WO2018066257A1 - 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置 - Google Patents

接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置 Download PDF

Info

Publication number
WO2018066257A1
WO2018066257A1 PCT/JP2017/030365 JP2017030365W WO2018066257A1 WO 2018066257 A1 WO2018066257 A1 WO 2018066257A1 JP 2017030365 W JP2017030365 W JP 2017030365W WO 2018066257 A1 WO2018066257 A1 WO 2018066257A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
adhesive
gas barrier
barrier property
epoxy resin
Prior art date
Application number
PCT/JP2017/030365
Other languages
English (en)
French (fr)
Inventor
早苗 森川
貴浩 今村
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Priority to JP2018543773A priority Critical patent/JP6907223B2/ja
Priority to CN201780055698.9A priority patent/CN109804034B/zh
Priority to KR1020197006368A priority patent/KR102195770B1/ko
Publication of WO2018066257A1 publication Critical patent/WO2018066257A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to an adhesive composition, an adhesive layer containing the same, a support bonded body, and a gas barrier property evaluation apparatus including the support bonded body.
  • FIG. 3 is a schematic diagram schematically showing a configuration of a gas barrier property evaluation apparatus using a differential pressure method, which is shown as a reference example.
  • FIG. 4 is a schematic diagram schematically showing a configuration of a gas barrier property evaluation apparatus using an isobaric method shown as a reference example.
  • the gas barrier property evaluation apparatus 30 using the differential pressure method includes a tank 31, a sample chamber 32, a detector 33, and a vacuum pump.
  • a film 321 to be measured is supported by a support body 322 provided on the base material 323.
  • the vacuum pump 34 is operated to generate a differential pressure in the sample chamber 32. Specifically, gas is introduced at an arbitrary pressure from the tank 31 side through the film 321 in the sample chamber 32, and the vacuum pump 34 side is brought into an ultrahigh vacuum state. Then, water or gas is allowed to flow out of the tank 31, and the amount of water or gas that passes through the film 321 is detected by the detector 33.
  • the gas barrier property evaluation apparatus 40 using the isobaric method includes a tank 41, a sample chamber 42, and a detector 43.
  • a film 421 to be measured is supported by a support body 422 provided on the base material 423.
  • the sample chamber 42 is kept at normal pressure, and water or gas is allowed to flow out of the tank 41, and the amount of water or gas that passes through the film 421 is detected by the detector 43. Detect with.
  • the film is not damaged unlike the gas barrier property evaluation apparatus 30 (see FIG. 3) using the differential pressure method.
  • the gas barrier property evaluation device 40 has a problem that it takes a longer time for measurement and evaluation than the gas barrier property evaluation device 30.
  • the gas barrier property evaluation apparatuses shown in Patent Documents 1 and 2 are disclosed. All of these gas barrier property evaluation apparatuses are configured to fix the base material and the support in the sample chamber using an adhesive, and examples of the adhesive used at that time include beeswax. Yes.
  • the temperature in the sample chamber may be raised to, for example, about 80 ° C. to 130 ° C. to remove moisture in the sample chamber. Therefore, the adhesive used for the gas barrier property evaluation apparatus is required to have heat resistance and heat cycle resistance. However, when beeswax is used as an adhesive, it cannot be said that heat resistance is sufficient.
  • a commonly used thermoplastic adhesive such as polyester (such as PET and PA), acrylic adhesive, and / or cyanoacrylate adhesive is used as the adhesive.
  • a phenol novolac type epoxy compound Patent Document 3
  • a hydrogenated phenol novolac type epoxy resin Patent Document 4
  • a cationic polymerization initiator used for electronic parts may also be used as an adhesive in a gas barrier property evaluation apparatus. Conceivable.
  • a polyester-based thermoplastic adhesive has poor coatability and must be bonded under high temperature conditions, which may cause damage to the support.
  • Acrylic adhesives are also insufficient in terms of heat resistance and adhesiveness.
  • a cyanoacrylate-based adhesive it is difficult to handle because there are many outgasses and a drying time after bonding is also required.
  • the phenol novolac type epoxy resin disclosed in Patent Document 3 is used as an adhesive, the support that can be used in the sample chamber is limited from the viewpoint of adhesiveness.
  • the amount of water or gas measured by the gas barrier property evaluation apparatus is very small, and these are easily affected by the outgas generated from the adhesive. Therefore, it is necessary to use a low outgas adhesive particularly for the gas barrier property evaluation apparatus.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is excellent in heat resistance and heat cycle resistance, is easy to handle, and contributes to low outgas, so it is also suitable for a gas barrier property evaluation apparatus. It is in providing the adhesive composition used for this.
  • the inventors of the present invention have been diligently studying an adhesive composition that can be suitably used in a gas barrier property evaluation apparatus. By combining a specific novolac type epoxy resin and a thermal cation type polymerization initiator in combination. The present inventors have found that the above problems can be solved, and have completed the present invention.
  • an adhesive composition according to an embodiment of the present invention contains a novolac type epoxy resin represented by the following formula (1) and a thermal cationic polymerization initiator represented by the following formula (2). It is.
  • n represents an integer of 0 to 10.
  • R 1 represents any one of the following groups.
  • R 2 represents any of the following groups.
  • Y is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (wherein X is substituted with at least two fluorine or trifluoromethyl groups.
  • An adhesive composition according to an embodiment of the present invention includes, as a novolak type epoxy resin, a phenol novolak type epoxy resin, a xylene novolak type epoxy resin, a dicyclopentadiene (DCPD) phenol novolak type epoxy resin, and a biphenyl novolak type epoxy resin. It is preferable to contain 1 type (s) or 2 or more types selected from the group which consists of.
  • the adhesive composition according to an embodiment of the present invention includes 90 to 99.5 parts by weight of the novolac type epoxy resin and 100 parts by weight of the thermal cationic polymerization initiator with respect to 100 parts by weight of the adhesive composition. It is preferable to contain 5 to 10 parts by weight.
  • One embodiment of the present invention also provides an adhesive for a gas barrier property evaluation apparatus containing the adhesive composition.
  • One embodiment of the present invention further provides an adhesive layer containing the adhesive composition.
  • One embodiment of the present invention further provides a support joined body including a base material, an adhesive layer laminated on the base material, and a support laminated on the adhesive layer.
  • the adhesive layer in the support bonded body is an adhesive layer according to an embodiment of the present invention.
  • One embodiment of the present invention further provides a gas barrier property evaluation apparatus including the support assembly according to one embodiment of the present invention.
  • the present invention it is excellent in heat resistance, heat cycle resistance and adhesiveness, and contributes to low outgas. Therefore, it is possible to provide an adhesive composition that can be suitably used for a gas barrier property evaluation apparatus.
  • the adhesive composition according to this embodiment (hereinafter, also simply referred to as “adhesive composition”) contains a novolac type epoxy resin and a thermal cationic polymerization initiator.
  • the novolac type epoxy resin used in this embodiment is represented by the following formula (1).
  • n represents an integer of 0 to 10, and n is preferably an integer of 0 to 5.
  • R 1 represents any one of the following groups.
  • R 1 is preferably a hydrogen atom.
  • R 2 represents any of the following groups.
  • R 2 is preferably a methylene group.
  • the novolak type epoxy resin include a phenol novolak type epoxy resin, a xylene novolak type epoxy resin, a dicyclopentadiene (DCPD) phenol novolak type epoxy resin, a biphenyl novolak type epoxy resin, and the adhesive composition. It is preferable to contain one or more selected from these resins.
  • particularly preferred novolac epoxy resins include phenol novolac type epoxy resins because they are easy to handle and have heat resistance.
  • the novolac type epoxy resin used in the present embodiment is a known compound, and in this embodiment, a commercially available product can be used.
  • the thermal cationic polymerization initiator means a polymerization initiator that generates a cationic species or a Lewis acid by heat, and is represented by the following formula (2).
  • Y is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is substituted with at least two fluorine or trifluoromethyl groups)
  • sulfonium salts for example, triphenylsulfonium boron tetrafluoride, triphenylsulfonium hexafluoride antimony, triphenylsulfonium hexafluoride arsenic, tri (4-methoxyphenyl) sulfonium hexafluoride arsenic, and diphenyl (4- Phenylthiophenyl) sulfonium arsenic hexafluoride and the like.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium antimony hexafluoride and tetrabutylphosphonium antimony hexafluoride.
  • quaternary ammonium salts include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis ( Pentafluorophenyl) borate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorohexafluorophosphate, dimethylphenyl (4-methylbenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorotetrakis (pentafluoro) Phenyl) borate, methylphenyldibenzylammonium, methylphenyldibenzylammonium hex Fluoroantimonate hexafluorophosphate, methylphenyldi
  • the thermal cationic polymerization initiator used in the present embodiment is also a known compound, and a general commercial product can be used in the present embodiment.
  • thermal cationic polymerization initiators include, for example, Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A and Sun-Aid SI-B4 (all of which are Sanshin Kagaku Kogyo). CXC1612, CXC1738 and CXC1821 (all manufactured by King Industries).
  • the novolak type epoxy resin is preferably 90 to 99.5 parts by weight, more preferably 95 to 99.5 parts by weight, and still more preferably 100 parts by weight of the adhesive composition.
  • 98 to 99 parts by weight preferably 0.5 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, and still more preferably 1 to 2 parts by weight of a thermal cationic polymerization initiator.
  • the novolak type epoxy resin and the thermal cation type polymerization initiator contained in the adhesive composition are within these ranges in that the outgas due to the adhesive composition can be sufficiently reduced.
  • the adhesive composition according to this embodiment can be prepared by simply mixing and homogenizing the above two components by a conventional method.
  • the adhesive composition may be used as it is, or may optionally be used with an additive component.
  • the adhesive composition according to this embodiment is a thermosetting epoxy resin composition excellent in heat resistance, heat cycle resistance and adhesiveness. Moreover, the adhesive composition according to this embodiment contributes to low outgassing.
  • the adhesive composition can be used alone or in combination with other additive components, for example, as an adhesive for a gas barrier property evaluation apparatus used in a gas barrier property evaluation apparatus described later.
  • Examples of known additive components that can be blended into the adhesive for gas barrier property evaluation apparatus include a curing accelerator, a filler, and a phosphorus compound.
  • examples of the curing accelerator include triphenylphosphine, imidazole, aliphatic amine, and thermosetting accelerators such as tertiary and secondary amines.
  • examples of the filler include spherical silica, talc, and aluminum oxide. Further, examples of the filler include phosphorus compounds.
  • This adhesive for gas barrier property evaluation apparatus may be used with the adhesive composition as it is, or by simply mixing and homogenizing the adhesive composition and the above-described additive components by a conventional method. What is necessary is just to prepare.
  • the adhesive layer according to this embodiment contains the above-described adhesive composition.
  • the method for forming the adhesive layer is not particularly limited, and first, the adhesive composition may be applied to a substrate or the like, and then, for example, heat treatment may be performed.
  • the adhesive layer refers to a state after the adhesive composition is cured by heat treatment or the like.
  • the amount of the adhesive composition applied to the base material when forming the adhesive layer is not particularly limited, but is preferably 50 to 200 g / m 2 , more preferably 60 to 150 g / m 2 , and still more preferably. Is 80 to 100 g / m 2 .
  • the thickness of the adhesive layer is not particularly limited, but is preferably 38 to 154 ⁇ m, more preferably 46 to 115 ⁇ m, and further preferably 62 to 77 ⁇ m.
  • the heating temperature for curing the adhesive composition is not particularly limited, but is preferably 60 to 150 ° C, more preferably 80 to 120 ° C, and further preferably 80 to 100 ° C.
  • FIG. 1 is a schematic view schematically showing the configuration of the support bonded body according to the present embodiment.
  • the support bonded body 10 includes an adhesive layer 11, a base material 12, and a support body 16.
  • the adhesive layer 11 is laminated on the base material 12, and the support 16 is laminated on the adhesive layer 11.
  • the support bonded body 10 supports, for example, the film 17.
  • a punching metal 15 for preventing deformation of the support 16 is joined to the support joined body 10 by welding to the base 12.
  • the support bonded body 10 may be configured not to include the punching metal 15.
  • the constituent materials of the substrate 12 and the support 16 and the shape thereof are not particularly limited.
  • the substrate 12 is SUS. It is preferable that it is formed from metals, such as.
  • the support 16 is preferably formed of a film such as polyimide (PI), polyamide (PA), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).
  • the thickness of the film is not particularly limited, but is preferably 25 to 200 ⁇ m, more preferably 80 to 150 ⁇ m, and further preferably 100 to 125 ⁇ m.
  • the support bonded body 10 is obtained, for example, by applying the above-described adhesive composition on the base material 12 and further laminating the support body 16 thereon, and then curing the adhesive composition. It is done.
  • FIG. 2 is a schematic diagram schematically showing a configuration of a gas barrier property evaluation apparatus including the support assembly according to the present embodiment. Note that members having the same functions as those already described are denoted by the same reference numerals and description thereof is omitted.
  • the gas barrier property evaluation apparatus 20 is an apparatus for measuring moisture permeability such as water vapor of a film or gas permeability such as oxygen, and includes a support assembly 10, a tank 21, and a sample. A chamber 22, a detector 23, and a vacuum pump 24 are provided.
  • the support bonded body 10 is provided in the sample chamber 22, and a measurement film 17 is placed on the support bonded body 10.
  • Examples of the film 17 used in the gas barrier property evaluation apparatus 20 include an organic EL barrier film and a food film.
  • a differential pressure is generated in the sample chamber 22 by the vacuum pump 24. Then, gas is introduced at an arbitrary pressure from the tank 21 side through the film 17, and the vacuum pump 24 side is brought into an ultrahigh vacuum state. Then, moisture or gas flows out of the tank 21 into the sample chamber 22, and the amount of moisture or gas that has passed through the film 17 is detected by the detector 23.
  • the adhesive layer 11 included in the support bonded body 10 contains an adhesive composition having excellent heat resistance and thermal cycle characteristics. Therefore, for example, even if the sample chamber 22 is raised to a high temperature of, for example, 80 ° C. to 130 ° C. for the purpose of removing moisture in the sample chamber 22, the heat resistance and thermal cycle characteristics of the adhesive layer 11 are maintained. Also, outgassing can be suppressed. Therefore, the gas barrier property evaluation apparatus 20 can efficiently measure and evaluate the permeability of the film such as moisture or gas.
  • the gas barrier property evaluation apparatus of the specific structure shown in FIG. 2 demonstrated the structure provided with the support joined body which concerns on one Embodiment of this invention
  • the support joined body which concerns on one Embodiment of this invention is In addition to the gas barrier property evaluation apparatus other than that shown in FIG.
  • the gas barrier property evaluation apparatus which can employ the support bonded body according to the embodiment of the present invention is not limited to the one using the differential pressure method and the isobaric method.
  • Epoxy resin (phenol novolac type): DIC Corporation, Epicron N-730A Epoxy resin (Bis-A type): ADEKA, Adeka Resin EP-4100 Epoxy resin (PO-added Bis-A type): ADEKA, Adeka Resin EP-4003S Acrylic resin (MMA): manufactured by Tokyo Chemical Industry Co., Ltd., methyl methacrylate epoxy resin (naphthalene paraxylene type): manufactured by Nippon Steel Chemical Co., Ltd., ESPOXY ESN-185 Epoxy resin (multifunctional type): Tetraglycidyldiaminodiphenylmethane (YH-434) manufactured by Tohto Kasei Co., Ltd.
  • Epoxy resin (hydrogenated Bis-A type): manufactured by Yuka Shell Epoxy, Epicoat 828EL Thermal cationic polymerization initiator: SI-60L, manufactured by Sanshin Chemical Co., Ltd.
  • Photocationic polymerization initiator Adeka Arcles SP-170, manufactured by ADEKA Curing agent (naphthalene paraxylene novolac resin): manufactured by Nippon Steel Chemical Co., Ltd., SN-180 Curing agent (phenol novolac resin): Sumitrite Resin PR-53195, manufactured by Sumitomo Durres Curing accelerator (triphenylphosphine): manufactured by Wako Pure Chemical Industries, Ltd., primary filler (spherical silica): manufactured by Denka Co., Ltd., FB-6S Phosphorus compound (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide): SANKO-HCA, manufactured by Sanko Chemical Co., Ltd.
  • test piece Using a doctor blade YD-3 manufactured by Yoshimitsu Seiki Co., Ltd., a coating film having a thickness of 100 ⁇ m is formed by applying each adhesive composition to Examples 1 to 3 and Comparative Examples 1 to 9 on a substrate. did. Then, film-shaped test pieces were obtained by performing the following treatments on Examples 1 to 3, Comparative Examples 1 and 2, and Comparative Examples 3 to 5.
  • Examples 1 to 3 and Comparative Examples 1 and 2 Thermosetting epoxy resin adhesive
  • the base material on which the coating film was formed was subjected to a heat treatment at 100 ° C. for 2 hours to cure the coating film to obtain a film-like test piece.
  • Test Example 1 The test shown below was done about each of the obtained test piece.
  • Outgas measurement 1 g of each of the test pieces of Examples 1 to 3 and Comparative Examples 1 to 9 described above was collected in a vial and heated in a headspace at 85 ° C. for 30 minutes in a gas chromatography Clarus 500 manufactured by Birkin Elmer. The amount of outgas was measured. The outgas amount was calculated from the total area amount of each test piece on the basis of the detection area of the test piece having a known outgas amount.
  • ⁇ Heat cycle resistance> The obtained support joined body was heated at 40 ° C. for 1 hour in a constant temperature bath DNE601 manufactured by Yamato Scientific Co., Ltd., then heated from 40 ° C. to 150 ° C. at a heating rate of 1 ° C./min. A cycle was used, and it was confirmed whether changes (wrinkles, peeling, etc.) occurred in the appearance of the sample every time one cycle was completed.
  • the adhesive composition of each example has good heat resistance, adhesiveness, and heat cycle resistance, and contributes to low outgassing. Furthermore, when judged comprehensively, it was recognized that the adhesive composition of Example 1 was the most excellent.
  • the adhesive composition of the present invention can be used as an adhesive suitably used also in a gas barrier property evaluation apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

耐熱性、熱サイクル耐性および接着性に優れ、低アウトガスに寄与することからガスバリア性評価装置用接着剤としても好適に用いられる接着剤組成物を提供する。接着剤組成物は、下記式(1)で表されるノボラック型エポキシ樹脂と下記式(2)で表される熱カチオン型重合開始剤とを含有する。

Description

接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置
 本発明は接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置に関する。
 近年、水蒸気透過性および/または酸素透過性の低い、すなわちガスバリア性の高いフィルムが様々な分野で求められている。一般に、こうしたフィルムの開発には、フィルムのガスバリア性を評価するガスバリア性評価装置が使用されている。
 ガスバリア性評価装置では、フィルムのガスバリア性の評価方法として差圧法または等圧法が採用されている。図3は、参考例として示す、差圧法を利用したガスバリア性評価装置の構成を概略的に示す模式図である。また、図4は、参考例として示す、等圧法を利用したガスバリア性評価装置の構成を概略的に示す模式図である。
 はじめに図3を参照して説明すると、差圧法を利用したガスバリア性評価装置30は、タンク31、試料チャンバー32、検出器33、および真空ポンプ34を備えている。試料チャンバー32内では、測定するフィルム321が、基材323に設けられた支持体322によって支持されている。フィルム321のガスバリア性を測定する際には、真空ポンプ34を作動して試料チャンバー32内に差圧を生じさせる。具体的には、試料チャンバー32内においてフィルム321を介してタンク31側から任意の圧力でガスを導入し、真空ポンプ34側を超高真空状態にする。それからタンク31から水またはガス等を流出させて、フィルム321を透過する水またはガス等の量を検出器33で検出する。
 しかしながら、ガスバリア性評価装置30によれば、差圧によってフィルム321に負荷がかかり、フィルム321が撓む等のダメージを受けることがある。
 次に図4を参照して説明すると、等圧法を利用したガスバリア性評価装置40は、タンク41、試料チャンバー42、および検出器43を備えている。試料チャンバー42内では、測定するフィルム421が、基材423に設けられた支持体422によって支持されている。フィルム421のガスバリア性を測定する際には、試料チャンバー42内は常圧のままで、タンク41から水またはガス等を流出させて、フィルム421を透過する水またはガス等の量を検出器43で検出する。このガスバリア性評価装置40によれば、差圧法を利用したガスバリア性評価装置30(図3参照)のようにフィルムにダメージは生じない。しかし、ガスバリア性評価装置40は、ガスバリア性評価装置30よりも測定および評価時間に長時間を要するという問題がある。
 そこでこれらのガスバリア性評価装置の問題点を解決するために、特許文献1および2に示すガスバリア性評価装置が開示されている。これらのガスバリア性評価装置は、いずれも接着剤を用いて試料チャンバー内の基材と支持体とを固着させる構成であり、その際に使用される接着剤の例としては、蜜蝋が挙げられている。
 ところで、ガスバリア性評価装置では、試料チャンバー内の温度を例えば80℃~130℃程度に上げて、試料チャンバー内の水分を除去することがある。そのため、ガスバリア性評価装置に用いられる接着剤には、耐熱性および熱サイクルによる耐性が要求される。しかしながら蜜蝋を接着剤とした場合には、耐熱性の面で十分とは言えない。
 そこで、ガスバリア性評価装置において、接着剤として、例えば一般的に使用されるポリエステル系(PETおよびPA等)等の熱可塑性接着剤、アクリル系接着剤、および/またはシアノアクリレート系接着剤等を用いることが考えらえる。また、電子部品に用いられるフェノールノボラック型エポキシ化合物(特許文献3)およびカチオン重合開始剤を使用した水素化フェノールノボラック型エポキシ樹脂(特許文献4)も、ガスバリア性評価装置において接着剤として用いることが考えられる。
日本国公開特許公報「特開2014-167465号公報(2014年9月11日公開)」 日本国公開特許公報「特開2014-167466号公報(2014年9月11日公開)」 日本国公開特許公報「特開平8-283688号公報(1996年10月29日公開)」 日本国公開特許公報「特開2006-348308号公報(2006年12月28日公開)」
 しかしながら、ガスバリア性評価装置において、ポリエステル系の熱可塑性接着剤は、塗工性が悪く、高温条件下で接着しなければならないため、支持体へのダメージが懸念される。また、アクリル系接着剤も耐熱性および接着性の面で不十分である。さらに、シアノアクリレート系接着剤の場合には、アウトガスが多く、接着後の乾燥時間も必要であるため扱い難い。また、特許文献3に開示のフェノールノボラック型エポキシ樹脂を接着剤として用いる場合には、接着性の観点から、試料チャンバー内で使用可能な支持体が制限される。
 さらには、特許文献4に開示の水素化フェノールノボラック型エポキシ樹脂を接着剤として用いる場合には、樹脂を水素化することによって当該樹脂のガラス転移温度が低くなるため、耐熱性が不十分である。
 ガスバリア性評価装置で測定される水またはガス等は微量であり、これらは接着剤から発生するアウトガスの影響を受けやすい。そのため、特にガスバリア性評価装置に対しては、低アウトガスの接着剤を用いる必要がある。
 加えて、差圧法を利用したガスバリア性評価装置の場合には、さらに接着剤に対して高い接着性が求められる。
 このようなことから、ガスバリア性評価装置においても好適に使用可能な接着剤の開発が望まれていた。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、耐熱性および熱サイクル耐性に優れ、取り扱いが容易であり、低アウトガスに寄与することからガスバリア性評価装置にも好適に使用な接着剤組成物を提供することにある。
 本発明者らは、ガスバリア性評価装置においても好適に使用できる接着剤組成物について鋭意研究を行っていたところ、特定のノボラック型エポキシ樹脂と熱カチオン型重合開始剤とを組み合わせて配合することで、前記課題を解決することができることを見出し、本発明を完成するに至った。
 すなわち本発明の一実施形態に係る接着剤組成物は、下記式(1)で表されるノボラック型エポキシ樹脂と、下記式(2)で表される熱カチオン型重合開始剤とを含有するものである。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
式(1)中、nは0~10の整数を示す。また、Rは下記のいずれかの基を示す。
Figure JPOXMLDOC01-appb-C000007
また、式(1)中、Rは下記のいずれかの基を示す。
Figure JPOXMLDOC01-appb-C000008
また、式(2)中、YはBF 、PF 、SbF 、または、(BX(ただし、Xは、少なくとも2つ以上のフッ素もしくはトリフルオロメチル基で置換されたフェニル基を表す)を対アニオンとする、スルホニウム塩、ホスホニウム塩、第4級アンモニウム塩、ジアゾニウム塩、または、ヨードニウム塩を示す。
 本発明の一実施形態に係る接着剤組成物は、ノボラック型エポキシ樹脂として、フェノールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、ジシクロペンタジエン(DCPD)フェノールノボラック型エポキシ樹脂およびビフェニルノボラック型エポキシ樹脂からなる群から選択される1種または2種以上を含有することが好ましい。
 また、本発明の一実施形態に係る接着剤組成物は、この接着剤組成物100重量部に対して、前記ノボラック型エポキシ樹脂90~99.5重量部と、前記熱カチオン型重合開始剤0.5~10重量部とを含有することが好ましい。
 本発明の一実施形態はまた、前記接着剤組成物を含有するガスバリア性評価装置用接着剤を提供する。
 本発明の一実施形態はさらに、前記接着剤組成物を含有する接着剤層を提供する。
 本発明の一実施形態はさらに、基材と、基材に積層された接着剤層と、この接着剤層に積層された支持体とを備えた支持接合体を提供する。この支持接合体における接着剤層は、本発明の一実施形態に係る接着剤層である。
 本発明の一実施形態はさらに、本発明の一実施形態に係る支持接合体を備えるガスバリア性評価装置を提供する。
 本発明によれば、耐熱性、熱サイクル耐性および接着性に優れ、低アウトガスに寄与することからガスバリア性評価装置に対しても好適に用いられる接着剤組成物を提供することができる。
本発明の実施形態に係る支持接合体の構成を概略的に示す模式図である。 本発明の実施形態に係る支持接合体を備えたガスバリア性評価装置の構成を概略的に示す模式図である。 参考例として示す、差圧法を利用したガスバリア性評価装置の構成を概略的に示す模式図である。 参考例として示す、等圧法を利用したガスバリア性評価装置の構成を概略的に示す模式図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔接着剤組成物〕
 本実施形態に係る接着剤組成物(以下、単に「接着剤組成物」ともいう)は、ノボラック型エポキシ樹脂と、熱カチオン型重合開始剤とを含有するものである。
 本実施形態で用いられるノボラック型エポキシ樹脂は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、nは0~10の整数を示し、nは0~5の整数であることが好ましい。
 また式(1)中、Rは下記に示すいずれかの基を示す。
Figure JPOXMLDOC01-appb-C000010
 式(1)中、Rは水素原子であることが好ましい。
 また、式(1)中、Rは下記のいずれかの基を示す。
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Rはメチレン基であることが好ましい。
 ノボラック型エポキシ樹脂の好ましい例としては、フェノールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、ジシクロペンタジエン(DCPD)フェノールノボラック型エポキシ樹脂およびビフェニルノボラック型エポキシ樹脂等が挙げられ、接着剤組成物は、これらの樹脂から選択される1種または2種類以上を含有することが好ましい。このうち、特に好ましいノボラックエポキシ樹脂としては、取扱いが容易でかつ耐熱性を有しているという理由から、フェノールノボラック型エポキシ樹脂を挙げることができる。
 本実施形態において用いられるノボラック型エポキシ樹脂は公知の化合物であり、本実施形態では一般の市販品を使用することができる。
 一方、熱カチオン型重合開始剤は、熱によりカチオン種またはルイス酸を発生する重合開始剤を意味するものであって、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000012
 式(2)中、Yとしては、BF 、PF 、SbF 、または、(BX(ただし、Xは、少なくとも2つ以上のフッ素もしくはトリフルオロメチル基で置換されたフェニル基を表す)を対アニオンとする、スルホニウム塩、ホスホニウム塩、第4級アンモニウム塩、ジアゾニウム塩、または、ヨードニウム塩等が挙げられる。
 このうちスルホニウム塩としては、例えば、トリフェニルスルホニウム四フッ化ホウ素、トリフェニルスルホニウム六フッ化アンチモン、トリフェニルスルホニウム六フッ化ヒ素、トリ(4-メトキシフェニル)スルホニウム六フッ化ヒ素およびジフェニル(4-フェニルチオフェニル)スルホニウム六フッ化ヒ素等が挙げられる。
 また、ホスホニウム塩としては、例えば、エチルトリフェニルホスホニウム六フッ化アンチモンおよびテトラブチルホスホニウム六フッ化アンチモン等が挙げられる。
 また、第4級アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウム、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネートヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルアニリウム四フッ化ホウ素、N,N-ジメチル-N-ベンジルピリジニウム六フッ化アンチモンおよびN,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。
 本実施形態において用いられる熱カチオン型重合開始剤も公知の化合物であり、本実施形態においては一般の市販品を使用することができる。
 この熱カチオン型重合開始剤のうち市販されているものとしては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3AおよびサンエイドSI-B4(いずれも三新科学工業社製)、CXC1612、CXC1738およびCXC1821(いずれもKing Industries社製)等が挙げられる。
 本実施形態に係る接着剤組成物は、接着剤組成物100重量部に対して、ノボラック型エポキシ樹脂を好ましくは90~99.5重量部、より好ましくは95~99.5重量部、さらに好ましくは98~99重量部含有し、熱カチオン型重合開始剤を好ましくは0.5~10重量部、より好ましくは0.5~5重量部、さらに好ましくは1~2重量部含有する。
 接着剤組成物に含有されるノボラック型エポキシ樹脂および熱カチオン型重合開始剤がこれらの範囲内であることは、接着剤組成物によるアウトガスを十分に低減できる点において好ましい。
 本実施形態に係る接着剤組成物は、慣用方法により上記した2成分を単に混合し、均一化して調製され得る。
 本実施形態では、接着剤組成物をそのままの状態で使用してもよく、さらには任意で添加剤成分を配合して使用してもよい。
 本実施形態に係る接着剤組成物は、耐熱性、熱サイクル耐性および接着性に優れた熱硬化型エポキシ樹脂組成物である。また、本実施形態に係る接着剤組成物は、低アウトガスにも寄与するものである。
 このようなことから、接着剤組成物は、単独で、あるいは他の添加物成分を配合することで、例えば後述するガスバリア性評価装置に用いられるガスバリア性評価装置用接着剤として用いることができる。
 このガスバリア性評価装置用接着剤に配合することのできる公知の添加剤成分としては、例えば硬化促進剤、充填剤およびリン化合物等を挙げることができる。
 これら添加剤成分のうち、硬化促進剤としては、トリフェニルホスフィン、イミダゾール、脂肪族アミン、ならびに、3級および2級アミン等の熱硬化促進剤を挙げることができる。また、充填剤としては、球状シリカ、タルクおよび酸化アルミニウム等を挙げることができる。さらに充填剤としては、リン化合物等を挙げることができる。これら添加剤成分は、接着剤組成物による効果が発揮される範囲内で任意に配合することができる。
 このガスバリア性評価装置用接着剤は、接着剤組成物をそのままの状態で使用してもよく、あるいは慣用方法により接着剤組成物と上記した添加剤成分とを単に混合し、均一化することによって調製すればよい。
 続いて、このような接着剤組成物を含む接着剤層について説明する。
 〔接着剤層〕
 本実施形態に係る接着剤層は、上記した接着剤組成物を含有するものである。この接着剤層を形成する方法は特に限定されず、まず接着剤組成物を基材等に塗布し、その後、例えば加熱処理を行えばよい。なお、本明細書において接着剤層は、接着剤組成物が加熱処理等によって硬化した後の状態を指すものとする。
 接着剤層を形成する際に基材に塗布する接着剤組成物の量は特に限定されないが、好ましくは50~200g/mであり、より好ましくは60~150g/mであり、さらに好ましくは80~100g/mである。
 また、接着剤層の厚さは特に限定されないが、好ましくは38~154μmであり、より好ましくは46~115μmであり、さらに好ましくは62~77μmである。
 接着剤組成物を硬化させる際の加熱温度は特に限定されないが、好ましくは60~150℃であり、より好ましくは80~120℃であり、さらに好ましくは80~100℃である。
 次に、このような接着剤層を備えた支持接合体について具体的に説明する。
 〔支持接合体〕
 図1は、本実施形態に係る支持接合体の構成を概略的に示す模式図である。図1を参照して説明すると、支持接合体10は、接着剤層11と、基材12と、支持体16とを備えている。接着剤層11は基材12に積層されており、支持体16は接着剤層11に積層されている。この支持接合体10は、例えばフィルム17を支持するものである。
 なお、本実施形態では、支持接合体10には支持体16の変形を防止するためのパンチングメタル15が、基材12に対して溶接で接合されている。しかしながら、支持接合体10は、パンチングメタル15を備えない構成であってもよい。
 本実施形態において、基材12および支持体16の構成材料およびそれの形状は特に限定されないが、例えば、支持接合体10が後述するガスバリア性評価装置に用いられる場合には、基材12はSUS等の金属から形成されていることが好ましい。一方で、支持体16は、例えばポリイミド(PI)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)およびポリエチレンナフタレート(PEN)等のフィルム等から形成されていることが好ましい。その際、フィルムの厚さは特に限定されないが、好ましくは25~200μmであり、より好ましくは80~150μmであり、さらに好ましくは100~125μmである。
 本実施形態において、支持接合体10は、例えば基材12の上に上記した接着剤組成物を塗布し、さらにその上に支持体16を積層してから接着剤組成物を硬化させることによって得られる。
 最後に、このような支持接合体を備えたガスバリア性評価装置について、具体的に説明する。
 〔ガスバリア性評価装置〕
 図2は、本実施形態に係る支持接合体を備えたガスバリア性評価装置の構成を概略的に示す模式図である。なお、既に説明した部材と同一の機能を有する部材については同一符号を付し、その説明を省略する。
 図2を参照して説明すると、ガスバリア性評価装置20は、フィルムの水蒸気等の水分透過性または酸素等のガス透過性を測定するための装置であって、支持接合体10、タンク21、試料チャンバー22、検出器23、および真空ポンプ24を備えている。
 支持接合体10は試料チャンバー22内に設けられており、支持接合体10の上には測定用のフィルム17が載置されている。なお、ガスバリア性評価装置20においては、必要に応じて、測定時におけるフィルム17の位置を安定させるために、フィルム17を押さえるための保持部18を設けてもよい。
 ガスバリア性評価装置20において用いられるフィルム17としては、例えば、有機EL用バリアフィルムおよび食品用フィルム等が挙げられる。
 フィルム17の水分またはガス等の透過性を測定する際には、真空ポンプ24によって試料チャンバー22内に差圧を生じさせる。そして、フィルム17を介してタンク21側から任意の圧力でガスを導入し、真空ポンプ24側を超高真空状態にする。それからタンク21から水分またはガス等を試料チャンバー22に流出し、フィルム17を透過した水分またはガス等の量を検出器23で検出する。
 本実施形態によれば、支持接合体10が備える接着剤層11は、耐熱性および熱サイクル特性に優れた接着剤組成物を含有するものである。そのため、例えば試料チャンバー22内の水分を除去する目的で、試料チャンバー22内を例えば80℃~130℃の高温に上げたとしても、接着剤層11の耐熱性および熱サイクル特性が維持されるとともに、アウトガスの発生も抑制することができる。したがって、ガスバリア性評価装置20によれば、フィルムの水分またはガス等の透過性を効率よく測定して評価することができる。
 なお、本実施形態では、図2に示す特定構造のガスバリア性評価装置が本発明の一実施形態に係る支持接合体を備える構成について説明したが、本発明の一実施形態に係る支持接合体は、図2に示す以外のガスバリア性評価装置の他、他の装置に対して採用してもよい。また、本発明の一実施形態に係る支持接合体を採用可能なガスバリア性評価装置は、差圧法および等圧法を利用したものに限定されるものではない。
 次に、実施例および比較例を挙げ、本発明をさらに詳細に説明する。なお、これら実施例等は何ら本発明を制約するものではない。
 〔製造例1〕
 (1)接着剤組成物の調製:
 表1に示す各成分を混合して、実施例1~3および比較例1~9の接着剤組成物を調製した。なお、各成分の配合量を示す数値の単位は重量部である。また、各成分の詳細は以下の通りである。
エポキシ樹脂(フェノールノボラック型):DIC社製、エピクロンN-730A
エポキシ樹脂(Bis-A型):ADEKA社製、アデカレジンEP-4100
エポキシ樹脂(PO付加型Bis-A型):ADEKA社製、アデカレジンEP-4003S
アクリル樹脂(MMA):東京化成工業社製、メタクリル酸メチル
エポキシ樹脂(ナフタレンパラキシレン型):新日鐵化学社製、エスポキシESN-185
エポキシ樹脂(多官能性型):東都化成社製、テトラグリシジルジアミノジフェニルメタン(YH-434)
エポキシ樹脂(水素化Bis-A型):油化シェルエポキシ社製、エピコート828EL
熱カチオン型重合開始剤:三新化学社製、SI-60L
光カチオン型重合開始剤:ADEKA社製、アデカアークルズSP-170
硬化剤(ナフタレンパラキシレンノボラック樹脂):新日鐵化学社製、SN-180
硬化剤(フェノールノボラック樹脂):住友デュレス社製、スミライトレジンPR-53195
硬化促進剤(トリフェニルホスフィン):和光純薬工業社製、一級
充填剤(球状シリカ):デンカ株式会社製、FB-6S
リン化合物(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10‐オキサイド):三光化学社製、SANKO-HCA
 (2)試験片の作製:
 ヨシミツ精機社製ドクターブレードYD-3型を用いて、実施例1~3および比較例1~9について、それぞれの接着剤組成物を基材に塗布することで、厚さ100μmの塗膜を成形した。それから、実施例1~3および比較例1,2と、比較例3~5に対しては次の処理を行うことで、フィルム状の試験片を得た。
 (実施例1~3および比較例1,2:熱硬化型エポキシ樹脂接着剤)
 塗膜を成形した基材に100℃で2時間加熱処理を行って塗膜を硬化して、フィルム状の試験片を得た。
 (比較例3~5:光硬化型エポキシ樹脂接着剤)
 塗膜を成形した基材に、ウシオ電機社製メタルハライドランプUVC-1212を用いて6000mJ/cm(365nm)を照射して、80℃で1時間加熱することによって塗膜を硬化して、フィルム状の試験片を得た。
 〔試験例1〕
 得られた試験片のそれぞれについて、以下に示す試験を行った。
 <耐熱性>
 (a)耐熱性の測定:
 ブルカー社製示差走査熱量計DSC7000Sを用いて、昇温速度10℃/minで加熱した際のDSCサーモグラムの変曲点を測定し、この変曲点をガラス転移温度とした。
 (b)評価:
 ガラス転移温度が150℃以上であれば耐熱性に「優れる:◎」、ガラス転移温度が149℃~130℃であれば耐熱性が「良好:○」、ガラス転移温度が130℃未満であれば耐熱性に「劣る:×」とし、評価結果とした。結果を表1に示す。
 <アウトガス>
 (a)アウトガスの測定:
 上記した実施例1~3および比較例1~9の各試験片1gをバイアル瓶に採取し、バーキンエルマー社製ガスクロマトグラフィーClarus500にて、ヘッドスペース内で85℃、30分間加温した後、アウトガス量を測定した。アウトガス量は、アウトガス量の既知の試験片の検出面積を基準に、各試験片の総面積量より算出した。
 (b)評価:
 アウトガス量が100ppm以下であればアウトガス量の低減効果に「優れる:◎」、101ppm~500ppm以下であればアウトガス量の低減効果が「良好:○」、500ppm超であればアウトガス量の低減効果に「劣る:×」とし、評価結果とした。結果を表1に示す。
 〔製造例2〕
 (1)接着剤組成物の調製:
 上記した製造例1と同様にして、実施例1~3および比較例1~9の接着剤組成物を調製した。
 (2)支持接合体の形成:
 それぞれの接着剤組成物を用いて基材(SUS306製)と支持体としてのフィルム(東レ・デュポン社製、厚さ125μm、ポリイミド)との接着面積が1cmになるようにして貼り合わせ、支持接合体を形成した。
 〔試験例2〕
 得られた支持接合体について、以下に示す試験を行った。
 <接着性>
 (a)破壊状態の観察:
 支持接合体に対して、島津製作所製オートグラフAGH-Hを用いて、25℃環境下、引張速度5mm/minでせん断方向に応力をかけ、その際の破壊状態を観察した。
 (b)評価:
 支持体としてのフィルムが破壊すれば、接着性が「優れる:◎」、支持体としてのフィルムが凝集し破壊すれば、接着性が「良好:○」、支持体としてのフィルムまたは基材から界面剥離が生じれば、接着性が「悪い:×」とし、評価結果とした。結果を表1に示す。
 <熱サイクル耐性>
 得られた支持接合体を、ヤマト科学社製恒温槽DNE601にて40℃1時間加熱し、次に40℃から150℃まで昇温速度1℃/minで昇温させ、150℃1時間を1サイクルとし、1サイクル終わる毎にサンプルの外観に変化(しわおよびはがれ等)が生じていないかを確認した。
 (b)評価
 サンプルの外観に変化が生じたのが、10サイクル以上であれば熱サイクル耐性が「優れる:◎」、2~9サイクルであれば熱サイクル耐性が「良好:○」、1サイクル以下であれば熱サイクル耐性が「悪い:×」とし、評価結果とした。結果を表1に示す。
 以上の結果より、各実施例の接着剤組成物であれば、耐熱性、接着性、および熱サイクル耐性が良好であり、低アウトガスにも寄与する。さらに、総合的に判断すると、実施例1の接着剤組成物が最も優れていることが認められた。
Figure JPOXMLDOC01-appb-T000013
 本発明の接着剤組成物は、ガスバリア性評価装置においても好適に用いられる接着剤として利用することができる。
 10・・・支持接合体
 11・・・接着剤層
 12・・・基材
 16・・・支持体
 17・・・フィルム
 18・・・保持部
 20・・・ガスバリア性評価装置
 21・・・タンク
 22・・・試料チャンバー
 24・・・真空ポンプ

Claims (7)

  1.  下記式(1)で表されるノボラック型エポキシ樹脂と、下記式(2)で表される熱カチオン型重合開始剤とを含有することを特徴とする接着剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    式(1)中、nは0~10の整数を示す。また、Rは下記のいずれかの基を示す。
    Figure JPOXMLDOC01-appb-C000003
    また、式(1)中、Rは下記のいずれかの基を示す。
    Figure JPOXMLDOC01-appb-C000004
    また、式(2)中、Yは、BF 、PF 、SbF 、または、(BX(ただし、Xは、少なくとも2つ以上のフッ素もしくはトリフルオロメチル基で置換されたフェニル基を表す)を対アニオンとする、スルホニウム塩、ホスホニウム塩、第4級アンモニウム塩、ジアゾニウム塩、または、ヨードニウム塩を示す。
  2.  前記ノボラック型エポキシ樹脂として、フェノールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、ジシクロペンタジエン(DCPD)フェノールノボラック型エポキシ樹脂およびビフェニルノボラック型エポキシ樹脂からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載の接着剤組成物。
  3.  前記ノボラック型エポキシ樹脂90~99.5重量部と、前記熱カチオン型重合開始剤10~0.5重量部とを含有することを特徴とする請求項1または2に記載の接着剤組成物。
  4.  請求項1~3のいずれか1項に記載の接着剤組成物を含有することを特徴とするガスバリア性評価装置用接着剤。
  5.  請求項1~3のいずれか1項に記載の接着剤組成物を含有することを特徴とする接着剤層。
  6.  基材と、
     前記基材に積層された接着剤層と、
     前記接着剤層に積層された支持体とを備えた支持接合体であって、
     前記接着剤層は、請求項5に記載された接着剤層であることを特徴とする支持接合体。
  7.  請求項6に記載の支持接合体を備えることを特徴とするガスバリア性評価装置。
PCT/JP2017/030365 2016-10-07 2017-08-24 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置 WO2018066257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018543773A JP6907223B2 (ja) 2016-10-07 2017-08-24 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置
CN201780055698.9A CN109804034B (zh) 2016-10-07 2017-08-24 粘合剂组合物及含其的粘合剂层、支撑接合体,及具备该支撑接合体的阻气性评价装置
KR1020197006368A KR102195770B1 (ko) 2016-10-07 2017-08-24 접착제 조성물 및 이를 함유하는 접착제층, 지지 접합체 및 이 지지 접합체를 구비하는 가스 배리어성 평가 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199506 2016-10-07
JP2016-199506 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018066257A1 true WO2018066257A1 (ja) 2018-04-12

Family

ID=61831736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030365 WO2018066257A1 (ja) 2016-10-07 2017-08-24 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置

Country Status (5)

Country Link
JP (1) JP6907223B2 (ja)
KR (1) KR102195770B1 (ja)
CN (1) CN109804034B (ja)
TW (2) TW201936866A (ja)
WO (1) WO2018066257A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844999B (zh) 2016-09-07 2022-02-18 株式会社杰士汤浅国际 蓄电元件和蓄电元件的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411626A (ja) * 1990-04-27 1992-01-16 Takeshi Endo 樹脂組成物、ソルダーレジスト樹脂組成物及び硬化物
JP2014031451A (ja) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp 熱カチオン発生剤組成物、熱硬化性組成物、及び異方導電性接続材料
JP2015048438A (ja) * 2013-09-03 2015-03-16 デクセリアルズ株式会社 化合物、熱硬化性樹脂組成物、及び熱硬化性シート
JP2015108090A (ja) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 化合物、熱硬化性樹脂組成物、及び熱硬化性シート
JP2015521160A (ja) * 2012-04-19 2015-07-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se スルホニウム化合物、それらの製造および使用
JP2015228485A (ja) * 2014-05-09 2015-12-17 積水化学工業株式会社 接続構造体
KR20160055376A (ko) * 2014-11-07 2016-05-18 삼성에스디아이 주식회사 술포늄 이온 함유 화합물, 이를 포함하는 에폭시수지 조성물 및 이를 사용하여 제조된 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283688A (ja) 1995-04-18 1996-10-29 Nippon Carbide Ind Co Inc 電子部品用パッケージ接着剤
JP2001089639A (ja) * 1999-09-24 2001-04-03 Mitsubishi Heavy Ind Ltd エネルギー線硬化樹脂組成物
JP2006348308A (ja) 2006-08-18 2006-12-28 Japan Epoxy Resin Kk 接着剤
KR20080047990A (ko) * 2006-11-27 2008-05-30 린텍 가부시키가이샤 점접착제 조성물, 점접착 시트 및 반도체 장치의 제조방법
JP6345421B2 (ja) 2013-01-31 2018-06-20 国立研究開発法人産業技術総合研究所 ガスバリア性評価装置および評価方法
JP6304745B2 (ja) 2013-01-31 2018-04-04 国立研究開発法人産業技術総合研究所 ガスバリア性評価装置および評価方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411626A (ja) * 1990-04-27 1992-01-16 Takeshi Endo 樹脂組成物、ソルダーレジスト樹脂組成物及び硬化物
JP2015521160A (ja) * 2012-04-19 2015-07-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se スルホニウム化合物、それらの製造および使用
JP2014031451A (ja) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp 熱カチオン発生剤組成物、熱硬化性組成物、及び異方導電性接続材料
JP2015048438A (ja) * 2013-09-03 2015-03-16 デクセリアルズ株式会社 化合物、熱硬化性樹脂組成物、及び熱硬化性シート
JP2015108090A (ja) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 化合物、熱硬化性樹脂組成物、及び熱硬化性シート
JP2015228485A (ja) * 2014-05-09 2015-12-17 積水化学工業株式会社 接続構造体
KR20160055376A (ko) * 2014-11-07 2016-05-18 삼성에스디아이 주식회사 술포늄 이온 함유 화합물, 이를 포함하는 에폭시수지 조성물 및 이를 사용하여 제조된 장치

Also Published As

Publication number Publication date
JPWO2018066257A1 (ja) 2019-06-24
JP6907223B2 (ja) 2021-07-21
KR102195770B1 (ko) 2020-12-28
TW201816056A (zh) 2018-05-01
CN109804034B (zh) 2021-12-10
KR20190034326A (ko) 2019-04-01
TW201936866A (zh) 2019-09-16
CN109804034A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
US9067395B2 (en) Low temperature curable epoxy tape and method of making same
JP6508486B2 (ja) 繊維強化複合材料
JP6252473B2 (ja) シート状接着剤およびこれを用いた有機elパネル
TW201529709A (zh) 樹脂組成物
JP4374395B1 (ja) 接着フィルム
JP2007284680A (ja) 優れた熱伝導度を持つ光硬化性樹脂組成物
JPWO2016158828A1 (ja) 樹脂組成物、導電性樹脂組成物、接着剤、導電性接着剤、電極形成用ペースト、半導体装置
KR20190084947A (ko) 카메라 모듈용 양이온 경화성 접착제 조성물, 경화물 및 접합체
WO2015146349A1 (ja) 熱伝導性シートの製造方法
JP2010168525A (ja) 透明フィルム、この透明フィルムを用いた積層フィルム、無機粒子挟持フィルム、及び、ディスプレイ用パネル
JPWO2016080202A1 (ja) エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料
WO2018066257A1 (ja) 接着剤組成物およびこれを含有する接着剤層、支持接合体、およびこの支持接合体を備えるガスバリア性評価装置
JP6367668B2 (ja) 熱カチオン硬化性樹脂組成物
JP2017052899A (ja) 剥離シート用硬化性樹脂組成物、これを用いた工程基材、及び基材を保護する方法
JP6109636B2 (ja) 光硬化性樹脂組成物
JPWO2006115231A1 (ja) 硬化性樹脂組成物およびそれを用いた接着部品の製造方法
JP6428432B2 (ja) 封止用シート、その製造方法および評価方法
TWI585137B (zh) 固化性樹脂組合物
JP2022147236A (ja) 接着シート及びこれを用いた硬化物、積層体並びに自動車用外装材
JP2009051100A (ja) 積層体、およびその製造方法
WO2013043435A1 (en) A composition for preparing a bonding material and uses thereof
JP2008169240A (ja) 接着剤組成物
JP6817702B2 (ja) 硬化性組成物、その硬化方法、これにより得られる硬化物および接着剤
JP2020152862A (ja) フィルム状接着剤
JP5756686B2 (ja) 後硬化テープ及び接合部材の接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543773

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858097

Country of ref document: EP

Kind code of ref document: A1