WO2018066583A1 - イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置 - Google Patents

イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2018066583A1
WO2018066583A1 PCT/JP2017/036072 JP2017036072W WO2018066583A1 WO 2018066583 A1 WO2018066583 A1 WO 2018066583A1 JP 2017036072 W JP2017036072 W JP 2017036072W WO 2018066583 A1 WO2018066583 A1 WO 2018066583A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
compound
carbon atoms
iridium complex
Prior art date
Application number
PCT/JP2017/036072
Other languages
English (en)
French (fr)
Inventor
和弘 長山
王己 高
英司 小松
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2018543929A priority Critical patent/JP7074064B2/ja
Priority to CN201780061556.3A priority patent/CN109790195A/zh
Priority to KR1020197009561A priority patent/KR102513371B1/ko
Publication of WO2018066583A1 publication Critical patent/WO2018066583A1/ja
Priority to JP2022078356A priority patent/JP7409428B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • the present invention relates to an iridium complex compound, and in particular, an iridium complex compound useful as a material for a light emitting layer of an organic electroluminescence device, a composition containing the compound, an organic electroluminescence device, a display device having the organic electroluminescence device, and
  • the present invention relates to a lighting device.
  • the present invention also relates to a new production method that can obtain an iridium complex compound in a high yield.
  • organic electroluminescent elements such as organic EL lighting and organic EL displays have been put into practical use.
  • the organic EL element has low power consumption because it has a low applied voltage, and can emit three primary colors. Therefore, application to not only a large-sized display monitor but also a small-sized display typified by a mobile phone or a smartphone has begun.
  • organic EL elements are currently manufactured by evaporating organic materials under vacuum.
  • the organic EL element is manufactured by laminating a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer. Therefore, in the vacuum deposition method, the deposition process is complicated, the productivity is inferior, and the organic EL element manufactured by the vacuum deposition method is extremely difficult to increase the size of the illumination or display panel. Therefore, in recent years, a coating method has been actively studied as a process for efficiently producing an organic EL device that can be used for a large display or illumination. Since the coating method has an advantage that a stable layer can be easily formed as compared with the vacuum deposition method, it is expected to be applied to mass production of displays and lighting devices and large devices.
  • a phosphorescent iridium complex compound having excellent efficiency and durability As a light emitting material for such an organic EL element, a phosphorescent iridium complex compound having excellent efficiency and durability is used.
  • This complex compound has been constantly studied for improvement of the target chromaticity, solubility in solvents, or improvement of device durability, but these are mainly the basic ligands of the complex. Are selected by a method of selecting a proper skeleton and introducing an appropriate substituent to them.
  • the iridium complex compound used in the organic EL device is a cyclometalated iridium complex having a bidentate ligand coordinated mainly with two atoms of a carbon atom and a hetero atom such as a nitrogen atom or a phosphorus atom.
  • a complex having two heteroaromatic bidentate ligands such as 2-phenylpyridine and 2-phenylquinoline at the iridium atom is a biscyclometalated complex, or a complex having three of these is triscyclometal.
  • Complexes are often used. Of these, triscyclometalated complexes are known to have relatively high durability when used in organic EL devices and are preferred.
  • examples of high-performance red light-emitting materials applied to the coating method include iridium complex compounds, and attempts have been made to improve light emission efficiency by devising ligands (for example, patent documents). 1).
  • Non-patent Document 2 Chemical Formula 2
  • this method generally requires high temperature conditions (180 ° C. or higher)
  • the raw material complex sublimes or the thermal stability of this raw material complex is poor, so that the decomposition reaction occurs together.
  • the cyclometalated iridium complex The yield is low.
  • the two-step synthesis method via the chlorine-bridged iridium binuclear complex of Non-Patent Document 3 and the binuclear complex described in Non-Patent Document 4 and Patent Document 2 are further exchanged with a bridged chlorine atom acetylacetonate.
  • a method for obtaining a target product by converting it into a mononuclear bis (cyclometalated) acetylacetonatoiridium complex and then reacting with another ligand is widely used.
  • These methods are suitable for synthesizing heteroleptic triscyclometalated iridium complex compounds in which the ligands of the iridium complex are not the same.
  • the latter reaction is suitable as a method for synthesizing an organic EL element material that requires high purity because it can suppress the mixing of a chlorine component into the product.
  • Non-patent Document 5 a method in which a silver salt is present in the reaction of a bis (cyclometalated) acetylacetonatoiridium complex with another ligand has been reported (Non-patent Document 5). ). Although the mechanism of action of the silver salt is unknown, it is presumed that the reverse reaction is suppressed and the reaction yield is improved because the silver salt captures the acetylacetonate ligand dissociated in the reaction.
  • the maximum emission wavelength and the quantum yield are usually in a trade-off relationship, for example, FIG. As shown in FIG. 1 of Patent Document 3, it is known that these are in a linear relationship between complex compounds having similar skeletons. Therefore, the actual situation is that a material capable of satisfying both desired light emission efficiency and maximum light emission wavelength has not yet been obtained.
  • This invention is made
  • the present invention provides a production method for efficiently synthesizing a triscyclometalated iridium complex compound in a high yield in view of the eager development of new reaction conditions that expand the range of applicable reactions. Is a further issue.
  • an iridium complex compound having a specific chemical structure has a maximum emission wavelength on the longer wavelength side and exhibits a high quantum yield.
  • an organic electroluminescence device containing the iridium complex compound has a long driving life, high luminous efficiency, and excellent color reproducibility, and has completed the present invention. That is, the gist of the present invention is as follows. [1] An iridium complex compound represented by the following formula (1).
  • Ir represents an iridium atom.
  • Ring Cy 1 represents an aromatic or heteroaromatic ring containing carbon atoms C 1 and C 2
  • Ring Cy 2 represents a structure represented by any one of the following formulas (2) to (5) containing a carbon atom C 3 and a nitrogen atom N 1 ;
  • Ring Cy 3 represents an aromatic or heteroaromatic ring containing carbon atoms C 4 and C 5
  • Ring Cy 4 represents a heteroaromatic ring containing carbon atom C 6 and nitrogen atom N 2 .
  • m is an integer of 1 to 3
  • n is an integer of 0 to 2
  • m + n 3.
  • R 1 to R 4 each independently represents a hydrogen atom or a substituent. When a plurality of R 1 to R 4 are present, they may be the same or different. a, c, and d are integers of the maximum number of groups that can be substituted on the ring Cy 1 , the ring Cy 3 and the ring Cy 4 , respectively. b is 5. ]
  • R 1 to R 4 in the formula (1) are each independently a hydrogen atom, F, CN, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and 5 or more carbon atoms.
  • the ring Cy 4 in the formula (1) is an imidazole ring, an oxazole ring, a thiazole ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, a pyridine ring, a quinoline ring, an isoquinoline ring, a pyridazine ring, a pyrimidine ring, or a pyrazine.
  • a composition comprising the iridium complex compound according to any one of [1] to [6] and an organic solvent.
  • An organic electroluminescence device containing the iridium complex compound according to any one of [1] to [6].
  • a display device having the organic electroluminescent element as described in [8].
  • An illumination device having the organic electroluminescent element according to [8].
  • Ir represents an iridium atom
  • p and q each independently represents an integer of 0 to 3
  • p + q 3
  • L a and L b are each independently a bidentate ligand coordinated to the iridium atom containing carbon atoms and nitrogen atoms, also is L a or L b presence of a plurality of different be the same
  • X is a group represented by the following formula (6).
  • the iridium complex compound of the present invention has a long maximum emission wavelength and a high quantum yield. Further, since the iridium complex compound of the present invention is soluble in an organic solvent, an organic EL element can be produced by a coating method. Furthermore, the organic EL element containing the iridium complex compound of the present invention is useful as a display device and a lighting device because high light emission efficiency, good color reproducibility, and long drive life are obtained.
  • a high-purity iridium complex compound can be obtained with a high yield. Furthermore, the iridium complex compound produced by the production method of the present invention is not only easily purified because of its high purity, but also an organic EL device containing the iridium complex compound can provide high luminous efficiency and a long driving life. And is useful for lighting devices.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of an organic electroluminescent element containing an iridium complex compound.
  • FIG. 2 is a graph showing the relationship between the maximum emission wavelength and the quantum yield of the iridium complex compounds of Examples and Comparative Examples.
  • FIG. 3 is a graph showing the relationship between the reaction time of Synthesis Example 2 and the LC area percentage value (%) of Compound 2 in the Examples.
  • FIG. 4 is a graph showing the relationship between the reaction time and the LC area percentage value of Compound 20 due to differences in the production methods of Examples and Comparative Examples.
  • FIG. 5 is a graph showing the relationship between the reaction time and the LC area percentage value of Compound 21 due to differences in the production methods of Examples and Comparative Examples.
  • FIG. 6 is a graph showing the relationship between the reaction time and the LC area percentage value of Compound 22 due to the difference in the production methods of Examples and Comparative Examples.
  • the iridium complex compound of the present invention is a compound represented by the following formula (1). Ir in the formula (1) represents an iridium atom.
  • Ring Cy 1 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 1 and C 2 coordinated to an iridium atom
  • the ring Cy 3 represents a carbon atom C 4 coordinated to an iridium atom and They represent an aromatic ring or a heteroaromatic ring containing C 5.
  • Ring Cy 1 and ring Cy 3 may be a single ring or a condensed ring in which a plurality of rings are bonded. In the case of a condensed ring, the number of rings is not particularly limited, and is preferably 6 or less, and preferably 5 or less because the solubility of the complex tends not to be impaired.
  • the ring Cy 1 and the ring Cy 3 are not particularly limited, but the constituent elements of the ring in the heteroaromatic ring are selected from a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a selenium atom in addition to a carbon atom. Is preferable from the viewpoint of chemical stability of the complex.
  • ring Cy 1 and the ring Cy 3 are each independently an aromatic ring, a monocyclic benzene ring; two naphthalene rings; three or more fluorene rings, anthracene rings, phenanthrene rings, perylene rings, Examples include a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, and a fluoranthene ring.
  • oxygen-containing atom furan ring benzofuran ring, dibenzofuran ring; sulfur-containing atom thiophene ring, benzothiophene ring, dibenzothiophene ring; nitrogen-containing atom pyrrole ring, pyrazole ring, imidazole ring, benzimidazole Ring, indole ring, indazole ring, carbazole ring, indolocarbazole ring, indenocarbazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, phthalazine ring, quinoxaline ring Quinazoline ring, quinazolinone ring, acridine ring, phenanthridine ring, carboline ring or pur
  • an appropriate substituent may be introduced on these rings.
  • the ring is preferably a ring for which many methods for introducing such substituents are known.
  • one in which one of the carbon atoms C 1 or C 4 directly connected to the iridium atom is a benzene ring is preferable, and examples thereof include an aromatic ring, a dibenzofuran ring, a dibenzothiophene ring, and a carbazole. Ring, indolocarbazole ring, indenocarbazole ring and the like.
  • a benzene ring, a naphthalene ring, a fluorene ring, a dibenzofuran ring, a dibenzothiophene ring and a carbazole ring are more preferable, and a benzene ring or a naphthalene ring is still more preferable.
  • the number of atoms constituting the ring in ring Cy 1 and ring Cy 3 is not particularly limited, but from the viewpoint of maintaining the solubility of the iridium complex compound, the number of atoms constituting the ring is preferably 5 or more. More preferably, it is 6 or more. In addition, the number of atoms constituting each ring is preferably 30 or less, more preferably 20 or less.
  • the ring Cy 2 in the formula (1) has a structure represented by any of the following formulas (2) to (5) including a nitrogen atom N 1 coordinated to a carbon atom C 3 and an iridium atom. Carbon atom C 3 is bonded to carbon atom C 2 in the ring Cy 1 .
  • the ring Cy 2 has a structure represented by any one of the formulas (2) to (5), the maximum emission wavelength of the iridium complex compound can be easily increased.
  • the wavelength is increased using a conventionally known structure such as a quinoline or quinazoline skeleton, the ⁇ -electron conjugation of these ligands is extended, or an electron withdrawing group or electron donating group is appropriately used. It is necessary to replace the position.
  • the light emitting quantum yield is lowered because the degree of freedom of molecular motion is increased, or the HOMO / LUMO level of the complex is largely changed. When it is used, there is a concern that the drive life is reduced.
  • the iridium complex compound of the present invention has, as ring Cy 2 , a cyclometalated ligand in which the nitrogen atom of the naphthyridine skeleton is coordinated to iridium as shown in formulas (2) to (5). Due to the large electron-withdrawing property of the naphthyridine skeleton, the LUMO of the iridium complex compound is greatly reduced, and as a result, longer-wavelength red phosphorescence can be emitted. At the same time, all the ligands of the iridium complex compound are bidentate cyclometalated ligands coordinated to iridium with carbon atoms and nitrogen atoms, thereby making the phosphorescence of organic EL elements more chemically stable. High durability can be expected when used as a light emitting material.
  • At least one ligand of the naphthyridine skeleton needs to be included in the iridium complex compound, and other ligands (that is, auxiliary ligands having a structure including ring Cy 1 , ring Cy 3 and ring Cy 4 ) include ring A bidentate auxiliary ligand having a different structure from Cy 2 and coordinated to iridium between a carbon atom and a nitrogen atom may be used. Depending on the type of these auxiliary ligands, fine adjustment of the emission wavelength and solubility are possible. It is possible to control.
  • an auxiliary ligand having a HOMO-LUMO gap larger than that of a naphthyridine skeleton ligand and capable of further localizing the distribution of HOMO and LUMO on the naphthyridine skeleton ligand is used.
  • an improvement in the emission quantum yield and an increase in chemical stability can be expected.
  • the ring Cy 2 is a structure represented by the formula (2), the formula (3), or the formula (4) from the viewpoint of showing preferable chromaticity of red light emission in the organic EL display among the above structures.
  • the structure represented by Formula (2) or Formula (4) is more preferable, and the structure represented by Formula (4) is particularly preferable.
  • the ring Cy 4 in the formula (1) represents a heteroaromatic ring containing a nitrogen atom N 2 coordinated to a carbon atom C 6 and an iridium atom. Carbon atom C 6 is bonded to carbon atom C 5 in ring Cy 3 .
  • the number of rings is 4 or less.
  • a condensed ring is preferable, a condensed ring having 3 or less rings is more preferable, and a monocyclic or bicyclic condensed ring is most preferable.
  • a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, a pyridine ring, an isoquinoline ring, a pyridazine ring, a pyrimidine ring or a pyrazine ring is more preferable, and a benzimidazole ring, a benzothiazole ring or a pyridine ring is particularly preferable.
  • a benzothiazole ring is most preferable.
  • the number of atoms constituting the ring in the ring Cy 4 is not particularly limited, but from the viewpoint of maintaining the solubility of the iridium complex compound, the number of atoms constituting the ring is preferably 5 or more, more preferably 6 or more. It is.
  • the number of atoms constituting the ring is preferably 30 or less, more preferably 20 or less.
  • R 1 to R 4 in the formula (1) each represents a hydrogen atom or a substituent bonded to the ring Cy 1 to the ring Cy 4 .
  • R 1 to R 4 are independent and may be the same or different. When a plurality of R 1 to R 4 are present, they may be the same or different.
  • a, c, and d are integers of the maximum number of groups that can be substituted on ring Cy 1 , ring Cy 3, and ring Cy 4 , respectively, and b is 5.
  • R 1 s , R 2 s , R 3 s, or R 4 s are bonded to each other to form an aliphatic, aromatic, or heteroaromatic monocyclic or condensed ring A ring may be formed.
  • R 1 to R 4 are not particularly limited in type, and are optimal substituents in consideration of precise control of a target emission wavelength, compatibility with a solvent to be used, compatibility with a host compound in the case of an organic EL device, and the like. Should be selected.
  • preferred substituents are each independently a hydrogen atom or a substituent selected from the substituent group described below.
  • Substituent groups include —D, —F, —Cl, —Br, —I, —N (R ′) 2 , —CN, —NO 2 , —OH, —COOR ′, —C ( ⁇ O) R.
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the aralkyl group, and the heteroaralkyl group may be further substituted with one or more R ′.
  • Two —CH 2 — groups or two or more non-adjacent —CH 2 — groups can be represented by —CR′ ⁇ CR ′, —C ⁇ C—, —Si (R ′) 2 —, —C ( ⁇ O) — , —NR′—, —O—, —S—, —C ( ⁇ O) NR′—, or a divalent aromatic group.
  • One or more hydrogen atoms in these groups may be substituted with D, F, Cl, Br, I, or CN.
  • the aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group are each independently further one or more R It may be replaced with '. R ′ will be described later.
  • linear, branched or cyclic alkyl groups having 1 to 30 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl and n-hexyl.
  • the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear, branched or cyclic alkoxy groups having 1 to 30 carbon atoms include methoxy, ethoxy, n-propyloxy, n-butoxy, n-hexyloxy, isopropyloxy, Examples include a cyclohexyloxy group, a 2-ethoxyethoxy group, a 2-ethoxyethoxyethoxy group, and the like. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear, branched or cyclic alkylthio groups having 1 to 30 carbon atoms include methylthio group, ethylthio group, n-propylthio group, n-butylthio group, n-hexylthio group, isopropylthio group, cyclohexylthio group. Group, 2-methylbutylthio group, n-hexylthio group and the like. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear, branched or cyclic alkenyl groups having 2 to 30 carbon atoms examples include vinyl, allyl, propenyl, heptenyl, cyclopentenyl, cyclohexenyl and cyclooctenyl. It is done. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear, branched or cyclic alkynyl groups having 2 to 30 carbon atoms examples include ethynyl group, propionyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • the aromatic group having 5 to 60 carbon atoms and the heteroaromatic group having 5 to 60 carbon atoms may exist as a single ring or a condensed ring, or another kind of aromatic group in one ring. It may be a group formed by bonding or condensed with an aromatic group or heteroaromatic group.
  • Examples of these include phenyl, naphthyl, anthracene, benzoanthracene, phenanthrene, benzophenanthrene, pyrene, chrysene, fluoranthene, perylene, benzopyrene, benzofluoranthene, naphthacene, Pentacene group, biphenyl group, terphenyl group, fluorene group, spirobifluorene group, dihydrophenanthrene group, dihydropyrene group, tetrahydropyrene group, indenofluorene group, furyl group, benzofuryl group, isobenzofuryl group, dibenzofuran group, thiophene Group, benzothiophene group, dibenzothiophene group, pyrrole group, indole group, isoindole group, carbazole group, benzocarbazole group, indolocarbazole group, indenocarba
  • Examples of the aryloxy group having 5 to 40 carbon atoms include a phenoxy group, a methylphenoxy group, a naphthoxy group, and a methoxyphenoxy group. From the viewpoint of the balance between solubility and durability, 5 or more carbon atoms are preferable, 30 or less is preferable, 25 or less is more preferable, and 20 or less is most preferable.
  • Examples of the arylthio group having 5 to 40 carbon atoms include a phenylthio group, a methylphenylthio group, a naphthylthio group, and a methoxyphenylthio group. From the viewpoint of the balance between solubility and durability, 5 or more carbon atoms are preferable, 30 or less is preferable, 25 or less is more preferable, and 20 or less is most preferable.
  • Examples of the aralkyl group having 5 to 60 carbon atoms include 1,1-dimethyl-1-phenylmethyl group, 1,1-di (n-butyl) -1-phenylmethyl group, 1,1-di (n -Hexyl) -1-phenylmethyl group, 1,1-di (n-octyl) -1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1- n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7- Examples thereof include a phenyl-1-n-heptyl group, an 8-phenyl-1-n-octyl group, and a 4-phenylcyclohexyl group. From the viewpoint of
  • heteroaralkyl groups having 5 to 60 carbon atoms include 1,1-dimethyl-1- (2-pyridyl) methyl group, 1,1-di (n-hexyl) -1- (2-pyridyl) methyl Group, (2-pyridyl) methyl group, (2-pyridyl) ethyl group, 3- (2-pyridyl) -1-propyl group, 4- (2-pyridyl) -1-n-butyl group, 1-methyl- 1- (2-pyridyl) ethyl group, 5- (2-pyridyl) -1-n-propyl group, 6- (2-pyridyl) -1-n-hexyl group, 6- (2-pyrimidyl) -1- n-hexyl group, 6- (2,6-diphenyl-1,3,5-triazin-4-yl) -1-n-hexyl group, 7- (2-pyridyl) -1-n-n
  • Examples of the diarylamino group having 10 to 40 carbon atoms include a diphenylamino group, a phenyl (naphthyl) amino group, a di (biphenyl) amino group, and a di (p-terphenyl) amino group. From the viewpoint of the balance between solubility and durability, the carbon number of these groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Is most preferred.
  • Examples of the arylheteroarylamino group having 10 to 40 carbon atoms include phenyl (2-pyridyl) amino and phenyl (2,6-diphenyl-1,3,5-triazin-4-yl) amino groups. It is done. From the viewpoint of the balance between solubility and durability, the carbon number of these groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Is most preferred.
  • diheteroarylamino group having 10 to 40 carbon atoms examples include di (2-pyridyl) amino and di (2,6-diphenyl-1,3,5-triazin-4-yl) amino groups. From the viewpoint of the balance between solubility and durability, the carbon number of these groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Is most preferred.
  • R 1 to R 4 When there are a plurality of R 1 to R 4 , they may be the same or different.
  • R 1 to R 4 a hydrogen atom, F, —CN, a straight chain having 1 to 30 carbon atoms, each independently, from the viewpoint of not impairing durability as a light emitting material in an organic EL device.
  • Branched or cyclic alkyl group aryloxy group having 5 to 40 carbon atoms, arylthio group having 5 to 40 carbon atoms, diarylamino group having 10 to 40 carbon atoms, aralkyl group having 5 to 60 carbon atoms More preferably an aromatic group having 5 to 60 carbon atoms or a heteroaromatic group having 5 to 60 carbon atoms, a hydrogen atom, F, —CN, straight chain, branched or 1 to 30 carbon atoms.
  • a cyclic alkyl group, an aralkyl group having 5 to 60 carbon atoms, an aromatic group having 5 to 60 carbon atoms, or a heteroaromatic group having 5 to 60 carbon atoms is more preferable, a hydrogen atom, F CN, having 1 to 30 carbon atoms, straight-chain, branched or cyclic alkyl group, having 5 to 60 or less aromatic group carbon atoms or a heterocyclic aromatic group having 5 to 60 carbon atoms most preferred.
  • R 1 to R 4 is not particularly limited. However, R 1 or R 3, when each ring Cy 1 or ring Cy 3 is a benzene ring, when emphasizing the durability of the complex is at least 4 or 5-position of the benzene ring R 1 or R 3 is preferably substituted, more preferably at least 4-position. R 1 or R 3 is preferably the above-described aromatic group or heteroaromatic group.
  • R 2 is preferably present at a position adjacent to a nitrogen atom that is not coordinated to an iridium atom in ring Cy 2 . This is because by shielding the nitrogen atom by steric hindrance, the influence from the outside such as solvation can be alleviated and the influence on the emission wavelength and other physical properties can be suppressed.
  • R ′ in R 1 to R 4 in formula (1) is independently —H, —D, —F, —Cl, —Br, —I, —N (R ′′) 2 , —CN, — NO 2 , —Si (R ′′) 3 , —B (OR ′′) 2 , —C ( ⁇ O) R ′′, —P ( ⁇ O) (R ′′) 2 , —S ( ⁇ O) 2 R ′′, —OSO 2 R ′′, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, Straight chain, branched or cyclic alkylthio group having 1 to 30 carbon atoms, straight chain, branched or cyclic alkenyl group having 2 to 30 carbon atoms, straight chain having 2 to 30 carbon atoms, Branched or cyclic alkyn
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the aralkyl group, and the heteroaralkyl group may be further substituted with one or more R ′.
  • Two —CH 2 — groups or two or more non-adjacent —CH 2 — groups can be represented by —CR ′′ ⁇ CR ′′ —, —C ⁇ C—, —Si (R ′′) 2 —, —C ( ⁇ O) —, —NR ′′ —, —O—, —S—, —C ( ⁇ O) NR ′′ — or a divalent aromatic group may be substituted.
  • One or more hydrogen atoms in these groups may be substituted with D, F, Cl, Br, I, or —CN.
  • the aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group may further include one or more R ′′. May be substituted. R ′′ will be described later.
  • R ′ Any examples of the above-mentioned groups in R ′ are respectively synonymous with the descriptions of the groups in the above-mentioned ⁇ R 1 to R 4 >.
  • Two or more adjacent R ′ may be bonded to each other to form an aliphatic, aromatic or heteroaromatic monocyclic or condensed ring.
  • R ′ in R ′ is independently H, D, F, CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • R ′ in R ′ is independently H, D, F, CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • the iridium complex compound of the present invention can make the emission wavelength longer.
  • the maximum emission wavelength measured by the procedure shown below is preferably 620 nm or more, more preferably 625 nm or more, and further preferably 630 nm or more.
  • 700 nm or less is preferable and 680 nm or less is more preferable. It exists in the tendency which can express the preferable color of a red luminescent material suitable as an organic electroluminescent display by being in these ranges.
  • a spectrophotometer (organic EL quantum yield measuring device C9920-02 manufactured by Hamamatsu Photonics Co., Ltd.) was used for a solution prepared by dissolving the iridium complex compound in 2-methyltetrahydrofuran at a concentration of 1 ⁇ 10 ⁇ 4 mol / L or less at room temperature. ) To measure the phosphorescence spectrum. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity is regarded as the maximum emission wavelength in the present invention.
  • R represents a hydrogen atom or an arbitrary substituent, and a plurality of R may be the same or different.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • the above scheme (A) shows a reverse synthesis scheme as an example of the synthesis of the 1,7-naphthyridine skeleton of the present invention.
  • the 1,7-naphthyridine skeleton can be synthesized by a cyclization reaction between a 3-amino-4-acylpyridine intermediate and an aromatic methyl ketone intermediate.
  • the former can be derived from 3-aminoisonicotinic acid.
  • This 3-aminoisonicotinic acid can be further synthesized in a form having a halogen atom or a trifluoromethanesulfonate group at any position by using the method described in the literature described in Scheme (A). .
  • substituents can be introduced using the Suzuki-Miyaura coupling reaction.
  • the introduction of this substituent can be incorporated during or at the end of the ligand synthesis step, or it can be introduced by further reacting once the iridium complex compound is formed during the ligand synthesis. .
  • the above scheme (B) shows a reverse synthesis scheme as an example of the synthesis of the 1,5-naphthyridine skeleton of the present invention.
  • the 1,5-naphthyridine skeleton can be synthesized by a cyclization reaction between a 3-amino-2-acylpyridine intermediate and an aromatic methyl ketone intermediate.
  • the former can be derived from 3-aminopicolinic acid.
  • This 3-aminopicolinic acid can be further synthesized with a halogen atom at an arbitrary position by using the method described in the literature described in Scheme (B).
  • the target ligand can be synthesized by using the corresponding aminocarboxyl pyridine as a raw material and using the chemical conversion almost the same as described above.
  • the iridium complex compound of the present invention represented by the formula (1) can be synthesized by a combination of known methods. This will be described in detail below.
  • a method via a chlorine-bridged iridium binuclear complex as shown in the following scheme (C) using a phenylpyridine ligand as an example for ease of understanding (MG Columbo , T. C. Brunold, T. Riedener, H. U. Gudel, Inorg.
  • a chlorine-bridged iridium binuclear complex is synthesized by a reaction of 2 equivalents of the first ligand and 1 equivalent of iridium chloride n-hydrate.
  • the solvent a mixed solvent of 2-ethoxyethanol and water is usually used, but no solvent or other solvent may be used.
  • the reaction can be accelerated by using an excessive amount of a ligand or using an additive such as a base.
  • other crosslinkable anionic ligands such as bromine can also be used.
  • limiting in particular in reaction temperature Usually, 0 degreeC or more is preferable and 50 degreeC or more is more preferable. Moreover, 250 degrees C or less is preferable and 150 degrees C or less is more preferable. Within these ranges, only the target reaction proceeds without accompanying by-products or decomposition reactions, and high selectivity tends to be obtained.
  • a target complex is obtained by adding a halogen ion scavenger such as silver trifluoromethanesulfonate and contacting with a second ligand.
  • a halogen ion scavenger such as silver trifluoromethanesulfonate
  • the solvent ethoxyethanol or diclyme is usually used, but no solvent or other solvents can be used depending on the type of the ligand, and a plurality of solvents can also be mixed and used.
  • the reaction may proceed even without adding a halogen ion scavenger, it is not always necessary, but the scavenger is used to selectively synthesize facial isomers with higher reaction yield and higher quantum yield. Is advantageous.
  • the reaction temperature is not particularly limited, but is usually in the range of 0 ° C to 250 ° C.
  • the first-stage binuclear complex can be synthesized as in Scheme (C).
  • 1 equivalent or more of 1,3-dione compound such as acetylacetone is added to the binuclear complex, and 1 basic compound capable of abstracting active hydrogen of the 1,3-dione compound such as sodium carbonate is extracted.
  • 1 equivalent amount or more it is converted into a mononuclear complex coordinated with a 1,3-dionato ligand.
  • a solvent such as ethoxyethanol or dichloromethane that can dissolve the dinuclear complex as a raw material is used.
  • the ligand is in a liquid state, it can be carried out without a solvent.
  • the reaction temperature is not particularly limited, but it is usually performed within the range of 0 ° C to 200 ° C.
  • the type and amount of the solvent are not particularly limited, and may be solvent-free when the second ligand is liquid at the reaction temperature.
  • the reaction temperature is not particularly limited, but the reaction is slightly poor, so that the reaction is often carried out at a relatively high temperature of 100 ° C to 300 ° C. Therefore, a high boiling point solvent such as glycerin is preferably used.
  • purification is performed to remove unreacted raw materials, reaction by-products and solvent.
  • purification operations in ordinary organic synthetic chemistry can be applied, purification by silica gel column chromatography in normal phase is mainly performed as described in the above non-patent document.
  • As the developing solution a single or mixed solution of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone or methanol can be used. Purification may be performed multiple times under different conditions.
  • the iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent device, that is, a red light emitting material of an organic electroluminescent device, and is also suitable as a light emitting material for an organic electroluminescent device and other light emitting devices. Can be used.
  • the iridium complex compound-containing composition of the present invention contains the above-described iridium complex compound of the present invention and an organic solvent.
  • the iridium complex compound-containing composition of the present invention is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming an organic layer of an organic electroluminescence device.
  • the organic layer is particularly preferably a light emitting layer.
  • the iridium complex compound-containing composition is preferably an organic electroluminescent element composition, and more preferably used as a light emitting layer forming composition.
  • the content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.001% by mass or more, preferably 0.01% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass or less.
  • the driving voltage can be reduced.
  • only 1 type may be contained in the iridium complex compound containing composition, and 2 or more types may be combined and contained in the iridium complex compound containing composition of this invention.
  • the iridium complex compound-containing composition of the present invention When used for, for example, an organic electroluminescent device, it contains a charge transporting compound used for an organic electroluminescent device, particularly a light emitting layer, in addition to the above-mentioned iridium complex compound and solvent. be able to.
  • the iridium complex compound of the present invention When forming a light emitting layer of an organic electroluminescent device using the iridium complex compound-containing composition of the present invention, the iridium complex compound of the present invention is used as a light emitting material, and another charge transporting compound is used as a charge transporting host material. It is preferable to include.
  • the solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used for forming a layer containing an iridium complex compound by wet film formation. Since the iridium complex compound of the present invention as a solute has high solubility, the solvent is not particularly limited as long as it is a solvent in which a charge transporting compound described later is dissolved well.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane and tetralin; chlorobenzene, dichlorobenzene and trichlorobenzene Halogenated aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, Aromatic ethers such as 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl
  • One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower. Below this range, film formation stability may be reduced by evaporation of the solvent from the composition during wet film formation.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less. Preferably it is 99.9 mass% or less, Most preferably, it is 99 mass% or less.
  • the content of the solvent is below this lower limit, the viscosity of the composition becomes too high, and the film forming workability may be lowered.
  • the upper limit is exceeded, the film thickness obtained by removing the solvent after film formation cannot be obtained, and thus film formation tends to be difficult.
  • the normal light emitting layer has a thickness of about 3 to 200 nm.
  • charge transportable compounds that can be contained in the iridium complex compound-containing composition of the present invention
  • those conventionally used as materials for organic electroluminescent elements can be used.
  • quinacridone derivatives DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds
  • benzopyran derivatives rhodamine derivatives
  • benzothioxanthene derivatives azabenzothioxanthene, aryl
  • condenoxanthene a con
  • the content of the other charge transporting compound in the iridium complex compound-containing composition is usually 1000 parts by mass or less, preferably 1 part by mass or less, preferably 1 part by mass of the iridium complex compound of the present invention in the iridium complex compound-containing composition. It is 100 parts by mass or less, more preferably 50 parts by mass or less, usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more, and more preferably 1 part by mass or more.
  • the iridium complex compound-containing composition of the present invention may further contain other compounds, if necessary, in addition to the above-described compounds.
  • another solvent may be contained.
  • amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and dimethyl sulfoxide. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the organic electroluminescent element of the present invention has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on a substrate, and at least one layer of the organic layers is of the present invention. It contains an iridium complex compound.
  • the organic layer includes a light emitting layer.
  • the organic layer containing the iridium complex compound of the present invention is more preferably a layer formed using the composition in the present invention, and more preferably a layer formed by a wet film forming method.
  • the layer formed by the wet film formation method is preferably the light emitting layer.
  • FIG. 1 is a schematic cross-sectional view showing a structure example suitable for the organic electroluminescent element 10 of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is an anode
  • reference numeral 3 is a hole injection layer
  • reference numeral 4 is A hole transport layer
  • reference numeral 5 denotes a light emitting layer
  • reference numeral 6 denotes a hole blocking layer
  • reference numeral 7 denotes an electron transport layer
  • reference numeral 8 denotes an electron injection layer
  • reference numeral 9 denotes a cathode.
  • a known material can be applied as a material applied to these structures, and there is no particular limitation, but typical materials and manufacturing methods for each layer are described below as an example.
  • the relevant contents can be applied and applied as appropriate within the scope of common knowledge of those skilled in the art.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet is usually used. Of these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable.
  • the substrate 1 is preferably made of a material having a high gas barrier property because the organic electroluminescence element is hardly deteriorated by the outside air. For this reason, when using a material having a low gas barrier property, such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate 1 to improve the gas barrier property.
  • the anode 2 has a function of injecting holes into the layer on the light emitting layer side.
  • the anode 2 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, or platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; a carbon black and a poly (3 -Methylthiophene), conductive polymers such as polypyrrole and polyaniline, and the like.
  • the anode 2 is often formed by a dry method such as a sputtering method or a vacuum deposition method.
  • an appropriate binder resin solution It can also be formed by being dispersed in and coated on a substrate.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate (Appl. Phys. Lett., 60, 2711, 1992).
  • the anode 2 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first anode.
  • the thickness of the anode 2 may be determined according to required transparency and material. In particular, when high transparency is required, a thickness at which visible light transmittance is 60% or more is preferable, and a thickness at which 80% or more is more preferable.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be arbitrarily set according to the required strength. In this case, the anode 2 may have the same thickness as the substrate 1.
  • the layer responsible for transporting holes from the anode side to the light emitting layer side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode side may be referred to as the hole injection layer 3.
  • the hole injection layer 3 is preferably used from the viewpoint of enhancing the function of transporting holes from the anode to the light emitting layer side.
  • the hole injection layer 3 is usually formed on the anode.
  • the thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and is usually 1000 nm or less, preferably 500 nm or less.
  • the formation method of the hole injection layer 3 may be a vacuum deposition method or a wet film formation method. In terms of excellent film forming properties, it is preferable to form the film by a wet film forming method.
  • the hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Further, the hole injection layer preferably contains a cation radical compound, and particularly preferably contains a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3. In the case of a wet film forming method, a solvent is usually further contained. It is preferable that the composition for forming a hole injection layer has high hole transportability and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is high and impurities that become traps are less likely to be generated during production or use. Moreover, it is preferable that it is excellent in stability, has a small ionization potential, and has high transparency to visible light. In particular, when the hole injection layer 3 is in contact with the light emitting layer 5, it is preferable that the light emission from the light emitting layer 5 does not quench or that the light emitting layer 5 is exciplexed and the light emission efficiency is not lowered.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked by a fluorene group, hydrazones Compound, silazane compound compound, quinacridone compound and the like.
  • an aromatic amine compound is preferable and an aromatic tertiary amine compound is particularly preferable from the viewpoint of amorphousness and visible light transmittance.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but is a polymer compound having a weight average molecular weight of 1,000 to 1,000,000 (polymerization compound in which repeating units are linked) from the viewpoint of easily obtaining uniform light emission due to the surface smoothing effect. Is preferably used.
  • Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 and Ar 2 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent.
  • Ar 3 To Ar 5 each independently represents an optionally substituted aromatic group or an optionally substituted heteroaromatic group, wherein Y is selected from the following group of linking groups. Represents a selected linking group, and two groups of Ar 1 to Ar 5 bonded to the same N atom may be bonded to each other to form a ring.
  • the linking group is shown below.
  • Ar 6 to Ar 16 each independently represents an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent.
  • R 5 to R 6 each independently represents a hydrogen atom or an arbitrary substituent.
  • the aromatic group and heteroaromatic group of Ar 1 to Ar 16 include a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring from the viewpoint of the solubility, heat resistance, and hole injection / transport properties of the polymer compound.
  • a group derived from a benzene ring or a naphthalene ring is more preferable.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
  • the hole injection layer 3 preferably contains an electron accepting compound because the conductivity of the hole injection layer 3 can be improved by oxidation of the hole transporting compound.
  • an electron accepting compound a compound having an oxidizing power and the ability to accept one electron from the above-described hole-transporting compound is preferable, and specifically, a compound having an electron affinity of 4 eV or more is preferable. More preferably, the compound is 5 eV or more.
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • examples thereof include one or more compounds selected from the group.
  • an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (WO 2005/089024);
  • High valence inorganic compounds such as iron (III) (Japanese Patent Laid-Open No.
  • cation radical compound an ionic compound composed of a cation radical which is a chemical species obtained by removing one electron from a hole transporting compound and a counter anion is preferable.
  • the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the compound described above as the hole transporting compound.
  • a chemical species obtained by removing one electron from a compound preferable as a hole transporting compound is preferable in terms of amorphousness, visible light transmittance, heat resistance, solubility, and the like.
  • the cation radical compound can be generated by mixing the hole transporting compound and the electron accepting compound. That is, by mixing the hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical and the counter anion of the hole transporting compound A cation ion compound consisting of
  • Oxidative polymerization here refers to oxidation of a monomer chemically or electrochemically with peroxodisulfate in an acidic solution.
  • the monomer is polymerized by oxidation, and a cation radical that is removed from the polymer repeating unit by using an anion derived from an acidic solution as a counter anion is removed.
  • a material for forming the hole injection layer 3 is usually mixed with a soluble solvent (hole injection layer solvent) to form a film forming composition (positive Hole injecting layer forming composition) is prepared, and this hole injecting layer forming composition is applied onto a layer corresponding to the lower layer of the hole injecting layer 3 (usually the anode 2) to form a film and dried. To form.
  • a film forming composition positive Hole injecting layer forming composition
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effects of the present invention are not significantly impaired, but in terms of film thickness uniformity, the lower one is preferable. From the viewpoint that defects are unlikely to occur in the hole injection layer 3, a higher value is preferable. Specifically, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. The content is preferably less than 60% by mass, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • ether solvents examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide. In addition to these, dimethyl sulfoxide and the like can also be used.
  • Formation of the hole injection layer 3 by a wet film formation method is usually performed after preparing a composition for forming a hole injection layer, and then forming the composition on a layer (usually the anode 2) corresponding to the lower layer of the hole injection layer 3
  • the film is formed by coating and drying.
  • the hole injection layer 3 is dried by heating or drying under reduced pressure after film formation.
  • the hole injection layer 3 is formed by vacuum vapor deposition
  • one or more of the constituent materials of the hole injection layer 3 are usually vacuumed.
  • a crucible installed in the container if two or more kinds of materials are used, usually put each in separate crucibles
  • evacuate the vacuum container to about 10 -4 Pa with a vacuum pump, then heat the crucible (When using two or more types of materials, each crucible is usually heated) and evaporated while controlling the amount of evaporation of the material in the crucible (when using two or more types of materials, each is usually independent.
  • the hole injection layer 3 is formed on the anode on the substrate placed facing the crucible.
  • the hole injection layer 3 can also be formed by putting a mixture thereof in a crucible, heating and evaporating the mixture.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr ( 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 to 5.0 liters / second or more.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or higher and 50 ° C. or lower.
  • the hole transport layer 4 is a layer having a function of transporting holes from the anode side to the light emitting layer side.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescence device of the present invention, but this layer is preferably used in terms of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5. Further, when there is the hole injection layer 3 described above, it is formed between the hole injection layer 3 and the light emitting layer 5.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • the formation method of the hole transport layer 4 may be a vacuum deposition method or a wet film formation method. In terms of excellent film forming properties, it is preferable to form the film by a wet film forming method.
  • the hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4.
  • a hole transport compound that becomes the hole transport layer 4.
  • two or more tertiary compounds represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are used.
  • Aromatic diamines containing two or more condensed aromatic rings including an amine and substituted with nitrogen atoms Japanese Patent Laid-Open No. 5-23481
  • An aromatic amine compound having a starburst structure such as phenylamine (J.
  • the hole injection layer 3 is usually replaced with the hole injection layer forming composition in the same manner as in the case of forming the hole injection layer 3 by a wet film formation method. It forms using the composition for positive hole transport layer formation.
  • the composition for forming a hole transport layer usually further contains a solvent.
  • the solvent used in the composition for forming a hole transport layer the same solvent as the solvent used in the composition for forming a hole injection layer can be used.
  • the concentration of the hole transporting compound in the composition for forming a hole transport layer can be in the same range as the concentration of the hole transporting compound in the composition for forming a hole injection layer.
  • Formation of the hole transport layer 4 by a wet film formation method can be performed in the same manner as the film formation method of the hole injection layer 3 described above.
  • the positive hole injection layer 3 is usually formed in place of the composition for forming the hole injection layer in the same manner as in the case of forming the hole injection layer 3 by the vacuum deposition method. It can be formed using a composition for forming a hole transport layer. Film formation conditions such as the degree of vacuum at the time of vapor deposition, the vapor deposition rate, and the temperature can be formed under the same conditions as those for the vacuum vapor deposition of the hole injection layer 3.
  • the light emitting layer 5 is a layer having a function of emitting light when excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between a pair of electrodes. .
  • the light emitting layer 5 is a layer formed between the anode 2 and the cathode 9, and the light emitting layer 5 is provided between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is on the anode 2.
  • the hole transport layer 4 is formed on the anode 2, it is formed between the hole transport layer 4 and the cathode 9.
  • the film thickness of the light emitting layer 5 is arbitrary as long as the effects of the present invention are not significantly impaired. However, a thicker film is preferable in that the film is less likely to be defective. . For this reason, it is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, and more preferably 100 nm or less.
  • the light emitting layer 5 contains at least a material having a light emitting property (light emitting material) and preferably contains a material having a charge transporting property (charge transporting material).
  • any light emitting layer may contain the iridium complex compound of the present invention, and other light emitting materials may be appropriately used.
  • other light emitting materials other than the iridium complex compound of the present invention will be described in detail.
  • the light emitting material emits light at a desired light emission wavelength, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good light emission efficiency is preferred, and a phosphorescent light emitting material is preferred from the viewpoint of internal quantum efficiency.
  • Examples of the fluorescent light emitting material include the following materials.
  • Examples of the fluorescent light emitting material that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • Examples of the fluorescent light emitting material that gives green light emission include quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3, and the like.
  • Examples of the fluorescent light-emitting material that gives yellow light include rubrene and perimidone derivatives.
  • fluorescent light-emitting materials examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) -based compounds, benzopyran derivatives, rhodamine derivatives. Benzothioxanthene derivatives, azabenzothioxanthene and the like.
  • the phosphorescent material for example, the seventh to eleventh elements of the long-period periodic table (hereinafter referred to as the long-period periodic table when referred to as “periodic table” unless otherwise specified).
  • organometallic complexes containing a metal selected from the group include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a phenylpyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • Specific preferred phosphorescent materials include, for example, tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris And phenylpyridine complexes such as (2-phenylpyridine) osmium and tris (2-phenylpyridine) rhenium, and porphyrin complexes such as octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, and octaphenylpalladium porphyrin.
  • Polymeric light-emitting materials include poly (9,9-dioctylfluorene-2,7-diyl), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4′- (N- (4-sec-butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co- (1,4-benzo-2 ⁇ 2,1'-3 ⁇ -Triazole)] and polyphenylene vinylene materials such as poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene].
  • the charge transport material is a material having a positive charge (hole) or negative charge (electron) transport property, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • a compound conventionally used for the light emitting layer 5 of the organic electroluminescence device can be used, and a compound used as a host material for the light emitting layer 5 is particularly preferable.
  • charge transporting materials include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked by a fluorene group. , Hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds, and the like as examples of the hole transporting compound of the hole injection layer 3, and anthracene compounds, pyrene compounds , Electron transporting compounds such as carbazole compounds, pyridine compounds, phenanthroline compounds, oxadiazole compounds, silole compounds, and the like.
  • two or more condensed aromatic rings including two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl have nitrogen atoms.
  • Aromatic amine compounds having a starburst structure such as aromatic diamines substituted with benzene (Japanese Patent Laid-Open No. 5-234681), 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine (J. Lumin., 72-74, 985, 1997), an aromatic amine compound comprising a tetramer of triphenylamine (Chem.
  • Fluorene compounds such as 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene (Synth. Metals, 91, 209, 1997) ), 4,4'-N, N'- compounds exemplified as hole-transporting compound of the hole transporting layer 4 of carbazole compounds such as di-biphenyl, or the like can be preferably used.
  • 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole tBu-PBD
  • 2,5-bis (1-naphthyl)- Oxadiazole compounds such as 1,3,4-oxadiazole (BND)
  • Examples thereof include silole compounds such as diphenylsilole (PyPySPyPy) and phenanthroline compounds such as bathophenanthroline (BPhen) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, bathocuproin).
  • the light emitting layer 5 may be formed by either a vacuum vapor deposition method or a wet film formation method, but a wet film formation method is preferable because of excellent film formability.
  • the wet film forming method is a film forming method, that is, a coating method, for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary It refers to a method of forming a film by adopting a wet film forming method such as a coating method, an ink jet method, a nozzle printing method, a screen printing method, a gravure printing method, or a flexographic printing method, and drying the coating film.
  • a coating method for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary It refers to a method of forming a film by adopting a wet film forming method such as a coating method, an ink jet method, a nozzle printing method, a screen printing method, a gravure printing method, or a flexographic printing method, and drying the coating film.
  • the light emitting layer 5 is usually emitted in place of the hole injection layer forming composition in the same manner as in the case of forming the hole injecting layer 3 by the wet film forming method.
  • the layer 5 is formed using a composition for forming a light emitting layer prepared by mixing a material for the layer 5 with a soluble solvent (solvent for the light emitting layer).
  • solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, alkane solvents, halogenated aromatic hydrocarbon solvents, fats, and the like mentioned for the formation of the hole injection layer 3.
  • An aromatic alcohol solvent an alicyclic alcohol solvent, an aliphatic ketone solvent, an alicyclic ketone solvent, and the like can be given.
  • a solvent is given to the following, as long as the effect of this invention is not impaired, it is not limited to these.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate and n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4
  • the solvent evaporates from the liquid film immediately after the film formation at an appropriate rate.
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower.
  • the amount of the solvent used is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the total content in the composition for forming a light emitting layer is preferably large in that the film forming operation can be easily performed due to low viscosity.
  • the lower one is preferable because it is easy to form a thick film.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less. Preferably it is 99.9 mass% or less, Most preferably, it is 99 mass% or less.
  • heating or reduced pressure can be used as a method for removing the solvent.
  • a clean oven and a hot plate are preferable because the entire film is uniformly heated.
  • the heating temperature in the heating step is arbitrary as long as the effects of the present invention are not significantly impaired. However, a higher temperature is preferable in terms of shortening the drying time, and a lower temperature is preferable in terms of less damage to the material.
  • the upper limit is usually 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 150 ° C. or lower.
  • the lower limit is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
  • the temperature higher than the upper limit is higher than the heat resistance of the charge transport material or phosphorescent material that is usually used, and may decompose or crystallize. If the temperature is lower than the lower limit, it takes a long time to remove the solvent.
  • the heating time in the heating step is appropriately determined depending on the boiling point and vapor pressure of the solvent in the composition for forming the light emitting layer, the heat resistance of the material, and the heating conditions.
  • a crucible in which one or more of the constituent materials of the light emitting layer 5 (the aforementioned light emitting material, charge transporting compound, etc.) are installed in a vacuum vessel is usually used.
  • the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa with a vacuum pump, and then the crucible is heated (two or more kinds of crucibles).
  • each crucible When using a material, usually each crucible is heated) and evaporated while controlling the evaporation amount of the material in the crucible (when using two or more types of materials, the evaporation amount is usually controlled independently of each other). Evaporating) to form the light emitting layer 5 on the hole injecting and transporting layer placed facing the crucible.
  • the light emitting layer 5 can also be formed by putting those mixtures into a crucible, heating and evaporating.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr ( 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 to 5.0 liters / second or more.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or higher and 50 ° C. or lower.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer stacked on the light emitting layer 5 so as to be in contact with the cathode side interface of the light emitting layer 5.
  • the hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5.
  • Have The physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, large energy gap (HOMO-LUMO difference), excited triplet level (T1). Is high.
  • Examples of the material of the hole blocking layer 6 satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum.
  • Mixed ligand complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complexes, distyrylbiphenyl derivatives, etc.
  • Styryl compounds Japanese Unexamined Patent Publication No.
  • the thickness of the hole blocking layer 6 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. is there.
  • the electron transport layer 7 is provided between the light emitting layer 5 and the electron injection layer 8 for the purpose of further improving the current efficiency of the device.
  • the electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 between electrodes to which an electric field is applied in the direction of the light emitting layer 5.
  • the electron transporting compound used for the electron transport layer 7 the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons can be efficiently transported with high electron mobility. It must be a compound.
  • the electron transporting compound used for the electron transporting layer 7 is usually preferably a compound that has high electron injection efficiency from the cathode 9 or the electron injection layer 8 and can efficiently transport injected electrons.
  • the electron transporting compound include metal complexes such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), a metal complex of 10-hydroxybenzo [h] quinoline, Oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • the thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 7 is formed by laminating on the hole blocking layer by a wet film formation method or a vacuum deposition method in the same manner as described above. Usually, a vacuum deposition method is used.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
  • the material for forming the electron injection layer 8 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium.
  • the film thickness is usually preferably from 0.1 nm to 5 nm.
  • an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, rubidium ( (Described in Japanese Laid-Open Patent Publication No. 10-270171, Japanese Laid-Open Patent Publication No. 2002-1000047, Japanese Laid-Open Patent Publication No. 2002-1000048, etc.), which improves electron injection / transport properties and achieves excellent film quality. It is preferable because it becomes possible.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer thereon by a wet film formation method or a vacuum deposition method. The details of the wet film forming method are the same as those of the light emitting layer 5 described above.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer side (such as the electron injection layer 8 or the light emitting layer 5).
  • the material used for the anode 2 can be used.
  • a metal having a low work function Metals such as indium, calcium, aluminum, silver, or alloys thereof are used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the cathode 9 made of a metal having a low work function by laminating a metal layer having a high work function and stable to the atmosphere on the cathode 9.
  • the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the thickness of the cathode is usually the same as that of the anode 2.
  • the organic electroluminescent element of the present invention may further have other layers as long as the effects of the present invention are not significantly impaired.
  • any other layer described above may be provided between the anode 2 and the cathode 9.
  • the organic electroluminescent element of the present invention When the organic electroluminescent element of the present invention is applied to an organic electroluminescent device, it may be used as a single organic electroluminescent element, or may be used in a configuration in which a plurality of organic electroluminescent elements are arranged in an array, The anode 2 and the cathode 9 may be configured to be arranged in an XY matrix.
  • the display device and lighting device of the present invention have the organic electroluminescent element of the present invention as described above. There is no restriction
  • the display device and the illumination device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, published on August 20, 2004, Shizutoki Toki, Chiba Adachi, Hideyuki Murata). Can be formed.
  • the present invention also relates to a method for producing a triscyclometalated iridium complex compound by reacting a biscyclometalated iridium complex raw material with another ligand. That is, the manufacturing method according to the present invention, in the presence of silver (I) salts and organic bases, comprising the step of reacting a compound represented by L a p IrX compound represented by q and L b, L This is a method for producing an iridium complex compound represented by a 2 L b Ir or L a L b 2 Ir.
  • the production method according to the present invention can also be used as a production method of the iridium complex compound represented by the above formula (1).
  • L a p IrX q , L b , L a 2 L b Ir and L a L b 2 Ir Ir represents an iridium atom
  • p and q each independently represents an integer of 0 to 3
  • p + q 3
  • L a and L b each independently represent a multidentate ligand coordinated to an iridium atom containing a carbon atom and a nitrogen atom, and a plurality of L a or L b may be the same X may be different, and X is a group represented by the following formula (6).
  • L a and L b > L a and L b are ligands coordinated to an iridium atom in at least bidentate, and one of the bonding modes with iridium is a covalent bond, and the other is a coordination bond or a carbene coordination bond. If so, the type of chemical structure is not particularly limited and may be a tridentate or higher polydentate ligand, but a bidentate ligand is preferred.
  • each ligand L a and L b, the type of atoms covalently bonded to an iridium atom is a carbon atom, a coordinate bond or carbene distribution
  • a carbon atom, a nitrogen atom, a phosphorus atom, an oxygen atom or a sulfur atom is preferable as the atom to be bonded, more preferably a carbon atom or a nitrogen atom, and further preferably a nitrogen atom.
  • the atom covalently bonded to the iridium atom is a carbon atom, it is preferably a carbon atom forming an sp2 hybrid orbital from the viewpoint of high reactivity and use as an organic EL device material. Furthermore, a carbon atom forming a double bond, an aromatic ring or a heteroaromatic ring is more preferable, and a carbon atom forming an aromatic ring or a heteroaromatic ring is further preferable.
  • the atom bonded to the coordination bond or the carbene coordination bond is a carbon atom or a nitrogen atom
  • the atom bonded to the coordination bond or the carbene coordination bond is a carbon atom or a nitrogen atom
  • it is preferably a nitrogen atom, more preferably a carbon atom or nitrogen atom forming a double bond, aromatic ring or heteroaromatic ring, and a carbon atom or nitrogen atom forming a heteroaromatic ring More preferably, the nitrogen atom forming the heteroaromatic ring is most preferable.
  • L a and L b may be the same as or different from each other, and there are no restrictions on the type of substituents and the molecular weights of the substituents.
  • a plurality of L a or L b may be the same or different.
  • a more preferable form of L a and L b is represented by the following formula (7).
  • Ring Cy 5 represents an aromatic or heteroaromatic ring containing carbon atoms C 11 and C 12 coordinated to an iridium atom.
  • Ring Cy 5 may be a single ring or a condensed ring in which a plurality of rings are bonded.
  • the number of rings is not particularly limited, and is preferably 6 or less, and preferably 5 or less. By being a number between these, the solubility of the complex tends not to be impaired. Therefore, it is preferable.
  • the ring Cy 5 is not particularly limited, but the constituent element of the heteroaromatic ring may be selected from a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom and a selenium atom in addition to the carbon atom. It is preferable from the viewpoint of stability.
  • ring Cy 5 examples include an aromatic ring, a monocyclic benzene ring; two naphthalene rings; three or more fluorene rings, anthracene rings, phenanthrene rings, perylene rings, tetracene rings, pyrene rings, benzpyrene rings, Examples include a chrysene ring, a triphenylene ring, and a fluoranthene ring.
  • oxygen-containing atom furan ring benzofuran ring, dibenzofuran ring; sulfur-containing atom thiophene ring, benzothiophene ring, dibenzothiophene ring; nitrogen-containing atom pyrrole ring, pyrazole ring, imidazole ring, benzimidazole Ring, indole ring, indazole ring, carbazole ring, indolocarbazole ring, indenocarbazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, phthalazine ring, quinoxaline ring Quinazoline ring, quinazolinone ring, acridine ring, phenanthridine ring, carboline ring or pur
  • an appropriate substituent is often introduced onto these rings.
  • a ring for which many methods for introducing such substituents are known is preferable. Therefore, among the above examples, it is preferable one ring carbon atom C 11 directly connected to the iridium atom constituting the benzene ring.
  • the benzene ring include an aromatic ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, an indolocarbazole ring, and an indenocarbazole ring.
  • a benzene ring, a naphthalene ring, a fluorene ring, a dibenzofuran ring, a dibenzothiophene ring or a carbazole ring is more preferable, and a benzene ring and / or a naphthalene ring are particularly preferable.
  • the number of atoms constituting the ring Cy 11 is not particularly limited, but from the viewpoint of maintaining the solubility of the iridium complex compound, the number of atoms constituting the ring is preferably 5 or more, more preferably 6 or more. It is. The number of atoms constituting the ring is preferably 30 or less, more preferably 20 or less.
  • Ring Cy 6 represents a heteroaromatic ring containing a nitrogen atom N 11 coordinated to a carbon atom C 12 and an iridium atom.
  • a condensed ring having 4 or less rings is preferable, a condensed ring having 3 or less rings is more preferable, and a monocyclic or bicyclic ring The fused ring is most preferred.
  • the ligands L a and L one ring Cy 6 at least one of b is, a benzimidazole ring, a benzothiazole ring, a pyridine ring, a quinoline ring, an isoquinoline ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a cinnoline ring, A phthalazine ring, a quinazoline ring, a quinoxaline ring or a naphthyridine ring is preferable, and a benzimidazole ring, a benzothiazole ring, a pyridine ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring or a naphthyridine ring is more preferable.
  • the ring Cy 6 preferably includes a structure represented by any one of the formulas (2)
  • R 21 and R 22 in the formula (7) represent a hydrogen atom or a substituent bonded to the ring Cy 5 and the ring Cy 6 respectively.
  • R 21 and R 22 are each independent and may be the same or different.
  • X 1 represents the maximum number of substituents that can be substituted on the ring Cy 5 and is an integer. When there are a plurality of R 21 s , they may be the same or different.
  • X 2 represents the maximum number of substituents that can be substituted on the ring Cy 6 and is an integer. When there are a plurality of R 22 s , they may be the same or different.
  • R 21 and / or R 22 when there are a plurality of R 21 and / or R 22 , two or more adjacent R 21 and / or R 22 are bonded to each other to form an aliphatic aromatic or heteroaromatic monocycle or A condensed ring may be formed.
  • R 21 and R 22 are not particularly limited in kind, considering the precise control of the emission wavelength expected for the iridium complex compound to be produced, compatibility with the solvent used, compatibility with the host compound when making an organic EL device, and the like.
  • Optimal substituents can be selected. Particularly preferred substituents are the ranges described below.
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, and the alkynyl group may be further substituted with one or more R ′, and one —CH 2 — group or two or more of these groups may be substituted.
  • a non-adjacent —CH 2 — group is —R′—C ⁇ CR′—, —C ⁇ C—, —Si (R ′) 2 —, —C ( ⁇ O) —, —NR′—, It may be replaced by —O—, —S—, —C ( ⁇ O) NR′— or a divalent aromatic group.
  • One or more hydrogen atoms in these groups may be substituted with D, F, Cl, Br, I, or —CN.
  • the aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group are each Independently, it may be further substituted with one or more R ′.
  • R ′ is the same as that described in ⁇ R ′> of [Iridium Complex Compound] described above, and the same applies to preferred embodiments.
  • the arylamino group and diheteroarylamino group are the same as those described in ⁇ R 1 to R 4 > of [Iridium Complex Compound] described above, and the same applies to preferred embodiments.
  • R ′ is the same as that described in ⁇ R ′> of [Iridium Complex Compound] described above, and the same applies to the preferred embodiments.
  • X is a group represented by the formula (6), R 11 and R 13 in the formula (6) represent a substituent, and R 12 represents a hydrogen atom or a substituent.
  • R 11 and R 13 in the formula (6) represent a substituent
  • R 12 represents a hydrogen atom or a substituent.
  • R 11 and R 13 are preferably each independently —N (R ′) 2, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, a straight chain having 1 to 30 carbon atoms, Chain, branched or cyclic alkoxy group, straight chain, branched or cyclic alkenyl group having 2 to 30 carbon atoms, aromatic group having 5 to 60 carbon atoms, heteroaromatic group having 5 to 60 carbon atoms Group, aryloxy group having 5 to 40 carbon atoms, aralkyl group having 5 to 60 carbon atoms, heteroaralkyl group having 5 to 60 carbon atoms, diarylamino group having 10 to 40 carbon atoms, 10 to 40 carbon atoms It is selected from the following arylheteroarylamino groups or diheteroarylamino groups having 10 to 40 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, a straight chain having 2 to 30 carbon atoms, It is selected from a chain, branched or cyclic alkenyl group, an aromatic group having 5 to 60 carbon atoms, and a heteroaromatic group having 5 to 60 carbon atoms. These groups may be further substituted by R ′ described above.
  • a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, 2 to 30 carbon atoms, A straight-chain, branched or cyclic alkenyl group, an aromatic group having 5 to 60 carbon atoms, a heteroaromatic group having 5 to 60 carbon atoms, and more preferably a straight chain having 1 to 30 carbon atoms
  • R 12 is preferably a hydrogen atom, —D, —N (R ′) 2 , a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aromatic group having 5 to 60 carbon atoms, A heteroaromatic group having 5 to 60 carbon atoms, an aralkyl group having 5 to 60 carbon atoms, or a heteroaralkyl group having 5 to 60 carbon atoms.
  • a hydrogen atom preferably, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, 2 to 30 carbon atoms
  • These are selected from linear, branched or cyclic alkenyl groups, aromatic groups having 5 to 60 carbon atoms, and heteroaromatic groups having 5 to 60 carbon atoms. These groups may be further substituted by R ′ described above. Most preferably, it is a hydrogen atom.
  • the complex compound represented by L a p IrX q as a raw material can be synthesized by the method described in Patent Document 2 or Non-Patent Document 4. Furthermore, for example, the book IRIDIUM (III) IN OPTOELECTRONIC AND PHOTOTONICS APPLICATIONS ed. by. References cited in Eli Zysman-Colman Wiley, 2017 can also be referred to.
  • equivalents of the ligand L b for complex compound represented by the raw materials of L a p IrX q because generally the ligand L b is greater increases viscosity molecular weight, usually 0. 1 equivalent or more, preferably 0.2 equivalent or more, more preferably 1 equivalent or more.
  • equivalents of the ligand L b is generally not more than 50 equivalents, preferably not more than 30 equivalents, more preferably 10 equivalents or less.
  • the method of adding the ligand and the whole amount may be present in the reaction system at the start of the reaction. In addition, the whole amount may be added all at once during the reaction, or continuously in the reaction system. Can also be supplied.
  • the silver (I) salt used in the production method according to the present invention is not particularly limited, but is preferably one capable of liberating Ag (I) + ions in the reaction system. Silver halides and silver oxides such as and silver sulfide are excluded.
  • silver (I) salts used in the present invention include silver acetate of organic acid, silver acetate, silver trifluoroacetate, silver formate, silver octoate, silver 2-ethylhexanoate, silver benzoate, picolinic acid Silver, silver lactate, silver citrate, silver cyclohexanebutyrate, silver paratoluenesulfonate, silver methanesulfonate, silver trifluoromethanesulfonate, silver N, N-dimethyldithiocarbamate, silver bis (trifluoromethanesulfonyl) imidate, Examples thereof include silver trifluoromethanethiolate.
  • Silver salts of inorganic acids include silver carbonate, silver nitrate, silver sulfate, silver nitrite, silver chlorate, silver perchlorate, silver phosphate, silver cyanide, silver chromate, silver tungstate, silver hexafluoroarsenate , Silver borate, silver hexafluoroantimony, silver hexafluorophosphate and the like.
  • the equivalent amount of the silver (I) salt is generally a solid and increases the viscosity when added to the reaction system. Usually, it is 0.1 equivalent or more, preferably 0.2 equivalent or more, more preferably 1 equivalent or more.
  • the equivalent of the silver (I) salt is 50 equivalents or less, preferably 30 equivalents or less, more preferably 10 equivalents or less.
  • the method of adding the silver (I) salt and the whole amount may be present in the reaction system at the start of the reaction, or the whole amount may be added all at once during the reaction, or continuously in the reaction system. Can also be supplied.
  • Organic base used in the production method according to the present invention examples include organic amines having 3 to 60 carbon atoms, and pyridines having 3 to 60 carbon atoms having an aliphatic substituent at the 2-position and 6-position.
  • organic amines having 3 to 60 carbon atoms include trimethylamine, triethylamine, diisopropylethylamine, tri-n-butylamine, tri-n-octylamine, N-methylmorpholine, 1,8-diazabicyclo [5,4, 0] undec-7-ene, N, N-dimethylaniline and the like.
  • the types of aliphatic substituents used in pyridines having 3 to 60 carbon atoms and having an aliphatic substituent at least at the 2-position and the 6-position include methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, n-octyl group, Examples include a norbornyl group and an adamantyl group.
  • a substituent having preferably 10 or less carbon atoms, more preferably 6 or less carbon atoms is used.
  • substituents include 2,6-lutidine, 2,4,6-trimethylpyridine, 2,6-di-tert-butylpyridine and the like.
  • triethylamine, diisopropylethylamine, 2,6-lutidine or 2,6-di-tert-butylpyridine is used.
  • Diisopropylethylamine having a high balance between basicity and nucleophilicity is more preferable.
  • the equivalent amount of the organic base to the complex compound represented by L a p IrX q is not particularly limited, but is usually 0.1 equivalents or more, preferably 0.2 equivalents or more, more preferably 0.5 equivalents. More than equivalent.
  • the equivalent of an organic base is 50 equivalent or less normally, Preferably it is 30 equivalent or less, More preferably, it is 10 equivalent or less. By being in these ranges, the reaction tends to be effective without inhibiting the reaction.
  • There is no limitation on the method of adding the organic base and the whole amount may be present in the reaction system at the start of the reaction. The whole amount may be added all at once during the reaction, or supplied continuously into the reaction system. You can also.
  • the entire amount may be used from the beginning of the reaction, and the entire amount may be charged in a batch or divided during the reaction, or continuously supplied into the reaction system. Furthermore, the reaction can be carried out while vaporizing the solvent during the reaction and removing the solvent from the reaction system.
  • reaction temperature varies depending on the combination of reaction raw materials used and the like, but is usually 25 ° C. or higher, preferably 50 ° C. or higher, more preferably 100 ° C. or higher. Moreover, it is 300 degrees C or less normally, Preferably it is 270 degrees C or less, More preferably, it is 250 degrees C or less. By being in these temperature ranges, the reaction tends to proceed while suppressing unwanted side reactions such as decomposition of the complex.
  • reaction pressure There is no particular limitation on the reaction pressure. Usually, it is carried out under atmospheric pressure, but in order to increase the removal efficiency when removing the solvent continuously during the reaction, it can be carried out under reduced pressure. In the case of stirring efficiently in terms of viscosity, the reaction can be carried out under pressure.
  • Me is a methyl group
  • Et is an ethyl group
  • Ph is a phenyl group
  • Ac is an acetyl group
  • Tf is a trifluoromethylsulfonyl group
  • iPr is an isopropyl group
  • S-Phos is 2-dicyclohexylphosphino-2 ′, 6 '-Dimethoxy-1,1'-biphenyl
  • DMSO means dimethyl sulfoxide
  • THF means tetrahydrofuran
  • NBS means N-bromosuccinimide
  • DME means dimethyl ether
  • PPA means polyphosphoric acid
  • CHB means cyclohexylbenzene.
  • intermediate 4 Into a 1 L eggplant flask, intermediate 4 (5.9 g), 2,6-dimethylphenylboronic acid (5.1 g), tripotassium phosphate (4.6 g), palladium acetate (0.13 g), 2-dicyclohexylphosphine No-2 ′, 6′-dimethoxybiphenyl (0.46 g, S-Phos made by Johnson Matthey) and toluene (250 mL) were added and stirred at an oil bath at 90 ° C. for 1 hour, and then at 105 ° C. for 2.5 hours. After stirring, barium hydroxide octahydrate (2.6 g) was added and further stirred for 3.5 hours.
  • a 300 mL eggplant flask is charged with 3-amino-2-pyridinecarboxylic acid (12.6 g, manufactured by Fluorochem) and dehydrated dimethyl sulfoxide (100 mL), immersed in an ice-water bath (1 ° C.), and further diimidazolecarbonyl (16.7 g). ) And stirred. After 15 minutes, it was rinsed with dimethyl sulfoxide (2 mL) and then stirred at room temperature for another 5 hours. To this mixture was added a mixture of N, O-dimethylhydroxylamine hydrochloride (13.4 g) and diisopropylethylamine (24 mL), stirred at room temperature for 6 hours, and then allowed to stand overnight at room temperature.
  • intermediate 14 (11.8 g), intermediate 16 (12.6 g), barium hydroxide octahydrate (17.5 g), tetrakis (triphenylphosphine) palladium (0) (1.6 g) ), Dimethoxyethane (270 mL) and water (100 mL) were added, and the mixture was stirred at 90 ° C. for 2 hours. Thereafter, a solution of palladium acetate (0.24 g) and 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl (1.2 g) in tetrahydrofuran (100 mL) was added, and the mixture was further stirred for 2 hours.
  • Example A1 About the compound 1 which is an iridium complex compound of this invention, the light emission quantum yield and the maximum light emission wavelength were measured with the following method.
  • Apparatus Organic EL quantum yield measuring apparatus C9920-02 manufactured by Hamamatsu Photonics Light source: Monochrome light source L97799-01 Detector: Multichannel detector PMA-11 Excitation light: 380 nm
  • a spectrophotometer (organic EL quantum yield measuring device C9920-02 manufactured by Hamamatsu Photonics) was used for a solution in which Compound 1 was dissolved in 2-methyltetrahydrofuran at room temperature at a concentration of 1 ⁇ 10 ⁇ 4 mol / L or less. The phosphorescence spectrum was measured at The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was defined as the maximum emission wavelength.
  • Example A1 Comparative Examples A1 to A3
  • a solution was prepared in the same manner except that compounds 2 to 4 or the following compound D-3, compound D-5, compound D-9 or compound D-10 was used instead of compound 1, and light emission The quantum yield and the maximum emission wavelength were measured. The results are shown in Table 2. In addition, the light emission quantum yield was shown by the relative value which set the value of Comparative Example A1 to 1.
  • Figure 2 is a graph of Table 2.
  • the iridium complex compound of the present invention of Example A1 had a maximum emission wavelength of 650 nm, which was clearly a longer wavelength than Comparative Examples A1 to A3. Further, in Example A1, the quantum yield higher than the quantum efficiency at 650 nm (maximum wavelength of Example A1) indicated by the extended line of the data connecting Comparative Example A1 and Comparative Example A2 in FIG. Indicated. It can be said that the compound of the present invention exhibits a high quantum yield deviating from the linear relationship between the maximum emission wavelength and the quantum yield of Comparative Examples A1 and A2.
  • An organic electroluminescent element having the structure shown in FIG. 1 was produced by the following method. However, the hole blocking layer 6 and the electron injection layer 8 in FIG. 1 were not formed.
  • Example A5 An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 with a thickness of 70 nm (manufactured by Geomatic Co., Ltd., sputtered film) is obtained using ordinary photolithography technology and hydrochloric acid etching.
  • the anode 2 was formed by patterning into a stripe having a width of 2 mm.
  • the patterned ITO substrate is cleaned in the order of ultrasonic cleaning with an aqueous surfactant solution, water cleaning with ultrapure water, ultrasonic cleaning with ultrapure water, and water cleaning with ultrapure water, followed by drying with compressed air, and finally UV irradiation. Ozone cleaning was performed.
  • This ITO functions as the transparent electrode 2.
  • an arylamine polymer represented by the following structural formula (P-1), 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate and butyl benzoate represented by the structural formula (A-1) are contained.
  • a coating solution for forming a hole injection layer was prepared. This coating solution was formed by spin coating on the anode under the following conditions to obtain a hole injection layer 3 having a thickness of 40 nm.
  • a coating solution for forming a hole transport layer containing the compound (P-2) having the structure shown below is prepared, and film formation is performed by spin coating under the following conditions, followed by polymerization by heating. A 25 nm hole transport layer 4 was formed.
  • the following organic compound (H-1) and organic compound (H-2) are used as the charge transport material, and the iridium complex compound (compound 1) is used as the light emitting material.
  • an iridium complex compound-containing composition was prepared according to the composition shown below, and a light emitting layer having a film thickness of 84 nm was obtained by spin coating on the hole transport layer under the following conditions.
  • the substrate on which the light emitting layer was formed was transferred into a vacuum deposition apparatus, and a 2: 3 mixture of an organic compound (ET-1) and Liq having the structure shown below was deposited at a deposition rate of 0 by vacuum deposition.
  • the electron transport layer 7 having a film thickness of 30 nm was formed by being laminated on the light emitting layer 5 while controlling in the range of 0.8 to 1.0 liter / second.
  • the hole blocking layer 6 was not formed.
  • the element on which the electron transport layer 7 has been vapor-deposited is placed in another vapor deposition apparatus, and a 2 mm-wide striped shadow mask is placed on the element as orthogonal to the ITO stripe of the anode 2 as a mask for cathode vapor deposition. Adhered.
  • the electron injection layer 8 was not formed.
  • aluminum was similarly heated by a molybdenum boat as the cathode 9 to form an aluminum layer having a thickness of 80 nm.
  • the substrate temperature during the above two-layer deposition was kept at room temperature.
  • a sealing process was performed by the method described below.
  • a photocurable resin 30Y-437 manufactured by ThreeBond
  • a moisture getter sheet manufactured by Dynic
  • finished cathode formation was bonded together so that the vapor-deposited surface might oppose a desiccant sheet.
  • Example A6 In Example A5, an organic electroluminescent element was produced in the same manner as in Example A3, except that Compound 1 used in forming the light emitting layer was changed to Compound 2.
  • Example A5 An organic electroluminescent device was produced in the same manner as in Example A3, except that in Example A5, Compound 1 used for forming the light emitting layer was changed to Compound D-21 represented by the following formula.
  • Example A6 an organic electroluminescence device was produced in the same manner as in Example A3, except that Compound 1 used for forming the light emitting layer was changed to Compound D-22 represented by the following formula.
  • Table 3 shows the results of the device characteristics.
  • the compounds of the comparative examples all have a shorter driving life under constant current driving than the corresponding examples. This suggests the low durability of the complex compound of the comparative example.
  • Example B2 A 25 mL eggplant flask was charged with intermediate 20 (72 mg), intermediate 21 (192 mg, 1 eq), silver trifluoromethanesulfonate 31 mg (1 eq), and cyclohexylbenzene 0.3 mL and purged with nitrogen. The mixture was heated and stirred at 200 ° C. for about 105 minutes. This is the comparative example B1. Immediately thereafter, 42 mg (1 eq) of 2,6-di-tert-butylpyridine was added, and the mixture was further heated and stirred at 200 ° C. for 30 minutes. LC analysis was performed after a total of 135 minutes. This is designated as Example B2-2.
  • Example B2 [Comparative Example B2 and Example B2-3] A 25 mL eggplant flask was charged with intermediate 20 (72 mg), intermediate 21 (192 mg, 1 eq), 2,6-di-tert-butylpyridine 42 mg (1 eq) and cyclohexylbenzene 0.3 mL, and purged with nitrogen. The mixture was heated and stirred at 200 ° C. for about 105 minutes. This is the comparative example B2. Immediately thereafter, 31 mg (1 eq) of silver trifluoromethanesulfonate was added, and the mixture was further heated and stirred at 200 ° C. in an oil bath. LC analysis was performed after a total of 135 minutes. This is designated as Example B2-3.
  • Example B3-1 Example B3-2 and Comparative Example B3, the reaction produced by compound 21 was followed by LC.
  • the results are summarized in Table 5 and FIG. These results indicate that the simultaneous presence of the silver (I) salt and the organic base in this reaction is extremely effective in improving the yield.
  • Example B4-2 A 25 mL eggplant flask was charged with intermediate 20 (72 mg), intermediate 24 (172 mg, 1 eq), silver trifluoromethanesulfonate 32 mg (1.5 eq) and cyclohexylbenzene 0.5 mL and purged with nitrogen. The mixture was heated and stirred at 200 ° C. for about 60 minutes. This is the comparative example B4. Immediately thereafter, 42 mg (1 eq) of diisopropylethylamine was added, and the mixture was heated and stirred at 220 ° C. for 30 minutes. LC analysis was performed after a total of 90 minutes. This is designated as Example B4-2.
  • Example B4-1 For Example B4-1, Example B4-2, and Comparative Example B4, the reaction produced by compound 22 was followed by LC. The results are summarized in Table 6 and FIG. These results indicate that the simultaneous presence of the silver (I) salt and the organic base in this reaction is extremely effective in improving the yield.
  • the present invention is applicable to various fields in which organic electroluminescent elements are used, such as flat panel displays (for example, for OA computers and wall-mounted televisions) and surface emitting. It can be suitably used in fields such as a light source (for example, a light source of a copying machine, a backlight light source of a liquid crystal display or an instrument), a display board, a marker lamp, and an illumination device that make use of the characteristics of the body.
  • a light source for example, a light source of a copying machine, a backlight light source of a liquid crystal display or an instrument

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本発明は最大発光波長が長波長であり、かつ発光量子収率が高い、赤色に燐光発光するイリジウム錯体化合物並びに該化合物を含む組成物の提供、最大発光波長が長波長であり、かつ発光効率の高い有機電界発光素子、並びに該有機電界発光素子を用いた表示装置及び照明装置を提供することを目的とする。本発明は式(1)で表されるイリジウム錯体化合物に関し、前記錯体化合物はイリジウム原子に配位する配位子として、少なくともナフチリジン骨格を有する。

Description

イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置
 本発明はイリジウム錯体化合物に関し、特に、有機電界発光素子の発光層の材料として有用なイリジウム錯体化合物、該化合物を含有する組成物及び有機電界発光素子、並びに該有機電界発光素子を有する表示装置及び照明装置に関する。また、イリジウム錯体化合物を高収率で得ることができる新たな製造方法にも関する。
 有機EL照明や有機ELディスプレイなど、有機電界発光素子(以下、「有機EL素子」と称す。)を利用する各種電子デバイスが実用化されている。有機EL素子は、印加電圧が低いため消費電力が小さく、三原色発光も可能であるため、大型のディスプレイモニターだけではなく、携帯電話やスマートフォンに代表される中小型ディスプレイへの応用が始まっている。
 これらの有機ELディスプレイにおいては、より現実感を増した画像を表示させることが今後の大きな開発目標の一つとなっている。このために、いわゆる4K8Kパネルといったパネルの高精細化と同時に、画面で再現できる色の範囲のさらなる拡張が求められるようになった。例えば、色再現性の規格の一つとして定められているデジタルシネマイニシアチブ(DCI)規格を満たすためには、現行ディスプレイの色域から赤色と緑色の色度をさらに改善しなくてはならない。特に赤色に関しては、発光効率や素子駆動寿命を劣化させることなく色度をCIE色度座標において、x=0.680以上とすることが必要である。そのため、最大発光波長がより長波長側に存在する赤色発光材料の開発が求められている。
 一方、有機EL素子の多くは現在、有機材料を真空下で蒸着することにより製造されている。また、有機EL素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。そのため真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣り、また、真空蒸着法で製造された有機EL素子では照明やディスプレイのパネルの大型化が極めて難しい。そのため、近年、大型のディスプレイや照明に用いることのできる有機EL素子を効率よく製造するプロセスとして、塗布法が盛んに研究されている。塗布法は、真空蒸着法に比べて安定した層を容易に形成できる利点があるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
 このような有機EL素子の発光材料には、効率と耐久性に優れるりん光発光性のイリジウム錯体化合物が使用されている。この錯体化合物は、目的とする色度や、溶媒に対する溶解性の調節、あるいは素子耐久性の向上という改良検討が不断に行われているが、それらは主に、錯体の配位子の基本的な骨格の選択と、それらに対する適切な置換基の導入という手法でなされている。
 有機EL素子において使用されるイリジウム錯体化合物は、主に炭素原子と窒素原子やリン原子などのヘテロ原子との2つの原子で配位する2座配位子を有するシクロメタル化イリジウム錯体である。特に、イリジウム原子に、例えば2-フェニルピリジンや2-フェニルキノリンのような複素芳香環2座配位子を2つ有する錯体をビスシクロメタル化錯体、あるいはこれを3つ有する錯体をトリスシクロメタル化錯体がよく用いられている。このうち、トリスシクロメタル化錯体は有機EL素子に使用した場合に耐久性が比較的高いことが判っており、好んで用いられている。
 また、塗布法に適用される高性能の赤色発光材料としては、イリジウム錯体化合物が挙げられ、配位子を工夫することで、発光効率を改善しようとする試みがなされている(例えば、特許文献1)。
 このようなイリジウム錯体化合物の合成方法はこれまでに数多く報告されている。簡明のため以下の説明において配位子は2-フェニルピリジンを用いる。一段階合成方法として、塩化イリジウム(III)と2-フェニルピリジンのような複素芳香環2座配位子を反応させる方法が知られている(非特許文献1、化1)。しかしこの方法では、反応原料の塩素分がシクロメタル化イリジウム錯体に残留することや、目的とするフェイシャル体のみならずメリジョナル体という異性体副生物が多く発生する。
Figure JPOXMLDOC01-appb-C000003
 他にも、トリス(アセチルアセトナト)イリジウム錯体を複素芳香環2座配位子とを反応させる一段階合成方法もよく用いられている(非特許文献2、化2)。しかしこの方法は一般に高温条件(180℃以上)を必要とするものの、原料錯体が昇華したり、この原料錯体の熱的安定性が乏しいため分解反応を併発し、結果としてシクロメタル化イリジウム錯体の収率が低くなる。
Figure JPOXMLDOC01-appb-C000004
 これらを回避するため、非特許文献3の塩素架橋イリジウム二核錯体を経由する二段階合成方法や、非特許文献4および特許文献2記載の二核錯体からさらに架橋塩素原子アセチルアセトナートと交換させ単核のビス(シクロメタル化)アセチルアセトナトイリジウム錯体へ変換したのち、さらに別の配位子と反応させることにより、目的物を得る方法が汎用されている。これらの方法は、イリジウム錯体の配位子が同一ではない、ヘテロレプチックトリスシクロメタル化イリジウム錯体化合物を合成するのに好適である。特に後者の反応は生成物への塩素分の混入を抑制させることができるため、高い純度が要求される有機EL素子材料を合成する手法として好適である。
 しかし、前者の反応では銀塩により架橋塩素が除去されて生ずる配位不飽和なイリジウム錯体中間体が不安定の場合には、錯体の分解のみが進行し、目的物を全く生成しない場合がある。特に反応させる配位子の反応性が低い場合、例えば嵩高いものや、溶解性向上などのために置換基が多く導入されたもの、あるいは配位子の塩基性が低い場合にその傾向が顕著である。後者の反応においても、配位子の反応性が低い場合には180℃以上の高温下における反応を要求されることが多く、結果として原料化合物の分解や望まない副反応が生じるため収率は悪化する傾向にある。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 そこで、この二段階合成方法のさらなる改良として、ビス(シクロメタル化)アセチルアセトナトイリジウム錯体と別の配位子との反応において、銀塩を存在させる方法が報告されている(非特許文献5)。銀塩の作用機序は不明であるが、反応において解離するアセチルアセトナト配位子を銀塩が捕捉するため逆反応を抑制し、反応収率が向上しているものと推察される。
Figure JPOXMLDOC01-appb-C000007
国際公開第2015/087961号 日本国特開2002-105055号公報 日本国特開2016-64998号公報
J.Am.Chem.Soc.,107巻,1431~1432頁,1985年 Inorg.Chem.,30巻,1685~1687頁,1991年 Inorg.Chem.,33巻,545~550頁,1994年 Inorg.Chem.,40巻,1704~1711頁,2001年 J.Mater.Chem.,21巻,15494~15500頁,2011年 S.Okada et al,Dalton Transactions,2005,1583-1590.
 しかしながら、配位子を工夫することで、発光効率を改善しようとする試みに対し、最大発光波長と量子収率は、通常トレードオフの関係にあり、例えば、非特許文献6の図7、および特許文献3の図1に示されるように、類似骨格の錯体化合物間においては、これらは直線関係にあることが知られている。従って、所望の発光効率と最大発光波長を両立可能な材料は未だ得られていないのが実情であった。
 本発明は、上記課題に鑑みてなされたものであり、最大発光波長がより長波長であり、高い量子収率を示す赤色発光イリジウム錯体化合物を提供することを課題とする。また、駆動寿命が長く、高発光効率であり、良好な色再現性に優れた該赤色発光イリジウム錯体化合物を含む有機電界発光素子を提供することを課題とする。
 また、イリジウム錯体化合物の合成方法に関し、発明者らが非特許文献5に報告されている反応条件を適用して合成を試みたものの、反応がほとんど進行せず、僅かな転化率で反応が停止してしまい、原料錯体の分解のみが進行してしまうという結果であった。
 そこで本発明は、適用できる反応の範囲を広げた新たな反応条件の開発が渇望されていることに鑑み、トリスシクロメタル化イリジウム錯体化合物を高い収率で効率よく合成する製造方法を提供することをさらなる課題とする。
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、ある特定の化学構造を有するイリジウム錯体化合物が、より長波長側に最大発光波長を有し、かつ高い量子収率を示すことを見出した。さらに、該イリジウム錯体化合物を含む有機電界発光素子が、駆動寿命が長く、高発光効率であり、良好な色再現性に優れることを見出し、本発明の完成に至った。
 即ち、本発明の要旨は、以下の通りである。
[1] 下記式(1)で表されるイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000008
[式(1)において、Irはイリジウム原子を表す。
環Cyは炭素原子CおよびCを含む芳香環または複素芳香環を表し、
環Cyは炭素原子Cおよび窒素原子Nを含む下記式(2)~式(5)のいずれか1で表される構造を表し、
環Cyは炭素原子CおよびCを含む芳香環または複素芳香環を表し、
環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表す。
前記環Cy~環Cyがそれぞれ複数個存在する場合、それらは同一であっても異なっていてもよい。
mは1~3の整数であり、nは0~2の整数であり、
m+n=3である。
~Rはそれぞれ独立して水素原子又は置換基を表す。
~Rがそれぞれ複数個存在する場合、それらは同一であっても異なっていてもよい。
a、cおよびdは、それぞれ前記環Cy、環Cyおよび環Cyに置換しうる基の最大数の整数であり、
bは5である。]
Figure JPOXMLDOC01-appb-C000009
[2] 前記式(1)における環Cy、環Cyおよび環Cyの環を構成する原子数がそれぞれ5以上30以下である、前記[1]に記載のイリジウム錯体化合物。
[3] 前記式(1)におけるR~Rがそれぞれ独立して、水素原子、F、CN、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上60以下の芳香族基、または炭素数5以上60以下の複素芳香族基である、前記[1]又は[2]に記載のイリジウム錯体化合物。
[4] 前記式(1)における環Cyおよび環Cyが、それぞれ独立して、ベンゼン環またはナフタレン環である、前記[1]乃至[3]のいずれか1に記載のイリジウム錯体化合物。
[5] 前記式(1)における環Cyがイミダゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環である、前記[1]乃至[4]のいずれか1に記載のイリジウム錯体化合物。
[6] 常温下、2-メチルテトラヒドロフランに濃度1×10-4mol/L以下で溶解させた溶液が示すりん光スペクトルの最大発光波長が620nm以上である、前記[1]乃至[5]のいずれか1に記載のイリジウム錯体化合物。
[7] 前記[1]乃至[6]のいずれか1に記載のイリジウム錯体化合物および有機溶剤を含有する組成物。
[8] 前記[1]乃至[6]のいずれか1に記載のイリジウム錯体化合物を含有する有機電界発光素子。
[9] 前記[8]に記載の有機電界発光素子を有する表示装置。
[10] 前記[8]に記載の有機電界発光素子を有する照明装置。
 また、本発明者らが上記課題を解決すべく鋭意検討を行った結果、ビスシクロメタル化イリジウム錯体原料と別の配位子とを反応させトリスシクロメタル化イリジウム錯体化合物を製造する反応において、銀(I)塩に加え、さらに塩基を共に存在させることにより、きわめて高い反応収率を示すことを見出し、本発明を完成するに至った。
 すなわち、本発明の別の要旨は、以下の通りである。
[11] L IrまたはL Irで表されるイリジウム錯体化合物を製造する方法であって、
 銀(I)塩及び有機塩基の存在下で、L IrXで表される化合物とL表される化合物とを反応させる工程を含む、イリジウム錯体化合物の製造方法。
[式中、Irはイリジウム原子を表し、
p及びqは、それぞれ独立して0~3の整数を表し、p+q=3であり、
およびLは、それぞれ独立して炭素原子および窒素原子を含むイリジウム原子に配位する2座配位子を表し、複数存在するLまたはLは同一であっても異なっていてもよく、
Xは下記式(6)で表される基である。]
Figure JPOXMLDOC01-appb-C000010
[式(6)において、*は前記イリジウム原子との結合箇所を表し、
11およびR13は置換基を表し、
12は水素原子または置換基を表す。]
[12] 前記L IrXにおけるpが1または2である、前記[11]に記載のイリジウム錯体化合物の製造方法。
[13] 前記LおよびLの少なくともいずれか一方が下記式(7)で表される、前記[11]または[12]に記載のイリジウム錯体化合物の製造方法。
Figure JPOXMLDOC01-appb-C000011
[式(7)において、*は前記イリジウム原子との結合箇所を表し、
11、C12及びC13は炭素原子を表し、N11は窒素原子を表し、
環Cyは、前記C11および前記C12を含む、芳香環または複素芳香環を表し、
環Cyは、前記N11および前記C13を含む、芳香環または複素芳香環を表し、
21およびR22はそれぞれ独立して水素原子又は置換基を表し、前記R21は前記環Cyに結合し、前記R22は前記環Cyに結合する。
は、前記環Cyに置換しうる基の最大数を表し、整数である。
は、前記環Cyに置換しうる基の最大数を表し、整数である。]
 本発明のイリジウム錯体化合物は、最大発光波長が長波長であり、かつ高い量子収率を示す。また、本発明のイリジウム錯体化合物は、有機溶剤に可溶であるため、塗布法によって有機EL素子の作製が可能である。さらに、本発明のイリジウム錯体化合物を含む有機EL素子は、高い発光効率、良好な色再現性及び長駆動寿命が得られるため、表示装置及び照明装置用として有用である。
 また、本発明の製造方法によれば、高い収率で高純度のイリジウム錯体化合物を得ることが出来る。さらに、本発明の製造方法により製造されるイリジウム錯体化合物は、純度が高いため精製が容易となるばかりでなく、これを含む有機EL素子は高い発光効率及び長駆動寿命が得られるため、表示装置及び照明装置用として有用である。
図1は、イリジウム錯体化合物を含む有機電界発光素子の構造の一例を模式的に示す断面図である。 図2は、実施例及び比較例のイリジウム錯体化合物の最大発光波長と量子収率の関係を示すグラフである。 図3は、実施例における合成例2の反応時間と化合物2のLC面積百分率値(%)の関係を示すグラフである。 図4は、実施例及び比較例の製造方法の違いによる、反応時間と化合物20のLC面積百分率値の関係を示すグラフである。 図5は、実施例及び比較例の製造方法の違いによる、反応時間と化合物21のLC面積百分率値の関係を示すグラフである。 図6は、実施例及び比較例の製造方法の違いによる、反応時間と化合物22のLC面積百分率値の関係を示すグラフである。
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。また、本明細書において“質量%”及び“質量部”とは、“重量%”及び“重量部”とそれぞれ同義である。
 [イリジウム錯体化合物]
 本発明のイリジウム錯体化合物は、下記式(1)で表される化合物である。式(1)中のIrはイリジウム原子を表す。
Figure JPOXMLDOC01-appb-C000012
 <環Cyおよび環Cy
 前記式(1)において、環Cyはイリジウム原子に配位する炭素原子CおよびCを含む芳香環または複素芳香環を表し、環Cyはイリジウム原子に配位する炭素原子CおよびCを含む芳香環または複素芳香環を表す。
 環Cyおよび環Cyとしては、単環又は複数の環が結合している縮合環であってもよい。縮合環の場合、環の数は特に限定されず、6以下であることが好ましく、5以下であることが錯体の溶解性を損なわない傾向にあるため好ましい。
 環Cyおよび環Cyとしては、特に限定されないが、複素芳香環における環の構成元素は炭素原子の他に窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子およびセレン原子から選ばれることが、錯体の化学的安定性の観点から好ましい。
 環Cyおよび環Cyの具体例としては、それぞれ独立して、芳香環では、単環のベンゼン環;2環のナフタレン環;3環以上のフルオレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環等が挙げられる。
 また、複素芳香環では、含酸素原子のフラン環、ベンゾフラン環、ジベンゾフラン環;含硫黄原子のチオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環;含窒素原子のピロール環、ピラゾール環、イミダゾール環、ベンゾイミダゾール環、インドール環、インダゾール環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キノキサリン環、キナゾリン環、キナゾリノン環、アクリジン環、フェナンスリジン環、カルボリン環またはプリン環;複数種類のヘテロ原子を含むオキサゾール環、オキサジアゾール環、イソオキサゾール環、ベンゾイソオキサゾール環、チアゾール環、ベンゾチアゾール環、イソチアゾール環、ベンゾイソチアゾール環等が挙げられる。
 これらの中でも、発光波長を制御したり、溶媒への溶解性を向上させたり、有機EL素子としての耐久性を向上させるためには、これらの環上に適切な置換基が導入されることが多く、そのような置換基の導入方法が多く知られている環であることが好ましい。
 そのため上記具体例のうち、イリジウム原子に直結する炭素原子CまたはCが構成する一つの環がベンゼン環であるものが好ましく、その例としては、芳香環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環等が挙げられる。このうち、ベンゼン環、ナフタレン環、フルオレン環、ジベンゾフラン環、ジベンゾチオフェン環およびカルバゾール環がさらに好ましく、ベンゼン環又はナフタレン環がよりさらに好ましい。
 環Cyおよび環Cyにおける環を構成する原子数には特に制限は無いが、イリジウム錯体化合物の溶解性を維持する観点から、該環の構成原子数はそれぞれ、5以上であることが好ましく、より好ましくは6以上である。また、該環の構成原子数はそれぞれ、30以下であることが好ましく、より好ましくは20以下である。
 <環Cy
 前記式(1)における環Cyは炭素原子Cおよびイリジウム原子に配位する窒素原子Nを含む下記式(2)~(5)のいずれかで表される構造である。炭素原子Cは前記環Cyにおける炭素原子Cと結合している。
Figure JPOXMLDOC01-appb-C000013
 環Cyは、式(2)~(5)のいずれかで表される構造であることで、イリジウム錯体化合物の最大発光波長を容易に長波長化することができる。
 一方、従来公知の構造、例えばキノリンやキナゾリン骨格を用いて長波長化する場合には、それらの配位子について、π電子の共役を延長したり、電子求引基又は電子供与基を適切な位置に置換したりする必要がある。しかし、このようにすると、かえって分子運動の自由度が増加するため発光量子収率が低下したり、又は、錯体のHOMO/LUMO準位が大きく変化したりするために、有機EL素子の発光材料として用いた場合に駆動寿命が低下するなどの懸念が生じてしまう。
 本発明のイリジウム錯体化合物は、環Cyとして、式(2)~(5)に示すように、ナフチリジン骨格の窒素原子がイリジウムに配位するシクロメタル化配位子を有している。
 ナフチリジン骨格の大きい電子吸引性によりイリジウム錯体化合物のLUMOが大きく低下し、結果としてより長波長の赤色燐光を発光させることができるようになる。同時に、当該イリジウム錯体化合物のすべての配位子を、炭素原子と窒素原子でイリジウムに配位する二座のシクロメタル化配位子とすることによって、化学的により安定で、有機EL素子の燐光発光材料として用いる場合に高い耐久性を示すことが期待できる。
 ナフチリジン骨格の配位子はイリジウム錯体化合物に最低1個あればよく、その他の配位子(すなわち、環Cy、環Cyおよび環Cyを含む構造の補助配位子)には、環Cyとは構造の異なる、炭素原子と窒素原子でイリジウムに配位する二座の補助配位子を用いてもよく、これらの補助配位子の種類により、発光波長の微調整や溶解性の制御をおこなうことが可能である。特に、ナフチリジン骨格の配位子よりもHOMO-LUMOのギャップが大きく、かつ、ナフチリジン骨格の配位子上にHOMOおよびLUMOの分布をより局在化させることができるような補助配位子を用いることにより、発光量子収率の向上および化学的安定性の増大が期待できる。
 環Cyとしては、上記構造の中でも、有機ELディスプレイにおける赤色発光の好ましい色度を示すという観点から、式(2)、式(3)又は式(4)で表される構造であることが好ましく、式(2)または式(4)で表される構造がさらに好ましく、式(4)で表される構造が特に好ましい。
 <環Cy
 前記式(1)における環Cyは、炭素原子Cおよびイリジウム原子に配位する窒素原子Nを含む複素芳香環を表す。また、炭素原子Cは前記環Cyにおける炭素原子Cと結合している。
 具体的には、単環のピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イソオキサゾール環、チアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、プリン環;2環縮環のキノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、インドール環、インダゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環;3環縮環のアクリジン環、フェナントロリン環、カルバゾール環、カルボリン環;4環以上縮環のベンゾフェナンスリジン環、ベンゾアクリジン環またはインドロカルボリン環などが挙げられる。
 これらの中でも、置換基を導入しやすく発光波長や溶解性の調整がしやすいこと、及び、イリジウムと錯体化する際に収率良く合成できる手法が多く知られていることから、4環以下の縮合環が好ましく、3環以下の縮合環がより好ましく、単環または2環の縮合環が最も好ましい。
 このうち、イミダゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環が好ましく、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、イミダゾール環、オキサゾール環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環またはピラジン環がより好ましい。さらに、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、イソキノリン環、ピリダジン環、ピリミジン環またはピラジン環がさらに好ましく、ベンゾイミダゾール環、ベンゾチアゾール環またはピリジン環が特に好ましい。これらの中でも、ベンゾチアゾール環が最も好ましい。
 環Cyにおける環を構成する原子数には特に制限は無いが、イリジウム錯体化合物の溶解性を維持する観点から、該環の構成原子数は5以上であることが好ましく、より好ましくは6以上である。また、該環の構成原子数は30以下であることが好ましく、より好ましくは20以下である。
 <R~R
 前記式(1)におけるR~Rは、それぞれ、環Cy~環Cyに結合する水素原子又は置換基を表す。また、R~Rはそれぞれ独立であり、同じでも異なっていてもよい。R~Rがそれぞれ複数個存在する場合、それらは同一であっても異なっていてもよい。
 a、c及びdは、それぞれ、環Cy、環Cy及び環Cyに置換しうる基の最大数の整数であり、bは5である。
 また、2つ以上の隣接するR同士、R同士、R同士又はR同士が、互いに結合して、脂肪族、芳香族又は複素芳香族(ヘテロ芳香族)の、単環または縮合環を形成してもよい。
 R~Rは種類に特に限定はなく、目的とする発光波長の精密な制御や用いる溶媒との相性、有機EL素子にする場合のホスト化合物との相性などを考慮して最適な置換基が選択されるべきである。それら最適化の検討に際して、好ましい置換基は、それぞれ独立して、水素原子、又は、以下に記述される置換基群から選ばれる置換基である。
(置換基群)
 置換基群としては、-D、-F、-Cl、-Br、-I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OSOR’、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルキニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基が挙げられる。
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基、該アルキニル基、該アラルキル基および該ヘテロアラルキル基は、さらに1つ以上のR’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-CR’=CR’、-C≡C-、-Si(R’)-、-C(=O)-、-NR’-、-O-、-S-、-C(=O)NR’-または2価の芳香族基に置き換えられていてもよい。また、これらの基における1つ以上の水素原子が、D、F、Cl、Br、I又はCNで置換されていてもよい。
 該芳香族基、該複素芳香族基、該アリールオキシ基、該アリールチオ基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、それぞれ独立に、さらに1つ以上のR’で置換されていてもよい。R’については後述する。
 炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、n-オクチル基、ノルボルニル基、アダマンチル基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。
 炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、n-ブトキシ基、n-ヘキシルオキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、2-エトキシエトキシ基、2-エトキシエトキシエトキシ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。
 炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、n-ヘキシルチオ基、イソプロピルチオ基、シクロヘキシルチオ基、2-メチルブチルチオ基、n-ヘキシルチオ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。
 炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基の例としては、ビニル基、アリル基、プロぺニル基、ヘプテニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。
 炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルキニル基の例としては、エチニル基、プロピオニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。
 炭素数5以上60以下の芳香族基及び炭素数5以上60以下の複素芳香族基は、単一の環あるいは縮合環として存在していてもよいし、一つの環にさらに別の種類の芳香族基または複素芳香族基が結合あるいは縮環してできる基であってもよい。
 これらの例としては、フェニル基、ナフチル基、アントラセン基、ベンゾアントラセン基、フェナントレン基、ベンゾフェナントレン基、ピレン基、クリセン基、フルオランテン基、ペリレン基、ベンゾピレン基、ベンゾフルオランテン基、ナフタセン基、ペンタセン基、ビフェニル基、ターフェニル基、フルオレン基、スピロビフルオレン基、ジヒドロフェナントレン基、ジヒドロピレン基、テトラヒドロピレン基、インデノフルオレン基、フリル基、ベンゾフリル基、イソベンゾフリル基、ジベンゾフラン基、チオフェン基、ベンゾチオフェン基、ジベンゾチオフェン基、ピロール基、インドール基、イソインドール基、カルバゾール基、ベンゾカルバゾール基、インドロカルバゾール基、インデノカルバゾール基、ピリジル基、シンノリン基、イソシンノリン基、アクリジン基、フェナンスリジン基、フェノチアジン基、フェノキサジン基、ピラゾール基、インダゾール基、イミダゾール基、ベンズイミダゾール基、ナフトイミダゾール基、フェナンスロイミダゾール基、ピリジンイミダゾール基、オキサゾール基、ベンゾオキサゾール基、ナフトオキサゾール基、チアゾール基、ベンゾチアゾール基、ピリミジン基、ベンゾピリミジン基、ピリダジン基、キノキサリン基、ジアザアントラセン基、ジアザピレン基、ピラジン基、フェノキサジン基、フェノチアジン基、ナフチリジン基、アザカルバゾール基、ベンゾカルボリン基、フェナンスロリン基、トリアゾール基、ベンゾトリアゾール基、オキサジアゾール基、チアジアゾール基、トリアジン基、2,6-ジフェニル-1,3,5-トリアジン-4-イル基、テトラゾール基、プリン基、ベンゾチアジアゾール基などが挙げられる。
 溶解性と耐久性のバランスの観点から、これらの基の炭素数は5以上であることが好ましく、また、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。
 炭素数5以上40以下のアリールオキシ基の例としては、フェノキシ基、メチルフェノキシ基、ナフトキシ基、メトキシフェノキシ基などが挙げられる。溶解性と耐久性のバランスの観点から、炭素数5以上が好ましく、また、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。
 炭素数5以上40以下のアリールチオ基の例としては、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基、メトキシフェニルチオ基などが挙げられる。溶解性と耐久性のバランスの観点から、炭素数5以上が好ましく、また、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。
 炭素数5以上60以下のアラルキル基の例としては、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、炭素数は5以上が好ましく、また、40以下であることがより好ましい。
 炭素数5以上60以下のヘテロアラルキル基の例としては、1,1-ジメチル-1-(2-ピリジル)メチル基、1,1-ジ(n-ヘキシル)-1-(2-ピリジル)メチル基、(2-ピリジル)メチル基、(2-ピリジル)エチル基、3-(2-ピリジル)-1-プロピル基、4-(2-ピリジル)-1-n-ブチル基、1-メチル-1-(2-ピリジル)エチル基、5-(2-ピリジル)-1-n-プロピル基、6-(2-ピリジル)-1-n-ヘキシル基、6-(2-ピリミジル)-1-n-ヘキシル基、6-(2,6-ジフェニルー1,3,5-トリアジン-4-イル)-1-n-ヘキシル基、7-(2-ピリジル)-1-n-ヘプチル基、8-(2-ピリジル)-1-n-オクチル基、4-(2-ピリジル)シクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、これらの基の炭素数が5以上であることが好ましく、また、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。
 炭素数10以上40以下のジアリールアミノ基の例としては、ジフェニルアミノ基、フェニル(ナフチル)アミノ基、ジ(ビフェニル)アミノ基、ジ(p-ターフェニル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらの基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。
 炭素数10以上40以下のアリールヘテロアリールアミノ基の例としては、フェニル(2-ピリジル)アミノ、フェニル(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらの基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。
 炭素数10以上40以下のジヘテロアリールアミノ基としては、ジ(2-ピリジル)アミノ、ジ(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらの基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。
 上記R~Rは、それらが複数個ある場合、それぞれ同一であっても異なっていてもよい。
 上記R~Rの中でも、特に有機EL素子における発光材料としての耐久性を損なわないという観点から、それぞれ独立して、水素原子、F、-CN、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数10以上40以下のジアリールアミノ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下の芳香族基または炭素数5以上60以下の複素芳香族基がより好ましく、水素原子、F、-CN、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下の芳香族基または炭素数5以上60以下の複素芳香族基がさらに好ましく、水素原子、F、CN、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上60以下の芳香族基、または炭素数5以上60以下の複素芳香族基が最も好ましい。
 上記R~Rの置換位置は特に限定されない。但し、RまたはRは、それぞれ環Cyまたは環Cyがベンゼン環である場合において、錯体の耐久性を重視する場合には、該ベンゼン環の少なくとも4位または5位にRまたはRが置換されることが好ましく、少なくとも4位に置換されることがさらに好ましい。このRまたはRは、上述の芳香族基または複素芳香族基であることが好ましい。
 Rは、環Cyにおいてイリジウム原子に配位しない窒素原子の隣接位に、少なくとも一つ存在することが好ましい場合がある。該窒素原子を立体障害により遮蔽することにより、溶媒和などの外部からの影響を緩和し、発光波長その他物性への影響を抑制することが出来るからである。
 <R’>
 前記式(1)のR~RにおけるR’はそれぞれ独立に、-H、-D、-F、-Cl、-Br、-I、-N(R’’)、-CN、-NO、-Si(R’’)、-B(OR’’)、-C(=O)R’’、-P(=O)(R’’)、-S(=O)R’’、-OSOR’’、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルキニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基、該アルキニル基、該アラルキル基および該ヘテロアラルキル基は、さらに1つ以上のR’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-CR’’=CR’’-、-C≡C-、-Si(R’’)-、-C(=O)-、-NR’’-、-O-、-S-、-C(=O)NR’’-もしくは2価の芳香族基に置き換えられていてもよい。また、これらの基における一つ以上の水素原子が、D、F、Cl、Br、Iまたは-CNで置換されていてもよい。
 また、該芳香族基、該複素芳香族基、該アリールオキシ基、該アリールチオ基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、さらに1つ以上のR’’で置換されていてもよい。R’’については後述する。
 R’における上述の基の例はいずれも、前記<R~R>の項における基の記載とそれぞれ同義である。
 また、2つ以上の隣接するR’が互いに結合して、脂肪族、芳香族又はヘテロ芳香族の、単環もしくは縮合環を形成してもよい。
 <R’’>
 前記R’におけるR’’はそれぞれ独立に、H、D、F、CN、炭素数1以上20以下の脂肪族炭化水素基、炭素数1以上20以下の芳香族基または炭素数1以上20以下の複素芳香族基から選ばれる。
 2つ以上の隣接するR’’が互いに結合して、脂肪族、芳香族またはヘテロ芳香族の、単環もしくは縮合環を形成してもよい。
 <具体例>
 以下に、本発明のイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 <最大発光波長>
 本発明のイリジウム錯体化合物は、発光波長をより長波長にすることができる。発光波長の長さを示す指標としては、以下に示す手順で測定した最大発光波長が620nm以上であることが好ましく、625nm以上であることがより好ましく、630nm以上であることがさらに好ましい。また、700nm以下が好ましく、680nm以下がより好ましい。これらの範囲であることで、有機ELディスプレイとして好適な赤色発光材料の好ましい色を発現できる傾向にある。
 (測定方法)
 常温下で、2-メチルテトラヒドロフランに、当該イリジウム錯体化合物を濃度1×10-4mol/L以下で溶解させた溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)でりん光スペクトルを測定する。得られたりん光スペクトル強度の最大値を示す波長を、本発明における最大発光波長とみなす。
 [イリジウム錯体化合物の合成方法]
 <配位子の合成方法>
 本発明のイリジウム錯体化合物の配位子の、ナフチリジン骨格を有する環Cyの合成は、既知の有機合成反応を組み合わせることにより行い得る。ナフチリジン骨格は医薬品化合物の鍵となる骨格であるので、その合成法は広く知られている。特に、鈴木-宮浦カップリング反応とピリジン環合成反応を主とし、さらにそれらへの置換基導入反応を組み合わせることによりさまざまな誘導体を合成しうる。
 以下、例示を以て説明する。なお、以下のスキーム(A)からスキーム(D)において、Rは水素原子または任意の置換基を表し、複数存在するRは同一でも異なっていてもよい。また、Meはメチル基を、Etはエチル基をそれぞれ表す。
Figure JPOXMLDOC01-appb-C000020
 上記スキーム(A)に本発明の1,7-ナフチリジン骨格の合成の一例としての逆合成スキームを示す。1,7-ナフチリジン骨格は、3-アミノ-4-アシルピリジン中間体と芳香族メチルケトン中間体との環化反応により合成できる。前者は3-アミノイソニコチン酸から誘導できる。この3-アミノイソニコチン酸にはさらに、スキーム(A)中に記載した文献に記載の方法を用いることによって任意の位置にハロゲン原子またはトリフルオロメタンスルホネート基を有する形で合成することが可能である。
 これらに対してさらに鈴木-宮浦カップリング反応を利用してさまざまな様態の置換基を導入することができる。この置換基の導入は、配位子合成段階の途中または最後に組み込むことができ、あるいは配位子合成の途中で一旦イリジウム錯体化合物を形成させたのちにさらに反応させることにより導入することもできる。
Figure JPOXMLDOC01-appb-C000021
 上記スキーム(B)に、本発明の1,5-ナフチリジン骨格の合成の一例としての逆合成スキームを示す。1,5-ナフチリジン骨格は、3-アミノ-2-アシルピリジン中間体と芳香族メチルケトン中間体との環化反応により合成できる。前者は3-アミノピコリン酸から誘導できる。この3-アミノピコリン酸にはさらに、スキーム(B)中に記載した文献に記載の方法を用いることによって任意の位置にハロゲン原子を有する形で合成することが可能である。
 その他、1,6-ナフチリジン環、1,8-ナフチリジン環についても、対応するアミノカルボキシルピリジンを原料として用い、上述とほぼ同様の化学変換を用いることにより目的とする配位子を合成できる。
 上記のアミノカルボキシルピリジン中間体と、メチルケトン化合物との環化反応によるナフチリジン環合成反応は、Friedlaender反応とよばれ、文献(Chem.Rev.2009、109、2652、または、Organic Reactions,28(2),37-201)を参考にして実施可能である。あるいは、例えば文献(Chem.Pharm.Bull.24(8)1813-1821(1976))に記載された別の方法によっても合成することが可能である。
 <式(1)で表されるイリジウム錯体化合物の合成方法>
 式(1)で表される本発明のイリジウム錯体化合物は、既知の方法の組み合わせなどにより合成され得る。以下に詳しく説明する。
 イリジウム錯体化合物の合成方法については、判りやすさのためにフェニルピリジン配位子を例として用いた下記スキーム(C)に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.Gudel,Inorg.Chem.,1994,33,545-550)、下記スキーム(D)に示すような二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel-Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704-1711)等が例示できるが、これらに限定されるものではない。
 例えば、下記スキーム(C)で表される典型的な反応の条件は以下のとおりである。第一段階として、第一の配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2-エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いて反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。
 反応温度に特に制限はないが、通常は0℃以上が好ましく、50℃以上がより好ましい。また、250℃以下が好ましく、150℃以下がより好ましい。これらの範囲であることで副生物や分解反応を伴うことなく目的の反応のみが進行し、高い選択性が得られる傾向にある。
Figure JPOXMLDOC01-appb-C000022
 二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し第二の配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノールまたはジクリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。
 ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃~250℃の範囲で行われる。
 また、下記スキーム(D)で表される典型的な反応条件を説明する。
 第一段階の二核錯体はスキーム(C)と同様に合成できる。第二段階は、該二核錯体にアセチルアセトンのような1,3-ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3-ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3-ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃~200℃の範囲内で行われる。
Figure JPOXMLDOC01-appb-C000023
 第三段階は、第二の配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、第二の配位子が反応温度で液状である場合には無溶媒でもよい。反応温度も特に制限はないが、反応性が若干乏しいため100℃~300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。
 最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトンまたはメタノールの単一または混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術(逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィー)や、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。
 <イリジウム錯体化合物の用途>
 本発明のイリジウム錯体化合物は、有機電界発光素子に用いられる材料、すなわち有機電界発光素子の赤色発光材料として好適に使用可能であり、有機電界発光素子やその他の発光素子等の発光材料としても好適に使用可能である。
 [イリジウム錯体化合物含有組成物]
 本発明のイリジウム錯体化合物は、溶解性に優れることから、溶剤とともに使用されることが好ましい。以下、本発明のイリジウム錯体化合物と溶剤とを含有する組成物(イリジウム錯体化合物含有組成物)について説明する。
 本発明のイリジウム錯体化合物含有組成物は、上述の本発明のイリジウム錯体化合物および有機溶剤を含有する。本発明のイリジウム錯体化合物含有組成物は通常湿式成膜法で層や膜を形成するために用いられることが多く、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であることが好ましい。
 つまり、イリジウム錯体化合物含有組成物は、有機電界発光素子用組成物であることが好ましく、更に発光層形成用組成物として用いられることが特に好ましい。
 該イリジウム錯体化合物含有組成物における本発明のイリジウム錯体化合物の含有量は、通常0.001質量%以上、好ましくは0.01質量%以上であり、また、通常99.9質量%以下、好ましくは99質量%以下である。当該組成物中のイリジウム錯体化合物の含有量をこの範囲とすることにより、隣接する層(例えば、正孔輸送層4や正孔阻止層6)から発光層へ効率よく、正孔や電子の注入が行われ、駆動電圧を低減することができる。なお、本発明のイリジウム錯体化合物はイリジウム錯体化合物含有組成物中に、1種のみ含まれていてもよく、2種以上が組み合わされて含まれていてもよい。
 本発明のイリジウム錯体化合物含有組成物を例えば有機電界発光素子用に用いる場合には、上述のイリジウム錯体化合物や溶剤の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有することができる。
 本発明のイリジウム錯体化合物含有組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物を発光材料とし、他の電荷輸送性化合物を電荷輸送ホスト材料として含むことが好ましい。
 本発明のイリジウム錯体化合物含有組成物に含有される溶剤は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
 該溶剤は、溶質である本発明のイリジウム錯体化合物が高い溶解性を有するために、むしろ後述の電荷輸送性化合物が良好に溶解する溶剤であれば特に限定されない。好ましい溶剤としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。
 中でも好ましくは、アルカン類や芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上であり、また、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。この範囲を下回ると、湿式成膜時において、組成物からの溶剤蒸発により、成膜安定性が低下する可能性がある。
 溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上であり、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。溶剤の含有量がこの下限を下回ると、組成物の粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、この上限を上回ると、成膜後、溶剤を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。なお、通常発光層の厚みは3~200nm程度である。
 本発明のイリジウム錯体化合物含有組成物が含有し得る他の電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ピリジン、カルバゾール、ナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテン、クマリン、p-ビス(2-フェニルエテニル)ベンゼンおよびそれらの誘導体、キナクリドン誘導体、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン、アリールアミノ基が置換された縮合芳香族環化合物、アリールアミノ基が置換されたスチリル誘導体等が挙げられる。
 これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 また、イリジウム錯体化合物含有組成物中の他の電荷輸送性化合物の含有量は、イリジウム錯体化合物含有組成物中の本発明のイリジウム錯体化合物1質量部に対して、通常1000質量部以下、好ましくは100質量部以下、さらに好ましくは50質量部以下であり、通常0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは1質量部以上である。
 本発明のイリジウム錯体化合物含有組成物には、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶剤の他に、別の溶剤を含有していてもよい。そのような溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 [有機電界発光素子]
 本発明の有機電界発光素子は、基板上に少なくとも陽極、陰極及び前記陽極と前記陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうち少なくとも1層が本発明のイリジウム錯体化合物を含むことを特徴とする。前記有機層は発光層を含む。
 本発明のイリジウム錯体化合物を含む有機層は、本発明における組成物を用いて形成された層であることがより好ましく、湿式成膜法により形成された層であることがさらに好ましい。前記湿式成膜法により形成された層は、該発光層であることが好ましい。
 図1は本発明の有機電界発光素子10に好適な構造例を示す断面の模式図であり、図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。
 これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。また、公報や論文等を引用している場合、該当内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。
 (基板1)
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板1は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板1の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
 (陽極2)
 陽極2は、発光層側の層に正孔を注入する機能を担う。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。また、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。
 陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下とするのが好ましい。一方、透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極2は基板1と同一の厚みでもよい。
 陽極2の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。
 (正孔注入層3)
 陽極側から発光層側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極側から発光層側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極から発光層側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層3を用いる場合、通常、正孔注入層3は、陽極上に形成される。
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、通常1000nm以下、好ましくは500nm以下である。
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
 (正孔輸送性化合物)
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。また、湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層3が発光層5と接する場合は、発光層5からの発光を消光しないものや発光層5とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物系化合物、キナクリドン系化合物等が挙げられる。
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Yは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。)
 下記に連結基を示す。
Figure JPOXMLDOC01-appb-C000025
(上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。R~Rは、それぞれ独立して、水素原子又は任意の置換基を表す。)
 Ar~Ar16の芳香族基及び複素芳香族基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のもの等が挙げられる。
 (電子受容性化合物)
 正孔注入層3には、正孔輸送性化合物の酸化により、正孔注入層3の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。
 (カチオンラジカル化合物)
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。但し、カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
 ここで、カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。即ち、前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。
 PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
 <湿式成膜法による正孔注入層3の形成>
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層3となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布して成膜し、乾燥させることにより形成させる。
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、また、一方、正孔注入層3に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01質量%以上であるのが好ましく、0.1質量%以上であるのが更に好ましく、0.5質量%以上であるのが特に好ましく、また、一方、70質量%以下であるのが好ましく、60質量%以下であるのが更に好ましく、50質量%以下であるのが特に好ましい。
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。
 <真空蒸着法による正孔注入層3の形成>
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極上に正孔注入層3を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。
 (正孔輸送層4)
 正孔輸送層4は、陽極側から発光層側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では必須の層ではないが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を用いるのが好ましい。正孔輸送層4を用いる場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。また、上述の正孔注入層3がある場合は、正孔注入層3と発光層5の間に形成される。
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔輸送層4は、通常、正孔輸送層4となる正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。また、例えばポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。
 <湿式成膜法による正孔輸送層4の形成>
 湿式成膜法で正孔輸送層4を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
 湿式成膜法で正孔輸送層4を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。
 正孔輸送層形成用組成物中における正孔輸送性化合物の濃度は、正孔注入層形成用組成物中における正孔輸送性化合物の濃度と同様の範囲とすることができる。
 正孔輸送層4の湿式成膜法による形成は、前述の正孔注入層3の成膜法と同様に行うことができる。
 <真空蒸着法による正孔輸送層4の形成>
 真空蒸着法で正孔輸送層4を形成する場合についても、通常、上述の正孔注入層3を真空蒸着法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、前記正孔注入層3の真空蒸着時と同様の条件で成膜することができる。
 (発光層5)
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層5は、陽極2と陰極9の間に形成される層であり、発光層5は、陽極2の上に正孔注入層3がある場合は、正孔注入層3と陰極9の間に形成され、陽極2の上に正孔輸送層4がある場合は、正孔輸送層4と陰極9との間に形成される。
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。
 発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)とを含有する。発光材料としては、いずれかの発光層に、本発明のイリジウム錯体化合物が含まれていればよく、適宜他の発光材料を用いてもよい。以下、本発明のイリジウム錯体化合物以外の他の発光材料について詳述する。
 (発光材料)
 発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
 蛍光発光材料としては、例えば、以下の材料が挙げられる。
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
 また、燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きのない限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。
 好ましい燐光発光材料として、具体的には、例えば、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。
 高分子系の発光材料としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。
 (電荷輸送性材料)
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の発光材料を適用可能である。
 電荷輸送性材料は、従来、有機電界発光素子の発光層5に用いられている化合物等を用いることができ、特に、発光層5のホスト材料として使用されている化合物が好ましい。
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層3の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。
 また、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表わされる2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層4の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。また、この他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。
 <湿式成膜法による発光層5の形成>
 発光層5の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましい。本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、この塗布膜を乾燥して膜形成を行う方法をいう。
 湿式成膜法により発光層5を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層5となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。
 溶剤としては、例えば、正孔注入層3の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。
 また、より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上であり、また、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。
 溶剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物中の合計含有量は、低粘性なために成膜作業が行いやすい点で多い方が好ましく、また、一方、厚膜で成膜しやすい点で低い方が好ましい。
 溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上であり、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。
 溶剤除去方法としては、加熱または減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点では温度が高いほうが好ましく、材料へのダメージが少ない点では低い方が好ましい。上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。下限は通常30℃以上であり、好ましくは50℃以上であり、さらに好ましくは80℃以上である。上限より高い温度は、通常用いられる電荷輸送材料または燐光発光材料の耐熱性より高く、分解や結晶化する可能性がある。下限未満の温度では溶媒の除去に長時間を要する。加熱工程における加熱時間は、発光層形成用組成物中の溶媒の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。
 <真空蒸着法による発光層5の形成>
 真空蒸着法により発光層5を形成する場合には、通常、発光層5の構成材料(前述の発光材料、電荷輸送性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた正孔注入輸送層の上に発光層5を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて発光層5を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。
 (正孔阻止層6)
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極側の界面に接するように積層される層である。
 この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO-LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
 正孔阻止層6の形成方法に制限はなく、前述の発光層5の形成方法と同様にして形成することができる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。
 (電子輸送層7)
 電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5と電子注入層8との間に設けられる。
 電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
 電子輸送層7に用いる電子輸送性化合物は、通常、陰極9又は電子注入層8からの電子注入効率が高く、注入された電子を効率よく輸送できる化合物が好ましい。電子輸送性化合物としては、具体的には、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
 電子輸送層7は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層上に積層することにより形成される。通常は、真空蒸着法が用いられる。
 (電子注入層8)
 電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
 電子注入を効率よく行うために、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。
 更に、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。
 膜厚は通常、5nm以上、好ましくは10nm以上であり、また、通常200nm以下、好ましくは100nm以下の範囲である。
 電子注入層8は、湿式成膜法或いは真空蒸着法により、発光層5又はその上の正孔阻止層上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層5の場合と同様である。
 (陰極9)
 陰極9は、発光層側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。具体例としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
 素子の安定性の点では、陰極9の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極9を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
 陰極の膜厚は通常、陽極2と同様である。
 (その他の層)
 本発明の有機電界発光素子は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極2と陰極9との間に、上述の他の任意の層を有していてもよい。
 <その他の素子構成>
 なお、上述の説明とは逆の構造、即ち、基板上に陰極、電子注入層、発光層、正孔注入層、陽極の順に積層することも可能である。
 <その他>
 本発明の有機電界発光素子を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極2と陰極9がX-Yマトリックス状に配置された構成にして用いてもよい。
 [表示装置及び照明装置]
 本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を有するものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。
 [L IrまたはL Irで表されるイリジウム錯体化合物を製造する方法]
 本発明は、ビスシクロメタル化イリジウム錯体原料と別の配位子とを反応させトリスシクロメタル化イリジウム錯体化合物を製造する方法にも関する。
 すなわち、本発明に係る製造方法は、銀(I)塩及び有機塩基の存在下で、L IrXで表される化合物とLで表される化合物とを反応させる工程を含む、L IrまたはL Irで表されるイリジウム錯体化合物を製造する方法である。
 本発明に係る製造方法は、前述の式(1)で表されるイリジウム錯体化合物の製造方法としても用いことができる。
 L IrX、L、L Ir及びL Irにおいて、Irはイリジウム原子を表し、p及びqは、それぞれ独立に0~3の整数を表し、p+q=3であり、LおよびLは、それぞれ独立して炭素原子および窒素原子を含む、イリジウム原子に配位する多座配位子を表し、複数存在するLまたはLは同一であっても異なっていてもよく、Xは下記式(6)で表される基である。
Figure JPOXMLDOC01-appb-C000026
[式(6)において、*は前記イリジウム原子との結合箇所を表し、
11およびR13は置換基を表し、
12は水素原子または置換基を表す。]
 <LおよびL
 前記LおよびLはイリジウム原子に少なくとも2座で配位する配位子であり、イリジウムとの結合様式が一つが共有結合であり、もう一つが配位結合もしくはカルベン配位結合であるものであれば、その化学構造の種類には特に限定は無く、3座以上の多座配位子であってもよいいが、2座配位子が好ましい。
 有機EL素子材料として使用されるイリジウム錯体化合物を製造するという観点から、配位子LおよびLはそれぞれ、イリジウム原子と共有結合する原子の種類は炭素原子であり、配位結合またはカルベン配位結合する原子は炭素原子、窒素原子、リン原子、酸素原子または硫黄原子が好ましく、炭素原子または窒素原子であることがより好ましく、窒素原子であることがさらに好ましい。
 イリジウム原子と共有結合する原子が炭素原子である場合、反応性が高いこと、及び有機EL素子材料として使用されるという観点から、sp2混成軌道を形成している炭素原子であることが好ましい。さらに、二重結合、芳香環または複素芳香環を形成している炭素原子であることがより好ましく、芳香環または複素芳香環を形成している炭素原子であることがさらに好ましい。
 配位結合またはカルベン配位結合する原子が炭素原子または窒素原子である場合、反応性が高いこと、及び有機EL素子材料として使用されるという観点から、sp2混成軌道を形成している炭素原子または窒素原子であることが好ましく、二重結合、芳香環または複素芳香環を形成している炭素原子または窒素原子であることがより好ましく、複素芳香環を形成している炭素原子または窒素原子であることがさらに好ましく、複素芳香環を形成している窒素原子であることが最も好ましい。
 LおよびLは互いに同一であっても異なっていてもよく、それぞれに置換される置換基の種類及びその分子量にも制限は無い。また、複数存在するLまたはLも同一であっても異なっていてもよい。
 LおよびLのさらに好ましい形態は、下式(7)で表されるものである。
Figure JPOXMLDOC01-appb-C000027
[式(7)において、*はイリジウム原子との結合箇所を表し、
11、C12及びC13は炭素原子を表し、N11は窒素原子を表し、
環Cyは、前記C11および前記C12を含む、芳香環または複素芳香環を表し、
環Cyは、前記N11および前記C13を含む、芳香環または複素芳香環を表す。
21およびR22はそれぞれ独立して水素原子又は置換基を表し、前記R21は前記環Cyに結合し、前記R22は前記環Cyに結合する。
は、前記環Cyに置換しうる基の最大数を表し、整数である。
は、前記環Cyに置換しうる基の最大数を表し、整数である。]
 <環Cy
 環Cyはイリジウム原子に配位する炭素原子C11およびC12を含む、芳香環または複素芳香環を表す。
 環Cyは、単環又は複数の環が結合している縮合環であってもよい。縮合環の場合、環の数は特に限定されず、6以下であることが好ましく、5以下であることが好ましい、これらの間の数であることで、錯体の溶解性を損なわない傾向にあるため好ましい。
 環Cyは、特に限定されないが、複素芳香環の構成元素は炭素原子の他に、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子およびセレン原子から選ばれることが、錯体の化学的安定性の観点から好ましい。
 環Cyの具体例としては、芳香環では、単環のベンゼン環;2環のナフタレン環;3環以上のフルオレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環等が挙げられる。
 また、複素芳香環では、含酸素原子のフラン環、ベンゾフラン環、ジベンゾフラン環;含硫黄原子のチオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環;含窒素原子のピロール環、ピラゾール環、イミダゾール環、ベンゾイミダゾール環、インドール環、インダゾール環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キノキサリン環、キナゾリン環、キナゾリノン環、アクリジン環、フェナンスリジン環、カルボリン環またはプリン環;複数種類のヘテロ原子を含むオキサゾール環、オキサジアゾール環、イソオキサゾール環、ベンゾイソオキサゾール環、チアゾール環、ベンゾチアゾール環、イソチアゾール環、ベンゾイソチアゾール環等が挙げられる。
 発光波長を制御したり、溶媒への溶解性を向上させたり、有機EL素子としての耐久性を向上させるためには、これらの環上に適切な置換基が導入されることが多い。上記環の中でも、そのような置換基の導入方法が多く知られている環であることが好ましい。
 そのため、上記具体例のうち、イリジウム原子に直結する炭素原子C11が構成する一つの環がベンゼン環であるものが好ましい。ベンゼン環の例としては、芳香環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環等が挙げられる。これらのなかでも、ベンゼン環、ナフタレン環、フルオレン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環がさらに好ましく、ベンゼン環及び/又はナフタレン環が特に好ましい。
 環Cy11を構成する原子数には特に制限は無いが、イリジウム錯体化合物の溶解性を維持する観点から、該環の構成原子数はそれぞれ、5以上であることが好ましく、より好ましくは6以上である。また、該環の構成原子数は30以下であることが好ましく、より好ましくは20以下である。
 <環Cy
 環Cyは、炭素原子C12およびイリジウム原子に配位する窒素原子N11を含む複素芳香環を表す。具体的には、単環のピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イソオキサゾール環、チアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、プリン環;2環縮環のキノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、インドール環、インダゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環;3環縮環のアクリジン環、フェナントロリン環、カルバゾール環、カルボリン環;4環以上縮環のベンゾフェナンスリジン環、ベンゾアクリジン環またはインドロカルボリン環などが挙げられる。
 これらの中でも、置換基を導入しやすく、発光波長や溶解性が高く、さらに反応しやすいことから、4環以下の縮合環が好ましく、3環以下の縮合環がより好ましく、単環または2環の縮合環が最も好ましい。
 具体的には、イミダゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環が好ましい。さらには、イミダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環がより好ましく、ベンゾイミダゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環がさらに好ましい。
 特に、配位子LおよびLの少なくともいずれか一方の環Cyが、ベンゾイミダゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環であることが好ましく、ベンゾイミダゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環またはナフチリジン環であることがさらに好ましい。また、環Cyとして、環Cyで挙げた式(2)~(5)のいずれか1で表される構造を含むことが好ましい。
 <R21、R22、XおよびX
 式(7)におけるR21およびR22は、それぞれ環Cyおよび環Cyに結合する水素原子又は置換基を表す。R21およびR22はそれぞれ独立であり、同じでも異なっていてもよい。
 Xは、環Cyに置換しうる置換基の最大数を表し、整数である。R21が複数個ある場合、それぞれ同一であっても異なっていてもよい。同様に、Xは、環Cyに置換しうる置換基の最大数を表し、整数である。R22が複数個ある場合、それぞれ同一であっても異なっていてもよい。
 また、R21および/またはR22が複数存在する場合、2つ以上の隣接するR21同士および/またはR22同士が、互いに結合して、脂肪族芳香族または複素芳香族の、単環または縮合環を形成してもよい。
 R21およびR22は種類に特に限定はなく、製造するイリジウム錯体化合物に期待する発光波長の精密な制御や用いる溶媒との相性、有機EL素子にする場合のホスト化合物との相性などを考慮して最適な置換基を選択することができる。特に好ましい置換基は、以下に記述される範囲である。
 R21およびR22はそれぞれ独立に、水素原子、-D、-F、-Cl、-Br、-I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OSOR’、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルキニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基から選ばれることが好ましい。
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基および該アルキニル基は、さらに1つ以上のR’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-R’-C=CR’-、-C≡C-、-Si(R’)-、-C(=O)-、-NR’-、-O-、-S-、-C(=O)NR’-または2価の芳香族基に置き換えられていてもよい。
 また、これらの基における1つ以上の水素原子が、D、F、Cl、Br、I又は-CNで置換されていてもよい。
 該芳香族基、該複素芳香族基、該アリールオキシ基、該アリールチオ基、該アラルキル基、該ヘテロアラルキル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、それぞれ独立に、さらに1つ以上のR’で置換されていてもよい。R’は先述した[イリジウム錯体化合物]の<R’>に記載したものと同様であり、好ましい態様についても同様である。
 R21およびR22におけるアルキル基、アルコキシ基、アルキルチオ基、アルケニル基およびアルキニル基、芳香族基、複素芳香族基、アリールオキシ基、アリールチオ基、アラルキル基、ヘテロアラルキル基、ジアリールアミノ基、アリールヘテロアリールアミノ基およびジヘテロアリールアミノ基は、先述した[イリジウム錯体化合物]の<R~R>に記載したものと同様であり、好ましい態様についても同様である。また、R’も先述した[イリジウム錯体化合物]の<R’>に記載したものと同様であり、好ましい態様についても同様である。
 <pおよびq>
 p及びqは、それぞれ独立に0~3の整数を表し、p+q=3である。これらを満たせば、特に限定されないが、pは1または2であることが好ましい。
 <R11~R13
 Xは式(6)で表される基であり、式(6)におけるR11及びR13は置換基を表し、R12は水素原子又は置換基を表す。
 R11~R13の置換基の種類に特に限定はないが、中間原料として安定性があること、および反応でイリジウム原子から解離しやすい性質を高められるものが好ましい。
 R11およびR13は、好ましくは、それぞれ独立に、-N(R’)2、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。
 好ましくは、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基から選ばれる。これらの基はさらに上述のR’により置換されていてもよい。
 より好ましくは、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基であり、さらに好ましくは、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基であり、最も好ましくは、炭素数1以上6以下の、直鎖状または分岐状アルキル基である。
 R12は、好ましくは水素原子、-D、-N(R’)、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上60以下のアラルキル基または炭素数5以上60以下のヘテロアラルキル基である。
 好ましくは、水素原子、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルコキシ基、炭素数2以上30以下の、直鎖状、分岐状もしくは環状アルケニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基から選ばれる。これらの基はさらに上述のR’により置換されていてもよい。最も好ましくは水素原子である。
 <L IrX
 原料となるL IrXで表される錯体化合物は、特許文献2または非特許文献4記載の方法により合成することが出来る。さらには、例えば書籍 IRIDIUM(III)IN OPTOELECTRONIC AND PHOTONICS APPLICATIONS ed.by.Eli Zysman-Colman Wiley,2017などに引用されている文献を参考にすることもできる。
 原料のL IrXで表される錯体化合物に対する配位子Lの当量には特に限定は無いが、一般的に配位子Lは分子量が大きく粘性も高いため、通常は0.1当量以上であり、好ましくは0.2当量以上であり、より好ましくは1当量以上である。また、配位子Lの当量は、通常50当量以下であり、好ましくは30当量以下であり、より好ましくは10当量以下である。
 配位子の添加方法にも制限は無く、反応開始時に全量を反応系内に存在させてもよく、また、反応途中に全量を一括または分割して投入することや、反応系内に連続して供給することもできる。
 <銀(I)塩>
 本発明に係る製造方法にて用いられる銀(I)塩には、とくに制限は無いが、反応系内にてAg(I)イオンを遊離しうるものが好ましいため、塩化銀、臭化銀などのハロゲン化銀および酸化銀ならびに硫化銀は除かれる。
 本発明で用いられる銀(I)塩の例としては、有機酸の銀塩として、酢酸銀、トリフルオロ酢酸銀、ギ酸銀、オクタン酸銀、2-エチルヘキサン酸銀、安息香酸銀、ピコリン酸銀、乳酸銀、クエン酸銀、シクロヘキサン酪酸銀、パラトルエンスルホン酸銀、メタンスルホン酸銀、トリフルオロメタンスルホン酸銀、N,N-ジメチルジチオカルバミド酸銀、ビス(トリフルオロメタンスルホニル)イミド酸銀、トリフルオロメタンチオラート銀などが挙げられる。また、無機酸の銀塩として、炭酸銀、硝酸銀、硫酸銀、亜硝酸銀、塩素酸銀、過塩素酸銀、リン酸銀、シアン化銀、クロム酸銀、タングステン酸銀、ヘキサフルオロひ酸銀、ほう酸銀、ヘキサフルオロアンチモン銀、ヘキサフルオロリン酸銀などが挙げられる。
 L IrXで表される錯体化合物に対する銀(I)塩の当量には特に限定は無いが、銀(I)塩は一般的に固体であり反応系に添加すると粘性を高くするため、通常は0.1当量以上であり、好ましくは0.2当量以上であり、より好ましくは1当量以上である。また、銀(I)塩の当量は50当量以下であり、好ましくは30当量以下であり、より好ましくは10当量以下である。
 銀(I)塩の添加方法にも制限は無く、反応開始時に全量を反応系内に存在させてもよく、反応途中に全量を一括または分割して投入することや、反応系内に連続して供給することもできる。
 <有機塩基>
 本発明に係る製造方法で用いられる有機塩基は、炭素数3以上60以下の有機アミン類、少なくとも2位および6位に脂肪族置換基を有する炭素数3以上60以下のピリジン類等が挙げられる。
 炭素数3以上60以下の有機アミン類の例としては、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-ブチルアミン、トリ-n-オクチルアミン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン、N,N-ジメチルアニリンなどが挙げられる。
 少なくとも2位および6位に脂肪族置換基を有する炭素数3以上60以下のピリジン類において用いられる脂肪族置換基の種類としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、n-オクチル基、ノルボルニル基、アダマンチル基などが挙げられる。塩基性と求核性のバランスを取るため、好ましくは炭素数10以下、より好ましくは炭素数6以下の置換基が用いられる。これらの例としては、2,6-ルチジン、2,4,6-トリメチルピリジン、2,6-ジ-tert-ブチルピリジンなどが挙げられる。
 反応に悪影響を及ぼさないためには、イリジウム原子に配位しにくく、嵩高い塩基であることが好ましいため、トリエチルアミン、ジイソプロピルエチルアミン、2,6-ルチジンあるいは2,6-ジ-tert-ブチルピリジンが好ましく、塩基性と求核性のバランスが高いジイソプロピルエチルアミンがさらに好ましい。
 L IrXで表される錯体化合物に対する有機塩基の当量には特に限定は無いが、通常は0.1当量以上であり、好ましくは0.2当量以上であり、より好ましくは0.5当量以上である。また有機塩基の当量は、通常50当量以下であり、好ましくは30当量以下であり、より好ましくは10当量以下である。これらの範囲であることで、反応を阻害せず効果を奏する傾向にある。
 有機塩基の添加方法にも制限は無く、反応開始時に全量を反応系内に存在させてもよく、反応途中に全量を一括または分割して投入することや、反応系内に連続して供給することもできる。
 <溶媒>
 L IrXで表される錯体化合物(原料L IrX)と配位子Lとの反応は、無溶媒で実施することも可能であるし、溶媒を用いて実施することも出来る。溶媒の種類は反応に悪影響を及ぼさない限り種類に限定はない。用いる原料L IrXや配位子Lをよく溶解させる種類の溶媒が好ましく用いられる。溶媒は単独で用いてもよいし、複数種を混合して用いてもよい。
 溶媒の種類は特に限定されず、公知の溶媒を用いることができる。例えば、シクロヘキシルベンゼン、ジグリム、トルエン等が挙げられる。
 溶媒の添加方法にも制限は無い。反応当初から全量を用いてもよく、反応途中に全量を一括または分割して投入することや、反応系内に連続して供給することもできる。さらに、反応途中で溶媒を気化させ、反応系内から溶媒を除去しながら反応を行うこともできる。
 <原料L IrXと配位子Lとの反応条件>
 (温度)
 反応温度は用いる反応原料等の組み合わせにより異なるが、通常25℃以上であり、好ましくは50℃以上、より好ましくは100℃以上である。また、通常300℃以下であり、好ましくは270℃以下、より好ましくは250℃以下である。これらの温度範囲であることで、錯体の分解などの望まない副反応を抑制しながら、反応を進行させることができる傾向にある。
 (圧力)
 反応圧力にはとくに制限は無い。通常大気圧下で実施されるが、反応途中で溶媒を連続的に除去するときの除去効率を上げる場合には減圧下で行うことが出来るし、逆に、溶媒などの揮発を抑えて安定した粘度において効率よく撹拌を行う場合には加圧下で反応させることもできる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。式中、Meはメチル基、Etはエチル基、Phはフェニル基、Acはアセチル基、Tfはトリフルオロメチルスルホニル基、iPrはイソプロピル基、S-Phosは2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル、DMSOはジメチルスルホキシド、THFはテトラヒドロフラン、NBSはN-ブロモスクシンイミド、DMEはジメチルエーテル、PPAはポリリン酸、CHBはシクロへキシルベンゼンをそれぞれ意味する。
 なお、以下の実施例および比較例において、反応はすべて窒素気流下で行われた。また、液体クロマトグラフィー(LC)の測定条件は以下のとおりである。
 装置:株式会社島津製作所製LC-20Aシステム
 カラム:GLサイエンス株式会社製イナートシルODS-3(3μm、4.6×25cm)、
 溶離液組成:アセトニトリル/テトラヒドロフラン
 溶離液流速:0.8ml/min
 オーブン温度:40℃
 検出:UV254nm
[合成例1]
<化合物1の合成>
Figure JPOXMLDOC01-appb-C000028
 300mLのナスフラスコに、5-アミノ-2-クロロ-4-イソニコチン酸(10.1g、コンビブロックス社製OR-6918)と脱水ジメチルホルムアミド(50mL)を入れ、氷水浴(1℃)に浸し、さらにジイミダゾールカルボニル(11.2g)を投入し撹拌した。その15分後、ジメチルホルムアミド(20mL)を加え、ジメチルホルムアミド(20mL)でリンスした後、室温でさらに3時間撹拌した。この混合物を、N,O-ジメチルヒドロキシルアミン塩酸塩(8.4g)とジイソプロピルエチルアミン(15mL)のジメチルホルムアミド溶液(20mL)に加え、80℃で3時間撹拌した。その後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(中性ゲル550mL、ジクロロメタン、次いでジクロロメタン/メタノール=95/5)により精製し、上記式で表される中間体1を9.7g得た。
Figure JPOXMLDOC01-appb-C000029
 500mLのナスフラスコに、中間体1(9.7g)とトルエン(100mL)を入れ、減圧下で水分を共沸除去した後、脱水テトラヒドロフラン(100mL)を加え、氷水浴(1℃)に浸した。これに、予め300mLの四つ口フラスコに、削り状マグネシウム(2.4g)を入れ、撹拌しながら2-ブロモナフタレン(16.7g)を含む脱水テトラヒドロフラン(50mL)溶液を30分かけて滴下し、その後90分間撹拌して、調製したグリニャール試薬液を5分間かけて加え、さらに室温下で90分間撹拌した。ここに、飽和塩化アンモニウム水溶液(40mL)を加えた後、ジクロロメタン(500mL)と水(300mL)と炭酸ナトリウム(1g)を加え分液洗浄し、油相を硫酸マグネシウムで乾燥し、さらに濃縮後、シリカゲルカラムクロマトグラフィー(ゲル400mL、ジクロロメタン、次いでジクロロメタン/メタノール=95/5)で精製し、上記式で表される中間体2を10.8g得た。
Figure JPOXMLDOC01-appb-C000030
 1Lのナスフラスコに、3-(n-オクチル)フェニルボロン酸(33.5g)と3-ブロモアセトフェノン(26.3g)を入れ、さらに窒素バブリングしたトルエン(500mL)、エタノール(60mL)および2Mリン酸三カリウム水溶液(190mL)を加え、オイルバス(100℃)中で6時間撹拌し還流した。室温まで冷却後、水相を除去し減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=2/8)で精製し、上記式で表される中間体3を35.0g得た。
Figure JPOXMLDOC01-appb-C000031
 1Lナスフラスコに中間体2(10.8g)と中間体3(13.3g)を入れ、さらに水酸化カリウム(9.8g)のエタノール(120mL)溶液を加えてオイルバス(90℃)で還流しながら2.5時間撹拌した。その後、飽和塩化アンモニウム水溶液(40mL)を加え、ジクロロメタン(500mL)と水(500mL)で分液洗浄した。油相を硫酸マグネシウムで乾燥後溶媒を減圧除去して得られた残渣を、シリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=9/1、次いで同比=1/0)で精製し、上記式で表される中間体4を5.9g得た。
Figure JPOXMLDOC01-appb-C000032
 1Lナスフラスコに、中間体4(5.9g)、2,6-ジメチルフェニルボロン酸(5.1g)、リン酸三カリウム(4.6g)、酢酸パラジウム(0.13g)、2-ジシクロヘキシルホスフノ-2’,6’-ジメトキシビフェニル(0.46g、ジョンソン・マッセイ社製S-Phos)及びトルエン(250mL)を入れ、オイルバス90℃で1時間撹拌し、その後105℃で2.5時間撹拌した後、水酸化バリウム8水和物(2.6g)を加えさらに3.5時間撹拌した。室温まで冷却後、水(500mL)で分液洗浄し、油相を硫酸マグネシウムで乾燥後、減圧濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(ゲル300mL、ジクロロメタン/酢酸エチル=1/0、次いで同比=95/5)で精製し、上記式で表される中間体5を5.5g得た。
Figure JPOXMLDOC01-appb-C000033
 1Lナスフラスコに、2-(3-ブロモフェニル)ベンゾチアゾール(31.7g)、B-[1,1’:3’,1’’-テルフェニル]-3-イルボロン酸(33.7g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)を入れ、さらに窒素バブリングしたトルエン(350mL)、エタノール(100mL)および2Mリン酸三カリウム水溶液(200mL)を加え100℃で4時間撹拌した。室温まで冷却後、水相を除去し溶媒を除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=3/7、次いで同比=5/5)で精製し、上記式で表される中間体6を45.9g得た。
Figure JPOXMLDOC01-appb-C000034
 100mLナスフラスコに、中間体5(4.3g)、塩化イリジウムn水和物(1.3g、イリジウム含量52%)、2-エトキシエタノール(30mL)および水(10mL)を加え、160℃のオイルバスで撹拌した。途中、蒸発する溶媒は還流せず留去した。留去した溶媒量は反応終了時45mLであった。3時間後に2-エトキシエタノール(30mL)を加えた。合計9.5時間反応させた。反応終了後反応液を水(200mL)に投入し、ろ取した析出固体をシリカゲルカラムクロマトグラフィー(ゲル150mL、ジクロロメタン/酢酸エチル=95/5、次いで同比=3/7)で精製し、上記式で表される中間体7を3.8g得た。
Figure JPOXMLDOC01-appb-C000035
 100mL四つ口フラスコに、中間体7(4.8g)、中間体6(7.0g)、トリフルオロメタンスルホン酸銀(2.5g)およびジグリム(40mL)を入れ、135℃のオイルバスに浸し撹拌した。反応開始から1、2.5、3、6、6.5、7.5及び8.5時間後にジイソプロピルエチルアミン(それぞれ60、140、140、70、70、70及び70μL)を入れた。反応を9.5時間で停止させ、冷却後溶媒を減圧除去して得た残渣を、シリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=6/4、次いで同比=5/5、次いで同比=6/4)で精製することにより、上記式で表される化合物1を0.58g得た。
[合成例2(実施例B1)]
<化合物2の合成>
Figure JPOXMLDOC01-appb-C000036
 300mLのナスフラスコに、3-アミノー2-ピリジンカルボン酸(12.6g、フルオロケム社製)と脱水ジメチルスルホキシド(100mL)を入れ、氷水浴(1℃)に浸し、さらにジイミダゾールカルボニル(16.7g)を投入し撹拌した。その15分後、ジメチルスルホキシド(2mL)でリンスした後、室温でさらに5時間撹拌した。この混合物に、N,O-ジメチルヒドロキシルアミン塩酸塩(13.4g)とジイソプロピルエチルアミン(24mL)の混合物を加え、室温で6時間撹拌し、その後終夜室温で静置した。その後、減圧濃縮し、残渣を水とジクロロメタンで分液洗浄した。油相を溶媒除去した後、シリカゲルカラムクロマトグラフィー(中性ゲル600mL、ジクロロメタン、次いでジクロロメタン/メタノール=1000/10)により精製し、上記式で表される中間体8を11.8g得た。
Figure JPOXMLDOC01-appb-C000037
 500mLのナスフラスコに、中間体8(11.8g)と脱水テトラヒドロフラン(140mL)を加え、氷水浴(1℃)に浸した。これに、予め300mLの四つ口フラスコに、削り状マグネシウム(4.8g)を入れ、撹拌しながら2-ブロモナフタレン(40.4g)を含む脱水テトラヒドロフラン(70mL)溶液を50分かけて滴下しその後90分間撹拌して調製したグリニャール試薬液を、5分間かけて加え、さらに脱水テトラヒドロフランを60mL加え、室温下で2.5時間撹拌した。ここに、飽和塩化アンモニウム水溶液(400mL)を加えた後、ジクロロメタン(200mL)と水(300mL)と炭酸ナトリウム(10g)を加え分液洗浄し、油相を硫酸マグネシウムで乾燥し、さらに濃縮後、シリカゲルカラムクロマトグラフィー(ゲル1500mL、ジクロロメタン/メタノール=100/1、次いで同比=100/2)で精製し、上記式で表される中間体9を13.1g得た。
Figure JPOXMLDOC01-appb-C000038
 1Lナスフラスコに、中間体9(13.1g)とジクロロメタン(200mL)を入れ、室温でN-ブロモスクシンイミド(10.4g)を投入し室温で撹拌した。50分後ジクロロメタン200mLを追加しさらに40分撹拌した。水500mLとジクロロメタン500mLで分液洗浄し、硫酸マグネシウムで乾燥し、減圧下溶媒除去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/メタノール=100/1でゲルを積み、ジクロロメタンのみで展開した)で精製し、上記式で表される中間体10を14.7g得た。
Figure JPOXMLDOC01-appb-C000039
 1Lナスフラスコに、中間体10(5.5g)、2,6-ジメチルフェニルボロン酸(3.8g)、2Mリン酸三カリウム水溶液(50mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.86g)、ジオキサン(70mL)及びトルエン(70mL)を入れ、オイルバス105℃で2.5時間撹拌した。室温まで冷却後、溶媒を減圧除去し、得られた残渣をジクロロメタン(300mL)と水(300mL)で分液洗浄し、油相を硫酸マグネシウムで乾燥後、減圧濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタン/メタノール=100/1でゲルを積み、ジクロロメタンのみで展開した)で精製し、上記式で表される中間体11を5.7g得た。
Figure JPOXMLDOC01-appb-C000040
 1Lナスフラスコに中間体11(6.8g)と中間体3(7.7g)を入れ、さらに水酸化カリウム(6.1g)のエタノール(73mL)溶液を加えてオイルバス(90℃)で還流しながら3時間撹拌し、さらにオイルバスの温度を100℃として7時間撹拌した。その後、溶媒を減圧除去し、残渣をジクロロメタン(1L)と水(1L)で分液洗浄した。油相を硫酸マグネシウムで乾燥後溶媒を減圧除去して得られた残渣を、シリカゲルカラムクロマトグラフィーを2回(ゲル500mL、ジクロロメタンのみで展開したあと、ゲル600mL、トルエンのみ4L、次いでジクロロメタンのみ1L)で精製し、上記式で表される中間体12を6.6g得た。
Figure JPOXMLDOC01-appb-C000041
 1Lナスフラスコに、中間体6(28.9g)、塩化イリジウムn水和物(10.7g、フルヤ金属製、イリジウム含量52%)に、2-エトキシエタノール(0.7L)および水(60mL)を加え、9時間還流撹拌した。析出物をろ過して得たケーキの半分量を500mLのナスフラスコに入れ、3,5-ヘプタンジオン(7.4g)、炭酸カリウム(10.2g)および2-エトキシエタノール(250mL)を加え、8時間還流撹拌した。室温まで冷却後、ろ過した液の溶媒を減圧除去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタンで展開)で精製したところ、上記式で表される中間体13を14.9g得た。
Figure JPOXMLDOC01-appb-C000042
 蒸留された溶媒を抜くための側管付きジムロートを備えた100mLナスフラスコに、中間体12(3.78g)と中間体13(4.49g)とトリフルオロメタンスルホン酸銀(I)(2.17g)とトルエン(4mL)を入れ、225℃のオイルバスで1時間反応させた。反応開始10分で溶媒はすべて留去された。反応開始1.5時間で目的物のLC面積百分率値が2%しか見られなかったので、反応を止め、カラムクロマトグラフィー(ゲル600mL、トルエンのみで展開)で精製し4.46g回収した。
 これに再び中間体13(3.57g)とトリフルオロメタンスルホン酸銀(I)(1.40g)およびジグリム(2mL)を加え、オイルバスを220℃として撹拌した。途中、ジイソプロピルエチルアミンを、105分後に300μL、125分後に200μL、165分後に150μLそれぞれ加えたところ、目的物の大幅な収率向上が高速液体クロマトグラフィー(HPLC)分析で観察された。3時間で撹拌を止め、室温まで冷却し、カラムクロマトグラフィー2回(ゲル850mL、ジクロロメタン/ヘキサン=1/1、その後ゲル600mL、トルエン/ヘキサン=1/1で展開)により、上記式で表される化合物2を0.70g得た。
 上記反応時間と目的物のLC面積百分率値(%)の関係を以下表1及び図3に示す。
Figure JPOXMLDOC01-appb-T000043
[合成例3]
<化合物3および4の合成>
Figure JPOXMLDOC01-appb-C000044
 1Lナスフラスコに中間体2(6.6g)と2-アセチルチオフェン(3.3g)を入れ、さらに水酸化ナトリウム(28g)のエタノール(95mL)溶液を加えてオイルバス(80℃)で還流しながら5.5時間撹拌した。その後、水250mLを加え、析出物をろ過し、水200mLおよびエタノール20mLで3回洗浄し乾燥させたところ、上記式で表される中間体14を5.4g得た。
Figure JPOXMLDOC01-appb-C000045
 1Lナスフラスコに、2,5-ジブロモ-m-キシレン(14.1g)、m-n-オクチルフェニルボロン酸(12.8g)、2Mリン酸三カリウム水溶液(80mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.98g)、エタノール(30mL)及びトルエン(90mL)を入れ、オイルバス105℃で1.5時間撹拌した。室温まで冷却後、水相を除去し、溶媒を減圧除去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ヘキサンのみで展開)で精製し、上記式で表される中間体15を18.5g得た。
Figure JPOXMLDOC01-appb-C000046
 300mL四つ口フラスコに、削り状マグネシウム(1.4g)と乾燥テトラヒドロフラン(10mL)およびヨウ素(14mg)を入れ撹拌した。その後、中間体15(18.5g)の乾燥テトラヒドロフラン(30mL)溶液を50分かけて室温で滴下した。その後90分撹拌した。この反応液を、別の1Lナスフラスコにほう酸トリメチル(22mL)と乾燥テトラヒドロフラン(180mL)を入れて内温をー30℃としたものに35分かけて滴下した。その後50分かけて室温まで昇温したあと、57℃のオイルバスで2時間撹拌した。その後、35%塩酸22mLを水130mLで希釈した液を加え、酢酸エチル(150mL1回と100mL2回)で抽出し、ブラインで洗浄した。酢酸エチルを減圧除去した残渣をシリカゲルカラムクロマトグラフィー(400mL、酢酸エチル/ヘキサン=1/9、次いで同比=1/1、その後メタノールのみ)で精製し、上記式で表される中間体16を12.6g得た。
Figure JPOXMLDOC01-appb-C000047
 1Lナスフラスコに、中間体14(11.8g)、中間体16(12.6g)、水酸化バリウム8水和物(17.5g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.6g)、ジメトキシエタン(270mL)及び水(100mL)を入れ、オイルバス90℃で2時間撹拌した。その後、酢酸パラジウム(0.24g)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(1.2g)のテトラヒドロフラン(100mL)溶液を加え、さらに2時間撹拌した。室温まで冷却後、溶媒を減圧除去し、得られた残渣をジクロロメタン(500mL)と水(200mL)で分液洗浄し、油相を硫酸マグネシウムで乾燥後、減圧濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(ゲル300mL、ジクロロメタン/酢酸エチル=1/0、次いで同比=9/1)で精製し、上記式で表される中間体17を7.3g得た。
Figure JPOXMLDOC01-appb-C000048
 500mLのセパラブルフラスコに、2-チオフェンカルボン酸(21.9g)、2-アミノチオフェノール(20.5g)およびポリリン酸(41.0g)を入れ、150℃のオイルバスに移し、メカニカルスターラーで8時間撹拌した。その後水(500mL)およびジクロロメタン(500mL)で分液洗浄し、硫酸マグネシウム(50mL)で油相を乾燥し、溶媒を減圧除去して得た残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=4/6)で精製し、上記式で表される中間体18を31.5g得た。
Figure JPOXMLDOC01-appb-C000049
 100mLナスフラスコに、中間体17(6.2g)、塩化イリジウムn水和物(1.7g、イリジウム含量52%)、2-エトキシエタノール(30mL)および水(5mL)を加え、145℃のオイルバスで撹拌した。途中、蒸発する溶媒は還流せず留去した。留去した溶媒量は反応終了時10mLであった。4.5時間後に2-エトキシエタノール(2mL)とジイソプロピルエチルアミン(0.86mL)を加えた。合計8.5時間反応させた。反応終了後反応液を水(150mL)に投入し、ろ取した析出固体をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/酢酸エチル=1/0、次いで同比=1/1)で精製し、上記式で表される中間体19を4.7g得た。
Figure JPOXMLDOC01-appb-C000050
 100mL四つ口フラスコに、中間体19(4.7g)、中間体18(3.3g)、トリフルオロメタンスルホン酸銀(2.3g)およびジグリム(30mL)を入れ、135℃のオイルバスに浸し撹拌した。反応開始1.5、2.5および3.5時間後にジイソプロピルエチルアミンを(それぞれ550μL)入れた。反応を5.5時間で停止させ、冷却後溶媒を減圧除去して得た残渣を、シリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタン/ヘキサン=1/1)で精製し、上記式で表される化合物3および化合物4の混合物を得た。さらにこれらを逆相ODSシリカゲルカラムクロマトグラフィーで分離精製することにより、化合物3を0.5g、化合物4を1.5gそれぞれ得た。
[実施例A1]
 本発明のイリジウム錯体化合物である化合物1について、以下の方法で、発光量子収率、および最大発光波長の測定を行なった。
<発光量子収率の評価>
 化合物1を、室温下、2-メチルテトラヒドロフラン(2MeTHF)(アルドリッチ社製、脱水、安定剤非添加)に溶解し、1×10-5mol/lの溶液を調製した。この溶液をテフロン(登録商標)コック付きの石英セルに入れ、窒素バブリングを20分以上行い、室温で絶対量子収率を測定した。表2に結果を示す。
 なお、発光量子収率(PL量子収率)の測定には、以下の機器を用いた。
装置:浜松ホトニクス社製 有機EL量子収率測定装置C9920-02
光源:モノクロ光源L9799-01
検出器:マルチチャンネル検出器PMA-11
励起光:380nm
<最大発光波長の測定>
 化合物1を、常温下で、2-メチルテトラヒドロフランに、濃度1×10-4mol/L以下で溶解させた溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)でりん光スペクトルを測定した。得られたりん光スペクトル強度の最大値を示す波長を、最大発光波長とした。
[実施例A2~A4、比較例A1~A3]
 実施例A1において、化合物1に代えて化合物2~4または以下に示す化合物D-3、化合物D-5、化合物D-9または化合物D-10を用いた他は同様に溶液を調製し、発光量子収率、および最大発光波長を測定した。結果を表2に示す。なお、発光量子収率は、比較例A1の値を1とした相対値で示した。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-T000052
 表2をグラフにしたものを図2に示す。実施例A1の本発明のイリジウム錯体化合物は、最大発光波長が650nmであり、比較例A1~A3に比べ、明らかに長波長であった。また、実施例A1は、図2において、比較例A1と比較例A2のデータを結んだ線の延長線が示す650nmの時(実施例A1の極大波長)の量子効率よりも高い量子収率を示した。本発明の化合物は、比較例A1および比較例A2の最大発光波長と量子収率の直線関係から外れた高い量子収率を示しているものと言える。
<有機電界発光素子の作製>
 図1に示す構造を有する有機電界発光素子を以下の方法で作製した。ただし、図1における正孔阻止層6及び電子注入層8は形成しなかった。
[実施例A5]
 ガラス基板1の上に、インジウム・スズ酸化物(ITO)透明導電膜を70nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。このITOは、透明電極2として機能する。
 次に、下の構造式(P-1)に示すアリールアミンポリマー、構造式(A-1)に示す4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸ブチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を下記条件で陽極上にスピンコートにより成膜して、膜厚40nmの正孔注入層3を得た。
Figure JPOXMLDOC01-appb-C000053
<正孔注入層形成用塗布液>
 溶剤:安息香酸ブチル
 塗布液濃度:P-1 2.0質量%
      :A-1 0.4質量%
<正孔注入層3の成膜条件>
 スピンコート雰囲気:大気中
 加熱条件:大気中、240℃、1時間
 次に、下記に示す構造を有する化合物(P-2)を含有する正孔輸送層形成用塗布液を調製し、下記の条件でスピンコートにより成膜して、加熱により重合させることにより膜厚25nmの正孔輸送層4を形成した。
Figure JPOXMLDOC01-appb-C000054
<正孔輸送層形成用塗布液>
 溶剤:フェニルシクロヘキサン
 塗布液濃度:2.0質量%
<成膜条件>
 スピンコート雰囲気:乾燥窒素中
 加熱条件:230℃、30分間(乾燥窒素下)
 次に、発光層を形成するにあたり、電荷輸送材料として、以下に示す、有機化合物(H-1)及び有機化合物(H-2)を用い、発光材料として、イリジウム錯体化合物(化合物1)を用いて下記に示す組成に従ってイリジウム錯体化合物含有組成物を調製し、以下に示す条件で正孔輸送層上にスピンコートすることにより膜厚84nmの発光層を得た。
Figure JPOXMLDOC01-appb-C000055
<発光層形成用塗布液>
 溶剤:フェニルシクロヘキサン 1547重量部
 発光層組成:H-1 30重量部
       H-2 70重量部
       化合物1 20重量部
<成膜条件>
 スピンコート雰囲気:乾燥窒素中
 加熱条件:120℃×20分(乾燥窒素下)
 ここで、発光層までを成膜した基板を、真空蒸着装置内に移し、下記に示す構造を有する有機化合物(ET-1)とLiqの2:3混合物を真空蒸着法にて蒸着速度を0.8~1.0Å/秒の範囲で制御し、発光層5の上に積層させ、膜厚30nmの電子輸送層7を形成した。正孔阻止層6は形成しなかった。
Figure JPOXMLDOC01-appb-C000056
 ここで、電子輸送層7までの蒸着を行った素子を別の蒸着装置に設置し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプと直交するように素子に密着させた。電子注入層8は形成しなかった。
 次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。
 引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
 窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂30Y-437(スリーボンド社製)を塗布し、中央部に水分ゲッターシート(ダイニック社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
[実施例A6]
 実施例A5において、発光層を形成する際に用いた化合物1を、化合物2に変更した以外は、実施例A3と同様にして有機電界発光素子を作製した。
[比較例A5]
 実施例A5において、発光層を形成する際に用いた化合物1を、下記式で表される化合物D-21に変更した以外は、実施例A3と同様にして有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000057
[比較例A6]
 実施例A5において、発光層を形成する際に用いた化合物1を、下記式で表される化合物D-22に変更した以外は、実施例A3と同様にして有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000058
 素子特性の結果を表3に示す。比較例の化合物はいずれも対応する実施例よりも定電流駆動下における駆動寿命が短い。このことは、比較例の錯体化合物の耐久性の低さを示唆するものである。
Figure JPOXMLDOC01-appb-T000059
[実施例B2-1]
Figure JPOXMLDOC01-appb-C000060
 25mLナスフラスコに、上記式で表される中間体20(72mg)及び中間体21(192mg、1eq)、トリフルオロメタンスルホン酸銀31mg(1eq)並びにシクロヘキシルベンゼン0.3mLを入れ、窒素置換した。オイルバス200℃で約5分間加熱撹拌後、2,6-ジ-tert-ブチルピリジン42mg(1eq)を加え、オイルバス200℃でさらに加熱撹拌することで、上記式で表される化合物20を得た。
[比較例B1および実施例B2-2]
 25mLナスフラスコに、中間体20(72mg)、中間体21(192mg、1eq)、トリフルオロメタンスルホン酸銀31mg(1eq)およびシクロヘキシルベンゼン0.3mLを入れ、窒素置換した。オイルバス200℃で約105分間加熱撹拌した。ここまでを比較例B1とする。
 さらにその直後、2,6-ジ-tert-ブチルピリジン42mg(1eq)を加え、オイルバス200℃でさらに30分間加熱撹拌した。合計135分後にLC分析を行った。これを実施例B2-2とする。
[比較例B2および実施例B2-3]
 25mLナスフラスコに、中間体20(72mg)、中間体21(192mg、1eq)、2,6-ジ-tert-ブチルピリジン42mg(1eq)およびシクロヘキシルベンゼン0.3mLを入れ、窒素置換した。オイルバス200℃で約105分間加熱撹拌した。ここまでを比較例B2とする。
 その直後、トリフルオロメタンスルホン酸銀31mg(1eq)を加え、オイルバス200℃でさらに加熱撹拌した。合計135分後にLC分析を行った。これを実施例B2-3とする。
 実施例B2-1~B2-3、比較例B1および比較例B2について、化合物20が生成する反応をLCで追跡した。結果を表4および図4にまとめた。これらの結果は、この反応において銀(I)塩と有機塩基が同時に存在させることが収率の向上にきわめて効果的であることを示している。
Figure JPOXMLDOC01-appb-T000061
[実施例B3-1]
Figure JPOXMLDOC01-appb-C000062
 25mLナスフラスコに、上記式で表される中間体22(84.5mg)及び中間体23(184mg、1eq)、トリフルオロメタンスルホン酸銀32mg(1eq)並びにシクロヘキシルベンゼン0.3mLを入れ、窒素置換した。オイルバス220℃で約5分間加熱撹拌後、2,6-ジ-tert-ブチルピリジン43mg(1eq)を加え、オイルバス220℃でさらに加熱撹拌し、上記式で表される化合物21を得た。
[比較例B3および実施例B3-2]
 25mLナスフラスコに、中間体22(84.5mg)、中間体23(184mg、1eq)、2,6-ジ-tert-ブチルピリジン43mg(1eq)およびシクロヘキシルベンゼン0.3mLを入れ、窒素置換した。オイルバス220℃で約65分間加熱撹拌した。ここまでを比較例B3とする。
 その直後、トリフルオロメタンスルホン酸銀32mg(1eq)を加え、オイルバス220℃でさらに加熱撹拌した。合計95分後と125分後にLC分析を行った。これを実施例B3-2とする。
 実施例B3-1、実施例B3-2および比較例B3について、化合物21が生成する反応をLCで追跡した。結果を表5および図5にまとめた。これらの結果は、この反応において銀(I)塩と有機塩基が同時に存在させることが収率の向上にきわめて効果的であることを示している。
Figure JPOXMLDOC01-appb-T000063
[実施例B4-1]
Figure JPOXMLDOC01-appb-C000064
 25mLナスフラスコに、中間体20(72mg)、上記式で表される中間体24(172mg、1eq)、トリフルオロメタンスルホン酸銀32mg(1.5eq)およびシクロヘキシルベンゼン0.5mLを入れ、窒素置換した。オイルバス200℃で約5分間加熱撹拌後、ジイソプロピルエチルアミン42mg(1eq)を加え、オイルバス220℃でさらに加熱撹拌し、上記式で表される化合物22を得た。
[比較例B4および実施例B4-2]
 25mLナスフラスコに、中間体20(72mg)、中間体24(172mg、1eq)、トリフルオロメタンスルホン酸銀32mg(1.5eq)およびシクロヘキシルベンゼン0.5mLを入れ、窒素置換した。オイルバス200℃で約60分間加熱撹拌した。ここまでを比較例B4とする。
 さらにその直後、ジイソプロピルエチルアミン42mg(1eq)を加え、オイルバス220℃でさらに30分間加熱撹拌した。合計90分後にLC分析を行った。これを実施例B4-2とする。
 実施例B4-1、実施例B4-2および比較例B4について、化合物22が生成する反応をLCで追跡した。結果を表6および図6にまとめた。これらの結果は、この反応において銀(I)塩と有機塩基が同時に存在させることが収率の向上にきわめて効果的であることを示している。
Figure JPOXMLDOC01-appb-T000065
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年10月5日出願の日本特許出願(特願2016-197202)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、有機電界発光素子をはじめとする有機デバイス用の材料のほか、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯、照明装置等の分野において、好適に使用することが出来る。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子

Claims (10)

  1.  下記式(1)で表されるイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)において、Irはイリジウム原子を表す。
    環Cyは炭素原子CおよびCを含む芳香環または複素芳香環を表し、
    環Cyは炭素原子Cおよび窒素原子Nを含む下記式(2)~式(5)のいずれか1で表される構造を表し、
    環Cyは炭素原子CおよびCを含む芳香環または複素芳香環を表し、
    環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表す。
    前記環Cy~環Cyがそれぞれ複数個存在する場合、それらは同一であっても異なっていてもよい。
    mは1~3の整数であり、nは0~2の整数であり、
    m+n=3である。
    ~Rはそれぞれ独立して水素原子又は置換基を表す。
    ~Rがそれぞれ複数個存在する場合、それらは同一であっても異なっていてもよい。
    a、cおよびdは、それぞれ前記環Cy、環Cyおよび環Cyに置換しうる基の最大数の整数であり、
    bは5である。]
    Figure JPOXMLDOC01-appb-C000002
  2.  前記式(1)における環Cy、環Cyおよび環Cyの環を構成する原子数がそれぞれ5以上30以下である、請求項1に記載のイリジウム錯体化合物。
  3.  前記式(1)におけるR~Rがそれぞれ独立して、水素原子、F、CN、炭素数1以上30以下の、直鎖状、分岐状もしくは環状アルキル基、炭素数5以上60以下の芳香族基、または炭素数5以上60以下の複素芳香族基である、請求項1又は2に記載のイリジウム錯体化合物。
  4.  前記式(1)における環Cyおよび環Cyが、それぞれ独立して、ベンゼン環またはナフタレン環である、請求項1乃至3のいずれか1項に記載のイリジウム錯体化合物。
  5.  前記式(1)における環Cyがイミダゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環またはナフチリジン環である、請求項1乃至4のいずれか1項に記載のイリジウム錯体化合物。
  6.  常温下、2-メチルテトラヒドロフランに濃度1×10-4mol/L以下で溶解させた溶液が示すりん光スペクトルの最大発光波長が620nm以上である、請求項1乃至5のいずれか1項に記載のイリジウム錯体化合物。
  7.  請求項1乃至6のいずれか1項に記載のイリジウム錯体化合物および有機溶剤を含有する組成物。
  8.  請求項1乃至6のいずれか1項に記載のイリジウム錯体化合物を含有する有機電界発光素子。
  9.  請求項8に記載の有機電界発光素子を有する表示装置。
  10.  請求項8に記載の有機電界発光素子を有する照明装置。
PCT/JP2017/036072 2016-10-05 2017-10-04 イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置 WO2018066583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018543929A JP7074064B2 (ja) 2016-10-05 2017-10-04 イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置
CN201780061556.3A CN109790195A (zh) 2016-10-05 2017-10-04 铱配位化合物以及含有上述化合物的组合物、有机场致发光元件、显示装置和照明装置
KR1020197009561A KR102513371B1 (ko) 2016-10-05 2017-10-04 이리듐 착체 화합물, 그리고 상기 화합물을 함유하는 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP2022078356A JP7409428B2 (ja) 2016-10-05 2022-05-11 イリジウム錯体化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197202 2016-10-05
JP2016197202 2016-10-05

Publications (1)

Publication Number Publication Date
WO2018066583A1 true WO2018066583A1 (ja) 2018-04-12

Family

ID=61831855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036072 WO2018066583A1 (ja) 2016-10-05 2017-10-04 イリジウム錯体化合物、並びに前記化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置

Country Status (5)

Country Link
JP (2) JP7074064B2 (ja)
KR (1) KR102513371B1 (ja)
CN (1) CN109790195A (ja)
TW (2) TW202413387A (ja)
WO (1) WO2018066583A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216185A1 (ja) * 2018-05-10 2019-11-14 住友化学株式会社 化合物、化合物の製造法及びそれを用いた発光材料の製造法
WO2020130133A1 (ja) * 2018-12-20 2020-06-25 三菱ケミカル株式会社 有機フォトダイオード及び赤外線cmosセンサー
WO2020145294A1 (ja) * 2019-01-10 2020-07-16 三菱ケミカル株式会社 イリジウム錯体化合物
JP2021123568A (ja) * 2020-02-06 2021-08-30 三菱ケミカル株式会社 イリジウム錯体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105055A (ja) * 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd イリジウム錯体またはその互変異性体の製造方法
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011049512A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
JP2013035822A (ja) * 2011-08-05 2013-02-21 Industrial Technology Research Inst 有機金属化合物およびそれを用いた有機エレクトロルミネセンス素子
WO2015087961A1 (ja) * 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2015530982A (ja) * 2012-08-07 2015-10-29 メルク パテント ゲーエムベーハー 金属錯体
JP2016064998A (ja) * 2014-09-24 2016-04-28 住友化学株式会社 金属錯体およびそれを用いた発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102055A (ja) * 2000-09-27 2002-04-09 Sekisui House Ltd カーテンの光透過状態比較体験機構
JP5881215B2 (ja) 2010-10-28 2016-03-09 国立研究開発法人産業技術総合研究所 トリスオルトメタル化イリジウム錯体の製造方法及びそれを用いた発光材料並びに発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105055A (ja) * 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd イリジウム錯体またはその互変異性体の製造方法
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011049512A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
JP2013035822A (ja) * 2011-08-05 2013-02-21 Industrial Technology Research Inst 有機金属化合物およびそれを用いた有機エレクトロルミネセンス素子
JP2015530982A (ja) * 2012-08-07 2015-10-29 メルク パテント ゲーエムベーハー 金属錯体
WO2015087961A1 (ja) * 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2016064998A (ja) * 2014-09-24 2016-04-28 住友化学株式会社 金属錯体およびそれを用いた発光素子

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196334A (ja) * 2018-05-10 2019-11-14 住友化学株式会社 化合物、化合物の製造法及びそれを用いた発光材料の製造法
WO2019216185A1 (ja) * 2018-05-10 2019-11-14 住友化学株式会社 化合物、化合物の製造法及びそれを用いた発光材料の製造法
CN112074524A (zh) * 2018-05-10 2020-12-11 住友化学株式会社 化合物、化合物的制造方法及使用了该化合物的发光材料的制造方法
JP7148271B2 (ja) 2018-05-10 2022-10-05 住友化学株式会社 化合物、化合物の製造法及びそれを用いた発光材料の製造法
CN113242874B (zh) * 2018-12-20 2023-12-12 三菱化学株式会社 有机光电二极管及红外cmos传感器
WO2020130133A1 (ja) * 2018-12-20 2020-06-25 三菱ケミカル株式会社 有機フォトダイオード及び赤外線cmosセンサー
CN113242874A (zh) * 2018-12-20 2021-08-10 三菱化学株式会社 有机光电二极管及红外cmos传感器
JP7400734B2 (ja) 2018-12-20 2023-12-19 三菱ケミカル株式会社 有機フォトダイオード及び赤外線cmosセンサー
JPWO2020130133A1 (ja) * 2018-12-20 2021-10-28 三菱ケミカル株式会社 有機フォトダイオード及び赤外線cmosセンサー
EP3901194A4 (en) * 2018-12-20 2022-03-02 Mitsubishi Chemical Corporation ORGANIC LIGHT DIODE AND INFRARED CMOS SENSOR
WO2020145294A1 (ja) * 2019-01-10 2020-07-16 三菱ケミカル株式会社 イリジウム錯体化合物
JP7494737B2 (ja) 2019-01-10 2024-06-04 三菱ケミカル株式会社 イリジウム錯体化合物
JP2021123568A (ja) * 2020-02-06 2021-08-30 三菱ケミカル株式会社 イリジウム錯体
JP7528458B2 (ja) 2020-02-06 2024-08-06 三菱ケミカル株式会社 イリジウム錯体

Also Published As

Publication number Publication date
TWI825002B (zh) 2023-12-11
TW202413387A (zh) 2024-04-01
JP2022097659A (ja) 2022-06-30
CN109790195A (zh) 2019-05-21
TW201827570A (zh) 2018-08-01
KR20190059284A (ko) 2019-05-30
JPWO2018066583A1 (ja) 2019-07-18
JP7074064B2 (ja) 2022-05-24
JP7409428B2 (ja) 2024-01-09
KR102513371B1 (ko) 2023-03-24

Similar Documents

Publication Publication Date Title
JP7409428B2 (ja) イリジウム錯体化合物の製造方法
JP7439891B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP7513022B2 (ja) 有機電界発光素子及び表示装置
JP7388508B2 (ja) イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
US20220069238A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
JP2020152746A (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置。
JP2014074000A (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP7047355B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
WO2023182184A1 (ja) 発光層用組成物、並びに、有機電界発光素子及びその製造方法
WO2024203548A1 (ja) イリジウム錯体化合物、組成物、有機電界発光素子の製造方法、有機電界発光素子
JP2024055580A (ja) 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543929

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009561

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858420

Country of ref document: EP

Kind code of ref document: A1