Priority to MX2019001120A priority patent/MX2019001120A/es
Priority to EP16909998.3A priority patent/EP3490316B1/en
Priority to JP2019504004A priority patent/JP6951414B2/ja
Priority to PCT/CN2016/091721 priority patent/WO2018018417A1/zh
Priority to CN201680088043.7A priority patent/CN109565795B/zh
Priority to EP22185490.4A priority patent/EP4096330A1/en
Priority to MYPI2019000446A priority patent/MY197924A/en
Priority to RU2019104981A priority patent/RU2721757C1/ru
Priority to ES16909998T priority patent/ES2929712T3/es
Priority to BR112019001474-8A priority patent/BR112019001474B1/pt
Priority to SG11201900714VA priority patent/SG11201900714VA/en
Priority to KR1020197005005A priority patent/KR20190035765A/ko
Priority to TW106122647A priority patent/TW201804847A/zh
Publication of WO2018018417A1 publication Critical patent/WO2018018417A1/zh
Priority to PH12019500181A priority patent/PH12019500181A1/en
Priority to IL264474A priority patent/IL264474B2/en
Priority to ZA2019/01173A priority patent/ZA201901173B/en
Priority to US17/214,733 priority patent/US11665656B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group

Definitions

  • the embodiments of the present application relate to the field of communications, and, more particularly, to an information transmission method and an information transmission device.
  • the basic parameter set (numerology) in the Long Term Evolution (LTE) system is: one radio frame is 10 ms, one radio frame includes ten subframes, one subframe includes two slots, and one slot includes seven symbols.
  • a time slot on the 12 subcarriers in the frequency domain constitutes one resource block (Resource Block, RB), each subcarrier interval is 15k, etc., and as the service diversity is presented, a single basic parameter set can no longer adapt to the signal. Transmission requirements.
  • the embodiment of the present application provides an information transmission method and device, which can meet the transmission requirement of a signal.
  • an information transmission method comprising:
  • a synchronization signal is received or transmitted according to the target base parameter set.
  • the determining the target basic parameter set from the multiple basic parameter sets includes:
  • the form, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal are the form, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal.
  • the determining the target basic parameter from the multiple basic parameter sets includes:
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal.
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set, The first basic parameter set is different from the second basic parameter set;
  • Receiving or transmitting a synchronization signal according to the target basic parameter set including:
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set
  • Determining the target basic parameter set from the plurality of basic parameter sets comprising: selecting the first basic parameter set from the first subset of the plurality of basic parameter sets, the first subset including the plurality At least one basic parameter set in the basic parameter set; selecting a second basic parameter set from the second subset of the plurality of basic parameter sets, the second subset including at least one basic parameter set in the plurality of basic parameter sets
  • the first subset and the second subset include at least one different set of basic parameters
  • Receiving or transmitting the synchronization signal according to the target basic parameter set comprising: receiving or transmitting the primary synchronization signal according to the first basic parameter set; receiving or transmitting the according to the second basic parameter set Secondary sync signal.
  • the method further includes:
  • the third basic parameter set is different from the first basic parameter set and the second basic parameter set.
  • the time of the time domain start position of the primary synchronization signal and the corresponding secondary synchronization signal belongs to a time domain difference set, and the time domain difference set is a finite set; and/or,
  • the difference between the primary synchronization signal and the corresponding frequency domain start position of the secondary synchronization signal belongs to a frequency domain difference set, and the frequency domain difference set is a finite set.
  • the time of the time domain start position of the primary synchronization signal and the corresponding secondary synchronization signal is not zero.
  • the time-frequency position occupied by the primary synchronization signal and the corresponding secondary synchronization signal are occupied.
  • the time-frequency positions do not overlap.
  • the method further includes:
  • the receiving or sending the primary system information includes:
  • the method further includes:
  • Receiving or transmitting the primary system information including:
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal;
  • Determining a time-frequency location of the primary system information according to the time-frequency location of the synchronization signal including:
  • a time domain start position of the primary synchronization signal, a time domain start position of the secondary synchronization signal, and a time domain difference position of the primary synchronization signal and a corresponding time domain start position of the secondary synchronization signal At least one of determining a time domain start position of the primary system information
  • a frequency domain start position of the primary synchronization signal a frequency domain start position of the secondary synchronization signal, and a frequency domain difference between the primary synchronization signal and a frequency domain start position of the corresponding secondary synchronization signal. At least one of determining a frequency domain starting position of the primary system information.
  • the synchronization signal is used to indicate a time-frequency position, a modulation mode, and At least one of the corresponding set of basic parameters.
  • all or part of the sequence corresponding to the synchronization signal, or a mask of the synchronization signal And indicating at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, length of an OFDM symbol cyclic prefix (Cyclic Prefix, CP), used to generate OFDM
  • Cyclic Prefix CP
  • the carrier, the cell, or the transmission node used to send the synchronization signal is within the time period, the plurality of basic parameter sets are present for determining the target base parameter set.
  • an information transmission method comprising:
  • the target signal is acquired according to the blind detection result.
  • the target signal is a synchronization signal
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal
  • the second aspect of the second aspect may In the energy implementation mode, blind detection of the synchronization signal is performed by using a plurality of basic parameter sets, including:
  • the primary synchronization signal is blindly detected using a first subset of the plurality of basic parameter sets
  • the first subset and the second subset include different sets of basic parameters.
  • the secondary synchronization signal is blindly detected by using the second subset of the multiple basic parameter sets, include:
  • the primary synchronization signal uses the primary synchronization signal, the relative position set of the primary synchronization signal and the corresponding secondary synchronization signal, and the second subset of the plurality of basic parameter sets to perform blind detection on the secondary synchronization signal, where the first The subset and the second subset comprise at least one different set of base parameters.
  • the first subset is a subset of the second subset.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • an information transmission apparatus for performing the method of any of the above-described first aspect or any optional implementation of the first aspect.
  • the information transmission device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an information transmission apparatus for performing the method of any of the above alternative aspects of the second aspect or the second aspect.
  • the information transmission device comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • an information transmission apparatus comprising: a memory for storing an instruction for executing an instruction stored by the memory, and a processor, and when the processor executes the instruction stored by the memory, The execution causes the processor to perform the first aspect or the first aspect The method in any optional implementation.
  • an information transmission apparatus comprising: a memory for storing an instruction for executing an instruction stored by the memory, and a processor, and when the processor executes the instruction stored by the memory, The execution causes the processor to perform the method of the second aspect or any alternative implementation of the second aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing the above first aspect or any alternative implementation of the first aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing the second aspect or any alternative implementation of the second aspect.
  • selecting a target basic parameter set for synchronization signal transmission from a plurality of basic parameter sets can avoid that the synchronization signal transmission can only adopt a single basic parameter set, and can be selected based on signal transmission requirements.
  • the target base parameter set is used to transmit the synchronization signal.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of relative positions of a primary synchronization signal and a corresponding secondary synchronization signal according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an information transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an information transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an information transmission device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an information transmission method according to an embodiment of the present application.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System, UMTS
  • 5G etc.
  • the technical solution of the embodiment of the present application can be applied to communication between a terminal device and a network device, and can also be applied to communication between a terminal device and a device to Device (D2D).
  • D2D device to Device
  • the network device may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved Node B (eNB) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved Node B
  • e-NodeB which may also be a device for providing an access service in the 5G, which is not limited in this embodiment.
  • the present application describes various embodiments in connection with a terminal device and a network device.
  • the terminal device may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device, etc.
  • the terminal device may be an ST (STAION) in a WLAN (Wireless Local Area Networks). It can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), a handheld with wireless communication function.
  • the network device may be a device for communicating with the terminal device, and the network device may be an AP (ACCESS POINT) in the WLAN (Wireless Local Area Networks), GSM or CDMA (Code Division Multiple Access).
  • the BTS (Base Transceiver Station) in the multiple access) may also be an NB (NodeB, base station) in WCDMA, or an eNB or an eNodeB (Evolutional Node B) in LTE (Long Term Evolution).
  • Type base station or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • Subcarrier spacing number of subcarriers in a particular bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexed OFDM symbol, Fourier transform for generating an OFDM signal, such as a fast Fourier transform ( Fast Fourier Transform (abbreviated as "FFT") or inverse Fourier transform, such as Inverse Fast Fourier Transform (“IFFT”), the number of OFDM symbols in the transmission time interval TTI, within a certain length of time The number of TTIs included and the length of the signal prefix.
  • FFT Fast Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; the number of subcarriers included in the PRB is, for example, typical.
  • the number of OFDM symbols included in the TTI may be, for example, an integer multiple of 14; the number of TTIs included in a certain time unit may refer to the number of TTIs included in the length of 1 ms or 10 ms; the length of the signal prefix For example, the length of the cyclic prefix of the signal, or whether the cyclic prefix uses a regular CP or an extended CP.
  • the multiple basic parameter sets exist for determining the target in a time period from establishment to shutdown of a carrier, a cell, or a transmission node used to send the synchronization signal.
  • the base parameter set is not limited to the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of an information transmission method 100 according to an embodiment of the present application.
  • the method 100 can be used for a sending process or a receiving process of a synchronization signal, where the synchronization signal is sent.
  • the sender may be a network device, and the receiver may be a terminal device; or the sender of the synchronization signal may be a terminal device, and the receiver may be another terminal device.
  • the method includes 110 and 120.
  • a target base parameter set is determined from a plurality of base parameter sets.
  • a synchronization signal is received or transmitted in accordance with the target base parameter set.
  • selecting a target basic parameter set for synchronization signal transmission from a plurality of basic parameter sets can avoid that the synchronization signal transmission can only adopt a single basic parameter set, and can be selected based on signal transmission requirements.
  • the target base parameter set is used to transmit the synchronization signal.
  • the target basic parameter set may be determined from the multiple basic parameter sets according to at least one of the following information:
  • the transmission environment of the synchronization signal for example, urban environment, highway and high-speed railway, mountain environment or rural environment;
  • the form, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal are the form, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal.
  • the antenna configuration mentioned in the embodiment of the present application includes an omnidirectional antenna, a directional antenna (which may be further divided into a circular antenna array, a linear antenna array, and a planar antenna array).
  • the value of the at least one basic parameter may be determined according to the foregoing information; and the target basic parameter set is determined according to the value of the at least one basic parameter.
  • the subcarrier spacing used for transmitting the synchronization signal may be 15 kHz or 30 kHz. After determining the subcarrier spacing, the subcarrier spacing may be determined to be 15 kHz or The basic parameter set of 30KHz is used as the target basic parameter set.
  • the carrier frequency used for transmitting the synchronization signal is 60 GHz
  • the subcarrier spacing used for transmitting the synchronization signal is 60 kHz or 120 kHz
  • the subcarrier spacing can be determined to be 60 kHz or 120 kHz.
  • the base parameter set is used as the target base parameter set.
  • the synchronization signal mentioned in the embodiment of the present application may include a primary synchronization signal and/or a secondary synchronization signal corresponding to the primary synchronization signal.
  • the target basic parameter set may include a first basic parameter set for receiving or transmitting a primary synchronization signal, and a second basic parameter set for receiving or transmitting the secondary synchronization signal.
  • the first basic parameter set and the second basic parameter set may be the same or different.
  • the difference between the first basic parameter set and the second basic parameter set may be that the values of all the parameters of the first basic parameter set and the second parameter set are different, or part of the first basic parameter set and the second basic parameter set. The value is different.
  • the first subset and the second subset may comprise a completely different set of underlying parameters.
  • a first basic parameter set is selected from a part of a basic parameter set (which may be referred to as a first subset) of a plurality of basic parameter sets, for receiving or transmitting a primary synchronization signal;
  • the second basic parameter set is selected for receiving or transmitting the secondary synchronization signal.
  • the first basic parameter set may be different from the second basic parameter set.
  • the first subset may be a subset of the second subset, that is, the base parameter set in the first subset belongs to the second subset.
  • a second basic parameter set is selected for receiving or transmitting a secondary synchronization signal; and a part from a plurality of basic parameter sets In the basic parameter set (which may be referred to as the first subset), the first basic parameter set is selected for receiving or transmitting the primary synchronization signal.
  • the second basic parameter set selectable range is larger than the first basic parameter set selectable range, and the first basic parameter set and the second basic parameter set may be the same or different.
  • the time domain starting position t pss-start of the Primary Synchronization Signal (PSS) and the corresponding time domain of each Secondary Synchronization Signal (SSS) are
  • the time domain difference t pss-sss-offset of the start position t sss-start belongs to the time domain difference set T pss-sss-offset ; and/or the frequency domain start position f pss-start of the main synchronization signal and the corresponding
  • the difference f pss-ss-offset of the frequency domain start position f ss-start of the secondary synchronization signal belongs to the frequency domain difference set F pss-ss-offset .
  • time domain difference sets T pss-sss-offset and F pss-sss-offset are finite sets.
  • time domain difference sets T pss-sss-offset and F pss-sss-offset are finite sets.
  • the difference between the time domain start position of the primary synchronization signal and the corresponding secondary synchronization signal and/or the difference between the frequency domain start positions may be related to the used carrier frequency, and specifically, may be based on the used carrier.
  • the frequency is used to select a difference between a time domain start position of the primary synchronization signal and the corresponding secondary synchronization signal and/or a difference between the frequency domain start positions.
  • t pss-sss-offset may be positive, negative or 0, and t pss-sss-offset is a positive number indicating that the starting position of the primary synchronization signal in the time domain is greater than the corresponding secondary synchronization signal.
  • the starting position of the time domain, t pss-sss-offset is a positive number indicating that the starting position of the primary synchronization signal in the time domain is smaller than the starting position of the corresponding secondary synchronization signal in the time domain.
  • t pss-sss-offset is zero to indicate that the start position of the primary synchronization signal in the time domain is equal to the start position of the corresponding secondary synchronization signal in the time domain.
  • f pss-sss-offset may be positive, negative or 0, and f pss-sss-offset is positive, indicating that the starting position of the primary synchronization signal in the frequency domain is greater than the corresponding secondary synchronization signal.
  • the starting position of the frequency domain, f pss-sss-offset is a positive number indicating that the starting position of the primary synchronization signal in the frequency domain is smaller than the starting position of the corresponding secondary synchronization signal in the frequency domain.
  • f pss-ss-offset is zero, indicating that the starting position of the primary synchronization signal in the frequency domain is equal to the starting position of the corresponding secondary synchronization signal in the frequency domain.
  • f pss-sss-offset and t pss-sss-offset are not zero at the same time, which means that the time synchronization starting position of the primary synchronization signal and the corresponding secondary synchronization signal is at least The time domain is different or the frequency domain is different.
  • the time-frequency position occupied by the primary synchronization signal and the time-frequency position occupied by the corresponding secondary synchronization signal do not overlap, for example, as shown in FIG. 2 .
  • the PSS time domain start position and the frequency domain start position are both ahead of the SSS start time position and the P frequency start position respectively
  • FIG. 2 is only one scenario of the embodiment of the present application.
  • the primary system information may be referred to as a master information block (MIB).
  • MIB master information block
  • the time-frequency location of the primary system information may be determined according to the time-frequency location of the synchronization signal; and the primary system information is received or transmitted according to the time-frequency location of the primary system information.
  • the time domain start position of the secondary synchronization signal Determining a time domain start position of the primary system information according to at least one of the domain difference values; a frequency domain start position of the primary synchronization signal, a frequency domain start position of the secondary synchronization signal, and an adjacent primary synchronization signal And determining a frequency domain start position of the primary system information by at least one of a frequency domain difference value of a frequency domain start position of the secondary synchronization signal.
  • the time-frequency position of the MIB is determined by the position of the PSS and/or SSS, and/or the time-frequency relative position (offset) of the PSS and SSS, f pss-sss-offset and t pss-sss-offset .
  • the frequency domain start position of the MIB is the same as the PSS or SSS or the integer multiple of the distance f pss-sss-offset
  • the time domain start position is calculated by t pss-sss-offset , for example, MIB and PSS (or SSS)
  • the relative position of ) is an integer multiple of t pss-sss-offset
  • the time-frequency start position of the primary synchronization signal or the time-frequency position of the secondary synchronization signal, and the set of elements and frequency-domain differences in the time-domain difference set mentioned above may be used.
  • the elements determine the time-frequency location of the primary system information. That is, after determining the time-frequency start position of the primary synchronization signal (or the secondary synchronization signal), the time domain of the primary system information and the primary synchronization signal (or secondary synchronization signal) may be selected from the time domain difference set.
  • the time domain difference value of selecting the time domain starting position of the primary system information and the primary synchronization signal (or the secondary synchronization signal) from the time domain difference set may be randomly selected.
  • the selected time domain difference may be the same as or different from the selected time domain difference value for the primary synchronization signal and the corresponding secondary synchronization signal time domain start position.
  • the frequency domain difference between the frequency domain start position of the primary system information and the primary synchronization signal (or the secondary synchronization signal) may be randomly selected from the frequency domain difference set, and the selected frequency domain difference may be selected for use.
  • the frequency domain difference between the primary synchronization signal and the corresponding secondary synchronization signal frequency domain start position is the same or different.
  • the primary system information may be received or transmitted according to the time-frequency location of the primary system information and the basic parameter set corresponding to the primary system information.
  • the basic parameter set of the primary system information may be the same as the basic parameter set used by the primary synchronization signal, or different from the basic parameter set used by the primary synchronization signal; or
  • the basic parameter set of the primary system information may be the same as the basic parameter set used by the secondary synchronization signal, or may be different from the basic parameter set used by the secondary synchronization signal.
  • the synchronization signal is used to indicate at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • the synchronization signal may also indicate other related information of the main system information, which is not specifically limited in this embodiment of the present application.
  • all or part of the sequence corresponding to the synchronization signal, or a mask of the synchronization signal is used to indicate a time-frequency position, a modulation mode, and a corresponding basis of the primary system information. At least one of the parameter sets.
  • FIG. 3 is a schematic flowchart of an information transmission method 200 according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes:
  • the transmitting end may select a target basic parameter set to transmit signals from multiple basic parameter sets, and the receiving end may use the multiple basic parameter sets to perform blind detection on the synchronous signal, and obtain synchronization according to the blind detection result. signal.
  • the target signal is a synchronization signal
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal
  • the primary synchronization signal is blindly detected by using the first subset of the multiple basic parameter sets; and the secondary synchronization signal is blindly detected by using the second subset of the multiple basic parameter sets.
  • the first subset and the second subset comprise at least one different set of base parameters.
  • the first subset and the second subset include completely different foundations. Parameter set.
  • the primary synchronization signal is blindly detected by using a part of the basic parameter set (which may be referred to as the first subset) of the plurality of basic parameter sets; and another basic parameter of the plurality of basic parameter sets is utilized.
  • the set (called the second subset) performs blind detection of the secondary sync signal.
  • the first subset may be a subset of the second subset, that is, the base parameter set of the selectable transmit secondary synchronization signal may be greater than or equal to the basic parameter set of the selectable primary synchronization signal.
  • the primary synchronization signal is blindly detected by using a part of the basic parameter sets in the plurality of basic parameter sets; and the secondary synchronization signals are blindly detected by using multiple basic parameter sets.
  • the set may be selected, and the first basic parameter set and the second basic parameter set may be the same or different.
  • a relative position set of the primary synchronization signal and a corresponding secondary synchronization signal, and a second subset of the plurality of basic parameter sets perform blind detection on the secondary synchronization signal.
  • the time-domain difference set and the frequency-domain difference set may be used according to the primary synchronization signal.
  • Blind detection is performed on a possible time-frequency position of each of the secondary synchronization signals to obtain a secondary synchronization signal corresponding to the primary synchronization signal.
  • FIG. 4 is a schematic block diagram of an information transmission device 300 according to an embodiment of the present application. As shown in FIG. 4, the device 300 includes:
  • the processing unit 310 is configured to determine a target basic parameter set from a plurality of basic parameter sets
  • the transceiver unit 320 is configured to receive or send a synchronization signal according to the target basic parameter set.
  • processing unit 310 is specifically configured to:
  • the target base parameter set is determined from the plurality of basic parameter sets according to at least one of the following information:
  • the shape, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal are the shape, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal.
  • processing unit 310 is specifically configured to:
  • the target base parameter set is determined based on the value of the at least one base parameter.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal.
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set, where the first basic parameter set is different from the second basic parameter set;
  • the transceiver unit 320 is specifically configured to:
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set
  • the processing unit 310 is specifically configured to: select, according to the first subset of the plurality of basic parameter sets, the first basic parameter set, where the first subset includes at least one basic parameter set of the plurality of basic parameter sets; a second subset of the basic parameter sets, the second basic parameter set is selected, the second subset includes at least one basic parameter set of the plurality of basic parameter sets, the first subset and the second subset including at least one Different sets of basic parameters;
  • the transceiver unit 320 is specifically configured to: receive or send the primary synchronization signal according to the first basic parameter set; and receive or send the secondary synchronization signal according to the second basic parameter set.
  • the transceiver unit 320 is further configured to:
  • the third basic parameter set is different from the first basic parameter set and the second basic parameter set.
  • the time domain difference value of the primary synchronization signal and the corresponding time domain start position of the secondary synchronization signal belongs to a time domain difference set, where the time domain difference set is a finite set; and/or,
  • the difference between the primary synchronization signal and the corresponding frequency domain start position of the secondary synchronization signal belongs to a frequency domain difference set, and the frequency domain difference set is a finite set.
  • the time difference between the primary synchronization signal and the corresponding time domain start position of the secondary synchronization signal, and the difference between the primary synchronization signal and the corresponding frequency domain start position of the secondary synchronization signal At least one is not zero.
  • the time-frequency position occupied by the primary synchronization signal and the corresponding time-frequency position occupied by the secondary synchronization signal do not overlap.
  • the transceiver unit 320 is further configured to: receive or send primary system information.
  • the transceiver unit 320 is specifically configured to:
  • the processing unit 310 is further configured to: determine a time-frequency location of the primary system information according to a time-frequency position of the synchronization signal;
  • the transceiver unit 320 is further configured to: receive or send the primary system information according to the time-frequency location of the primary system information.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal;
  • the processing unit 310 is specifically configured to:
  • the synchronization signal is used to indicate at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • all or part of the sequence corresponding to the synchronization signal, or a mask of the synchronization signal is used to indicate at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, length of an OFDM symbol cyclic prefix (Cyclic Prefix, CP), used to generate OFDM
  • Cyclic Prefix CP
  • the plurality of basic parameter sets exist for determining the target basic parameter set during a time period from establishment to shutdown of a carrier, a cell, or a transmission node for transmitting the synchronization signal.
  • the device 300 can be a terminal device or a network device.
  • the device 300 shown in FIG. 4 can implement the corresponding process of the method 100, for the sake of brevity. I will not repeat them here.
  • FIG. 5 is a schematic block diagram of an apparatus 400 in accordance with an embodiment of the present application. As shown in FIG. 5, the device 400 includes:
  • the transceiver unit 410 is configured to perform blind detection on the target signal by using a plurality of basic parameter sets
  • the processing unit 420 is configured to acquire the target signal according to the blind detection result.
  • the target signal is a synchronization signal
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal.
  • the transceiver unit 410 is specifically configured to:
  • the primary synchronization signal is blindly detected using a first subset of the plurality of basic parameter sets
  • the first subset and the second subset include different sets of basic parameters.
  • the transceiver unit 410 is specifically configured to:
  • the primary synchronization signal uses the primary synchronization signal, the relative position set of the primary synchronization signal and the corresponding secondary synchronization signal, and the second subset of the plurality of basic parameter sets to perform blind detection on the secondary synchronization signal, wherein the first subset and the first subset The second subset includes at least one different set of basic parameters.
  • the first subset is a subset of the second subset.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • the plurality of basic parameter sets are present for blind detection of the target signal during a time period from establishment to shutdown of a carrier, a cell, or a transmission node for transmitting the target signal.
  • the device 400 can be a terminal device or a network device.
  • the device 400 shown in FIG. 5 can implement the corresponding process of the method 200.
  • the device 400 shown in FIG. 5 can implement the corresponding process of the method 200.
  • no further details are provided herein.
  • FIG. 6 is a schematic block diagram of an apparatus 500 in accordance with an embodiment of the present application.
  • the device 500 includes a processor 510, a memory 520, and a transceiver 530.
  • the memory 520 is configured to store program instructions.
  • Processor 510 can call program instructions stored in memory 520.
  • the transceiver 530 is for external communication.
  • the device 500 further includes a bus system 540 that interconnects the processor 510, the memory 520, and the transceiver 530.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform the following operations: determining a target basic parameter set from a plurality of basic parameter sets;
  • a synchronization signal is received or transmitted by transceiver 530 in accordance with the target base parameter set.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform the following operations: determining the target basic parameter set from the plurality of basic parameter sets according to at least one of the following information:
  • the carrier, cell or transmission node coverage of the synchronization signal is sent;
  • the shape, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal are the shape, height, direction, and number of antenna elements of the transmitting antenna used to transmit the synchronization signal.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform an operation of: determining, according to the information, a value of the at least one basic parameter;
  • the target base parameter set is determined based on the value of the at least one base parameter.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal.
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set, the first basic parameter set being different from the second basic parameter set.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform the following operations: receiving or transmitting the primary synchronization signal according to the first basic parameter set;
  • the target basic parameter set includes a first basic parameter set and a second basic parameter set
  • the processor 510 is configured to invoke an instruction stored in the memory 520 to perform the following operations:
  • the secondary synchronization signal is received or transmitted by transceiver 530 in accordance with the second set of basic parameters.
  • the processor 510 is configured to invoke an instruction stored in the memory 520 to perform the following operations: Receiving or transmitting primary system information through the transceiver 530 according to the first basic parameter set; or
  • the third basic parameter set is different from the first basic parameter set and the second basic parameter set.
  • the time domain difference value of the primary synchronization signal and the corresponding time domain start position of the secondary synchronization signal belongs to a time domain difference set, where the time domain difference set is a finite set; and/or,
  • the difference between the primary synchronization signal and the corresponding frequency domain start position of the secondary synchronization signal belongs to a frequency domain difference set, and the frequency domain difference set is a finite set.
  • the time difference between the primary synchronization signal and the corresponding time domain start position of the secondary synchronization signal, and the difference between the primary synchronization signal and the corresponding frequency domain start position of the secondary synchronization signal At least one is not zero.
  • the time-frequency position occupied by the primary synchronization signal and the corresponding time-frequency position occupied by the secondary synchronization signal do not overlap.
  • the processor 510 is configured to invoke an instruction stored in the memory 520 to perform the following operations: receiving or transmitting the primary system information through the transceiver 530.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform the following operations: receiving, according to the basic parameter set corresponding to the primary system information, the primary system information received by the transceiver 530, where the primary system information corresponds to The base parameter set is the same or different from the target base parameter set.
  • the processor 510 is configured to invoke an instruction stored in the memory 520, and perform an operation of: determining a time-frequency location of the primary system information according to a time-frequency location of the synchronization signal;
  • the primary system information is received or transmitted by the transceiver 530 based on the time-frequency location of the primary system information.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal;
  • the processor 510 is configured to invoke an instruction stored in the memory 520 to perform the following operations:
  • At least one of a frequency domain start position of the primary synchronization signal, a frequency domain start position of the secondary synchronization signal, and a frequency domain difference value of the primary synchronization signal and a corresponding frequency domain start position of the secondary synchronization signal determine the starting position of the frequency domain of the main system information.
  • the synchronization signal is used to indicate at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • all or part of the sequence corresponding to the synchronization signal, or a mask of the synchronization signal is used to indicate at least one of a time-frequency location, a modulation mode, and a corresponding basic parameter set of the primary system information.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, length of an OFDM symbol cyclic prefix (Cyclic Prefix, CP), used to generate OFDM
  • Cyclic Prefix CP
  • the plurality of basic parameter sets exist for determining the target basic parameter set during a time period from establishment to shutdown of a carrier, a cell, or a transmission node for transmitting the synchronization signal.
  • the device 300 can be a terminal device or a network device.
  • the device 500 shown in FIG. 4 can implement the corresponding process of the method 100.
  • the device 500 shown in FIG. 4 can implement the corresponding process of the method 100.
  • no further details are provided herein.
  • FIG. 7 is a schematic block diagram of an apparatus 500 in accordance with an embodiment of the present application.
  • the device 500 includes a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 is configured to store program instructions.
  • the processor 610 can call program instructions stored in the memory 620.
  • the transceiver 630 is for external communication.
  • the device 600 further includes a bus system 640 that interconnects the processor 610, the memory 620, and the transceiver 630.
  • the processor 610 is configured to invoke an instruction stored in the memory 620 to perform the following operations:
  • the target signal is blindly detected by the transceiver 630;
  • the target signal is acquired.
  • the target signal is a synchronization signal
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal corresponding to the primary synchronization signal.
  • the processor 610 is configured to invoke an instruction stored in the memory 620 to perform the following operations:
  • the primary synchronization signal is blindly detected using a first subset of the plurality of basic parameter sets
  • the first subset and the second subset include different sets of basic parameters.
  • the processor 610 is configured to invoke an instruction stored in the memory 620 to perform the following operations:
  • the primary synchronization signal uses the primary synchronization signal, the relative position set of the primary synchronization signal and the corresponding secondary synchronization signal, and the second subset of the plurality of basic parameter sets to perform blind detection on the secondary synchronization signal, wherein the first subset and the first subset The second subset includes at least one different set of basic parameters.
  • the first subset is a subset of the second subset.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • the plurality of basic parameter sets are present for blind detection of the target signal during a time period from establishment to shutdown of a carrier, a cell, or a transmission node for transmitting the target signal.
  • the device 600 can be a terminal device or a network device.
  • the device 600 shown in FIG. 7 can implement the corresponding process of the method 200.
  • the device 600 shown in FIG. 7 can implement the corresponding process of the method 200.
  • no further details are provided herein.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

本申请实施例提供了一种信息传输方法和设备。该方法包括:从多个基础参数集中,确定目标基础参数集。根据所述目标基础参数集,接收或发送同步信号。

Description

信息传输方法和信息传输设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信息传输方法和信息传输设备。
背景技术
随着网络的发展,业务需要量不断地增加,业务需求种类也在不断地增加,现有的网络标准通信协议中网络设备与终端设备传输数据采用统一的基础参数集,例如,通信协议规定长期演进(Long Term Evolution,LTE)系统中的基础参数集(numerology)为:一个无线帧为10ms,一个无线帧包括十个子帧,一个子帧包括两个时隙,一个时隙包括七个符号,频率上连续的12个子载波时域上的一个时隙组成一个资源块(Resource Block,RB),每个子载波间隔为15k等等,随着业务多样性的呈现,单个基础参数集已经不能适应信号的传输要求。
发明内容
本申请实施例提供了一种信息传输方法和设备,能够满足信号的传输要求。
第一方面,提供了一种信息传输方法,所述方法包括:
从多个基础参数集中,确定目标基础参数集;
根据所述目标基础参数集,接收或发送同步信号。
结合第一方面,在第一方面的第一种可能的实现方式中,所述从多个基础参数集中,确定目标基础参数集,包括:
根据以下信息中的至少一种,从所述多个基础参数集中,确定所述目标基础参数集:
发送所述同步信号所使用的载波频率;
所述同步信号的传输环境;
发送所述同步信号的载波、小区或传输节点的覆盖范围;
发送所述同步信号所使用的发射功率;和
发送所述同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述从多个基础参数集中,确定所述目标基础参数,包括:
根据所述信息,确定至少一个基础参数的值;
根据所述至少一个基础参数的值,确定所述目标基础参数集。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述目标基础参数集包括第一基础参数集和第二基础参数集,所述第一基础参数集不同于所述第二基础参数集;
根据所述目标基础参数集,接收或发送同步信号,包括:
根据所述第一基础参数集,接收或发送所述主同步信号;
根据所述第二基础参数集,接收或发送所述主同步信号对应的辅同步信号。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述目标基础参数集包括第一基础参数集和第二基础参数集;
所述从多个基础参数集中,确定目标基础参数集,包括:从所述多个基础参数集的第一子集中,选择所述第一基础参数集,所述第一子集包括所述多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,所述第二子集包括所述多个基础参数集中的至少一个基础参数集,所述第一子集和所述第二子集包括至少一个不同的基础参数集;
所述根据所述目标基础参数集,接收或发送同步信号,包括:根据所述第一基础参数集,接收或发送所述主同步信号;根据所述第二基础参数集,接收或发送所述辅同步信号。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述方法还包括:
根据所述第一基础参数集,接收或发送主系统信息;或
根据所述第二基础参数集,接收或发送主系统信息;或
根据所述第三基础参数集,接收或发送主系统信息;
其中,所述第三基础参数集不同于所述第一基础参数集和所述第二基础参数集。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值属于时域差值集合,所述时域差值集合为有限集合;和/或,
所述主同步信号和对应的所述辅同步信号的频域起始位置的差值属于频域差值集合,所述频域差值集合为有限集合。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值,以及所述主同步信号和对应的所述辅同步信号的频域起始位置的差值中的至少一个不为零。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述主同步信号所占的时频位置和对应的所述辅同步信号所占的时频位置不重叠。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述方法还包括:
接收或发送所述主系统信息。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述接收或发送所述主系统信息,包括:
根据所述主系统信息对应的基础参数集,接收或发送所述主系统信息,所述主系统信息对应的基础参数集与所述目标基础参数集相同或不同。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述方法还包括:
根据所述同步信号的时频位置,确定所述主系统信息的时频位置;
所述接收或发送所述主系统信息,包括:
根据所述主系统信息的时频位置,接收或发送所述主系统信息。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号;
所述根据所述同步信号的时频位置,确定主系统信息的时频位置,包括:
根据所述主同步信号的时频起始位置、所述辅同步信号的时域起始位置,和所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;
根据所述主同步信号的频域起始位置、所述辅同步信号的频域起始位置和所述主同步信号和对应的所述辅同步信号的频域起始位置的频域差值中的至少一种,确定主系统信息的频域起始位置。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十四种可能的实现方式中,所述同步信号用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十五种可能的实现方式中,所述同步信号对应的序列的全部或部分,或者所述同步信号的掩码用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十六种可能的实现方式中,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、OFDM符号循环前缀(Cyclic Prefix,CP)的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第十七种可能的实现方式中,在从建立到关闭用于发送所述同步信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于确定所述目标基础参数集。
第二方面,提供了一种信息传输方法,所述方法包括:
利用多个基础参数集中,对目标信号进行盲检测;
根据盲检测结果,获取所述目标信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述目标信号为同步信号,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第二种可 能的实现方式中,利用多个基础参数集中,对同步信号进行盲检测,包括:
利用多个基础参数集中的第一子集对主同步信号进行盲检测;
利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测;
所述第一子集和所述第二子集包括不同的基础参数集。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第三种可能的实现方式中,利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测,包括:
利用所述主同步信号,所述主同步信号与对应的辅同步信号的相对位置集合,以及所述多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,所述第一子集和所述第二子集包括至少一个不同的基础参数集。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述第一子集是所述第二子集的子集。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第六种可能的实现方式中,在从建立到关闭用于发送所述目标信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于对所述目标信号进行盲检测。
第三方面,提供了一种信息传输设备,用于执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,该信息传输设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种信息传输设备,用于执行上述第二方面或第二方面的任意可选的实现方式中的方法。具体地,该信息传输设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种信息传输设备,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面 的任意可选的实现方式中的方法。
第六方面,提供了一种信息传输设备,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可选的实现方式中的方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第一方面的任意可选的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或第二方面的任意可选的实现方式中的方法。
因此,在本申请实施例中,从多个基础参数集中,选择用于同步信号传输的目标基础参数集,可以避免同步信号的传输仅能采用单一的基础参数集,可以基于信号传输要求来选择目标基础参数集来进行同步信号的传输。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的信息传输方法的示意性流程图。
图2是根据本申请实施例的主同步信号和对应的辅同步信号的相对位置示意性图。
图3是根据本申请实施例的信息传输方法的示意性流程图。
图4是根据本申请实施例的信息传输方法的示意性框图。
图5是根据本申请实施例的信息传输方法的示意性框图。
图6是根据本申请实施例的信息传输设备的示意性框图。
图7是根据本申请实施例的信息传输方法的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G等。
本申请实施例的技术方案可以应用于终端设备与网络设备的通信,也可以适用于终端设备对终端设备(Device to Device,D2D)的通信。
本申请实施例中,网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB或e-NodeB),还可以是5G中的用于提供接入服务的设备,本申请实施例并不限定。
本申请结合终端设备和网络设备描述了各个实施例。
终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的ST(STAION,站点), 可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备可以是用于与终端设备通信的设备,网络设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的AP(ACCESS POINT,接入点),GSM或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
本申请实施例提到的基础参数集可以包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换例如快速傅里叶变换(Fast Fourier Transform,简称“FFT”)或傅里叶逆变换例如快速逆傅里叶变换(Inverse Fast Fourier Transform,简称“IFFT”)的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
可选地,在本申请实施例中,在从建立到关闭用于发送所述同步信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于确定所述目标基础参数集。
图1是根据本申请实施例的信息传输方法100的示意性流程图。其中,该方法100可以用于同步信号的发送过程或接收过程,其中,同步信号的发 送方可以是网络设备,接收方可以是终端设备;或者,同步信号的发送方可以是终端设备,接收方可以是另一终端设备。
如图1所示,该方法包括110和120。
在110中,从多个基础参数集中,确定目标基础参数集。
在120中,根据所述目标基础参数集,接收或发送同步信号。
因此,在本申请实施例中,从多个基础参数集中,选择用于同步信号传输的目标基础参数集,可以避免同步信号的传输仅能采用单一的基础参数集,可以基于信号传输要求来选择目标基础参数集来进行同步信号的传输。
可选地,在本申请实施例中,可以根据以下信息中的至少一种,从所述多个基础参数集中,确定所述目标基础参数集:
发送所述同步信号所使用的载波频率;
所述同步信号的传输环境,例如,城区环境、高速公路与高速铁路、山区环境或农村环境等;
发送所述同步信号的载波、小区或传输节点的覆盖范围;
发送所述同步信号所使用的发射功率;和
发送所述同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
可选地,本申请实施例提到的天线形态包括全向天线、定向天线(又可以分为圆形天线阵列、线性天线阵列、平板天线阵列)等。
可选地,在本申请实施例中,可以根据上述信息,确定至少一个基础参数的值;根据所述至少一个基础参数的值,确定所述目标基础参数集。
例如,传输同步信号所使用的载波频率为6GHz以下,则可以确定用于传输同步信号所采用的子载波间隔可以为15KHz或30KHz,在确定了子载波间隔之后,可以确定子载波间隔为15KHz或30KHz的基础参数集作为目标基础参数集。
例如,传输同步信号所使用的载波频率为60GHz,则可以确定用于传输同步信号所采用的子载波间隔为60KHz或120KHz,则在确定了子载波间隔之后,可以确定子载波间隔为60KHz或120KHz的基础参数集作为目标基础参数集。
可选地,本申请实施例提到的同步信号可以包括主同步信号和/或该主同步信号对应的辅同步信号。
为了便于理解本申请,以下将结合主同步信号和该主同步信号对应的辅同步信号对如何进行信号的传输进行详细说明。
可选地,在本申请实施例中,目标基础参数集可以包括用于接收或发送主同步信号的第一基础参数集,以及用于接收或发送辅同步信号的第二基础参数集。其中,第一基础参数集和第二基础参数集可以相同或不同。
其中,第一基础参数集和第二基础参数集不同可以是指第一基础参数集和第二参数集中的全部参数的值不同,或者,第一基础参数集和第二基础参数集的部分参数的值不同。
可选地,在本申请实施例中,从多个基础参数集中的第一子集中,选择第一基础参数集,第一子集包括所述多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,所述第二子集包括所述多个基础参数集中的至少一个基础参数集,所述第一子集和所述第二子集包括至少一个不同的基础参数集。
在一种实现方式中,第一子集和第二子集可以包括完全不同的基础参数集。
例如,在本申请实施例中,从多个基础参数集中的部分基础参数集(可以称为第一子集)中,选择第一基础参数集,用于接收或发送主同步信号;从多个基础参数集中的另一部分基础参数集(可以称为第二子集)中,选择第二基础参数集,用于接收或发送辅同步信号。则该情况下,第一基础参数集可以不同于第二基础参数集。
在一种实现方式中,第一子集可以是第二子集的子集,也就是说,第一子集中的基础参数集属于第二子集。
例如,在本申请实施例中,从多个基础参数集(可以称为第二子集)中,选择第二基础参数集,用于接收或发送辅同步信号;从多个基础参数集中的部分基础参数集(可以称为第一子集)中,选择第一基础参数集,用于接收或发送主同步信号。在该情况下,第二基础参数集可选择的范围大于第一基础参数集可以选择的范围,第一基础参数集与第二基础参数集可以相同或不同。
可选地,在本申请实施例中,主同步信号(Primary Synchronization Signal,PSS)的时域起始位置tpss-start和对应的每个辅同步信号(Secondary Synchronization Signal,SSS)的时域起始位置tsss-start的时域差值tpss-sss-offset属 于时域差值集合Tpss-sss-offset;和/或,主同步信号的频域起始位置fpss-start和对应的辅同步信号的频域起始位置fsss-start的差值fpss-sss-offset属于频域差值集合Fpss-sss-offset
可选地,时域差值集合Tpss-sss-offset和Fpss-sss-offset为有限集合。
可选地,时域差值集合Tpss-sss-offset和Fpss-sss-offset为有限集合。
可选地,主同步信号和对应的辅同步信号的时域起始位置的差值和/或频域起始位置的差值,可以与使用的载波频率相关,具体地,可以根据使用的载波频率来选择主同步信号和对应的辅同步信号的时域起始位置的差值和/或频域起始位置的差值。
在本申请实施例中,tpss-sss-offset可以为正数、负数或为0,tpss-sss-offset为正数表示主同步信号在时域的起始位置大于对应的辅同步信号在时域的起始位置,tpss-sss-offset为正数表示主同步信号在时域的起始位置小于对应的辅同步信号在时域的起始位置。tpss-sss-offset为零表示主同步信号在时域的起始位置等于对应的辅同步信号在时域的起始位置。
在本申请实施例中,fpss-sss-offset可以为正数、负数或为0,fpss-sss-offset为正数表示主同步信号在频域的起始位置大于对应的辅同步信号在频域的起始位置,fpss-sss-offset为正数表示主同步信号在频域的起始位置小于对应的辅同步信号在频域的起始位置。fpss-sss-offset为零表示主同步信号在频域的起始位置等于对应的辅同步信号在频域的起始位置。
可选地,在本申请实施例中,fpss-sss-offset和tpss-sss-offset不同时为零,这意味着说,主同步信号和对应的辅同步信号的时频起始位置至少时域不同或者频域不同。
可选地,在本申请实施例中,主同步信号所占的时频位置和对应的辅同步信号所占的时频位置不重叠,例如,如图2所示。
在如图2所示的场景(PSS时域起始位置和频域起始位置均分别靠前于SSS的时域起始位置和P频域起始位置),PSS时域起始位置和SSS的时域起始位置可以满足以下条件:tsss-start+tsss-size<=tpss-start;PSS频域起始位置和SSS的频域起始位置可以满足以下条件:fpss-start+fpss-size<=fsss-start
应理解,图2仅仅是本申请实施例的一种场景,本申请实施例还有其他的场景,例如,SSS的频域起始位置在PSS频域起始位置的前方,则PSS频域起始位置和SSS的频域起始位置可以满足以下条件:fsss-start+fsss-size<= fpss-start。例如,SSS的时域起始位置在PSS的时域起始位置的前方,则PSS频域起始位置和SSS的频域起始位置可以满足以下条件:tpss-start+tpss-size<=tsss-start
应理解,本申请实施例提到的前方或者后方仅仅是一个相对的概念,可以按照附图的描述习惯,来设定前方和/或后方。
以上已经描述了同步信号的接收或发送,以下将描述如何结合同步信号的接收或发送进行主系统信息的接收发送。在本申请实施例中,主系统信息可以称为主信息块(Master information block,MIB)
可选地,在本申请实施例中,可以根据所述同步信号的时频位置,确定主系统信息的时频位置;根据所述主系统信息的时频位置,接收或发送所述主系统信息。
在一种实现方式中,可以根据所述主同步信号的时频起始位置、所述辅同步信号的时域起始位置和主同步信号和对应的辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;根据所述主同步信号的频域起始位置、所述辅同步信号的频域起始位置和相邻主同步信号和辅同步信号的频域起始位置的频域差值中的至少一种,确定主系统信息的频域起始位置。
例如,MIB所在时频位置由PSS和/或SSS的位置,和/或PSS与SSS的时频相对位置(偏移量,offset)fpss-sss-offset和tpss-sss-offset决定。
具体地,MIB的频域起始位置与PSS或SSS相同或者距离fpss-sss-offset的整数倍,时间域起始位置由tpss-sss-offset计算得来,例如MIB和PSS(或SSS)的相对位置是tpss-sss-offset的整数倍
在另一种实现方式中,可以根据主同步信号的时频起始位置或所述辅同步信号的时频位置,以及上述提到的时域差值集合中的元素和频域差值集合中的元素确定主系统信息的时频位置。也就是说,在确定了主同步信号(或辅同步信号)的时频起始位置之后,可以从时域差值集合中选择主系统信息与主同步信号(或辅同步信号)的时域起始位置的时域差值,以及从频域差值集合中选择主系统信息与主同步信号(或辅同步信号)的时域位置的频域差值,并从而计算主系统信息的时频位置。
应理解,在该实现方式中,从时域差值集合中选择主系统信息与主同步信号(或辅同步信号)的时域起始位置的时域差值可以是随机选取,此时选 择的时域差值可以与选择的用于主同步信号和对应的辅同步信号时域起始位置的时域差值相同或者不同。从频域差值集合中选择主系统信息与主同步信号(或辅同步信号)的频域起始位置的频域差值可以是随机选取,此时选择的频域差值可以与选择的用于主同步信号和对应的辅同步信号频域起始位置的频域差值相同或者不同。
可选地,在本申请实施例中,在确定了主系统信息的时频位置之后,可以根据主系统信息的时频位置以及主系统信息对应的基础参数集,接收或发送主系统信息。
其中,主系统信息的基础参数集可以与主同步信号使用的基础参数集相同,或与主同步信号使用的基础参数集不同;或者,
主系统信息的基础参数集可以与辅同步信号使用的基础参数集相同,或与辅同步信号使用的基础参数集不同。
可选地,在本申请实施例中,所述同步信号用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。当然,同步信号也可以指示主系统信息的其他相关信息,本申请实施例并不对此做具体限定。
可选地,在本申请实施例中,所述同步信号对应的序列的全部或部分,或者所述同步信号的掩码用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
图3是根据本申请实施例的信息传输方法200的示意性流程图。如图2所示,该方法200包括:
210,利用多个基础参数集中,对目标信号进行盲检测;
220,根据盲检测结果,获取所述目标信号。
具体地说,发送端可以从多个基础参数集选择目标基础参数集进行信号的传输,而接收端可以利用该多个基础参数集,对同步信号进行盲检测,根据盲检测结果,来获取同步信号。
可选地,在本申请实施例中,所述目标信号为同步信号,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
可选地,在本申请实施例中,利用多个基础参数集中的第一子集对主同步信号进行盲检测;利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,第一子集和第二子集包括至少一个不同的基础参数集。
可选地,在本申请实施例中,第一子集和第二子集包括完全不同的基础 参数集。
例如,在本申请实施例中,利用多个基础参数集中的部分基础参数集(可以称为第一子集)中,对主同步信号进行盲检测;利用多个基础参数集中的另一部分基础参数集(称为第二子集)对辅同步信号进行盲检测。
可选地,第一子集可以为第二子集的子集,也就是意味着说,可选择发送辅同步信号的基础参数集的范围大于等于可选择发送主同步信号的基础参数集
例如,在本申请实施例中,利用多个基础参数集中的部分基础参数集,对主同步信号进行盲检测;利用多个基础参数集对辅同步信号进行盲检测。集可以选择的范围,第一基础参数集与第二基础参数集可以相同或不同。
可选地,利用所述主同步信号,所述主同步信号与对应的辅同步信号的相对位置集合,以及所述多个基础参数集中的第二子集对辅同步信号进行盲检测。
可选地,在本申请实施例中,在终端设备接入时,在确定主同步信号的时频位置之后,可以根据时域差值集合和频域差值集合,可以在该主同步信号对应的各个辅同步信号的可能出现的时频位置上进行盲检测,以获取该主同步信号对应的辅同步信号。
图4是根据本申请实施例的信息传输设备300的示意性框图。如图4所示,该设备300包括:
处理单元310,用于从多个基础参数集中,确定目标基础参数集;
收发单元320,用于根据该目标基础参数集,接收或发送同步信号。
可选地,该处理单元310具体用于:
根据以下信息中的至少一种,从该多个基础参数集中,确定该目标基础参数集:
发送该同步信号所使用的载波频率;
该同步信号的传输环境;
发送该同步信号的载波、小区或传输节点的覆盖范围;
发送该同步信号所使用的发射功率;和
发送该同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
可选地,该处理单元310具体用于
根据该信息,确定至少一个基础参数的值;
根据该至少一个基础参数的值,确定该目标基础参数集。
可选地,该同步信号包括主同步信号和该主同步信号对应的辅同步信号。
可选地,该目标基础参数集包括第一基础参数集和第二基础参数集,该第一基础参数集不同于该第二基础参数集;
该收发单元320具体用于:
根据该第一基础参数集,接收或发送该主同步信号;
根据该第二基础参数集,接收或发送该主同步信号对应的辅同步信号。
可选地,该目标基础参数集包括第一基础参数集和第二基础参数集;
该处理单元310具体用于:从该多个基础参数集的第一子集中,选择该第一基础参数集,该第一子集包括该多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,该第二子集包括该多个基础参数集中的至少一个基础参数集,该第一子集和该第二子集包括至少一个不同的基础参数集;
该收发单元320具体用于:根据该第一基础参数集,接收或发送该主同步信号;根据该第二基础参数集,接收或发送该辅同步信号。
可选地,该收发单元320还用于:
根据该第一基础参数集,接收或发送主系统信息;或
根据该第二基础参数集,接收或发送主系统信息;或
根据该第三基础参数集,接收或发送主系统信息;
其中,该第三基础参数集不同于该第一基础参数集和该第二基础参数集。
可选地,该主同步信号和对应的该辅同步信号的时域起始位置的时域差值属于时域差值集合,该时域差值集合为有限集合;和/或,
该主同步信号和对应的该辅同步信号的频域起始位置的差值属于频域差值集合,该频域差值集合为有限集合。
可选地,该主同步信号和对应的该辅同步信号的时域起始位置的时域差值,以及该主同步信号和对应的该辅同步信号的频域起始位置的差值中的至少一个不为零。
可选地,该主同步信号所占的时频位置和对应的该辅同步信号所占的时频位置不重叠。
可选地,该收发单元320还用于:接收或发送主系统信息。
可选地,该收发单元320具体用于:
根据该主系统信息对应的基础参数集,接收或发送该主系统信息,该主系统信息对应的基础参数集与该目标基础参数集相同或不同。
可选地,该处理单元310还用于:根据该同步信号的时频位置,确定该主系统信息的时频位置;
该收发单元320还用于:根据该主系统信息的时频位置,接收或发送该主系统信息。
可选地,该同步信号包括主同步信号和该主同步信号对应的辅同步信号;
该处理单元310具体用于:
根据该主同步信号的时频起始位置、该辅同步信号的时域起始位置,和该主同步信号和对应的该辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;
根据该主同步信号的频域起始位置、该辅同步信号的频域起始位置和该主同步信号和对应的该辅同步信号的频域起始位置的频域差值中的至少一种,确定主系统信息的频域起始位置。
可选地,该同步信号用于指示该主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
可选地,该同步信号对应的序列的全部或部分,或者该同步信号的掩码用于指示该主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
可选地,该基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、OFDM符号循环前缀(Cyclic Prefix,CP)的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数。
可选地,在从建立到关闭用于发送该同步信号的载波、小区或传输节点的时间段内,存在该多个基础参数集,用于确定该目标基础参数集。
可选地,该设备300可以是终端设备或是网络设备。
应理解,图4所示的设备300可以实现方法100的相应流程,为了简洁, 在此不再赘述。
图5是根据本申请实施例的设备400的示意性框图。如图5所示,该设备400包括:
收发单元410,用于利用多个基础参数集中,对目标信号进行盲检测;
处理单元420,用于根据盲检测结果,获取该目标信号。
可选地,该目标信号为同步信号,该同步信号包括主同步信号和该主同步信号对应的辅同步信号。
可选地,该收发单元410具体用于:
利用多个基础参数集中的第一子集对主同步信号进行盲检测;
利用该多个基础参数集中的第二子集对辅同步信号进行盲检测;
该第一子集和该第二子集包括不同的基础参数集。
可选地,该收发单元410具体用于:
利用该主同步信号,该主同步信号与对应的辅同步信号的相对位置集合,以及该多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,该第一子集和该第二子集包括至少一个不同的基础参数集。
可选地,该第一子集是该第二子集的子集。
可选地,该基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
可选地,在从建立到关闭用于发送该目标信号的载波、小区或传输节点的时间段内,存在该多个基础参数集,用于对该目标信号进行盲检测。
可选地,该设备400可以是终端设备或是网络设备。
应理解,图5所示的设备400可以实现方法200的相应流程,为了简洁,在此不再赘述。
图6是根据本申请实施例的设备500的示意性框图。该设备500包括处理器510、存储器520和收发器530。存储器520,用于存放程序指令。处理器510可以调用存储器520中存放的程序指令。收发器530用于对外通信,可选地,设备500还包括将处理器510、存储器520和收发器530互连的总线系统540。
具体地,处理器510用于调用存储器520中存储的指令,执行以下操作:从多个基础参数集中,确定目标基础参数集;
根据该目标基础参数集,通过收发器530接收或发送同步信号。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:根据以下信息中的至少一种,从该多个基础参数集中,确定该目标基础参数集:
发送该同步信号所使用的载波频率;
该同步信号的传输环境;
发送该同步信号的载波、小区或传输节点覆盖范围;
发送该同步信号所使用的发射功率;和
发送该同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:根据该信息,确定至少一个基础参数的值;
根据该至少一个基础参数的值,确定该目标基础参数集。
可选地,该同步信号包括主同步信号和该主同步信号对应的辅同步信号。
可选地,该目标基础参数集包括第一基础参数集和第二基础参数集,该第一基础参数集不同于该第二基础参数集。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:根据该第一基础参数集,接收或发送该主同步信号;
根据该第二基础参数集,接收或发送该主同步信号对应的辅同步信号。
可选地,该目标基础参数集包括第一基础参数集和第二基础参数集,处理器510用于调用存储器520中存储的指令,执行以下操作:
从该多个基础参数集的第一子集中,选择该第一基础参数集,该第一子集包括该多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,该第二子集包括该多个基础参数集中的至少一个基础参数集,该第一子集和该第二子集包括至少一个不同的基础参数集;
根据该第一基础参数集,通过收发器530接收或发送该主同步信号;
根据该第二基础参数集,通过收发器530接收或发送该辅同步信号。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作: 根据该第一基础参数集,通过收发器530接收或发送主系统信息;或
根据该第二基础参数集,通过收发器530接收或发送主系统信息;或
根据该第三基础参数集,通过收发器530接收或发送主系统信息;
其中,该第三基础参数集不同于该第一基础参数集和该第二基础参数集。
可选地,该主同步信号和对应的该辅同步信号的时域起始位置的时域差值属于时域差值集合,该时域差值集合为有限集合;和/或,
该主同步信号和对应的该辅同步信号的频域起始位置的差值属于频域差值集合,该频域差值集合为有限集合。
可选地,该主同步信号和对应的该辅同步信号的时域起始位置的时域差值,以及该主同步信号和对应的该辅同步信号的频域起始位置的差值中的至少一个不为零。
可选地,该主同步信号所占的时频位置和对应的该辅同步信号所占的时频位置不重叠。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:通过收发器530接收或发送该主系统信息。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:根据该主系统信息对应的基础参数集,通过收发器530接收或发送该主系统信息,该主系统信息对应的基础参数集与该目标基础参数集相同或不同。
可选地,处理器510用于调用存储器520中存储的指令,执行以下操作:根据该同步信号的时频位置,确定该主系统信息的时频位置;
根据该主系统信息的时频位置,通过收发器530接收或发送该主系统信息。
可选地,该同步信号包括主同步信号和该主同步信号对应的辅同步信号;
处理器510用于调用存储器520中存储的指令,执行以下操作:
根据该主同步信号的时频起始位置、该辅同步信号的时域起始位置,和该主同步信号和对应的该辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;
根据该主同步信号的频域起始位置、该辅同步信号的频域起始位置和该主同步信号和对应的该辅同步信号的频域起始位置的频域差值中的至少一 种,确定主系统信息的频域起始位置。
可选地,该同步信号用于指示该主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
可选地,该同步信号对应的序列的全部或部分,或者该同步信号的掩码用于指示该主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
可选地,该基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、OFDM符号循环前缀(Cyclic Prefix,CP)的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数。
可选地,在从建立到关闭用于发送该同步信号的载波、小区或传输节点的时间段内,存在该多个基础参数集,用于确定该目标基础参数集。
可选地,该设备300可以是终端设备或是网络设备。
应理解,图4所示的设备500可以实现方法100的相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的设备500的示意性框图。该设备500包括处理器610、存储器620和收发器630。存储器620,用于存放程序指令。处理器610可以调用存储器620中存放的程序指令。收发器630用于对外通信,可选地,设备600还包括将处理器610、存储器620和收发器630互连的总线系统640。
具体地,处理器610用于调用存储器620中存储的指令,执行以下操作:
利用多个基础参数集中,通过收发器630对目标信号进行盲检测;
根据盲检测结果,获取该目标信号。
可选地,该目标信号为同步信号,该同步信号包括主同步信号和该主同步信号对应的辅同步信号。
可选地,处理器610用于调用存储器620中存储的指令,执行以下操作:
利用多个基础参数集中的第一子集对主同步信号进行盲检测;
利用该多个基础参数集中的第二子集对辅同步信号进行盲检测;
该第一子集和该第二子集包括不同的基础参数集。
可选地,处理器610用于调用存储器620中存储的指令,执行以下操作:
利用该主同步信号,该主同步信号与对应的辅同步信号的相对位置集合,以及该多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,该第一子集和该第二子集包括至少一个不同的基础参数集。
可选地,该第一子集是该第二子集的子集。
可选地,该基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
可选地,在从建立到关闭用于发送该目标信号的载波、小区或传输节点的时间段内,存在该多个基础参数集,用于对该目标信号进行盲检测。
可选地,该设备600可以是终端设备或是网络设备。
应理解,图7所示的设备600可以实现方法200的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    从多个基础参数集中,确定目标基础参数集;
    根据所述目标基础参数集,接收或发送同步信号。
  2. 根据权利要求1所述的方法,其特征在于,所述从多个基础参数集中,确定目标基础参数集,包括:
    根据以下信息中的至少一种,从所述多个基础参数集中,确定所述目标基础参数集:
    发送所述同步信号所使用的载波频率;
    所述同步信号的传输环境;
    发送所述同步信号的载波、小区或传输节点的覆盖范围;
    发送所述同步信号所使用的发射功率;和
    发送所述同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
  3. 根据权利要求2所述的方法,其特征在于,所述从多个基础参数集中,确定所述目标基础参数,包括:
    根据所述信息,确定至少一个基础参数的值;
    根据所述至少一个基础参数的值,确定所述目标基础参数集。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
  5. 根据权利要求4所述的方法,其特征在于,所述目标基础参数集包括第一基础参数集和第二基础参数集,所述第一基础参数集不同于所述第二基础参数集;
    根据所述目标基础参数集,接收或发送同步信号,包括:
    根据所述第一基础参数集,接收或发送所述主同步信号;
    根据所述第二基础参数集,接收或发送所述主同步信号对应的辅同步信号。
  6. 根据权利要求4或5所述的方法,其特征在于,所述目标基础参数集包括第一基础参数集和第二基础参数集;
    所述从多个基础参数集中,确定目标基础参数集,包括:从所述多个基础参数集的第一子集中,选择所述第一基础参数集,所述第一子集包括所述 多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,所述第二子集包括所述多个基础参数集中的至少一个基础参数集,所述第一子集和所述第二子集包括至少一个不同的基础参数集;
    所述根据所述目标基础参数集,接收或发送同步信号,包括:根据所述第一基础参数集,接收或发送所述主同步信号;根据所述第二基础参数集,接收或发送所述辅同步信号。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述第一基础参数集,接收或发送主系统信息;或
    根据所述第二基础参数集,接收或发送主系统信息;或
    根据所述第三基础参数集,接收或发送主系统信息;
    其中,所述第三基础参数集不同于所述第一基础参数集和所述第二基础参数集。
  8. 根据权利要求6或7所述的方法,其特征在于,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值属于时域差值集合,所述时域差值集合为有限集合;和/或,
    所述主同步信号和对应的所述辅同步信号的频域起始位置的差值属于频域差值集合,所述频域差值集合为有限集合。
  9. 根据权利8所述的方法,其特征在于,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值,以及所述主同步信号和对应的所述辅同步信号的频域起始位置的差值中的至少一个不为零。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述主同步信号所占的时频位置和对应的所述辅同步信号所占的时频位置不重叠。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    接收或发送所述主系统信息。
  12. 根据权利要求11所述的方法,其特征在于,所述接收或发送所述主系统信息,包括:
    根据所述主系统信息对应的基础参数集,接收或发送所述主系统信息,所述主系统信息对应的基础参数集与所述目标基础参数集相同或不同。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    根据所述同步信号的时频位置,确定所述主系统信息的时频位置;
    所述接收或发送所述主系统信息,包括:
    根据所述主系统信息的时频位置,接收或发送所述主系统信息。
  14. 根据权利要求13所述的方法,其特征在于,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号;
    所述根据所述同步信号的时频位置,确定主系统信息的时频位置,包括:
    根据所述主同步信号的时频起始位置、所述辅同步信号的时域起始位置,和所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;
    根据所述主同步信号的频域起始位置、所述辅同步信号的频域起始位置和所述主同步信号和对应的所述辅同步信号的频域起始位置的频域差值中的至少一种,确定主系统信息的频域起始位置。
  15. 根据权利要求11或12至所述的方法,其特征在于,所述同步信号用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
  16. 根据权利要求15所述的方法,其特征在于,所述同步信号对应的序列的全部或部分,或者所述同步信号的掩码用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、OFDM符号循环前缀(Cyclic Prefix,CP)的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,在从建立到关闭用于发送所述同步信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于确定所述目标基础参数集。
  19. 一种信息传输方法,其特征在于,所述方法包括:
    利用多个基础参数集中,对目标信号进行盲检测;
    根据盲检测结果,获取所述目标信号。
  20. 根据权利要求19所述的方法,其特征在于,所述目标信号为同步信号,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
  21. 根据权利要求20所述的方法,其特征在于,利用多个基础参数集中,对同步信号进行盲检测,包括:
    利用多个基础参数集中的第一子集对主同步信号进行盲检测;
    利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测;
    所述第一子集和所述第二子集包括不同的基础参数集。
  22. 根据权利要求21所述的方法,其特征在于,利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测,包括:
    利用所述主同步信号,所述主同步信号与对应的辅同步信号的相对位置集合,以及所述多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,所述第一子集和所述第二子集包括至少一个不同的基础参数集。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一子集是所述第二子集的子集。
  24. 根据权利要求19至23中任一项所述的方法,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
  25. 根据权利要求19至24中任一项所述的方法,其特征在于,在从建立到关闭用于发送所述目标信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于对所述目标信号进行盲检测。
  26. 一种信息传输设备,其特征在于,所述设备包括:
    处理单元,用于从多个基础参数集中,确定目标基础参数集;
    收发单元,用于根据所述目标基础参数集,接收或发送同步信号。
  27. 根据权利要求26所述的设备,其特征在于,所述处理单元具体用于:
    根据以下信息中的至少一种,从所述多个基础参数集中,确定所述目标基础参数集:
    发送所述同步信号所使用的载波频率;
    所述同步信号的传输环境;
    发送所述同步信号的载波、小区或传输节点的覆盖范围;
    发送所述同步信号所使用的发射功率;和
    发送所述同步信号所使用的发射天线的形态、高度、方向和天线阵元数量。
  28. 根据权利要求27所述的设备,其特征在于,所述处理单元具体用于
    根据所述信息,确定至少一个基础参数的值;
    根据所述至少一个基础参数的值,确定所述目标基础参数集。
  29. 根据权利要求26至28中任一项所述的设备,其特征在于,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
  30. 根据权利要求29所述的设备,其特征在于,所述目标基础参数集包括第一基础参数集和第二基础参数集,所述第一基础参数集不同于所述第二基础参数集;
    所述收发单元具体用于:
    根据所述第一基础参数集,接收或发送所述主同步信号;
    根据所述第二基础参数集,接收或发送所述主同步信号对应的辅同步信号。
  31. 根据权利要求29或30所述的设备,其特征在于,所述目标基础参数集包括第一基础参数集和第二基础参数集;
    所述处理单元具体用于:从所述多个基础参数集的第一子集中,选择所述第一基础参数集,所述第一子集包括所述多个基础参数集中的至少一个基础参数集;从多个基础参数集中的第二子集中,选择第二基础参数集,所述第二子集包括所述多个基础参数集中的至少一个基础参数集,所述第一子集和所述第二子集包括至少一个不同的基础参数集;
    所述收发单元具体用于:根据所述第一基础参数集,接收或发送所述主同步信号;根据所述第二基础参数集,接收或发送所述辅同步信号。
  32. 根据权利要求31所述的设备,其特征在于,所述收发单元还用于:
    根据所述第一基础参数集,接收或发送主系统信息;或
    根据所述第二基础参数集,接收或发送主系统信息;或
    根据所述第三基础参数集,接收或发送主系统信息;
    其中,所述第三基础参数集不同于所述第一基础参数集和所述第二基础参数集。
  33. 根据权利要求31或32所述的设备,其特征在于,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值属于时域差值集合,所述时域差值集合为有限集合;和/或,
    所述主同步信号和对应的所述辅同步信号的频域起始位置的差值属于频域差值集合,所述频域差值集合为有限集合。
  34. 根据权利33所述的设备,其特征在于,所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值,以及所述主同步信号和对应的所述辅同步信号的频域起始位置的差值中的至少一个不为零。
  35. 根据权利要求33或34所述的设备,其特征在于,
    所述主同步信号所占的时频位置和对应的所述辅同步信号所占的时频位置不重叠。
  36. 根据权利要求26至35中任一项所述的设备,其特征在于,所述收发单元还用于:接收或发送主系统信息。
  37. 根据权利要求36所述的设备,其特征在于,所述收发单元具体用于:
    根据所述主系统信息对应的基础参数集,接收或发送所述主系统信息,所述主系统信息对应的基础参数集与所述目标基础参数集相同或不同。
  38. 根据权利要求36或37所述的设备,其特征在于,所述处理单元还用于:根据所述同步信号的时频位置,确定所述主系统信息的时频位置;
    所述收发单元还用于:根据所述主系统信息的时频位置,接收或发送所述主系统信息。
  39. 根据权利要求38所述的设备,其特征在于,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号;
    所述处理单元具体用于:
    根据所述主同步信号的时频起始位置、所述辅同步信号的时域起始位置,和所述主同步信号和对应的所述辅同步信号的时域起始位置的时域差值中的至少一种,确定主系统信息的时域起始位置;
    根据所述主同步信号的频域起始位置、所述辅同步信号的频域起始位置和所述主同步信号和对应的所述辅同步信号的频域起始位置的频域差值中 的至少一种,确定主系统信息的频域起始位置。
  40. 根据权利要求36或37所述的设备,其特征在于,所述同步信号用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
  41. 根据权利要求40所述的设备,其特征在于,所述同步信号对应的序列的全部或部分,或者所述同步信号的掩码用于指示所述主系统信息的时频位置、调制方式和对应的基础参数集中的至少一种。
  42. 根据权利要求26至41中任一项所述的设备,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、OFDM符号循环前缀(Cyclic Prefix,CP)的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数。
  43. 根据权利要求26至42中任一项所述的设备,其特征在于,在从建立到关闭用于发送所述同步信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于确定所述目标基础参数集。
  44. 一种信息传输设备,其特征在于,所述设备包括:
    收发单元,用于利用多个基础参数集中,对目标信号进行盲检测;
    处理单元,用于根据盲检测结果,获取所述目标信号。
  45. 根据权利要求44所述的设备,其特征在于,所述目标信号为同步信号,所述同步信号包括主同步信号和所述主同步信号对应的辅同步信号。
  46. 根据权利要求45所述的设备,其特征在于,所述收发单元具体用于:
    利用多个基础参数集中的第一子集对主同步信号进行盲检测;
    利用所述多个基础参数集中的第二子集对辅同步信号进行盲检测;
    所述第一子集和所述第二子集包括不同的基础参数集。
  47. 根据权利要求46所述的设备,其特征在于,所述收发单元具体用于:
    利用所述主同步信号,所述主同步信号与对应的辅同步信号的相对位置集合,以及所述多个基础参数集中的第二子集对辅同步信号进行盲检测,其中,所述第一子集和所述第二子集包括至少一个不同的基础参数集。
  48. 根据权利要求46或47所述的设备,其特征在于,所述第一子集是所述第二子集的子集。
  49. 根据权利要求44至48中任一项所述的设备,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
  50. 根据权利要求44至49中任一项所述的设备,其特征在于,在从建立到关闭用于发送所述目标信号的载波、小区或传输节点的时间段内,存在所述多个基础参数集,用于对所述目标信号进行盲检测。
PCT/CN2016/091721 2016-07-26 2016-07-26 信息传输方法和信息传输设备 WO2018018417A1 (zh)

Priority Applications (21)

Application Number Priority Date Filing Date Title
KR1020197005005A KR20190035765A (ko) 2016-07-26 2016-07-26 정보 전송 방법 및 정보 전송 기기
EP22185490.4A EP4096330A1 (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
CA3031986A CA3031986C (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
AU2016416149A AU2016416149B2 (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
MX2019001120A MX2019001120A (es) 2016-07-26 2016-07-26 Metodo para la transmision de informacion y aparato para la transmision de informacion.
EP16909998.3A EP3490316B1 (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
JP2019504004A JP6951414B2 (ja) 2016-07-26 2016-07-26 情報伝送方法と情報伝送装置
PCT/CN2016/091721 WO2018018417A1 (zh) 2016-07-26 2016-07-26 信息传输方法和信息传输设备
RU2019104981A RU2721757C1 (ru) 2016-07-26 2016-07-26 Способ и устройство для передачи информации
US16/314,831 US11032784B2 (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
MYPI2019000446A MY197924A (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
CN201680088043.7A CN109565795B (zh) 2016-07-26 2016-07-26 信息传输方法和信息传输设备
ES16909998T ES2929712T3 (es) 2016-07-26 2016-07-26 Método de transmisión de información y aparato de transmisión de información
BR112019001474-8A BR112019001474B1 (pt) 2016-07-26 Métodos de transmissão de informações, e dispositivos de transmissão de informações
SG11201900714VA SG11201900714VA (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
CN202110513436.0A CN113329485A (zh) 2016-07-26 2016-07-26 信息传输方法和信息传输设备
TW106122647A TW201804847A (zh) 2016-07-26 2017-07-06 信息傳輸方法和信息傳輸設備
PH12019500181A PH12019500181A1 (en) 2016-07-26 2019-01-25 Information transmission method and information transmission apparatus
IL264474A IL264474B2 (en) 2016-07-26 2019-01-27 Information transmission method and information transmission device
ZA2019/01173A ZA201901173B (en) 2016-07-26 2019-02-25 Information transmission method and information transmission apparatus
US17/214,733 US11665656B2 (en) 2016-07-26 2021-03-26 Information transmission method and information transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091721 WO2018018417A1 (zh) 2016-07-26 2016-07-26 信息传输方法和信息传输设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/314,831 A-371-Of-International US11032784B2 (en) 2016-07-26 2016-07-26 Information transmission method and information transmission apparatus
US17/214,733 Continuation US11665656B2 (en) 2016-07-26 2021-03-26 Information transmission method and information transmission apparatus

Publications (1)

Publication Number Publication Date
WO2018018417A1 true WO2018018417A1 (zh) 2018-02-01

Family

ID=61015221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091721 WO2018018417A1 (zh) 2016-07-26 2016-07-26 信息传输方法和信息传输设备

Country Status (17)

Country Link
US (2) US11032784B2 (zh)
EP (2) EP4096330A1 (zh)
JP (1) JP6951414B2 (zh)
KR (1) KR20190035765A (zh)
CN (2) CN113329485A (zh)
AU (1) AU2016416149B2 (zh)
CA (1) CA3031986C (zh)
ES (1) ES2929712T3 (zh)
IL (1) IL264474B2 (zh)
MX (1) MX2019001120A (zh)
MY (1) MY197924A (zh)
PH (1) PH12019500181A1 (zh)
RU (1) RU2721757C1 (zh)
SG (1) SG11201900714VA (zh)
TW (1) TW201804847A (zh)
WO (1) WO2018018417A1 (zh)
ZA (1) ZA201901173B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638247B2 (en) 2016-05-11 2023-04-25 Interdigital Patent Holdings, Inc. Physical (PHY) layer solutions to support use of mixed numerologies in the same channel
AU2022215175B2 (en) * 2016-08-10 2023-07-13 Interdigital Patent Holdings, Inc. Methods for flexible resource usage
US11916709B2 (en) 2016-03-10 2024-02-27 Interdigital Patent Holdings, Inc. Determination of a signal structure in a wireless system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721757C1 (ru) 2016-07-26 2020-05-22 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для передачи информации
WO2018024205A1 (en) * 2016-08-02 2018-02-08 Chou Chie Ming Method for signaling ran profile index and radio communication equipment using the same
CN107733826B (zh) * 2016-08-11 2020-07-07 华为技术有限公司 下行信号的发送、接收方法以及发送端设备、接收端设备
RU2724652C1 (ru) 2016-09-28 2020-06-25 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи сигнала, сетевое устройство и оконечное устройство
CN112929106A (zh) 2016-09-30 2021-06-08 Oppo广东移动通信有限公司 管理波束的方法、终端设备和网络设备
KR20180036565A (ko) * 2016-09-30 2018-04-09 주식회사 케이티 새로운 무선 접속 기술을 위한 동기 신호 설정 방법 및 장치
RU2735414C1 (ru) 2016-12-08 2020-11-02 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство для беспроводной связи
KR20190099219A (ko) 2016-12-23 2019-08-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법, 네트워크 기기 및 단말 기기
US10230492B2 (en) * 2017-01-04 2019-03-12 Samsung Electronics Co., Ltd System and method for blind detection of numerology
WO2018201344A1 (zh) 2017-05-03 2018-11-08 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN109392122B (zh) * 2017-08-10 2023-05-12 华为技术有限公司 数据传输方法、终端和基站
US11343124B2 (en) * 2017-08-15 2022-05-24 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US11751147B2 (en) * 2017-09-08 2023-09-05 Qualcomm Incorporated Techniques and apparatuses for synchronization signal scanning based at least in part on a synchronization raster
WO2021160290A1 (en) * 2020-02-14 2021-08-19 Nokia Technologies Oy Time-domain positions of synchronization signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326977A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 导频序列生成参数的配置、控制信令的检测方法及装置
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备
US20150110051A1 (en) * 2013-01-08 2015-04-23 Intel Corporation Methods and arrangements to mitigate collisions in wireless networks
CN105103592A (zh) * 2013-04-05 2015-11-25 高通股份有限公司 Lte中用于干扰抑制及干扰消除的虚拟小区管理
CN105636105A (zh) * 2014-10-27 2016-06-01 中兴通讯股份有限公司 测量导频发送、检测方法、装置、基站及终端

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137075B2 (en) * 2007-02-23 2015-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Subcarrier spacing identification
JP5463297B2 (ja) 2007-11-09 2014-04-09 ゼットティーイー (ユーエスエー) インコーポレイテッド 通信システムのためのフレキシブルなofdm/ofdmaフレーム構造
RU2454837C2 (ru) 2008-04-21 2012-06-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ проектирования структуры мультиплексирования для выделения ресурсов для поддержки действующих систем
KR20140101830A (ko) 2011-08-12 2014-08-20 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당
US20140193916A1 (en) 2013-01-08 2014-07-10 Algaeneers Inc. Electrotransformation of Clostridium pasteurianum
RU2750233C2 (ru) * 2013-11-27 2021-06-24 Телефонактиеболагет Лм Эрикссон (Пабл) Сетевой узел, беспроводное устройство, способы, выполняемые в них для отправки и обнаружения соответственно сигнала синхронизации и связанной с ним информации
US11050503B2 (en) * 2015-03-31 2021-06-29 Huawei Technologies Co., Ltd. System and method of waveform design for operation bandwidth extension
US10038581B2 (en) * 2015-06-01 2018-07-31 Huawei Technologies Co., Ltd. System and scheme of scalable OFDM numerology
US11102775B2 (en) * 2015-11-26 2021-08-24 Huawei Technologies Co., Ltd. Resource block channelization for OFDM-based numerologies
WO2017096535A1 (zh) 2015-12-08 2017-06-15 广东欧珀移动通信有限公司 连接建立的方法和装置
US10554461B2 (en) * 2015-12-10 2020-02-04 Lg Electronics Inc. Method for transmitting uplink signals in wireless communication system for supporting short transmission time interval, and device for supporting same
CN107295542B (zh) 2016-03-31 2023-11-03 华为技术有限公司 信息的传输方法、用户设备和网络设备
WO2017184047A1 (en) * 2016-04-22 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Improving communication quality between a wireless communication node; and wireless communication devices
ES2910850T3 (es) 2016-04-25 2022-05-13 Electronics & Telecommunications Res Inst Método para transmitir señales de descubrimiento y método para recibir señales de descubrimiento
CN109155681B (zh) 2016-05-09 2020-11-03 三星电子株式会社 无线蜂窝通信系统中发送/接收同步信号的方法和设备
CN107371249B (zh) 2016-05-13 2023-04-11 中兴通讯股份有限公司 传输参数的配置方法及基站、信息传输方法及终端
WO2017213420A1 (ko) * 2016-06-07 2017-12-14 엘지전자(주) 무선 통신 시스템에서 순환 전치에 대한 정보를 획득하는 방법 및 이를 위한 장치
US10880032B2 (en) * 2016-06-12 2020-12-29 Lg Electronics Inc. Method for receiving signals and wireless device thereof
US10462739B2 (en) * 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
WO2018008916A2 (ko) * 2016-07-02 2018-01-11 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
US10681697B2 (en) * 2016-07-05 2020-06-09 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method
US10171277B2 (en) * 2016-07-14 2019-01-01 Huawei Technologies Co., Ltd. Frame format and design of wake-up frame for a wake-up receiver
KR102178412B1 (ko) 2016-07-15 2020-11-16 주식회사 케이티 새로운 무선 액세스 망에서 단말을 위한 동기화 신호 및 시스템 정보를 송수신하는 방법 및 장치
MX2019000787A (es) 2016-07-21 2019-06-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para transmision de se?al, dispositivo terminal y dispositivo de red.
RU2721757C1 (ru) 2016-07-26 2020-05-22 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для передачи информации
CN106788931B (zh) 2016-09-30 2019-01-04 展讯通信(上海)有限公司 通信系统中信息传输的方法及基站、用户设备
CL2018001451A1 (es) 2018-05-30 2018-07-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Un método y equipo terminal para establecer una conexión de comunicaciones

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326977A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 导频序列生成参数的配置、控制信令的检测方法及装置
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备
US20150110051A1 (en) * 2013-01-08 2015-04-23 Intel Corporation Methods and arrangements to mitigate collisions in wireless networks
CN105103592A (zh) * 2013-04-05 2015-11-25 高通股份有限公司 Lte中用于干扰抑制及干扰消除的虚拟小区管理
CN105636105A (zh) * 2014-10-27 2016-06-01 中兴通讯股份有限公司 测量导频发送、检测方法、装置、基站及终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916709B2 (en) 2016-03-10 2024-02-27 Interdigital Patent Holdings, Inc. Determination of a signal structure in a wireless system
US11638247B2 (en) 2016-05-11 2023-04-25 Interdigital Patent Holdings, Inc. Physical (PHY) layer solutions to support use of mixed numerologies in the same channel
US12058698B2 (en) 2016-05-11 2024-08-06 Interdigital Patent Holdings, Inc. Physical (PHY) layer solutions to support use of mixed numerologies in the same channel
AU2022215175B2 (en) * 2016-08-10 2023-07-13 Interdigital Patent Holdings, Inc. Methods for flexible resource usage

Also Published As

Publication number Publication date
BR112019001474A2 (pt) 2019-05-07
MY197924A (en) 2023-07-25
TW201804847A (zh) 2018-02-01
RU2721757C1 (ru) 2020-05-22
IL264474B2 (en) 2023-04-01
EP3490316A4 (en) 2019-06-26
US20190208481A1 (en) 2019-07-04
IL264474A (en) 2022-12-01
SG11201900714VA (en) 2019-02-27
JP6951414B2 (ja) 2021-10-20
ES2929712T3 (es) 2022-12-01
CN113329485A (zh) 2021-08-31
ZA201901173B (en) 2019-12-18
EP3490316A1 (en) 2019-05-29
EP3490316B1 (en) 2022-08-31
EP4096330A1 (en) 2022-11-30
US11032784B2 (en) 2021-06-08
PH12019500181A1 (en) 2019-10-21
KR20190035765A (ko) 2019-04-03
JP2019531000A (ja) 2019-10-24
AU2016416149A1 (en) 2019-03-14
CA3031986A1 (en) 2018-02-01
AU2016416149B2 (en) 2021-08-12
MX2019001120A (es) 2019-06-10
US20210219250A1 (en) 2021-07-15
CN109565795A (zh) 2019-04-02
CA3031986C (en) 2023-03-14
US11665656B2 (en) 2023-05-30
CN109565795B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
EP3557805A1 (en) Signal transmission method and apparatus
TWI764919B (zh) 傳輸信號的方法和裝置
US11528728B2 (en) Information transmission method and device
WO2017113514A1 (zh) 传输数据的方法和用户设备
TWI771508B (zh) 無線通訊方法、終端和網路設備
EP3637818B1 (en) Signal sending and receiving method and device
WO2017070962A1 (zh) 指示资源的方法、基站和终端
TWI762531B (zh) 資源映射的方法和通訊設備
US11991684B2 (en) Data transmission method and apparatus
US11528705B2 (en) Signal transmission method and device
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
WO2020143432A1 (zh) 一种同步广播信息发送、检测方法及装置
US20180287836A1 (en) Signal processing method, network equipment, system and computer storage medium
EP3402091B1 (en) Signal transmission method, receiving method, terminal device, base station and system
WO2018102987A1 (zh) 用于解调共享参考信号的方法、终端设备和网络设备
BR112019001474B1 (pt) Métodos de transmissão de informações, e dispositivos de transmissão de informações

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3031986

Country of ref document: CA

Ref document number: 2019504004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001474

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197005005

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016909998

Country of ref document: EP

Effective date: 20190221

ENP Entry into the national phase

Ref document number: 2016416149

Country of ref document: AU

Date of ref document: 20160726

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019001474

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190124