WO2018070683A1 - 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지 - Google Patents

레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지 Download PDF

Info

Publication number
WO2018070683A1
WO2018070683A1 PCT/KR2017/010370 KR2017010370W WO2018070683A1 WO 2018070683 A1 WO2018070683 A1 WO 2018070683A1 KR 2017010370 W KR2017010370 W KR 2017010370W WO 2018070683 A1 WO2018070683 A1 WO 2018070683A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte storage
check valve
storage tank
storage unit
Prior art date
Application number
PCT/KR2017/010370
Other languages
English (en)
French (fr)
Inventor
이정배
노태근
문식원
변수진
박준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/083,684 priority Critical patent/US10763532B2/en
Priority to EP17859734.0A priority patent/EP3419095B1/en
Priority to JP2018547956A priority patent/JP6821238B2/ja
Priority to CN201780024796.6A priority patent/CN109075368B/zh
Publication of WO2018070683A1 publication Critical patent/WO2018070683A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/0482Concentration; Density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte storage unit applicable to a redox flow battery and a vanadium redox flow battery including the same.
  • Renewable energy is attracting attention as a future energy source due to a surge in energy demand worldwide and growing awareness of environmental pollution and global warming caused by the use of fossil fuels.
  • Renewable energy has a great difficulty in establishing a power supply and demand plan because the output fluctuations due to the climatic environment are large and stable power supply is not possible.
  • ESS Energy Storage System
  • ESS can be used for various purposes throughout power grids from power plants to consumers.
  • the ESS is used to store idle power at light loads (nighttime) and use it at overload (daytime) load leveling. ) Optimizes power operation.
  • technologies for ESS such as secondary battery, supercapacitor, flywheel, compressed air energy storage, pumping power generation, etc.
  • the secondary battery method that can be installed in various capacities without geographical limitation is the most popular technology for ESS. It is attracting attention.
  • the redox flow battery of the secondary battery is a system in which the active material in the electrolyte is oxidized / reduced to generate charge and discharge, and is an electrochemical storage device that directly stores chemical energy of the electrolyte as electrical energy.
  • the redox flow battery is capable of high capacity, low maintenance cost, can be operated at room temperature, and has a feature of independently designing capacity and output independently. have.
  • the vanadium redox flow battery using vanadium ions has attracted attention because the vanadium active material circulates the positive electrode and the negative electrode and the charge and discharge is performed as the oxidation number changes.
  • the commercialization of the vanadium redox flow battery can improve the capacity reduction of the battery caused by the cross-over phenomenon of vanadium ions, the generation of hydrogen at the cathode, and the oxidation reaction of vanadium ions when exposed to air. There is a need for a plan.
  • Patent Document 1 Republic of Korea Patent No. 10-1558081, Redox flow battery
  • the present inventors have studied a method capable of naturally regenerating an electrolyte and a device capable of implementing the same, and as a result, the present invention has been completed.
  • an object of the present invention is to provide an electrolyte storage portion for a redox flow battery.
  • Another object of the present invention is to provide a vanadium redox flow battery including the electrolyte storage unit.
  • the present invention provides an electrolyte storage unit for a redox flow battery including a positive electrolyte storage tank and a negative electrolyte storage tank,
  • Each of the positive electrolyte storage tank and the negative electrolyte storage tank includes a level sensor tube protruding in a vertical direction at one end, wherein the level sensor tube has a water level sensor inside.
  • the electrolyte storage unit includes a " ⁇ " shaped electrolyte transfer tube having a pump at the central end to equally control the level of the electrolyte in each tank, wherein one side and the other end of the transfer tube is a water level sensing tube of each tank It is inserted and disposed in a state spaced apart from the side wall in a predetermined distance,
  • the level of the electrolyte in each tank is measured by a level sensor, and accordingly provides an electrolyte storage unit comprising an electrical control unit to automatically operate the pump.
  • At least one of the positive electrolyte storage tank and the negative electrolyte storage tank may further include a check valve at an upper portion.
  • At this time, at least one of the positive electrolyte storage tank and the negative electrolyte storage tank further includes a pressure sensor therein,
  • An electrical control unit may be electrically connected to the pressure sensor and the check valve to automatically operate the check valve according to the internal pressure of the storage tank.
  • the check valve is a group consisting of a lift check valve, a swing check valve, a ball check valve, a screwed check valve, a butterfly check valve, a dual plate check valve, a single plate check valve, a tilting disc check valve, or a foot valve It may be one selected.
  • the A: B may be 2: 1 to 100: 1.
  • the present invention provides a vanadium redox flow battery including the electrolyte storage unit.
  • the electrolyte storage unit for the redox flow battery of the present invention can minimize the contact area between the electrolyte and the air to improve the self-discharge phenomenon of the battery, and can improve the problems of electrolyte concentration and volume imbalance that occur during battery operation.
  • the electrolyte regeneration process cycle can be delayed and the capacity and life characteristics of the battery can be improved.
  • the electrolyte storage unit of the present invention is easy to handle and install since there is no fear that the electrolytes are mixed with each other even when the external impact.
  • FIG. 1 is a view schematically showing a general structure of a redox flow battery.
  • FIG. 2 is a cross-sectional view of an electrolyte storage unit according to an exemplary embodiment of the present invention.
  • Figure 3 is a photograph of the container used as the electrolyte storage tank in Preparation Example 1.
  • FIG. 4 is a view schematically showing the structure of a battery manufactured in Preparation Example 1.
  • FIG. 4 is a view schematically showing the structure of a battery manufactured in Preparation Example 1.
  • Example 5 is a battery capacity graph of Example 1 and Comparative Example 1.
  • FIG. 6 is a graph showing battery efficiency of Example 1 and Comparative Example 1.
  • vanadium ion or “ion” means vanadium cation.
  • FIG. 1 is a diagram schematically illustrating a general structure of a redox flow battery 100.
  • a redox flow battery 100 is supplied to a cell including a positive electrode 31, a negative electrode 32, and a separator 33 connected to a power / load 30, and to the positive electrode 31. It includes a cathode electrolyte storage tank 10 for receiving a cathode electrolyte solution and a cathode electrolyte storage tank 20 for receiving a cathode electrolyte supplied to the cathode (32).
  • a redox flow battery is a battery in which an active material in an electrolyte is oxidized and reduced, and thus is charged and discharged.
  • the electrolyte of the electrolyte storage tanks 10 and 20 is supplied to the cell by the pumps 11 and 21 to cause an oxidation / reduction reaction, thereby causing electrical energy. Will produce.
  • the positive electrode 31 reduces the pentavalent vanadium ions to form tetravalent vanadium ions
  • the negative electrode 32 oxidizes the divalent vanadium ions to form trivalent vanadium ions.
  • the opposite oxidation / reduction reaction occurs.
  • the vanadium redox flow battery is composed of vanadium ions having a volume ratio of 1: 1 in the positive electrode and the negative electrode electrolyte and different oxidation numbers.
  • the vanadium divalent of the negative electrode is used. Since ions are faster to penetrate the separator than vanadium tetravalent or pentavalent ions of the anode, the vanadium concentration and volume of the cathode electrolyte decrease as the charge and discharge cycle progresses to the anode, and the anode electrolyte is reduced. The vanadium concentration and the volume of are raised.
  • the anion exchange membrane is used, the level of the cathode electrolyte is continuously increased.
  • the present invention solves the above problem by maintaining the concentration and volume of the positive and negative electrolytes constant so that the electrolytes can be naturally regenerated during battery operation without additional energy.
  • the present invention is an electrolyte storage unit for a redox flow battery including a positive electrolyte storage tank and a negative electrolyte storage tank,
  • Each of the positive electrolyte storage tank and the negative electrolyte storage tank includes a level sensor tube protruding in a vertical direction at one end, wherein the level sensor tube has a water level sensor inside.
  • the electrolyte storage unit includes a " ⁇ " shaped electrolyte transfer tube having a pump at the central end to equally control the level of the electrolyte in each tank, wherein one side and the other end of the transfer tube is a water level sensing tube of each tank It is inserted and disposed in a state spaced apart from the side wall in a predetermined distance,
  • the level of the electrolyte in each tank is measured by a level sensor, and accordingly provides an electrolyte storage unit comprising an electrical control unit to automatically operate the pump.
  • the electrolyte storage unit of the present invention can immediately detect the volume change of the electrolyte stored in the storage tank by the water level sensor provided in the water level detection tube, the electrolyte transfer pipe having a pump when the increase in the electrolyte of one storage tank is detected By this the electrolyte increase is transferred to the other storage tank.
  • the electrolyte increase is transferred to the other storage tank.
  • FIG. 2 is a cross-sectional view of an electrolyte storage unit according to an exemplary embodiment of the present invention.
  • the present invention will be described in detail with reference to FIG.
  • the positive and negative electrolyte storage tanks 10 and 20 respectively include water level sensing tubes 14 and 24 protruding upward at one end.
  • the water level detecting pipes 14 and 24 are provided, there is an effect that a small level change can be detected even when the storage tank is large. There are advantages to it.
  • the water level sensing pipes 14 and 24 are installed to protrude upward from the upper portions 16 and 17 of the respective storage tanks 10 and 20, and are preferably installed straight in the vertical direction as shown in FIG.
  • the existing electrolyte storage tank for redox flow battery was used in a state in which only a part of the tank was filled because the electrolyte that increased or decreased according to charging and discharging could not be accommodated in each tank when the battery was driven with the electrolyte filled in the tank.
  • the active material in the electrolyte is oxidized due to the air present in the tank, causing self discharge.
  • a method of purging the electrolyte storage tank with an inert gas such as nitrogen has been used, but a method of minimizing the contact area between the electrolyte and the air layer has been required.
  • the electrolyte storage unit 200 of the present invention solves the above problems by providing the water level sensing tubes 14 and 24 in each of the electrolyte storage tanks 10 and 20.
  • the electrolyte storage unit 200 of the present invention can accommodate the increase of the electrolyte in the water level detection tubes 14 and 24 protruding upward from the upper portions 16 and 17 of the tanks 10 and 20, the storage tank ( The parts except for the water level detection tubes 14 and 24 of 10 and 20 may be used by filling the electrolyte solutions 12 and 22 to the upper portion so that the contact area with air is not provided.
  • the electrolyte stored in the storage tanks 10 and 20 is exposed to the air only as much as the area of the water level sensing pipes 14 and 24, the self-discharge phenomenon due to oxidation of the electrolyte can be minimized.
  • the water level detection tube (14, 24) is preferably a narrow tube shape so as to sensitively detect the change in volume of the electrolyte generated in the storage tank (10, 20). That is, when the same volume increases and decreases, the smaller the cross-sectional area of the tube, the larger the water level difference (height difference). Therefore, the smaller the cross-sectional area of the water level sensing tubes 14 and 24, the higher the sensitivity to the increase or decrease of the volume of the electrolyte.
  • A: B is 2: 1. It is preferable that it is to 100: 1. If A: B is less than 2: 1, the cross-sectional area of the level sensor is too large to make electrolyte volume correction immediately, and if it exceeds 100: 1, the sensitivity of the level detection is too high, so that the level sensor (15, 25) and Since there is a problem that the power consumption is severe due to the continuous operation of the pump 41 in the electrolyte transfer pipe, it is appropriately adjusted within the above range.
  • the height of the water level detecting pipes 14 and 24 is not particularly limited as long as it is high enough to accommodate a temporary increase in the volume of the electrolyte, and may be appropriately heighted according to the cross-sectional area of the water level detecting pipes 14 and 24 by a person skilled in the art. Can be adjusted.
  • the water level detection pipe (14, 24) is provided with a water level sensor (15, 25) for detecting a change in the water level therein.
  • the water level detection sensors 15 and 25 are sensors that can detect a state out of a predetermined water level, and are electrically connected to a pump provided in an electrolyte transfer pipe. Therefore, it is possible to automatically detect the change of the electrolyte level in the level sensor tube and automatically correct the volume of electrolyte on both sides.
  • the volume change of the electrolyte to allow the level sensor 15, 25 to be sensitive can be adjusted as needed, but preferably 20% or less of the volume of the initial electrolyte, preferably 0.001, in order to ensure a natural regeneration effect of the electrolyte. To change the volume change from 1% to 1%.
  • Passive regeneration of the electrolyte solution implemented by the electrolyte storage unit 200 of the present invention immediately transfers the increase of the electrolyte solution of one storage tank caused by the permeation of the separator of vanadium ions during battery operation to the other storage tank to immediately transfer the anode and the anode.
  • the electrolyte is naturally regenerated, which is distinguished from conventional active regeneration that requires extra electrical and chemical energy.
  • the forced regeneration method consists of physically mixing the positive electrode and the negative electrode electrolyte, and then dividing the volume ratio by 1: 1 to supply and charge the stack to regenerate vanadium ions having the positive electrode 4 and the negative electrode trivalent oxide.
  • the natural regeneration is that vanadium ions in a small amount of electrolyte transferred to the counter electrode storage tank are regenerated into vanadium ions having the same oxidation water as the surrounding electrolyte through an oxidation / reduction reaction, and do not require separate energy.
  • the amount of the other side electrolyte to be temporarily transferred is required to be 20% or less with respect to the total volume of one side of the electrolyte in order to regenerate with ions of the appropriate oxidation water without causing an ion imbalance due to the other side of the electrolyte is transferred, 0.001 to 1% It is more preferable that it is a range. Therefore, it is preferable in view of ensuring the effect of the present invention that the water level sensor 15, 25 is sensitive to the volume change in the above range.
  • Electrolyte storage unit of the present invention " ⁇ " shaped transfer pipe connecting the positive and negative electrolyte storage tank (10, 20) to move the electrolyte when the increase or decrease of the electrolyte by the water level sensor (15, 25) ( 40).
  • One end of the “ ⁇ ” shaped transfer pipe 40 is located in the water level sensing tube 14 of the positive electrolyte storage tank 10, and the other end is located in the water level sensing tube 24 of the negative electrolyte storage tank 20. Allow the positive and negative electrolytes to move with each other.
  • the pump 41 is provided at the central end of the “ ⁇ ” shaped transfer pipe 40.
  • the pump 41 is connected by the water level sensor (15, 25) and an electrical control unit (not shown) serves to automatically transfer the electrolyte.
  • an electrical control unit (not shown) serves to automatically transfer the electrolyte.
  • the electrolyte storage part 200 of the present invention includes water level detection tubes 14 and 24 protruding upward and a “ ⁇ ” shaped transfer pipe 40 located therein, thereby allowing natural regeneration of the electrolyte. Since there is no fear that the electrolyte is unnecessarily mixed by the external impact, it has the advantage of easy handling and installation.
  • At least one or more of the positive electrolyte storage tank 10 and the negative electrolyte storage tank 20 of the electrolyte storage unit of the present invention may further include check valves 17 and 27 at the upper portions 16 and 26.
  • the check valves 17 and 27 are one-way valves for discharging gas such as hydrogen and oxygen generated in the electrolyte storage unit 200 to maintain a constant internal pressure.
  • a gas may generate
  • the check valves 17 and 27 are included in the upper portions of the electrolyte storage tanks 10 and 20 to maintain the internal pressure of the electrolyte storage unit 200 at a constant level.
  • check valves 17 and 27 that can be used at this time is not particularly limited in the present invention, and valves commonly used in the art may be used.
  • Non-limiting examples of such check valves include lift check valves, swing check valves, ball check valves, threaded check valves, butterfly check valves, dual plate check valves, single plate check valves, tilting disc check valves, or foot valves. Can be mentioned.
  • the electrolyte storage unit 200 of the present invention is provided with a pressure sensor (not shown) in at least one or more of the positive and negative electrolyte storage tank (10, 20), the pressure sensor and the check valve (17, And an electrical control unit (not shown) for electrically connecting the 27 to each other, so that the check valves 17 and 27 are automatically opened as the pressure increases, so that the internal pressure of the electrolyte storage units 10 and 20 is constant. Can be maintained.
  • Material such as the detection sensor 15, 25, pressure sensor (not shown) is not particularly limited in the present invention as long as the material does not react with the electrolyte and has acid resistance.
  • Non-limiting examples of such materials include metals coated with acid resistant materials inside, glass, polyvinyl chloride, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene, poly (Vinylidene difluoride), polyester, polycarbonate, polyalcohol, polysulfone, polyethersulfone, polyether, polyamide, polyimide, polyphenylene sulfide, poly (ether-ketone), poly ( Ether-ether-ketone), poly (phthalazinone-ether-ketone), polybenzimidazole, polystyrene, polyisobutylene, and polyacrylonitrile.
  • the vanadium redox flow battery according to the present invention uses the electrolyte storage portion according to the present invention as the electrolyte storage portion.
  • the problem of electrolyte imbalance caused by the crossover phenomenon of vanadium ions is improved, and the performance degradation rate of the battery is significantly reduced, and the number of separate electrolyte regeneration processes can be reduced, thereby improving efficiency of battery operation. have.
  • the configuration of the positive electrode, the negative electrode, the separator and the electrolyte of the vanadium redox flow battery is not particularly limited in the present invention, and is known in the art.
  • the positive electrode and the negative electrode may be ones generally used in this field, but are preferably carbon electrodes such as carbon felt and carbon cross.
  • a cation or anion exchange membrane is used, and in the case of vanadium-based electrolyte, since the active material mixed with a transition metal element and a strong acid is used as an electrolyte, it is required to have high acid resistance, oxidation resistance, and selective permeability.
  • Nafion, CMV, AMV, DMV and the like can be used, preferably Nafion.
  • the electrolyte includes an active material, and the vanadium electrolyte dissolves vanadium oxides such as V 2 O 5 , VOSO 4 , or V 2 (SO 4 ) 3 in acids such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, and the like. It can be prepared by using a reducing agent so that the vanadium electrolyte has a constant oxidation number.
  • a VOSO 4 1M solution in 3M H 2 SO 4 may be prepared to prepare a vanadium tetravalent ion electrolyte solution, and reduced by an electrochemical method to prepare a vanadium trivalent ion electrolyte solution.
  • a vanadium redox flow battery was manufactured as shown in FIG. 4 by using a container having a narrow tube on the upper side as shown in FIG. 3 as an electrolyte storage tank.
  • the positive electrode and the negative electrode electrolyte were used by electrochemical oxidation / reduction of 60 ml of 1.6 M vanadium solution (Oxchem Co., Ltd.), respectively, and the storage tank was purged with nitrogen after filling the electrolyte.
  • 50 * 50 mm carbon felt (XF30A) was used as an electrode, and Nafion 212 was used as a separator.
  • the battery of Preparation Example 1 was used as Example 1, and battery performance thereof was evaluated.
  • a redox flow battery having the same battery configuration as in Preparation Example 1 but without transfer of the electrolyte during battery operation was used.
  • the battery driving conditions are as follows.
  • Electrolyte supply rate 2 ml / min per cm 2
  • Rate of electrolyte supply of pump in delivery line 0.3 ml / min per cm 2
  • FIGS. 5 and 6 are graph of discharge capacity of Example 1 and Comparative Example 1
  • Figure 6 is a graph showing the current efficiency (CE), voltage efficiency (VE), and energy efficiency (EE).
  • Example 1 in the case of Example 1, it can be seen that the capacity increase effect occurs immediately when the electrolyte is transferred through the electrolyte transport pipe (parts indicated by 1 to 6).
  • the change in battery capacity before and after each electrolyte transfer is shown in Table 1 below.
  • Comparative Example 1 showed an expression capacity of 50% compared to the initial discharge capacity, but Example 1 showed a very good expression capacity of 83%.
  • Example 1 showing a high capacity retention rate as described above showed a battery efficiency comparable to the conventional battery (Comparative Example 1) (Fig. 6 and Table 2).
  • the electrolyte storage unit for the redox flow battery of the present invention improves the capacity characteristics of the battery by allowing the electrolyte to be naturally regenerated while driving the battery, thereby delaying the separate electrolyte regeneration process cycle efficiency of battery operation It can be seen that this is increased.
  • the electrolyte storage unit of the present invention can maintain the electrolyte level in the storage tank automatically, the electrolyte can be regenerated continuously and easy to use, even if the external shock by the structure provided with a level sensor tube and the electrolyte transfer pipe located therein There is no fear that the electrolytes will mix with each other, so it is easy to handle and install.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명은 레독스 플로우 전지에 적용 가능한 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지에 관한 것이다. 본 발명의 레독스 플로우 전지용 전해액 저장부는 전해액과 공기와의 접촉면적을 최소화 하여 전지의 자가방전 현상을 개선할 수 있으며, 전지 구동 중 발생하는 전해액 농도 및 부피 불균형의 문제를 개선할 수 있다. 이에, 전해액 재생 공정 주기를 늦출 수 있으며 전지의 용량 및 수명 특성을 개선할 수 있다. 또한, 본 발명의 전해액 저장부는 외부 충격에도 전해액이 서로 섞일 염려가 없으므로, 취급 및 설치가 용이하다.

Description

레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
본 출원은 2016년 10월 13일자 한국 특허 출원 제10-2016-0132669호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 기재된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 레독스 플로우 전지에 적용 가능한 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지에 관한 것이다.
전 세계적으로 에너지 수요가 급증하고 화석연료의 사용에 따른 환경오염 및 지구온난화에 대한 문제의식이 커지면서 신 재생 에너지가 미래의 에너지원으로 주목 받고 있다. 하지만 신 재생 에너지는 기후환경에 따른 출력 변동이 커서 안정적인 전력 공급이 불가능하여 전력수급 계획을 수립하는데 큰 어려움이 있다. 이에 대한 해결방안으로 소비되지 않은 전력을 저장하였다가 전력이 필요한 시기에 공급하는 에너지저장장치(ESS, Energy Storage System)의 중요성이 전 세계적으로 대두되고 있다.
ESS는 전력을 생산하는 발전소부터 소비자까지의 전력망계 전반에 걸쳐 다양한 용도로 사용될 수 있는데, ESS를 이용하여 경부하(야간) 때 유휴전력을 저장하고 과부하(주간) 때 사용함으로써 부하 평준화(Load leveling)를 통해 전력 운영의 최적화가 가능하다. ESS를 위한 기술로는 2차전지, 슈퍼커패시터, 플라이휠, 압축공기 에너지저장, 양수발전 등 다양한 기술들이 존재하는데, 지리적 제약이 없고 다양한 용량의 설치가 가능한 2차전지 방식이 ESS를 위한 기술로 가장 주목받고 있다.
2차전지 중 레독스 플로우 전지는 전해액 중의 활물질이 산화/환원되어 충방전을 일으키는 시스템으로, 전해액의 화학적 에너지를 직접 전기 에너지로 저장시키는 전기화학적 축전장치이다. 레독스 플로우 배터리는 대용량화가 가능하며, 유지 보수 비용이 적고, 상온에서 작동 가능하며, 용량과 출력을 각기 독립적으로 설계할 수 있는 특징이 있기 때문에 최근 대용량 이차 전지로 개발하기 위하여 많은 연구가 진행되고 있다.
이 중에서도, 바나듐 이온을 이용하는 바나듐 레독스 플로우 전지는 바나듐 활물질이 양극과 음극을 순환하며 산화수가 변화되면서 충방전이 이루어지므로 물질의 소모가 없는 장점이 있어 주목 받고 있다.
그러나 바나듐 레독스 플로우 전지의 상용화를 위해서는 바나듐 이온의 분리막 투과(cross-over) 현상, 음극에서의 수소 발생, 그리고 공기 노출 시 바나듐 이온의 산화 반응 등으로 발생하는 전지의 용량 저하 현상을 개선할 수 있는 방안이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-1558081호, 레독스 흐름 전지
상기 문제를 해결하기 위하여 본 발명자들은 전해액의 자연적 재생이 가능한 방법 및 이를 구현할 수 있는 장치에 관하여 연구하였으며, 그 결과 본 발명을 완성하였다.
따라서, 본 발명의 목적은 레독스 플로우 전지용 전해액 저장부를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 전해액 저장부를 포함하는 바나듐 레독스 플로우 전지를 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 양극 전해액 저장탱크 및 음극 전해액 저장탱크를 포함하는 레독스 플로우 전지용 전해액 저장부로서,
상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 각각은 일측 단부에 수직 방향으로 돌출된 수위감지관을 포함하며, 이때 상기 수위감지관은 내측에 수위감지센서를 구비하고,
상기 전해액 저장부는 각 탱크 내 전해액의 수위를 동등하게 조절할 수 있도록 중앙 단부에 펌프를 구비하는 "∩"자형 전해액 이송관을 포함하며, 이때 상기 이송관의 일측 및 타측 말단은 각 탱크의 수위감지관 내에 측벽으로부터 소정 거리가 이격된 상태로 삽입되어 배치되고,
상기 각 탱크 내 전해액의 수위를 수위감지센서로 측정하고, 이에 따라 상기 펌프가 자동으로 작동할 수 있도록 전기적 제어부를 포함하는 것을 특징으로 하는 전해액 저장부를 제공한다.
이때, 상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 중 적어도 1 이상은 상부에 체크밸브를 더 포함할 수 있다.
이때, 상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 중 적어도 1 이상은 내부에 압력 센서를 더 포함하며,
저장탱크의 내부 압력에 따라 상기 체크밸브가 자동으로 동작 가능하도록, 상기 압력 센서와 체크밸브가 전기적으로 연결된 전기적 제어부를 포함할 수 있다.
이때, 상기 체크밸브는 리프트 체크밸브, 스윙 체크밸브, 볼 체크밸브, 나사조임 체크밸브, 버터플라이 체크밸브, 듀얼 플레이트 체크밸브, 싱글 플레이트 체크밸브, 틸팅 디스크 체크밸브, 또는 풋 밸브로 이루어지는 군에서 선택되는 1종일 수 있다.
이때, 상기 양극 및 음극 전해액 저장탱크 각각의 단면적을 A, 각 전해액 저장탱크의 수위감지관 단면적을 B라고 할 때,
상기 A:B는 2:1 내지 100:1일 수 있다.
또한, 본 발명은 상기 전해액 저장부를 포함하는 바나듐 레독스 플로우 전지를 제공한다.
본 발명의 레독스 플로우 전지용 전해액 저장부는 전해액과 공기와의 접촉면적을 최소화하여 전지의 자가방전 현상을 개선할 수 있으며, 전지 구동 중 발생하는 전해액 농도 및 부피 불균형의 문제를 개선할 수 있다. 이에, 전해액 재생 공정 주기를 늦출 수 있으며 전지의 용량 및 수명 특성을 개선할 수 있다. 또한, 본 발명의 전해액 저장부는 외부 충격에도 전해액이 서로 섞일 염려가 없으므로, 취급 및 설치가 용이하다.
도 1은 레독스 플로우 전지의 일반적인 구조를 개략적으로 도시한 도면이다.
도 2는 본 발명의 바람직한 일 구현예에 따른 전해액 저장부의 단면도이다.
도 3은 제조예 1에서 전해액 저장탱크로 사용된 용기의 사진이다.
도 4는 제조예 1에서 제조된 전지의 구조를 개략적으로 도시한 도면이다.
도 5는 실시예 1 및 비교예 1의 전지 용량 그래프이다.
도 6은 실시예 1 및 비교예 1의 전지 효율 그래프이다.
이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거하여 상세히 설명한다. 이러한 도면은 본 발명을 설명하기 위한 일 구현예로서 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다. 이때 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
본 명세서에서 특별한 언급이 없는 한, "바나듐 이온" 또는"이온"은 바나듐 양이온을 의미한다.
전해액 저장부
도 1은 레독스 플로우 전지(100)의 일반적인 구조를 개략적으로 도시한 도면이다.
도 1에 도시된 바와 같이, 레독스 플로우 전지(100)는 전원/부하(30)와 연결된 양극(31), 음극(32) 및 분리막(33)을 포함하는 셀, 상기 양극(31)에 공급되는 양극 전해액을 수용하는 양극 전해액 저장탱크(10) 및 상기 음극(32)에 공급되는 음극 전해액을 수용하는 음극 전해액 저장탱크(20)를 포함한다.
레독스 플로우 전지는 전해액 중의 활물질이 산화 및 환원되어 충방전 되는 전지로, 전해액 저장탱크(10, 20)의 전해액이 펌프(11, 21)에 의해 셀에 공급되어 산화/환원 반응을 일으키며 전기적 에너지를 생산하게 된다. 바나듐 레독스 플로우 전지의 경우, 방전 시 양극(31)은 5가의 바나듐 이온이 환원되어 4가의 바나듐 이온을 형성하고, 음극(32)은 2가의 바나듐 이온이 산화되어 3가의 바나듐 이온을 형성한다. 반면에 충전 시에는 이와 반대의 산화/환원 반응이 일어난다.
그러나 이와 같은 바나듐 레독스 플로우 전지는 바나듐 이온의 분리막 투과(cross-over) 현상으로 인한 문제점을 가지고 있다.
구체적으로, 바나듐 레독스 플로우 전지는 상술한 바와 같이 양극과 음극 전해액이 1:1의 부피비를 가지며 서로 다른 산화수를 가지는 바나듐 이온으로 구성되어 있는데, 양이온 교환막을 분리막으로 사용하는 경우 음극의 바나듐 2가 이온은 양극의 바나듐 4가 또는 5가 이온에 비하여 분리막을 투과하는 속도가 빠르기 때문에 충방전 사이클이 진행될수록 바나듐 2가 이온의 양극으로의 이동에 의해 음극 전해액의 바나듐 농도 및 부피는 감소하며 양극 전해액의 바나듐 농도 및 부피는 상승하게 된다. 반대로, 음이온 교환막을 사용하면 음극 전해액의 수위가 계속적으로 높아지게 된다.
이와 같이 양극과 음극 전해질의 이온 균형이 깨지게 되면 급격한 전지용량의 저하가 일어나며, 이를 회복시키기 위해서 주기적으로 전해액을 재생시키는 공정이 필요하다. 이러한 전해액 재생공정은 별도의 시간 및 전기적, 화학적 에너지를 필요로 하며, 재생공정 중에는 전지를 운용할 수 없기 때문에 레독스 플로우 전지의 상용화에 있어서 큰 걸림돌이다.
본 발명에서는 양극 및 음극 전해액의 농도 및 부피를 일정하게 유지시켜 별도의 에너지를 가하지 않고도 전지 구동 중 자연적으로 전해액이 재생될 수 있도록 함으로써 상기 문제점을 해결하였다.
구체적으로 본 발명은 양극 전해액 저장탱크 및 음극 전해액 저장탱크를 포함하는 레독스 플로우 전지용 전해액 저장부로서,
상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 각각은 일측 단부에 수직 방향으로 돌출된 수위감지관을 포함하며, 이때 상기 수위감지관은 내측에 수위감지센서를 구비하고,
상기 전해액 저장부는 각 탱크 내 전해액의 수위를 동등하게 조절할 수 있도록 중앙 단부에 펌프를 구비하는 "∩"자형 전해액 이송관을 포함하며, 이때 상기 이송관의 일측 및 타측 말단은 각 탱크의 수위감지관 내에 측벽으로부터 소정 거리가 이격된 상태로 삽입되어 배치되고,
상기 각 탱크 내 전해액의 수위를 수위감지센서로 측정하고, 이에 따라 상기 펌프가 자동으로 작동할 수 있도록 전기적 제어부를 포함하는 것을 특징으로 하는 전해액 저장부를 제공한다.
본 발명의 전해액 저장부는 수위감지관 내에 구비된 수위감지센서에 의하여 저장탱크에 저장된 전해액의 부피 변화가 즉각적으로 감지될 수 있으며, 일측 저장탱크의 전해액 증가가 감지되었을 때 펌프를 구비하는 전해액 이송관에 의하여 전해액 증가분이 타측 저장탱크로 이송된다. 이와 같은 전해액 부피의 즉각적인 보정에 의하여 양극 및 음극 전해질 이온 균형을 유지시킬 수 있으며, 레독스 플로우 전지의 전지 용량 저하 현상을 크게 개선할 수 있다.
도 2는 본 발명의 바람직한 일 구현예에 따른 전해액 저장부의 단면도이다. 이하, 도 2를 참조하여 본 발명을 상세히 설명한다.
본 발명의 전해액 저장부(200)에서, 양극 및 음극 전해액 저장탱크(10, 20)는 각각 일측 단부에 위로 돌출된 수위감지관(14, 24)을 포함한다. 이와 같은 수위감지관(14, 24)을 구비할 경우, 저장탱크의 부피가 크더라도 미세한 수위변화를 감지할 수 있는 효과가 있으며, 저장탱크 내에 저장된 전해액(12, 22)의 공기 접촉을 최소화할 수 있는 장점이 있다.
상기 수위감지관(14, 24)은 각 저장탱크(10, 20)의 상부(16, 17)보다 위로 돌출되도록 설치되며, 도 2에 도시된 바와 같이 수직방향으로 곧게 설치되는 것이 바람직하다.
기존의 레독스 플로우 전지용 전해액 저장탱크는 탱크 내에 전해액을 가득 채운 상태로 전지를 구동시키게 되면 충방전에 따라 증감하는 전해액을 각 탱크에서 수용할 수 없기 때문에 탱크를 일부만 채운 상태로 사용하였다. 이 경우, 탱크 내부에 존재하는 공기로 인하여 전해액 내의 활물질이 산화되어 자가방전을 일으키는 문제가 있었다. 이를 방지하기 위하여 전해액 저장탱크를 질소와 같은 불활성 기체로 퍼징(purging)하는 방법이 사용되고 있으나, 보다 근본적으로 전해액과 공기층의 접촉면적을 최소화 하는 방법이 필요한 실정이었다.
본 발명의 전해액 저장부(200)는 상기 수위감지관(14, 24)을 각 전해액 저장탱크(10, 20)에 구비함으로써 상기 문제를 해결하였다.
즉, 본 발명의 전해액 저장부(200)는 탱크(10, 20)의 상부(16, 17)보다 위로 돌출되어 있는 수위감지관(14, 24)에서 전해액 증가분의 수용이 가능하므로, 저장탱크(10, 20)의 수위감지관(14, 24)을 제외한 부분은 공기와 접촉면적이 없도록 상부까지 전해액(12, 22)을 채워 사용할 수 있다. 이와 같이 사용할 경우 저장탱크(10, 20)에 저장된 전해액은 수위감지관(14, 24)의 면적만큼만 공기 중에 노출되므로, 전해액의 산화로 인한 자가방전 현상을 최소화 할 수 있다.
상기 수위감지관(14, 24)은 저장탱크(10, 20) 내에 발생하는 전해액의 부피 변화를 민감하게 감지할 수 있도록 좁은 관 형상인 것이 바람직하다. 즉, 동일 부피가 증감할 때 관의 단면적이 작을수록 수위 차(높이 차)가 크게 나타나므로, 수위감지관(14, 24)의 단면적이 작을수록 전해액 부피 증감에 대한 민감도는 높아진다.
보다 구체적으로, 상기 양극 및 음극 전해액 저장탱크(10, 20) 각각의 단면적을 A, 각 전해액 저장탱크의 수위감지관(14, 24) 단면적을 B라고 할 때, 상기 A:B는 2:1 내지 100:1인 것이 바람직하다. 만일 A:B가 2:1 미만이면 수위감지관의 단면적이 너무 넓어 전해액 부피 보정이 즉각적으로 이루어지기 어렵고, 100:1을 초과하면 수위 감지의 민감도가 너무 높아져 수위감지센서(15, 25) 및 전해액 이송관 내 펌프(41)의 계속적인 작동으로 인하여 전력 소모가 심해지는 문제가 있으므로 상기 범위 내에서 적절히 조절한다.
상기 수위감지관(14, 24)의 높이는 전해액 부피의 일시적 증가분을 수용할 수 있을 정도의 높이라면 특별히 제한되지 않으며, 통상의 기술자에 의해 수위감지관(14, 24)의 단면적에 따라 적절한 높이로 조절될 수 있다.
본 발명에서 상기 수위감지관(14, 24)은 내부에 수위 변화를 감지하기 위한 수위감지센서(15, 25)를 구비한다.
상기 수위감지센서(15, 25)는 기 설정된 수위를 벗어난 상태를 감지할 수 있는 센서로서, 전해액 이송관에 구비된 펌프와 전기적으로 연결된다. 따라서 수위감지관의 전해액 수위 변화를 즉각 감지하여 자동으로 양 측의 전해액 부피를 보정하는 것이 가능하다.
상기 수위감지센서(15, 25)가 감응하도록 하는 전해액 부피 변화량은 필요에 따라 조절될 수 있으나, 전해액의 자연적 재생 효과를 확보하기 위하여 바람직하기로 최초의 전해액 부피의 20% 이하, 바람직하기로 0.001 내지 1% 의 부피 변화를 감응하도록 한다.
본 발명의 전해액 저장부(200)에 의하여 구현되는 전해액의 자연적 재생(passive regeneration)은 전지 구동 중 바나듐 이온의 분리막 투과 현상으로 인해 발생한 일측 저장탱크의 전해액 증가분을 즉각 타측 저장탱크로 이송하여 양극 및 음극 전해액의 수위를 일정하게 유지시킴으로써 자연적으로 전해액이 재생되는 방식으로, 별도의 전기, 화학적 에너지를 필요로 하는 기존의 강제적 재생(active regeneration)과 구별된다.
구체적으로, 강제적 재생법은 양극 및 음극 전해액을 물리적으로 혼합한 후, 부피비를 1:1로 나누어 스택에 공급하고 충전하여 양극 4가, 음극 3가의 산화수를 가지는 바나듐 이온을 재생하는 방법으로 이루어진다.
반면, 상기 자연적 재생은 상대극 저장탱크로 이송된 소량의 전해액 내의 바나듐 이온이 산화/환원 반응을 통해 주변의 전해액과 같은 산화수를 갖는 바나듐 이온으로 재생되는 것으로서, 별도의 에너지를 필요로 하지 않는다. 이때, 일측 전해액이 이송되는 타측 전해액으로 인하여 이온 불균형을 일으키지 않고 적절한 산화수의 이온으로 재생되도록 하기 위해서는 일시에 이송되는 타측 전해액의 양은 일측 전해액의 전체 부피 대비 20% 이하일 것이 요구되며, 0.001 내지 1% 범위인 것이 보다 바람직하다. 따라서, 상기 범위의 부피 변화를 수위감지센서(15, 25)가 감응하도록 하는 것이 본 발명의 효과 확보 측면에서 바람직하다.
본 발명의 전해액 저장부(200)와 같은 장치를 통하여 전해액이 소량씩 상대극으로 이송될 경우는 양극과 음극의 전해액이 한꺼번에 다량 섞이는 경우와는 달리 이온 불균형을 일으키지 않으며, 분리막 투과 현상으로 인해 발생한 전해액의 이온 및 부피 불균형이 지속적으로 보정된다. 따라서, 레독스 플로우 전지의 성능 저하 속도가 현저히 줄어들게 되며, 전해액 재생공정의 주기를 늘릴 수 있다.
본 발명의 전해액 저장부는 수위감지센서(15, 25)에 의하여 전해액의 증감이 감응되었을 때 전해액을 이동시킬 수 있도록 양극 및 음극 전해액 저장탱크(10, 20)를 연결하는 “∩”자형 이송관(40)을 구비한다.
상기 “∩”자형 이송관(40)의 일측 말단은 양극 전해액 저장탱크(10)의 수위감지관(14) 내에, 타측 말단은 음극 전해액 저장탱크(20)의 수위감지관(24) 내에 위치되어 양극 및 음극 전해액이 서로 이동될 수 있도록 한다.
이때, 상기 “∩”자형 이송관(40)의 중앙 단부에는 펌프(41)가 구비된다. 상기 펌프(41)는 상기 수위감지센서(15, 25)와 전기적 제어부(미도시)에 의하여 연결되어 자동적으로 전해액을 이송하는 역할을 한다. 또한, 상기 펌프(41)에 의하여 일시에 이송되는 전해액의 양 또는 이송되는 전해액의 유속을 조절할 수 있다.
본 발명의 전해액 저장부(200)는 상술한 바와 같이 위로 돌출된 수위감지관(14, 24) 및 이에 위치하는 “∩”자형 이송관(40)을 구비하여 전해액의 자연적 재생이 가능함은 물론, 외부 충격에 의하여 불필요하게 전해액이 혼합될 염려가 없으므로 취급 및 설치가 용이한 장점을 갖는다.
한편, 본 발명의 전해액 저장부의 양극 전해액 저장탱크(10) 및 음극 전해액 저장탱크(20) 중 적어도 1 이상은 상부(16, 26)에 체크밸브(17, 27)를 더 포함할 수 있다.
상기 체크밸브(17, 27)는 전해액 저장부(200)에 발생한 수소, 산소 등의 기체를 배출하여 내부 압력을 일정하게 유지할 수 있도록 하는 1방향 밸브이다.
레독스 플로우 전지는 불순물로 인한 전해액의 부반응에 의하여 셀 내에서 기체가 발생하는 일이 있다. 이러한 기체들이 지속적으로 발생하면 압력에 의해 전해액 저장부가 파손될 위험이 있고, 산소의 경우 활물질의 산화를 촉진시켜 자가방전을 일으키는 문제가 있으므로, 일정 압력 이상에 도달했을 때 외부로 기체를 배출시킬 수 있는 수단을 구비하는 것이 바람직하다.
이에, 본 발명에서는 전해액 저장탱크(10, 20)의 상부에 체크밸브(17, 27)를 포함하여 전해액 저장부(200)의 내부압을 일정하게 유지시킬 수 있도록 하였다.
이때 사용될 수 있는 체크밸브(17, 27)의 종류는 본 발명에서 특별히 제한되지 않으며, 당 업계에 통상적으로 사용되는 밸브가 사용될 수 있다. 상기 체크밸브의 비제한적인 예로는 리프트 체크밸브, 스윙 체크밸브, 볼 체크밸브, 나사조임 체크밸브, 버터플라이 체크밸브, 듀얼 플레이트 체크밸브, 싱글 플레이트 체크밸브, 틸팅 디스크 체크밸브, 또는 풋 밸브를 들 수 있다.
또한, 본 발명의 전해액 저장부(200)는 양극 및 음극 전해액 저장탱크(10, 20) 중 적어도 1 이상의 내부에 압력감지센서(미도시)를 설치하고, 압력감지센서와 상기 체크밸브(17, 27)를 전기적으로 연결하는 전기적 제어부(미도시)를 더 포함함으로써, 압력의 상승에 따라 상기 체크밸브(17, 27)가 자동으로 열리도록 하여 전해액 저장부(10, 20)의 내부압이 일정하게 유지되도록 할 수 있다.
본 발명의 전해액 저장부를 구성하는 전해액 저장 탱크(10, 20), 수위감지관(14, 24), “∩”자형 이송관(40), 펌프(41), 체크밸브(17, 27), 수위감지센서(15, 25), 압력감지센서(미도시) 등의 재질은 전해액과 반응하지 않고 내산성을 가지는 소재라면 본 발명에서 특별히 한정하지 않는다.
이러한 소재의 비제한적인 예로는 내부가 내산성 재료로 코팅된 금속재, 유리, 폴리비닐 클로라이드, 폴리프로필렌, 폴리에틸렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오리드, 염소화된 폴리에틸렌, 염소화된 폴리프로필렌, 폴리(비닐리덴 디플루오리드), 폴리에스테르, 폴리카르보네이트, 폴리알코올, 폴리술폰, 폴리에테르술폰, 폴리에테르, 폴리아미드, 폴리이미드, 폴리페닐렌 술피드, 폴리(에테르-케톤), 폴리(에테르-에테르-케톤), 폴리(프탈라지논-에테르-케톤), 폴리벤즈이미다졸, 폴리스티렌, 폴리이소부티렌, 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상을 들 수 있다.
바나듐 레독스 플로우 전지
본 발명에 따른 바나듐 레독스 플로우 전지는 전해액 저장부로서 본 발명에 따른 전해액 저장부를 사용한다.
본 발명에 따른 전해액 저장부를 사용하면 바나듐 이온의 크로스오버 현상에 의한 전해액 불균형 문제가 개선되어 전지의 성능 저하 속도가 현저히 줄어들며, 별도의 전해액 재생공정 횟수를 감소시킬 수 있어 전지 운용의 효율성을 높일 수 있다.
상기 바나듐 레독스 플로우 전지의 양극, 음극, 분리막 및 전해액의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.
양극 및 음극은 전자의 통로 역할을 하며 산화/환원 반응이 발생할 수 있는 장소가 되므로, 저항이 낮고 산화/환원반응 효율이 좋은 것을 사용한다. 양극 및 음극은 이 분야에서 일반적으로 사용되는 것을 사용할 수 있으나, 바람직하기로 카본펠트, 카본크로스 등 탄소 전극이다.
상기 분리막으로는 양이온 또는 음이온 교환막을 사용하며, 바나듐계의 경우 전해질로 전이금속 원소와 강산을 혼합한 활물질을 사용하기 때문에 높은 내산성, 내산화성, 선택적 투과성을 가질 것이 요구된다. 예를 들어, 나피온, CMV, AMV, DMV 등을 이용할 수 있으며, 바람직하기로 나피온이다.
레독스 플로우 전지에서 전해질은 활물질을 포함하며, 바나듐 전해액은 V2O5, VOSO4, 또는 V2(SO4)3와 같은 바나듐 산화물을 황산, 염산, 인산, 질산 등과 같은 산에 용해시키고, 환원제를 이용하여 바나듐 전해액이 일정한 산화수를 가지도록 하여 제조할 수 있다. 일례로, 3M H2SO4 중의 VOSO4 1M 용액을 제조하여 바나듐 4가 이온 전해액을 제조하고, 전기화학적 방법으로 환원시켜 바나듐 3가 이온 전해액을 제조할 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
제조예 1: 바나듐 레독스 플로우 전지의 제조
도 3과 같이 상부 측면에 좁은 관을 가지는 용기를 전해액 저장탱크로 하여, 도 4와 같이 바나듐 레독스 플로우 전지를 제조하였다.
이때, 양극 및 음극 전해액은 각각 1.6 M 바나듐 수용액(옥스켐 社) 60ml를 전기화학적으로 산화/환원시켜 사용하였고, 전해액 충진 후 저장탱크는 질소 퍼징(purging)하였다. 전극으로는 50*50 mm의 카본펠트(XF30A), 분리막으로는 나피온212를 사용하였다.
실험예 1: 전지 성능 평가
상기 제조예 1의 전지를 실시예 1로 하여, 이에 대한 전지 성능 평가를 실시하였다. 이때, 비교예로는 상기 제조예 1과 동일한 전지 구성을 갖되, 전지 구동 중 전해액의 이송이 없는 레독스 플로우 전지를 사용하였다. 전지 구동 조건은 다음과 같다.
전해액 공급속도: cm2 당 2 ml/min
충방전 전류밀도: 100 mA/cm2, 정전류(constant current)
충방전 전압: 0.8~1.7 V
이송관 내 펌프의 전해액 공급 속도: cm2 당 0.3 ml/min
상기 실험 결과를 도 5 및 6에 나타내었다. 도 5는 실시예 1 및 비교예 1의 방전용량 그래프이며, 도 6은 전류효율(CE), 전압효율(VE), 및 에너지효율(EE)을 나타낸 그래프이다.
도 5를 보면, 실시예 1의 경우 전해액 이송관을 통하여 전해액이 이송되는 때(1 내지 6으로 표기한 부분)에 즉각적으로 용량 증가 효과가 발생하는 것을 확인할 수 있다. 각 전해액 이송 전/후의 전지용량 변화를 하기 표 1에 구체적으로 나타내었다.
사이클 수 초기방전용량 대비 발현용량
1 66 → 67 67% → 79%
2 98 → 99 67% → 76%
3 122 → 123 70% → 77%
4 135 → 136 75% → 82%
5 149 → 150 78% → 84%
6 162 → 163 79% → 84%
표 1을 참조하면 전해액 이송이 이루어질 때마다 발현 용량이 5 내지 12% 정도 증가되는 효과가 나타나는 것을 확인할 수 있으며, 전해액 이송 전까지 감소되었던 전지 용량이 지속적인 전해액 이송으로 점차 회복되는 것을 알 수 있다.
실시예 1 및 비교예 1의 전지를 각각 170 사이클 운용한 결과, 비교예 1은 초기 방전 용량 대비 50%의 발현 용량을 나타내었으나, 실시예 1은 83%의 매우 우수한 발현 용량을 나타내었다.
또한, 상기와 같이 높은 용량 유지율을 나타내는 실시예 1의 전지는 기존 전지(비교예 1)과 대등한 전지 효율을 나타내었다(도 6 및 표 2).
사이클 실시예 비교예
CE(%) VE(%) EE(%) 용량(%) CE(%) VE(%) EE(%) 용량(%)
10 95.3 86.5 82.4 100 94.5 86.3 81.6 96
50 95.0 87.0 82.7 70 95.3 86.5 82.5 76
100 95.8 86.1 82.5 76 95.6 86.7 82.9 64
150 95.1 87.0 82.7 84 95.7 87.3 83.5 53
170 96.1 85.9 82.6 83 96.7 86.7 83.9 50
상기 결과로부터, 본 발명의 레독스 플로우 전지용 전해액 저장부는 전지 구동 중 전해액이 자연적으로 재생될 수 있도록 하여 전지의 용량 특성을 향상시키며, 이에 따라 별도의 전해액 재생 공정 주기를 늦출 수 있어 전지 운용의 효율성이 증대됨을 알 수 있다.
또한, 본 발명의 전해액 저장부는 저장탱크 내 전해액 수위 유지가 자동적으로 이루어져 전해액 재생이 연속적으로 이루어질 수 있고 사용 편의성이 높으며, 수위감지관 및 이에 위치되는 전해액 이송관을 구비하는 구조에 의해 외부 충격에도 전해액이 서로 섞일 염려가 없으므로, 취급 및 설치가 용이하다.
[부호의 설명]
10: 양극 전해액 저장탱크
11, 21: 펌프
12: 양극 전해액
20: 음극 전해액 저장탱크
22: 음극 전해액
30: 전원/부하
31: 양극
32: 음극
33: 분리막
14, 24: 수위감지관
15, 25: 수위감지센서
16, 26: 전해액 저장탱크 상부
17, 27: 체크밸브
18: 양극 전해액 유입구
19: 양극 전해액 유출구
28: 음극 전해액 유입구
29: 음극 전해액 유출구
100: 레독스 플로우 전지
200: 전해액 저장부

Claims (6)

  1. 양극 전해액 저장탱크 및 음극 전해액 저장탱크를 포함하는 레독스 플로우 전지용 전해액 저장부로서,
    상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 각각은 일측 단부에 수직 방향으로 돌출된 수위감지관을 포함하며, 이때 상기 수위감지관은 내측에 수위감지센서를 구비하고,
    상기 전해액 저장부는 각 탱크 내 전해액의 수위를 동등하게 조절할 수 있도록 중앙 단부에 펌프를 구비하는 "∩"자형 전해액 이송관을 포함하며, 이때 상기 이송관의 일측 및 타측 말단은 각 탱크의 수위감지관 내에 측벽으로부터 소정 거리가 이격된 상태로 삽입되어 배치되고,
    상기 각 탱크 내 전해액의 수위를 수위감지센서로 측정하고, 이에 따라 상기 펌프가 자동으로 작동할 수 있도록 전기적 제어부를 포함하는 것을 특징으로 하는 전해액 저장부.
  2. 제1항에 있어서,
    상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 중 적어도 1 이상은 상부에 체크밸브를 더 포함하는 것을 특징으로 하는 전해액 저장부.
  3. 제2항에 있어서,
    상기 양극 전해액 저장탱크 및 음극 전해액 저장탱크 중 적어도 1 이상은 내부에 압력 센서를 더 포함하며,
    저장탱크의 내부 압력에 따라 상기 체크밸브가 자동으로 동작 가능하도록, 상기 압력 센서와 체크밸브가 전기적으로 연결된 전기적 제어부를 포함하는 것을 특징으로 하는 전해액 저장부.
  4. 제2항에 있어서,
    상기 체크밸브는 리프트 체크밸브, 스윙 체크밸브, 볼 체크밸브, 나사조임 체크밸브, 버터플라이 체크밸브, 듀얼 플레이트 체크밸브, 싱글 플레이트 체크밸브, 틸팅 디스크 체크밸브, 또는 풋 밸브로 이루어지는 군에서 선택되는 1종인 것을 특징으로 하는 전해액 저장부.
  5. 제1항에 있어서,
    상기 양극 및 음극 전해액 저장탱크 각각의 단면적을 A, 각 전해액 저장탱크의 수위감지관 단면적을 B라고 할 때,
    상기 A:B는 2:1 내지 100:1 인 것을 특징으로 하는 전해액 저장부.
  6. 제1항 내지 제5항 중 어느 한 항의 전해액 저장부를 포함하는 바나듐 레독스 플로우 전지.
PCT/KR2017/010370 2016-10-13 2017-09-21 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지 WO2018070683A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/083,684 US10763532B2 (en) 2016-10-13 2017-09-21 Electrolyte storage unit for redox flow battery and vanadium redox flow battery comprising same
EP17859734.0A EP3419095B1 (en) 2016-10-13 2017-09-21 Electrolyte storage unit for redox flow battery and vanadium redox flow battery comprising same
JP2018547956A JP6821238B2 (ja) 2016-10-13 2017-09-21 レドックスフロー電池用電解液貯蔵部及びこれを含むバナジウムレドックスフロー電池
CN201780024796.6A CN109075368B (zh) 2016-10-13 2017-09-21 用于氧化还原液流电池的电解液贮存单元和包含其的钒氧化还原液流电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160132669A KR102081768B1 (ko) 2016-10-13 2016-10-13 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
KR10-2016-0132669 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070683A1 true WO2018070683A1 (ko) 2018-04-19

Family

ID=61906330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010370 WO2018070683A1 (ko) 2016-10-13 2017-09-21 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지

Country Status (6)

Country Link
US (1) US10763532B2 (ko)
EP (1) EP3419095B1 (ko)
JP (1) JP6821238B2 (ko)
KR (1) KR102081768B1 (ko)
CN (1) CN109075368B (ko)
WO (1) WO2018070683A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池
WO2022064883A1 (ja) * 2020-09-23 2022-03-31 住友電気工業株式会社 レドックスフロー電池
CN116706346A (zh) * 2023-08-02 2023-09-05 德阳市东新机电有限责任公司 一种铝燃料电池发电系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000414U (ko) * 2010-07-08 2012-01-16 이명숙 정전용량 변화 감지방식의 수위센서
JP5148842B2 (ja) * 2006-05-18 2013-02-20 住友電気工業株式会社 レドックスフロー電池
US20140057140A1 (en) * 2012-08-24 2014-02-27 Zinc Air Incorporated Reduction of Water Transfer Across Membrane
KR20160060800A (ko) * 2014-11-20 2016-05-31 현대중공업 주식회사 전해액 저장장치
WO2016099217A1 (ko) * 2014-12-18 2016-06-23 주식회사 엘지화학 플로우 배터리의 전해액 재생 모듈 및 이를 이용한 플로우 배터리의 전해액 재생 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193991B2 (ja) 1993-12-24 2001-07-30 経済産業省産業技術総合研究所長 電解液流通型電池
JPH10281100A (ja) * 1997-04-08 1998-10-20 Yamatatsugumi:Kk 送水装置及び送水方法
JPH10281110A (ja) 1997-04-08 1998-10-20 Canon Inc 非接触ロッドレスシリンダおよびそれを用いたステージ装置
JP2000149779A (ja) 1998-11-05 2000-05-30 Toshiba Corp タンク装置
KR20010011376A (ko) 1999-07-27 2001-02-15 송갑주 세탁수를 이용한 변기용 물 보충장치
JP2003303611A (ja) 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP5027384B2 (ja) * 2004-11-19 2012-09-19 関西電力株式会社 レドックスフロー電池およびその運転方法
JP2007188729A (ja) 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd バナジウムレドックスフロー電池の再生方法
DE102007028804A1 (de) 2007-06-19 2008-12-24 Samsung SDI Co., Ltd., Suwon Flüssigkeitsstandsmesssystem für Direkt-Methanol-Brennstoffzellensysteme
WO2010042905A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Level sensor for conductive liquids
CN101614794B (zh) * 2009-07-14 2011-08-17 清华大学 一种基于电位差参数的液流电池荷电状态在线检测方法
CN102055000B (zh) * 2009-10-29 2015-04-22 北京普能世纪科技有限公司 氧化还原液流电池和使电池长时间持续运行的方法
JP2013025964A (ja) 2011-07-19 2013-02-04 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2013037814A (ja) 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 電解液流通型電池
CN202996968U (zh) * 2012-12-25 2013-06-12 中国东方电气集团有限公司 钒电池电解液储存系统
US20140220463A1 (en) * 2013-02-01 2014-08-07 Ashlawn Energy, LLC Pressure feed flow battery system and method
CN104143650A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种氧化还原液流电池及其应用
CN104143651A (zh) 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种氧化还原液流电池系统
KR101629476B1 (ko) * 2013-07-29 2016-06-10 주식회사 엘지화학 가스 배출 부재 및 전해질 주액 부재를 포함하는 전지
JP6258507B2 (ja) 2013-12-26 2018-01-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 圧力差を利用したフロー電池内の電解質濃度のリバランス
CN103762377B (zh) * 2014-01-27 2016-03-16 中国东方电气集团有限公司 钒电池及其电解液再平衡的方法
KR101558081B1 (ko) 2014-02-24 2015-10-06 오씨아이 주식회사 레독스 흐름 전지
WO2016007555A1 (en) * 2014-07-07 2016-01-14 Unienergy Technologies, Llc Systems and methods in a redox flow battery
KR101942904B1 (ko) 2015-01-07 2019-01-28 주식회사 엘지화학 플로우 배터리에 적용 가능한 전해액 혼합 모듈 및 이를 이용한 플로우 배터리의 전해액 혼합 방법
KR102069832B1 (ko) 2016-03-10 2020-01-23 주식회사 엘지화학 바나듐 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
CN105789665B (zh) * 2016-03-14 2019-09-03 上海电气集团股份有限公司 一种液位平衡系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148842B2 (ja) * 2006-05-18 2013-02-20 住友電気工業株式会社 レドックスフロー電池
KR20120000414U (ko) * 2010-07-08 2012-01-16 이명숙 정전용량 변화 감지방식의 수위센서
US20140057140A1 (en) * 2012-08-24 2014-02-27 Zinc Air Incorporated Reduction of Water Transfer Across Membrane
KR20160060800A (ko) * 2014-11-20 2016-05-31 현대중공업 주식회사 전해액 저장장치
WO2016099217A1 (ko) * 2014-12-18 2016-06-23 주식회사 엘지화학 플로우 배터리의 전해액 재생 모듈 및 이를 이용한 플로우 배터리의 전해액 재생 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419095A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池
JP7017251B2 (ja) 2019-07-04 2022-02-08 株式会社岐阜多田精機 レドックスフロー電池
WO2022064883A1 (ja) * 2020-09-23 2022-03-31 住友電気工業株式会社 レドックスフロー電池
CN116706346A (zh) * 2023-08-02 2023-09-05 德阳市东新机电有限责任公司 一种铝燃料电池发电系统及方法
CN116706346B (zh) * 2023-08-02 2023-10-13 德阳市东新机电有限责任公司 一种铝燃料电池发电系统及方法

Also Published As

Publication number Publication date
EP3419095B1 (en) 2022-05-04
KR20180040852A (ko) 2018-04-23
CN109075368A (zh) 2018-12-21
US20190103622A1 (en) 2019-04-04
US10763532B2 (en) 2020-09-01
EP3419095A1 (en) 2018-12-26
KR102081768B1 (ko) 2020-04-23
EP3419095A4 (en) 2019-06-12
JP6821238B2 (ja) 2021-01-27
JP2019508857A (ja) 2019-03-28
CN109075368B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US10608274B2 (en) Redox flow battery and method for operating the battery continuously in a long period of time
KR101960779B1 (ko) 플로우 배터리 시스템 내의 수소 방출을 감지하고 완화시키는 시스템 및 방법
WO2018070683A1 (ko) 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
EP2824746A1 (en) Redox flow battery system and control method for the same
KR101394255B1 (ko) 레독스 흐름전지 및 그 운전 방법
US20070224482A1 (en) Fuel Cell System
WO2018160050A2 (ko) 레독스 흐름전지
KR101752890B1 (ko) 레독스 흐름 전지
KR102069832B1 (ko) 바나듐 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
JP2001093560A (ja) レドックスフロー電池
KR101760983B1 (ko) 플로우 배터리 및 플로우 배터리의 전해액 혼합 방지 방법
JP5207230B2 (ja) 固体高分子形燃料電池の性能回復方法を実施するためのシステム
CN1848506A (zh) 钒离子液流蓄电池
KR102178304B1 (ko) 밸런싱 유로를 사용하는 레독스 흐름전지
JP6247778B2 (ja) キノンポリハライドフロー電池
KR101491784B1 (ko) 화학흐름전지의 운전 방법
KR102154387B1 (ko) 레독스 플로우 전지 시스템
JP2007066643A (ja) 電圧検出装置
TWI726516B (zh) 液流電池系統及其控制方法
JP2019192466A (ja) レドックスフロー電池
EP3561930B1 (en) Redox flow battery
EP4280323A1 (en) Iron redox flow battery
KR20220146891A (ko) 성능이 개선된 황 함유 산 도핑된 pbi 기반 멤브레인, 이의 제조방법 및 이의 용도
JPH05144465A (ja) 密閉形鉛蓄電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547956

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017859734

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017859734

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE