WO2018062322A1 - アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法 - Google Patents

アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法 Download PDF

Info

Publication number
WO2018062322A1
WO2018062322A1 PCT/JP2017/035068 JP2017035068W WO2018062322A1 WO 2018062322 A1 WO2018062322 A1 WO 2018062322A1 JP 2017035068 W JP2017035068 W JP 2017035068W WO 2018062322 A1 WO2018062322 A1 WO 2018062322A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
aluminum alloy
mass
alloy wire
heat resistance
Prior art date
Application number
PCT/JP2017/035068
Other languages
English (en)
French (fr)
Inventor
紳哉 岡本
功 岩山
鉄也 桑原
真一 北村
保広 赤祖父
東 健司
順庸 瀧川
徳照 上杉
長野 宏治
渡部 雅人
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社, 公立大学法人大阪府立大学 filed Critical 住友電気工業株式会社
Priority to JP2018542809A priority Critical patent/JP7080174B2/ja
Priority to KR1020197008526A priority patent/KR102546527B1/ko
Publication of WO2018062322A1 publication Critical patent/WO2018062322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy wire, an overhead power transmission line, and a method for producing an aluminum alloy wire.
  • the above-mentioned strands are twisted on the outer periphery of an aluminum stranded wire formed by twisting an electrical hard aluminum wire composed of an electrical aluminum ingot as a strand, or a tension member made of a steel wire.
  • Steel core aluminum stranded wire (ACSR) is used.
  • a steel core heat-resistant aluminum alloy stranded wire (TACSR) is also used which uses a heat-resistant aluminum alloy wire obtained by adding a small amount of Zr to an electrical aluminum ingot as a raw wire.
  • the heat-resistant aluminum alloy wire has a conductivity of 60% IACS and is called 60TAI or the like (see Patent Document 1).
  • Patent Document 1 discloses a heat-resistant aluminum alloy wire for electric conduction containing Zr, Fe, B, and Be in a specific range and containing Zr and Fe in a range satisfying a specific relational expression.
  • the aluminum alloy wire of the present disclosure is Si is 0 mass% or more and 0.03 mass% or less, 0.05 mass% or more and 0.25 mass% or less of Fe, Containing Zr 0.01 mass% or more and 0.05 mass% or less, The balance is composed of Al and impurities,
  • the wire diameter is over 1.5 mm.
  • the overhead power transmission line of the present disclosure is It includes a stranded portion formed by twisting a plurality of the aluminum alloy wires.
  • a method for producing an aluminum alloy wire of the present disclosure includes: Si is contained in an amount of 0 to 0.03% by mass, Fe is contained in an amount of 0.05 to 0.25% by mass, Zr is contained in an amount of 0.01 to 0.05% by mass, and the balance is Al and impurities.
  • a casting process for producing a cast material by casting an aluminum alloy comprising: The casting material is subjected to plastic processing including at least one of rolling processing and wire drawing processing, and includes a processing step of manufacturing a wire material having a wire diameter of more than 1.5 mm, In the casting process, the cooling rate during casting is set to 5 ° C./second or more.
  • FIG. 1 It is a schematic perspective view which shows an example of the overhead power transmission line of embodiment provided with the aluminum alloy wire of embodiment. It is a graph which shows the relationship between (5xZr + Fe) and heat resistance about each sample produced in Test Example 1. It is a graph which shows the relationship between (5 * Zr + Fe + 2 * Si) and electrical conductivity about each sample produced in Test Example 1.
  • FIG. 1 It is a schematic perspective view which shows an example of the overhead power transmission line of embodiment provided with the aluminum alloy wire of embodiment. It is a graph which shows the relationship between (5xZr + Fe) and heat resistance about each sample produced in Test Example 1. It is a graph which shows the relationship between (5 * Zr + Fe + 2 * Si) and electrical conductivity about each sample produced in Test Example 1.
  • an object is to provide an aluminum alloy wire having a high balance between high electrical conductivity and excellent heat resistance. Another object is to provide an overhead power transmission line having a good balance between low electrical resistance and excellent heat resistance. Furthermore, another object is to provide a method for producing an aluminum alloy wire capable of producing an aluminum alloy wire having a good balance between high electrical conductivity and excellent heat resistance.
  • the aluminum alloy wire according to the present disclosure described above is provided with a high balance between high electrical conductivity and excellent heat resistance.
  • the overhead power transmission line of the present disclosure described above has a low electrical resistance and excellent heat resistance in a well-balanced manner.
  • the above-described method for producing an aluminum alloy wire of the present disclosure can produce an aluminum alloy wire having a high balance between high electrical conductivity and excellent heat resistance.
  • An aluminum alloy wire according to an aspect of the present invention is: Si is 0 mass% or more and 0.03 mass% or less, 0.05 mass% or more and 0.25 mass% or less of Fe, Containing Zr 0.01 mass% or more and 0.05 mass% or less, The balance is composed of Al and impurities, The wire diameter is over 1.5 mm.
  • the above-mentioned aluminum alloy wire (hereinafter sometimes referred to as Al alloy wire) contains Zr and Fe in a specific range and has a very small Si content. Therefore, the effect of improving the heat resistance due to the solid solution of Zr and Fe can be obtained well, and the heat resistance is excellent. Further, since the Al alloy wire has a very small Si content, it is easy to maintain a high Al conductivity by suppressing a decrease in conductivity due to the inclusion of Si itself. When the content of at least one of Zr and Fe is smaller in the above range, the conductivity can be increased. For these reasons, the Al alloy wire can have a higher conductivity.
  • the above-mentioned Al alloy wire is provided with a good balance between high conductivity and excellent heat resistance.
  • the Al alloy wire described above has an effect of improving strength due to solid solution of Fe, and is excellent in strength.
  • Such an Al alloy wire has a wire diameter of more than 1.5 mm, and has a size suitable for a conductor of an electric wire such as an overhead power transmission line. An overhead power transmission line with low resistance and excellent heat resistance can be constructed.
  • the above-mentioned Al alloy wire can be suitably used for a TACSR wire that is particularly required to have heat resistance.
  • the above form contains Zr and Fe in a range satisfying the above specific relationship, the effect of improving heat resistance by solid solution can be obtained satisfactorily. Therefore, the said form is equipped with high electrical conductivity and the more excellent heat resistance in good balance.
  • the above-mentioned form contains Zr, Fe, and Si in a range that satisfies the above specific relationship, it is possible to suppress a decrease in conductivity due to excessive inclusion of these elements and to have high conductivity. Therefore, the said form is equipped with higher electrical conductivity and the outstanding heat resistance in good balance.
  • the form whose electrical conductivity in room temperature is 61% IACS or more is mentioned.
  • the room temperature is about 20 ° C. ⁇ 15 ° C.
  • the conductivity is higher than 60 TAl. Therefore, the said form is equipped with higher electrical conductivity and the outstanding heat resistance in good balance.
  • the above form has little decrease in tensile strength even at high temperatures, maintains high tensile strength, and has excellent heat resistance. Therefore, the said form is equipped with high electrical conductivity and the more excellent heat resistance in good balance.
  • the above form has a strength equal to or higher than the standard value and is excellent in strength. Therefore, the said form is excellent in intensity
  • the above form contains Si in a specific range, it is superior in strength to the case where Si does not satisfy this specific range. Therefore, the said form is excellent in intensity
  • the overhead power transmission line according to one aspect of the present invention is: A twisted wire portion formed by twisting a plurality of the aluminum alloy wires according to any one of (1) to (7) above is included.
  • the above-mentioned overhead power transmission line has the above-mentioned specific composition, and has a twisted wire portion made of the above-mentioned Al alloy wire having a good balance between high electrical conductivity and excellent heat resistance, so that the electrical resistance is low and the heat resistance Excellent in properties.
  • Such an overhead power transmission line can be suitably used as a heat resistant overhead power transmission line.
  • the above form includes a tension member and can be suitably used as an overhead power transmission line having high strength.
  • the tension member includes a form including at least one of an aluminum-coated steel wire and a galvanized steel wire.
  • aluminum coating or galvanization is interposed between the aluminum alloy wire and the steel wire forming the tension member, and the aluminum alloy wire and the steel wire are not in direct contact. Therefore, corrosion deterioration of the aluminum alloy wire due to galvanic corrosion can be suppressed.
  • a method for producing an aluminum alloy wire (Al alloy wire) according to an aspect of the present invention includes: Si is contained in an amount of 0 to 0.03% by mass, Fe is contained in an amount of 0.05 to 0.25% by mass, Zr is contained in an amount of 0.01 to 0.05% by mass, and the balance is Al and impurities.
  • a casting process for producing a cast material by casting an aluminum alloy comprising: The casting material is subjected to plastic processing including at least one of rolling processing and wire drawing processing, and includes a processing step of manufacturing a wire material having a wire diameter of more than 1.5 mm, In the casting process, the cooling rate during casting is set to 5 ° C./second or more.
  • the above method for producing an Al alloy wire can produce an Al alloy wire having a high balance between high electrical conductivity and excellent heat resistance with good productivity for the following reasons.
  • Such an Al alloy wire is qualitatively a wire rod that has a small decrease in strength such as tensile strength at high temperatures and is excellent in heat resistance.
  • Conductivity This is because since the Si content is very small, a decrease in conductivity due to the inclusion of Si itself can be suppressed. This is because when the Zr and Fe contents are further reduced as described above, it is easier to suppress a decrease in conductivity. (productivity) This is because the Al alloy wire having excellent heat resistance and conductivity can be produced without separately performing heat treatment such as aging treatment.
  • the said form makes the raw material used for cold working into the raw material which has said specific wire diameter, and the degree of cold working until it manufactures the wire which has a predetermined final wire diameter from this raw material appropriately It can be ensured and it is easy to obtain the strength improvement effect by work hardening. Therefore, the said form is equipped with high electrical conductivity and outstanding heat resistance with sufficient balance, and can manufacture a high intensity
  • the aluminum alloy wire (Al alloy wire) of the embodiment is a wire suitable for a conductor such as an electric wire, and is composed of an aluminum alloy (Al alloy) having a specific composition containing Si and Zr and Fe as essential elements. This is one of the characteristics.
  • the Al alloy contains 0% or more and 0.03% or less of Si, 0.05% or more and 0.25% or less of Fe, and 0.01% or more and 0.05% or less of Zr, with the balance being Al and impurities. It is a heat resistant Al alloy composed of The above impurities are inevitable. First, each additive element will be described in detail.
  • ⁇ Fe Fe in the Al alloy mainly functions as a solid solution strengthening element by being dissolved in Al as a matrix phase.
  • Strength such as tensile strength at room temperature can be increased by solid solution of Fe.
  • the tensile strength is unlikely to decrease at high temperatures, which contributes to the improvement of heat resistance.
  • a part of Fe is allowed to exist as a compound with Al (precipitate such as Al 3 Fe, Al 6 Fe). This is because the precipitate containing Fe is considered to contribute to precipitation strengthening.
  • an Al alloy wire having high strength and excellent heat resistance can be easily obtained by improving the strength and heat resistance by solid solution.
  • the Fe content increases, the strength and heat resistance tend to be superior, and when desiring to increase the strength or heat resistance, the Fe content is 0.08% or more, and further 0.09% or more. , 0.1% or more.
  • the Fe content can be 0.2% or less, and further 0.15% or less.
  • ⁇ Zr Zr contributes particularly to improvement in heat resistance.
  • Zr is present as a solid solution in Al, which is the parent phase, and contributes to maintaining high strength even at high temperatures by suppressing a decrease in strength at high temperatures.
  • Zr When 0.01% or more of Zr is contained, it contributes favorably to the above-described improvement in heat resistance and can be made into an Al alloy wire excellent in heat resistance. As the Zr content increases, the heat resistance tends to be excellent, and when further improvement in heat resistance is desired, the Zr content is 0.015% or more, further 0.017% or more, 0.02 % Or more. When Zr is contained in the range of 0.05% or less, a decrease in electrical conductivity due to an increase in the solid solution amount of Zr can be suppressed, and an Al alloy wire having high electrical conductivity can be obtained. When high conductivity is desired, the Zr content can be 0.04% or less, and further 0.03% or less.
  • the above sum (5 ⁇ Zr + Fe) is 0.17% or more, Zr and Fe can be solid-solved well in the parent phase, and have excellent heat resistance. An Al alloy wire having a residual rate of 90% or more can be obtained. The larger the sum (5 ⁇ Zr + Fe), the better the heat resistance. When further improvement in heat resistance is desired, the above sum (5 ⁇ Zr + Fe) can be 0.18% or more, further 0.182% or more, 0.19% or more, or 0.20% or more. .
  • the Al alloy constituting the Al alloy wire of the embodiment has a Si content of 0% from the viewpoint of further improving the electrical conductivity, and can be configured to contain no Si.
  • Si does not have a high heat resistance improvement effect compared to Zr and Fe.
  • Zr and Fe are not consumed for forming a compound with Si, and can be sufficiently dissolved in Al of the parent phase. It is considered that the effect of improving the property can be obtained well. Therefore, the form containing no Si is provided with a high balance between high conductivity and excellent heat resistance.
  • the Si content can be 0.012% or more, further 0.013% or more, and 0.015% or more.
  • the Si content can be less than 0.03%, further less than 0.025%, less than 0.024%, less than 0.023%. More preferably, it is 0.020% or less.
  • the above sum (5 ⁇ Zr + Fe + 2 ⁇ Si) is 0.34% or less, the increase in the solid solution amount of Zr and Fe is suppressed, and the decrease in the conductivity due to the inclusion of Si is suppressed. High Al alloy wire can be obtained.
  • the above sum (5 ⁇ Zr + Fe + 2 ⁇ Si) can be made 0.33% or less, further 0.31% or less, and 0.30% or less.
  • the structure of the Al alloy constituting the Al alloy wire of the embodiment includes a structure in which Fe and Zr are mainly dissolved. Moreover, a fine crystal structure is mentioned as a structure
  • the Al alloy wire of the embodiment is excellent in heat resistance. Quantitatively, there is a form in which the residual ratio of tensile strength after heating at 230 ° C. for 1 hour is 90% or more. The residual ratio is [tensile strength after heating / tensile strength at room temperature] ⁇ 100 (%). The greater the residual ratio, the less the strength decreases at high temperatures and the better the heat resistance. Therefore, 91% or more, more preferably 92% or more, and 93% or more is more preferable.
  • the Al alloy wire of the embodiment has high strength.
  • the tensile strength at room temperature is equal to or higher than the average tensile strength defined for each diameter in the JEC-3406 standard of the electrical society of the Electrical Engineers of the Heat Resistant Aluminum Alloy Wire. Specific examples include the following.
  • the wire diameter is 2.6 mm or more and less than 3.2 mm; When 179 MPa or more and the wire diameter is 3.2 mm or more and less than 3.7 mm; When 172 MPa or more and the wire diameter is 3.7 mm or more and less than 4.0 mm; 169 MPa or more and the wire diameter is 4.0 mm When not less than 5.0 mm; not less than 165 MPa As the average tensile strength is higher, the remaining tensile strength is likely to be higher even if the strength is lowered at a high temperature. When high strength or the like is desired, the tensile strength of the Al alloy wire can be set to the average tensile strength + 3 MPa or more and the average tensile strength + 5 MPa or more.
  • the Al alloy wire of the embodiment is excellent in conductivity. Quantitatively, there is a form in which the electrical conductivity at room temperature satisfies 61% IACS or more. The higher the conductivity, the lower the electrical resistance, which is preferable because it can reduce power transmission loss. Therefore, the conductivity is 61.1% IACS or more, further 61.2% IACS or more, 61.3% IACS or more. be able to.
  • Heat resistance residual ratio of the above-described tensile strength
  • tensile strength electrical conductivity, and the like
  • Heat resistance can be set to predetermined sizes by adjusting the composition and manufacturing conditions. For example, when the additive element is increased, the heat resistance and tensile strength tend to be high and the electrical conductivity tends to be low, and when the additive element is decreased, the electrical conductivity is high and the heat resistance and the tensile strength tend to be low.
  • the cooling rate during casting is increased (accelerated), heat resistance and tensile strength tend to increase.
  • the degree of processing is increased, the tensile strength tends to increase.
  • the Al alloy wire of the embodiment can have various wire diameters by adjusting the degree of processing such as the degree of wire drawing (area reduction) during the manufacturing process. Depending on the application (described later), the wire diameter (cross-sectional area) can be appropriately selected.
  • the wire diameter of the Al alloy wire of the embodiment is more than 1.5 mm, it is suitable for a conductor of a heat-resistant overhead power transmission line such as TACSR.
  • the standard wire diameter of TACSR is, for example, 2.3 mm or more and 5.0 mm or less.
  • a round wire having a circular cross-sectional shape can be cited.
  • the Al alloy wire according to the embodiment can be used as a conductor of an electric wire used for power supply such as an electric wire, in particular, a bare electric wire such as an overhead power transmission line or a covered electric wire such as a distribution wire. Since the Al alloy wire of the embodiment is excellent in both conductivity and heat resistance as described above, the Al alloy wire is suitably used as a wire for a heat resistant overhead power transmission line such as a TACSR typically used for heat resistance. it can.
  • the overhead power transmission line 1 of the embodiment includes a stranded portion 2 formed by twisting a plurality of Al alloy wires 12 of the embodiment.
  • the overhead power transmission line 1 typically includes a concentric stranded wire in which a plurality of strands (in FIG. 1, an Al alloy wire 12 and a steel wire 13 described later) are concentrically stranded.
  • An example of the overhead power transmission line 1 is a concentric stranded wire in which all the strands are Al alloy wires 12.
  • FIG. 1 As another example of the overhead power transmission line 1, as shown in FIG.
  • the tension member 3 is provided at the center thereof, and the concentricity is provided with a twisted wire portion 2 formed by twisting a plurality of Al alloy wires 12 around the tension member 3.
  • a stranded wire is mentioned.
  • the wire forming the tension member 3 include at least one kind of steel wire 13 of bare steel wire, aluminum-coated steel wire, and galvanized steel wire.
  • the tension member 3 When the tension member 3 is not provided, if the outer diameter or the cross-sectional area of the electric wire is constant, the conductor cross-sectional area can be ensured larger than when the tension member 3 is provided.
  • the tension member 3 since the tensile load is larger than when the tension member 3 is not provided, the tension at the time of overhead can be increased.
  • the sag (sag) of the electric wire By increasing the tension at the time of overhead wire, the sag (sag) of the electric wire can be reduced. Since the sag can be reduced, it is possible to secure a large separation distance between the electric wire, the ground, and any structure built on the ground.
  • the tension member 3 includes at least one of an aluminum-coated steel wire and a galvanized steel wire, since the aluminum coating or galvanization is interposed between the Al alloy wire 12 and the steel wire, an Al alloy wire caused by galvanic corrosion is used. 12 corrosion deterioration can be suppressed.
  • the overhead power transmission line 1 of the embodiment can be used as a power transmission line.
  • the overhead power transmission line 1 according to the embodiment has low electrical resistance and excellent heat resistance as described above, and thus can be suitably used for an overhead power transmission line that is desired to have excellent heat resistance.
  • the Al alloy wire of the embodiment is composed of an Al alloy having a specific composition, it can have a heat resistance equal to or higher than that of a conventional one while having a higher conductivity than the conventional one, and has a high conductivity and excellent With a good balance of heat resistance. This effect will be specifically described in Test Example 1.
  • the overhead power transmission line 1 of the embodiment includes the Al alloy wire 12 having a good balance between high conductivity and excellent heat resistance, so that the electric resistance is low and the heat resistance is also excellent, and the low electric resistance and the excellent heat resistance. With a good balance. This effect will be specifically described in Test Example 2.
  • the Al alloy wire of the embodiment can be manufactured, for example, by the method for manufacturing an aluminum alloy wire (Al alloy wire) of the embodiment including the following casting process and processing process. The outline of this manufacturing method will be described. After casting the Al alloy having the specific composition described above, the cast material is subjected to plastic working to form a wire. In particular, the cooling rate during casting is set to a specific range of rapid cooling. Moreover, the manufacturing method of the Al alloy wire of the embodiment can manufacture the Al alloy wire of the embodiment having high conductivity and excellent heat resistance without performing heat treatment such as aging treatment after casting, and is excellent in manufacturability. .
  • a cast material is produced by casting an aluminum alloy. (Processing step) The cast material is subjected to plastic working including at least one of rolling and wire drawing to produce a wire having a wire diameter of more than 1.5 mm. In the casting process, the cooling rate during casting is set to 5 ° C./second or more. Hereinafter, it demonstrates for every process.
  • Examples of the raw material include an electrical aluminum ingot (hereinafter referred to as an Al ingot), a mother alloy containing Al and an additive element, and at least one of an additive element alone.
  • an Al ingot having a very small amount of impurities and a high Al purity, for example, an Al content of more than 99.65%, more than 99.9%, more than 99.92%, etc. It is easy to adjust the contents of Zr, Fe, and Si with high accuracy and is suitable for mass production.
  • Al ingot having a low Al purity to some extent, if the refining is performed appropriately, the content of each additive element described above can be accurately adjusted, but it may be inferior in terms of mass production because it takes time.
  • the solid solution ratio (particularly Fe) of the additive element can be increased by setting the cooling rate during casting (here, the cooling rate from the hot water temperature to at least about 400 ° C.) to 5 ° C./second or more.
  • the cooling rate is preferably 6 ° C./second or more, more preferably 6.5 ° C./second or more, and 7 ° C./second or more.
  • the casting method is not particularly limited.
  • the continuous casting method can be suitably used.
  • various methods such as a method using a movable mold such as a belt-and-wheel method and a method using a fixed mold can be used.
  • the higher the cooling rate the more the cast material having a fine crystal structure can be obtained.
  • the obtained wire also tends to have a fine crystal structure.
  • the casting material in which the additive element is sufficiently dissolved as described above is subjected to plastic working to produce a wire material having a predetermined wire diameter.
  • the aging treatment is not performed before, during or after the processing, so that it is easy to maintain a solid solution state and an effect of improving strength by work hardening is obtained. easy.
  • content of an additive element is a specific range, the fall of the electrical conductivity by the solid solution of an additive element can be suppressed. Therefore, an Al alloy wire excellent in conductivity, heat resistance and strength can be produced with high productivity.
  • the content of Si is small, and further the content of Zr and Fe is also small, it is difficult to form a coarse compound, and it is easy to reduce disconnection caused by coarse compound particles. Wire can be manufactured with high productivity.
  • the plastic working performed in the working process includes at least one of rolling and wire drawing. Further, this plastic working includes at least one of hot working and cold working.
  • a continuous casting material is subjected to rolling processing and wire drawing processing in order, and this rolling processing is hot processing and wire drawing processing is cold processing.
  • the hot working is performed continuously after the continuous casting, it is easy to maintain a solid solution state using the heat remaining in the cast material, no reheating equipment is required, and the productivity is excellent.
  • the rolling start temperature is set to about 250 ° C. or more and 550 ° C. or less.
  • the wire When wire drawing is performed, the wire is subjected to one or more passes until the cast material or the rolled material subjected to the above-described rolling processing has a predetermined final wire diameter.
  • This wire drawing can be cold working. Depending on the final wire diameter, the number of passes, the degree of processing per pass, the total degree of processing, etc. may be selected.
  • the obtained wire having a final wire diameter (such as a wire drawing material) is the Al alloy wire of the above-described embodiment.
  • Processing degree area reduction ratio
  • the degree of cold working the greater the degree of cold working, the greater the amount of work distortion and the easier it is to increase the strength.
  • the degree of processing increases, it tends to cause a decrease in conductivity due to processing strain and a decrease in heat resistance due to precipitation of solid solution elements.
  • the wire diameter at the start of cold working is set to It is mentioned that they are 8 mm or more and 15 mm or less.
  • the wire diameter at the start of cold working can be 9 mm or more, further 10 mm or more, or 14 mm or less, further 13 mm or less, depending on the final wire diameter.
  • the method for producing an aluminum alloy wire of the embodiment can be used for producing an aluminum alloy wire constituting the conductor of the above-described electric wire.
  • Al ingot 99.9 mass% or more Al
  • a master alloy Al alloy containing Zr, Al alloy containing Fe, Al alloy containing Si
  • Al alloy containing Zr Al alloy containing Zr
  • Al alloy containing Fe Al alloy containing Si
  • Al alloy containing Si Al alloy containing Si
  • Table 1 shows the composition of the Al alloy (the balance being Al and inevitable impurities).
  • the obtained molten metal was continuously cast to produce a cast material (here, 3600 mm 2 ).
  • Table 1 shows the cooling rate (° C./second) during continuous casting.
  • the obtained cast material was continuously rolled (including hot rolling) using a belt-and-wheel continuous casting and rolling device, and continuously cast and rolled material (here, ⁇ 9.5 mm).
  • the obtained continuous cast rolled material was subjected to wire drawing (cold, area reduction rate 95.6% or 88.7% or 72.3%), and the final wire diameter (2.0 mm or 3. 2 mm or 5.0 mm) was obtained.
  • the conductivity was measured by a direct current four-terminal method. Here, a commercially available electrical resistance measuring device was used. The measurement was performed at room temperature (here, about 20 ° C.), and the gauge distance GL was set to 500 mm. The tensile strength was measured using a general-purpose tensile tester in accordance with JIS Z 2241 (metal material tensile test method, 1998). The measurement was performed at room temperature (here, about 20 ° C.), and the gauge distance GL was set to 100 mm.
  • the heat resistance was evaluated by the following residual ratio (%) of tensile strength.
  • the wire drawing material of each sample was heated to 230 ⁇ 1 ° C. using an electric furnace (the time required for the temperature increase was within 20 minutes), held at 230 ° C. for 1 hour, and then room temperature (here In this case, the tensile strength after heating was measured in the same manner as the method for measuring the tensile strength at room temperature described above. Then, [the tensile strength after heating / the tensile strength at room temperature] ⁇ 100 (%) was defined as the residual rate. The greater the residual rate, the better the heat resistance.
  • 1-14 has a strength equal to or higher than the average value (for example, 172 MPa for a sample with a wire diameter of 3.2 mm) stipulated in JEC-3406, a heat-resistant aluminum alloy electric wire, JEC-3406 There are also samples with an average value of +5 MPa or more, and samples with an average value of +10 MPa or more.
  • the average value for example, 172 MPa for a sample with a wire diameter of 3.2 mm
  • JEC-3406 a heat-resistant aluminum alloy electric wire
  • FIG. 1-1-No. 1-11 and sample no. 1-101-No. 1-104 is a graph showing the relationship between the sum (5 ⁇ Zr + Fe) and heat resistance.
  • the horizontal axis represents the sum of the content of five times Zr and the content of Fe (5 ⁇ Zr + Fe) (mass%), and the left vertical axis represents heat resistance (%).
  • Sample No. 1-1-No. 1-11 and Sample No. 1-101-No. No. 1-104 is a sample having substantially the same cooling rate during casting, the same wire diameter, and substantially the same manufacturing conditions.
  • the sum of 1-11 is in the range of more than 0.148% by mass, particularly in the range of 0.17% by mass or more as shown by the broken line. Therefore, in order to have excellent heat resistance (90% or more), it is preferable that the content of Zr, Fe, Si satisfies a specific range and the sum (5 ⁇ Zr + Fe) satisfies 0.17% by mass or more. It was shown that.
  • FIG. 1-1-No. 1-11 Sample No. 1-101-No. 1-104 is a graph showing the relationship between the sum (5 ⁇ Zr + Fe + 2 ⁇ Si) and conductivity.
  • the horizontal axis is the sum of 5 times the Zr content, the Fe content and the 2 times the Si content (5 ⁇ Zr + Fe + 2 ⁇ Si) (mass%), and the left vertical axis is the conductivity (% IACS). ).
  • the sum (5 ⁇ Zr + Fe + 2 ⁇ Si) was obtained by the substitution method based on the sum (5 ⁇ Zr + Fe) shown in FIG. Specifically, assuming a sum (5 ⁇ Zr + Fe + ⁇ ⁇ Si) when the coefficient of Si is ⁇ , ⁇ is substituted every 0.5 to obtain the relationship with conductivity, and high conductivity (61% IACS) The above values were obtained.
  • the aluminum alloy wire having the above-described high electrical conductivity and excellent heat resistance in a well-balanced manner has the above-described specific composition and the cooling rate during casting is increased. It can be seen that it can be manufactured. Quantitatively, it can be said that the cooling rate is preferably 5 ° C./second or more, more preferably 7 ° C./second or more.
  • Test Example 2 A plurality of Al alloy wires produced in Test Example 1 were twisted to produce a stranded wire, and the characteristics were examined.
  • Al alloy wires (sample No. 1-1 to No. 1-11, No. 1-14, No. 1-101 to No. 1-106) having a wire diameter of 3.2 mm were prepared, The following stranded wire a to stranded wire c having different conductor cross-sectional areas were produced.
  • the stranded wire a has a conductor cross-sectional area of 300 mm 2 and assumes a heat-resistant aluminum alloy stranded wire (TAI).
  • the stranded wire a is a concentric stranded wire that is concentrically stranded using 37 Al alloy wires having a wire diameter of 3.2 mm.
  • the stranded wire b assumes a TACSR having a conductor cross-sectional area of 240 mm 2 , a tension member at the center, and a stranded portion of an Al alloy wire at the outer periphery thereof.
  • the tension member is a concentric stranded wire made of seven galvanized steel wires having a wire diameter of 3.2 mm and concentrically stranded.
  • the stranded wire b is formed by twisting an Al alloy wire on the outer periphery of the tension member using a total of 30 Al alloy wires having a wire diameter of 3.2 mm (see also FIG. 1).
  • the stranded wire c is obtained by using an aluminum-coated steel wire as the strand of the tension member in the stranded wire b.
  • the obtained stranded wire a to stranded wire c were examined for electrical resistance ( ⁇ / km), tensile load at room temperature (kN), and heat resistance (kN). Tables 2 to 4 show the measurement results of the stranded wire a to stranded wire c, respectively.
  • the electrical resistance ( ⁇ / km) was measured by the 4-terminal method. The measurement was performed at room temperature (here, 20 ° C.), and the gauge distance GL was 1 m.
  • the tensile load (kN) was measured in accordance with the JEC-3404 standard of the electrical standard survey committee of the Japan Society of Electrical Engineers.
  • the heat resistance was evaluated by the following tensile load (kN) after heating.
  • the stranded wire a to stranded wire c of each sample are held at 230 ° C. for 1 hour in the same manner as in Test Example 1, and then cooled to room temperature (about 20 ° C. here).
  • the tensile load of each sample was measured according to the above-mentioned JEC-3404. The greater the tensile load after heating, the better the heat resistance.
  • stranded wire a to c sample group 1-101-No. 1-106, no. 2-101-No. 2-106, no. 3-101-No. It can be seen that it has a low electrical resistance, a high tensile load and excellent heat resistance in a well-balanced manner compared to each of 3-106 stranded wires.
  • the stranded wire a sample group has an electric resistance of 0.0968 ⁇ / km or less, a tensile load at room temperature of 46.7 kN or more, and heating at 230 ° C. ⁇ 1 h.
  • the later tensile load is 42.8 kN or more.
  • the twisted wire a sample group has a residual ratio of the tensile load after the heating with respect to the initial tensile load (room temperature tensile load) of 90% or more, more preferably 91% or more, and 91.5% or more, and is excellent in heat resistance. I understand.
  • the stranded wire b sample group has an electric resistance of 0.116 ⁇ / km or less, a tensile load at room temperature of 104.7 kN or more, and a tensile load after heating at 230 ° C. ⁇ 1 h. 101.5 kN or more.
  • the stranded wire b sample group has a residual ratio of the above-described tensile load of 95% or more, more preferably 96% or more, and 96.5% or more.
  • the stranded wire c sample group has an electric resistance of 0.110 ⁇ / km or less, a tensile load at room temperature of 104.7 kN or more, and a tensile load after heating at 230 ° C. ⁇ 1 h of 101. More than 2kN.
  • the stranded wire c sample group has a residual ratio of the above-described tensile load of 95% or more, more preferably 96% or more, and 96.5% or more, and it is understood that the heat resistance is excellent.
  • the reason why such a result was obtained is that the stranded wire samples a to c have high conductivity, high tensile strength at room temperature, and excellent heat resistance. 1-1-No. 1-12, No. 1 This is presumably because of having an Al alloy wire of 1-14.
  • the following can be understood from this test. (1) Since the stranded wire a sample group has a conductor cross-sectional area larger than that of the stranded wire b and c sample groups, the electrical resistance is lower. (2) Since the stranded wire b and c sample groups are provided with tension members, the tensile load after heating and the above-described heating is larger and higher strength than the stranded wire a sample group. (3) Since the stranded wire c sample group includes the aluminum-coated steel wire, the electrical resistance is lower than that of the stranded wire b sample group.
  • Test examples 1 and 2 show that an aluminum alloy wire made of an aluminum alloy having a specific composition containing Si, Fe, and Zn in a specific range can achieve both high conductivity and excellent heat resistance. It was. Moreover, it was shown that the overhead power transmission line using the aluminum alloy wire as the element wire can achieve both low electric resistance and excellent heat resistance.
  • the present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • the composition, wire diameter, manufacturing conditions such as the cooling rate at the time of casting, the composition of the aluminum alloy of Test Example 1, the composition of the wire used for the twisted wire of Test Example 2, the wire diameter, the number of wires, etc. can be changed as appropriate. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Siを0質量%以上0.03質量%以下、Feを0.05質量%以上0.25質量%以下、Zrを0.01質量%以上0.05質量%以下含有し、残部がAl及び不純物から構成され、線径が1.5mm超であるアルミニウム合金線。

Description

アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法
 本発明は、アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法に関する。
 本出願は、2016年09月30日付の日本国出願の特願2016-193970に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 従来、架空送電線には、電気用アルミニウム地金から構成される電気用硬アルミニウム線を素線として撚り合せたアルミニウム撚線や、鋼線からなるテンションメンバの外周に上記素線を撚り合せた鋼心アルミニウム撚線(ACSR)が利用されている。更に、電気用アルミニウム地金に少量のZrを添加した耐熱アルミニウム合金線を素線とする鋼心耐熱アルミ合金より線(TACSR)も利用されている。耐熱アルミニウム合金線は、導電率が60%IACSであり、60TAlなどと呼ばれる(特許文献1参照)。
 特許文献1は、Zr,Fe,B,Beを特定の範囲で含有すると共に、ZrとFeとを特定の関係式を満たす範囲で含有する導電用耐熱アルミ合金線を開示する。
特公昭63-004621号公報
 本開示のアルミニウム合金線は、
 Siを0質量%以上0.03質量%以下、
 Feを0.05質量%以上0.25質量%以下、
 Zrを0.01質量%以上0.05質量%以下含有し、
 残部がAl及び不純物から構成され、
 線径が1.5mm超である。
 本開示の架空送電線は、
 上記のアルミニウム合金線が複数撚り合わされてなる撚線部を含む。
 本開示のアルミニウム合金線の製造方法は、
 Siを0質量%以上0.03質量%以下、Feを0.05質量%以上0.25質量%以下、Zrを0.01質量%以上0.05質量%以下含有し、残部がAl及び不純物から構成されるアルミニウム合金を鋳造して鋳造材を製造する鋳造工程と、
 前記鋳造材に、圧延加工及び伸線加工の少なくとも一方を含む塑性加工を施して、線径が1.5mm超の線材を製造する加工工程とを備え、
 前記鋳造工程では、鋳造時の冷却速度を5℃/秒以上とする。
実施形態のアルミニウム合金線を備える実施形態の架空送電線の一例を示す概略斜視図である。 試験例1で作製した各試料について、(5×Zr+Fe)と耐熱性との関係を示すグラフである。 試験例1で作製した各試料について、(5×Zr+Fe+2×Si)と導電率との関係を示すグラフである。
[本開示が解決しようとする課題]
 昨今の電力事情を鑑みると、送電損失をより低減することが望まれる。送電損失の低減には、架空送電線や配電線の電気抵抗を低下することが好ましい。上記電気抵抗の低下には、上記架空送電線や配電線などに備える導体の導電率をより高めることが好ましい。上述の従来の導電用耐熱アルミ合金線では、導電率が十分に高いとはいえず、導電率の更なる向上が望まれる。
 一方、TACSRなどの架空送電線の導体に用いられるアルミニウム合金線には、通電時の発熱によって高温になった場合に強度が低下し難いこと、即ち耐熱性に優れることが望まれる。しかし、耐熱性の向上に有効な添加元素、例えばZrの含有量を増加すると、導電率が低下し易く、高い導電率と優れた耐熱性とを両立することが難しい。
 そこで、高い導電率と優れた耐熱性とをバランスよく備えるアルミニウム合金線を提供することを目的の一つとする。また、低い電気抵抗と優れた耐熱性とをバランスよく備える架空送電線を提供することを別の目的の一つとする。更に、高い導電率と優れた耐熱性とをバランスよく備えるアルミニウム合金線を製造できるアルミニウム合金線の製造方法を提供することを別の目的の一つとする。
[本開示の効果]
 上記の本開示のアルミニウム合金線は、高い導電率と優れた耐熱性とをバランスよく備える。上記の本開示の架空送電線は、低い電気抵抗と優れた耐熱性とをバランスよく備える。
 上記の本開示のアルミニウム合金線の製造方法は、高い導電率と優れた耐熱性とをバランスよく備えるアルミニウム合金線を製造できる。
 [本願発明の実施形態の説明]
 本発明者らは、Siをある程度含有すると、具体的には0.03質量%超、更には0.05質量%以上含有すると強度を高め易いものの、SiはZr及びFeに比較して耐熱性の向上に対する寄与が低いとの知見を得た。一方、Siを十分に低減すれば導電率を向上できるとの知見を得た。また、Siの低減によって、SiとZrやFeとが凝固時に化合物を形成して晶出・析出することを防ぐことができ、Zr及びFeが母相であるAlに固溶し易くなる結果、これらの固溶によって、耐熱性に優れる上に強度にも優れるとの知見を得た。更に、Zr及びFeを適切に固溶できるため、Zr及びFeの含有量がより少ない場合でも、耐熱性及び強度がある程度高い上に、Zr及びFeの低減によって導電率をより高められるとの知見を得た。本願発明は、上記の知見に基づくものである。
 最初に本願発明の実施態様を列記して説明する。
(1)本願発明の一態様に係るアルミニウム合金線は、
 Siを0質量%以上0.03質量%以下、
 Feを0.05質量%以上0.25質量%以下、
 Zrを0.01質量%以上0.05質量%以下含有し、
 残部がAl及び不純物から構成され、
 線径が1.5mm超である。
 上記のアルミニウム合金線(以下、Al合金線と呼ぶことがある)は、Zr及びFeを特定の範囲で含有すると共に、Siの含有量が非常に少ない。そのため、Zr及びFeの固溶による耐熱性の向上効果を良好に得られ、耐熱性に優れる。また、上記のAl合金線は、Siの含有量が非常に少ないため、Si自体の含有による導電率の低下を抑制して、Alの高い導電率を維持し易い。Zr及びFeの少なくとも一方の含有量が上記の範囲でより少ない場合には、導電率をより高くできる。これらのことから上記のAl合金線は、より高い導電率を有することができる。
 従って、上記のAl合金線は、高い導電率と優れた耐熱性とをバランスよく備える。また、上記のAl合金線は、Feの固溶による強度の向上効果も得られ、強度にも優れる。このような上記のAl合金線は、線径が1.5mm超であり、架空送電線などの電線の導体に適した大きさを有するため、架空送電線などの電線の導体に利用すれば、低抵抗で耐熱性にも優れる架空送電線などを構築できる。上記のAl合金線は、特に耐熱性が求められるTACSRの素線などに好適に利用できる。
(2)上記のアルミニウム合金線の一例として、
 Zrの含有量の5倍と、Feの含有量との和(5×Zr+Fe)が0.17質量%以上である形態が挙げられる。
 上記形態は、ZrとFeとを上記の特定の関係を満たす範囲で含有するため、固溶による耐熱性の向上効果を良好に得られる。従って、上記形態は、高い導電率と、より優れた耐熱性とをバランスよく備える。
(3)上記のアルミニウム合金線の一例として、
 Zrの含有量の5倍と、Feの含有量と、Siの含有量の2倍との和(5×Zr+Fe+2×Si)が0.34質量%以下である形態が挙げられる。
 上記形態は、ZrとFeとSiとを上記の特定の関係を満たす範囲で含有するため、これらの元素の過剰含有による導電率の低下を抑制して、高い導電率を有することができる。従って、上記形態は、より高い導電率と、優れた耐熱性とをバランスよく備える。
(4)上記のアルミニウム合金線の一例として、
 室温での導電率が61%IACS以上である形態が挙げられる。上記室温とは20℃±15℃程度とする。以下、室温について同様とする。
 上記形態は、導電率が60TAlよりも高い。従って、上記形態は、より高い導電率と、優れた耐熱性とをバランスよく備える。
(5)上記のアルミニウム合金線の一例として、
 230℃で1時間加熱後の引張強さの残存率が90%以上である形態が挙げられる。
 上記形態は、高温時でも引張強さの低下が少なく、高い引張強さを維持できて、耐熱性に優れる。従って、上記形態は、高い導電率と、より優れた耐熱性とをバランスよく備える。
(6)上記のアルミニウム合金線の一例として、
 室温での引張強さが耐熱アルミ合金電線 電気学会電気規格調査会標準規格 JEC-3406において、径ごとに規定される平均の引張強さ以上である形態が挙げられる。
 上記形態は、規格値と同等以上の強度を有し、強度に優れる。従って、上記形態は、高い導電率と優れた耐熱性とをバランスよく備える上に、強度にも優れる。
(7)上記のアルミニウム合金線の一例として、
 Siを0.01質量%以上含有する形態が挙げられる。
 上記形態は、Siを特定の範囲で含むため、Siがこの特定の範囲を満たさない場合よりも強度に優れる。従って、上記形態は、高い導電率と優れた耐熱性とをバランスよく備える上に、強度にも優れる。
(8)本願発明の一態様に係る架空送電線は、
 上記(1)から(7)のいずれか一つに記載のアルミニウム合金線が複数撚り合わされてなる撚線部を含む。
 上記の架空送電線は、上述の特定の組成からなり、高い導電率と優れた耐熱性とをバランスよく有する上記のAl合金線からなる撚線部を備えるため、電気抵抗が低い上に、耐熱性にも優れる。このような上記の架空送電線は、耐熱架空送電線として好適に利用できる。
(9)上記の架空送電線の一例として、
 鋼線を含むテンションメンバと、前記テンションメンバの外周に複数の前記アルミニウム合金線が撚り合わされてなる前記撚線部とを備える形態が挙げられる。
 上記形態は、テンションメンバを備えており、高強度を有する架空送電線として好適に利用できる。
(10)テンションメンバを備える上記の架空送電線の一例として、
 前記テンションメンバは、アルミニウム被覆鋼線及び亜鉛めっき鋼線の少なくとも一方を含む形態が挙げられる。
 上記形態は、アルミニウム合金線とテンションメンバをなす鋼線との間にアルミニウム被覆や亜鉛めっきが介在しており、アルミニウム合金線と鋼線とが直接接触しない。そのため、ガルバニック腐食によるアルミニウム合金線の腐食劣化を抑制できる。
(11)本願発明の一態様に係るアルミニウム合金線(Al合金線)の製造方法は、
 Siを0質量%以上0.03質量%以下、Feを0.05質量%以上0.25質量%以下、Zrを0.01質量%以上0.05質量%以下含有し、残部がAl及び不純物から構成されるアルミニウム合金を鋳造して鋳造材を製造する鋳造工程と、
 前記鋳造材に、圧延加工及び伸線加工の少なくとも一方を含む塑性加工を施して、線径が1.5mm超の線材を製造する加工工程とを備え、
 前記鋳造工程では、鋳造時の冷却速度を5℃/秒以上とする。
 上記のAl合金線の製造方法は、以下の理由により、高い導電率と優れた耐熱性とをバランスよく備えるAl合金線を生産性よく製造できる。
(耐熱性)
 Zr及びFeを特定の範囲で含有すると共に、鋳造時の冷却速度を特定の大きさとして急冷するため、両元素を良好に固溶できる。特に、Siの含有量を非常に少なくするため、Zr及びFeが母相に固溶し易いことからも、Zr及びFeを十分に固溶できる。かつ、時効処理などの熱処理を行わないことで、Zr及びFeが固溶したAl合金線を得易い。また、急冷によって微細な結晶組織の鋳造材とし易く、最終的にも微細な結晶組織を有するAl合金線を得易い。このようなAl合金線は、定性的には高温時に引張強さなどの強度の低下が少なく、耐熱性に優れる線材であるからである。
(導電性)
 Siの含有量が非常に少ないため、Si自体の含有による導電率の低下を抑制できるからである。上述のようにZr及びFeの含有量をより低減した場合には、導電率の低下をより抑制し易いからである。
(生産性)
 時効処理などの熱処理を別途行うことなく、耐熱性及び導電性に優れる上記のAl合金線を製造できるからである。
(12)上記のアルミニウム合金線の製造方法の一例として、
 前記加工工程では、冷間加工を含み、前記冷間加工開始時の素材の線径を8mm以上15mm以下とする形態が挙げられる。
 上記形態は、冷間加工に供する素材を上記の特定の線径を有する素材とすることで、この素材から所定の最終線径を有する線材を製造するまでの冷間加工の加工度を適切に確保でき、加工硬化による強度向上効果を得易い。従って、上記形態は、高い導電率と優れた耐熱性とをバランスよく備え、高強度なAl合金線を製造できる。
[本願発明の実施形態の詳細]
 以下、本願発明の実施形態を具体的に説明する。元素の含有量は、断りが無い限り質量%を示す。
[アルミニウム合金線]
(組成)
 実施形態のアルミニウム合金線(Al合金線)は、電線などの導体に適した線材であり、Zr及びFeを必須元素とし、適宜Siを含む特定の組成のアルミニウム合金(Al合金)で構成されることを特徴の一つとする。上記のAl合金は、Siを0%以上0.03%以下、Feを0.05%以上0.25%以下、Zrを0.01%以上0.05%以下含有し、残部がAl及び不純物から構成される耐熱性Al合金である。上記不純物とは不可避なものをいう。まず、各添加元素を詳細に説明する。
・Fe
 Al合金中のFeは、主として母相であるAlに固溶して固溶強化元素として機能する。Feの固溶によって室温での引張強さといった強度を高められる。また、Feの固溶によって高温時に引張強さが低下し難く、耐熱性の向上に寄与する。Feの一部がAlとの化合物(AlFe,AlFeなどの析出物)として存在することを許容する。このFeを含む析出物は、析出強化に寄与すると考えられるからである。
 Feを0.05%以上含有すると、固溶による強度の向上効果、耐熱性の向上効果を得易く、高強度で耐熱性に優れるAl合金線とすることができる。Feの含有量が多いほど、強度や耐熱性に優れる傾向にあり、高強度化や耐熱性の向上などを望む場合には、Feの含有量を0.08%以上、更に0.09%以上、0.1%以上とすることができる。
 Feを0.25%以下の範囲で含有すると、固溶したFeやFeを含む化合物による導電率の低下を抑制し易く、導電率が高いAl合金線とすることができる。高導電性などを望む場合には、Feの含有量を0.2%以下、更に0.15%以下とすることができる。
・Zr
 Zrは、特に耐熱性の向上に寄与する。詳しくは、Zrは、主として、母相であるAlに固溶して存在し、高温時の強度の低下を抑制して高温時でも高い強度を維持することに寄与する。
 Zrを0.01%以上含有すると、上述の耐熱性の向上に良好に寄与して、耐熱性に優れるAl合金線とすることができる。Zrの含有量が多いほど、耐熱性に優れる傾向にあり、耐熱性の更なる向上などを望む場合には、Zrの含有量を0.015%以上、更に0.017%以上、0.02%以上とすることができる。
 Zrを0.05%以下の範囲で含有すると、Zrの固溶量の増大による導電率の低下を抑制して、導電率が高いAl合金線とすることができる。高導電率などを望む場合には、Zrの含有量を0.04%以下、更に0.03%以下とすることができる。
・ZrとFeとの関係
 Zr及びFeの含有量が上述の特定の範囲を満たすことに加えて、両元素が特定の関係を満たすと、耐熱性に優れて好ましい。具体的には、Zrの含有量の5倍と、Feの含有量との和を(5×Zr+Fe)とするとき、この和(5×Zr+Fe)が質量割合で0.17%以上を満たすことが好ましい。この和(5×Zr+Fe)は特許文献1に基づくものである。
 上記の和(5×Zr+Fe)が0.17%以上であれば、Zr及びFeが母相に良好に固溶できて、耐熱性に優れるAl合金線、代表的には後述する引張強さの残存率が90%以上であるAl合金線とすることができる。上記和(5×Zr+Fe)が大きいほど、耐熱性により優れる傾向にある。耐熱性の更なる向上などを望む場合には、上記和(5×Zr+Fe)を0.18%以上、更に0.182%以上、0.19%以上、0.20%以上とすることができる。
・Si
 実施形態のAl合金線を構成するAl合金は、導電率の更なる向上の観点から、Siの含有量が0%であり、Siを含まない形態とすることができる。Siは、Zr及びFeに比較して、耐熱性の向上効果が高くない。逆に、Siを含まない場合、Zr及びFeがSiと化合物を形成することに消費されず、母相のAlに十分に固溶できるため、Zr及びFeの固溶による強度の向上効果、耐熱性の向上効果を良好に得られると考えられる。従って、Siを含まない形態は、高い導電率と優れた耐熱性とをバランスよく備えられる。
 一方で、現状の精錬技術などによってSiを除去すると、非常に時間がかかる。そのため、コストの増大も招き易い。工業的量産を考慮すると、Siを含有すること、即ちSiの含有量が0%超である形態が利用し易い。また、Siを含有すると、引張強さといった強度の向上が望める。
 Siを0.01%以上含有すると、Siの固溶による強度の向上効果を得易い上に、Siの含有量を調整し易く、製造性に優れる。Siの含有量が多いほど、強度を向上し易く、含有量の調整も容易である。高強度化、良好な製造性などを望む場合には、Siの含有量を0.012%以上、更に0.013%以上、0.015%以上とすることができる。
 Siを含有する場合にSiの含有量が0.03%以下であれば、上述のように導電率の低下を抑制したり、SiとZrやFeとの化合物の形成によるZrやFeの消費を低減したり(ZrやFeの固溶阻害を抑制したり)し易く、導電率が高く、耐熱性に優れるAl合金線とし易い。高導電性、高耐熱性などを望む場合には、Siの含有量を0.03%未満、更に0.025%未満、0.024%未満、0.023%未満とすることができ、0.020%以下がより好ましい。
・ZrとFeとSiとの関係
 Siを上記の範囲で含む場合(0%超の場合)、Zr,Fe,Siの含有量が上述の特定の範囲を満たすことに加えて、これら三つの元素が特定の関係を満たすと、高い導電率を有し易く好ましい。具体的には、Zrの含有量の5倍と、Feの含有量と、Siの含有量の2倍との和を(5×Zr+Fe+2×Si)とするとき、この和(5×Zr+Fe+2×Si)が質量割合で0.34%以下を満たすことが好ましい。この和の求め方は後述する。
 上記の和(5×Zr+Fe+2×Si)が0.34%以下であれば、Zr及びFeの固溶量の増大を抑制すると共に、Siの含有による導電率の低下を抑制して、導電率が高いAl合金線とすることができる。高導電率などを望む場合には、上記和(5×Zr+Fe+2×Si)を0.33%以下、更に0.31%以下、0.30%以下とすることができる。
・組織
 実施形態のAl合金線を構成するAl合金の組織として、Fe及びZrが主として固溶する組織が挙げられる。また、上記Al合金の組織として、微細な結晶組織が挙げられる。後述するように鋳造時に特定の速度で急冷することで微細な結晶組織を有する鋳造材が得られる。この鋳造材に圧延加工や伸線加工などの塑性加工を施してAl合金線を製造することで、Al合金線は微細な結晶組織を有し易い。Feの一部とAlとを含む析出物が均一的に分散して存在することを許容する。
(特性)
・耐熱性
 実施形態のAl合金線は、耐熱性に優れる。定量的には、230℃で1時間加熱後の引張強さの残存率が90%以上である形態が挙げられる。上記残存率は、[上記加熱後の引張強さ/室温での引張強さ]×100(%)とする。上記残存率が大きいほど、高温時の強度の低下が少なく耐熱性に優れるため、91%以上、更に92%以上、93%以上がより好ましい。
・強度
 実施形態のAl合金線は、強度が高い。定量的には、室温での引張強さが耐熱アルミ合金電線 電気学会電気規格調査会標準規格 JEC-3406において、径ごとに規定される平均の引張強さ以上である形態が挙げられる。具体的には、以下が挙げられる。
線径2.6mm以上3.2mm未満のとき;179MPa以上
線径3.2mm以上3.7mm未満のとき;172MPa以上
線径3.7mm以上4.0mm未満のとき;169MPa以上
線径4.0mm以上5.0mm以下のとき;165MPa以上
 上記の平均の引張強さが高いほど、高温時に強度が低下しても、残存する引張強さが高くなり易い。高強度などを望む場合には、Al合金線の引張強さを、上記平均の引張強さ+3MPa以上、上記平均の引張強さ+5MPa以上とすることができる。
・導電率
 実施形態のAl合金線は、導電性に優れる。定量的には、室温での導電率が61%IACS以上を満たす形態が挙げられる。上記導電率が高いほど、電気抵抗が低くなり易く、送電損失を低減できて好ましいため、上記導電率を61.1%IACS以上、更に61.2%IACS以上、61.3%IACS以上とすることができる。
 耐熱性(上述の引張強さの残存率)、引張強さ、導電率などは、組成や製造条件を調整することで所定の大きさにすることができる。例えば、添加元素を多くすると、耐熱性や引張強さが高く、導電率が低くなる傾向にあり、添加元素を少なくすると、導電率が高く、耐熱性や引張強さが低くなる傾向にある。例えば、鋳造時の冷却速度を大きくすると(速くすると)、耐熱性や引張強さが高くなる傾向にある。例えば、加工度を大きくすると引張強さが高くなる傾向にある。
(大きさ)
 実施形態のAl合金線は、代表的には、製造過程で伸線加工度(減面率)などの加工度を調整することで、種々の線径とすることができる。用途(後述)に応じて、線径(断面積)を適宜選択できる。特に、実施形態のAl合金線の線径を1.5mm超とすることで、TACSRなどの耐熱架空送電線の導体に適する。TACSRの規格線径は、例えば、2.3mm以上5.0mm以下が挙げられる。なお、実施形態のAl合金線の代表的な形状としては、横断面形状が円形である丸線が挙げられる。
(用途)
 実施形態のAl合金線は、電線、特に架空送電線などの裸電線、配電線などの被覆電線といった電力供給に利用される電線の導体に利用できる。実施形態のAl合金線は、上述のように導電性及び耐熱性の双方に優れるため、耐熱性が望まれる用途の電線、代表的にはTACSRなどといった耐熱架空送電線の素線に好適に利用できる。
[架空送電線]
 実施形態の架空送電線1は、図1に示すように、実施形態のAl合金線12を複数撚り合せてなる撚線部2を備える。架空送電線1は、代表的には、複数の素線(図1ではAl合金線12及び後述の鋼線13)が同心撚りにされてなる同心撚線が挙げられる。架空送電線1の一例として、素線が全てAl合金線12である同心撚線が挙げられる。架空送電線1の別例として、図1に示すように、その中心部にテンションメンバ3を備え、テンションメンバ3の外周に複数のAl合金線12が撚り合わされてなる撚線部2を備える同心撚線が挙げられる。テンションメンバ3をなす素線は、裸鋼線、アルミニウム被覆鋼線、及び亜鉛めっき鋼線の少なくとも一種の鋼線13を含むことが挙げられる。撚線部2をなすAl合金線12の線径(1.5mm超)や素線数、テンションメンバ3をなす鋼線13などの素線の線径や素線数などは、所定の導体断面積、引張荷重などを有するように適宜選択することができる。
 テンションメンバ3を備えていない場合には、電線の外径又は断面積を一定とすれば、テンションメンバ3を備える場合に比較して、導体断面積を大きく確保できる。テンションメンバ3を備える場合には、テンションメンバ3を備えていない場合と比較して、引張荷重が大きいため、架線時の張力を高められる。架線時の張力を高められることで、電線の弛度(弛み)を小さくできる。弛度を小さくできるため、電線と地面、地面に建てられた任意の建造物との離隔距離を大きく確保できる。テンションメンバ3がアルミニウム被覆鋼線及び亜鉛めっき鋼線の少なくとも一方を含む場合には、Al合金線12と鋼線との間に、アルミニウム被覆や亜鉛めっきが介在するため、ガルバニック腐食によるAl合金線12の腐食劣化を抑制できる。
 実施形態の架空送電線1は、送電線路に利用できる。特に、実施形態の架空送電線1は、上述のように電気抵抗が低く、耐熱性にも優れるため、耐熱性に優れることが望まれる架空送電線路に好適に利用できる。
[主な効果]
 実施形態のAl合金線は、特定の組成のAl合金で構成されるため、従来よりも高い導電率を有しながら、従来と同等程度以上の耐熱性を有することができ、高い導電率と優れた耐熱性とをバランスよく備える。この効果を試験例1で具体的に説明する。
 実施形態の架空送電線1は、高い導電率と優れた耐熱性とをバランスよく備えるAl合金線12を備えるため、電気抵抗が低い上に耐熱性にも優れ、低い電気抵抗と優れた耐熱性とをバランスよく備える。この効果を試験例2で具体的に説明する。
[アルミニウム合金線の製造方法]
 実施形態のAl合金線は、例えば、以下の鋳造工程と、加工工程とを備える実施形態のアルミニウム合金線(Al合金線)の製造方法によって製造できる。この製造方法の概要を述べると、上述した特定の組成のAl合金を鋳造した後、鋳造材に塑性加工を施して線材を形成する。特に、鋳造時の冷却速度を特定の範囲の急冷とする。また、実施形態のAl合金線の製造方法は、鋳造以降、時効処理といった熱処理を別途施すことなく、高導電率で耐熱性にも優れる実施形態のAl合金線を製造でき、製造性にも優れる。
(鋳造工程)Siを0%以上0.03%以下、Feを0.05%以上0.25%以下、Zrを0.01%以上0.05%以下含有し、残部がAl及び不純物から構成されるアルミニウム合金を鋳造して鋳造材を製造する。
(加工工程)上記鋳造材に、圧延加工及び伸線加工の少なくとも一方を含む塑性加工を施して、線径が1.5mm超の線材を製造する。
 鋳造工程では、鋳造時の冷却速度を5℃/秒以上とする。
 以下、工程ごとに説明する。
(鋳造工程)
 この工程では、原料を用意して、特定の組成のAl合金の溶湯を作製し、この溶湯を鋳造に供する。特に、この鋳造時にZrとFeとをAlに固溶させて過飽和固溶体を形成するために、Si量を調整すると共に、冷却速度を上述のように大きくする。
 原料は、例えば、電気用アルミニウム地金(以下、Al地金と呼ぶ)と、Alと添加元素とを含む母合金、及び添加元素単体の少なくとも一方とが挙げられる。特に、Al地金として、不純物量が非常に少なく、Al純度が高いもの、例えばAlの含有量が99.65%超、更に99.9%以上、99.92%以上のものなどを利用すると、ZrやFe、Siの含有量を高精度に調整し易く、量産に適する。Al純度がある程度低いAl地金を用いる場合には、適宜、精錬などを行うと、上述の各添加元素の含有量を精度よく調整できるが、時間がかかるなど量産の点で劣る場合がある。
 鋳造時の冷却速度(ここでは、湯温から少なくとも400℃ぐらいまでの冷却速度)を5℃/秒以上の急冷とすることで、添加元素の固溶割合(特にFe)を多くできる。その結果、Zr,Feの含有量が上述の範囲でも、更には上述の範囲でより少なくしても、Zr及びFeの固溶による耐熱性の向上効果、強度の向上効果を良好に得られる。上記冷却速度が大きいほど(速いほど)、固溶状態を維持し易い。そのため、冷却速度は、6℃/秒以上、更に6.5℃/秒以上、7℃/sec以上が好ましい。冷却速度を上述のように調整すれば、鋳造方法は、特に問わない。量産する場合には、連続鋳造法を好適に利用できる。連続鋳造法は、ベルトアンドホイール法などの可動鋳型を用いる手法、固定鋳型を用いる手法など各種の方法が利用できる。
 また、上記冷却速度が大きいほど、微細な結晶組織を有する鋳造材が得られる。このような鋳造材を加工工程に供すると、得られた線材も微細な結晶組織を有し易い。
(加工工程)
 この工程は、上述のように添加元素を十分に固溶した鋳造材に塑性加工を施して、所定の線径の線材を製造する。特に、実施形態のAl合金線の製造方法では、この加工前、加工中、加工後のいずれにも時効処理を行わないため、固溶状態を維持し易く、加工硬化による強度の向上効果を得易い。また、添加元素の含有量が特定の範囲であるため、添加元素の固溶による導電率の低下を抑制できる。従って、導電率、耐熱性、強度に優れるAl合金線を生産性よく製造できる。また、Siの含有量が少ないことで、更にはZr及びFeの含有量も少なくすることで、粗大な化合物を形成し難く、粗大な化合物粒子に起因する断線なども低減し易く、上記Al合金線を生産性よく製造できる。
 加工工程で行う塑性加工は、圧延加工及び伸線加工の少なくとも一方を含む。また、この塑性加工は、熱間加工及び冷間加工の少なくとも一方を含むことが挙げられる。連続鋳造法を利用する場合、例えば、連続鋳造材に圧延加工、伸線加工を順に施し、この圧延加工を熱間加工、伸線加工を冷間加工とすることが挙げられる。連続鋳造に連続して熱間加工を行うと、鋳造材に残存する熱を利用して固溶状態を維持し易く、再加熱設備が不要であり、製造性にも優れる。例えば、ベルトアンドホイール式の連続鋳造機に圧延機が併設された、連続鋳造圧延装置を利用することが挙げられる。
 熱間圧延を行う場合、圧延温度が高いほど加工性に優れるものの、固溶元素が析出し易くなり、耐熱性の低下などを招き易い。上記圧延温度が低いほど、固溶状態を維持し易い上に、加工歪み量を大きくでき、強度を高め易い。高耐熱性や高強度などを望む場合には、例えば圧延開始温度を250℃以上550℃以下程度とすることが挙げられる。連続鋳造以外の鋳造法を利用する場合や、熱間加工以外の加工は、冷間加工とすると、固溶状態を維持し易い上に、加工歪み量を大きくでき、強度を高め易い。
 伸線加工を施す場合、鋳造材や上述の圧延加工が施された圧延材などに所定の最終線径となるまで、1パス以上の伸線加工を施す。この伸線加工は、冷間加工とすることができる。最終線径に応じて、パス数、1パスあたりの加工度、総加工度などを選択するとよい。得られた最終線径を有する線材(伸線材など)が、上述の実施形態のAl合金線となる。
 加工工程での加工度(減面率)、特に冷間加工を含む場合に冷間加工の加工度が大きいほど、加工歪み量を大きくでき、強度を高め易い。一方、加工度の増大に伴い、加工歪みによる導電率の低下、固溶元素の析出による耐熱性の低下を招き易い。例えば、冷間加工に供する素材(例、熱間加工材など)から、所定の最終線径(ここでは1.5mm超)を有する線材を製造する場合に、冷間加工開始時の線径を8mm以上15mm以下とすることが挙げられる。この場合、冷間加工の加工度を適切に確保して、加工硬化による強度向上効果を良好に得つつ、高い導電率と優れた耐熱性とをバランスよく備えるAl合金線を製造できる。冷間加工開始時の線径は、最終線径に応じて、9mm以上、更に10mm以上としたり、14mm以下、更に13mm以下としたりすることができる。
 実施形態のアルミニウム合金線の製造方法は、上述の電線の導体を構成するアルミニウム合金線の製造に利用できる。
[試験例1]
 種々の組成のアルミニウム合金線を以下のようにして作製し、特性を調べた。
 原料として、Al地金(99.9質量%以上Al)と、母合金(Zrを含むAl合金、Feを含むAl合金、Siを含むAl合金)とを用意して溶解して、Al合金の溶湯を作製した。Al合金の組成(残部はAl及び不可避不純物)を表1に示す。
 得られた溶湯を連続鋳造して鋳造材(ここでは3600mm)を作製した。連続鋳造時の冷却速度(℃/秒)を表1に示す。試料No.1-14,No.1-105,No.1-106は、他の試料に比較して、冷却水量が少なくなるように調整することで冷却速度を小さくした。この試験では、ベルトアンドホイール式の連続鋳造圧延装置を用いて、得られた鋳造材に連続して圧延加工(熱間圧延を含む)を施して、連続鋳造圧延材(ここではφ9.5mm)を作製した。得られた連続鋳造圧延材に伸線加工(冷間、減面率95.6%又は88.7%又は72.3%)を施し、表1に示す最終線径(2.0mm又は3.2mm又は5.0mm)の伸線材を得た。
 得られた伸線材について、導電率(%IACS)、室温での引張強さ(MPa)、耐熱性(%)を調べた。その結果を表1に示す。
 導電率は、直流4端子法で測定した。ここでは、市販の電気抵抗測定装置を用いた。測定は室温(ここでは20℃程度)で行い、標点距離GLを500mmとした。
 引張強さは、JIS Z 2241(金属材料引張試験方法、1998年)に準拠して、汎用の引張試験機を用いて測定した。測定は、室温(ここでは20℃程度)で行い、標点距離GLを100mmとした。
 耐熱性は、以下の引張強さの残存率(%)によって評価した。
 ここでは、各試料の伸線材を、電気炉を用いて230±1℃まで昇温して(昇温にかかる時間は20分以内とする)、230℃で1時間保持した後、室温(ここでは20℃程度)まで冷却し、上述の室温での引張強さの測定方法と同様にして、この加熱後の引張強さを測定した。そして、[上記加熱後の引張強さ/室温での引張強さ]×100(%)を残存率とした。この残存率が大きいほど、耐熱性に優れる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように試料No.1-1~No.1-14はいずれも、試料No.1-101,No.1-102と比較して、高い導電率と優れた耐熱性とをバランスよく備えることが分かる。定量的には、試料No.1-1~No.1-14はいずれも、導電率が61%IACS以上かつ耐熱性が90%以上を満たす。試料No.1-1~No.1-14のうち、多くの試料は、導電率が61%IACS以上かつ耐熱性が90.2%以上を満たし、90.5%以上、更に91.5%以上の試料も多い。また、試料No.1-1~No.1-14はいずれも、室温での強度にも優れることが分かる。定量的には、試料No.1-1~No.1-14はいずれも、耐熱アルミ合金電線 電気学会電気規格調査会標準規格 JEC-3406に規定される平均値(例えば、線径3.2mmの試料では172MPa)と同等以上の強度を有し、平均値+5MPa以上の試料、更に平均値+10MPa以上の試料もある。
 上記の結果が得られた理由の一つとして、試料No.1-1~No.1-14は、Zr及びFeの含有量が上述の特定の範囲であると共に、Siの含有量が0.03質量%以下、ここでは0.025質量%未満、更には0.024質量%以下、多くの試料が0.023質量%未満であることが挙げられる。
 また、この試験から、Siの含有量が0.03質量%以下の場合に、Fe及びZrを、特定の関係を満たす範囲で含有すると、耐熱性に優れることが分かる。図2は、試料No.1-1~No.1-11と、試料No.1-101~No.1-104について、和(5×Zr+Fe)と耐熱性との関係を示すグラフである。横軸は、Zrの含有量の5倍と、Feの含有量との和(5×Zr+Fe)(質量%)、左縦軸が耐熱性(%)を示す。試料No.1-1~No.1-11、及び試料No.1-101~No.1-104は、鋳造時の冷却速度が概ね等しく、線径が同じであり、製造条件が実質的に等しい試料である。
 図2のグラフに示すように、試料No.1-1~No.1-11の和(5×Zr+Fe)は、0.148質量%超の範囲、特に破線で示すように0.17質量%以上の範囲に存在することが分かる。従って、優れた耐熱性(90%以上)を有するには、Zr,Fe,Siの含有量が特定の範囲を満たすと共に、和(5×Zr+Fe)が0.17質量%以上を満たすことが好ましいことが示された。
 更に、この試験から、Siの含有量が0.03質量%以下の場合に、Fe,Zr,Siを、特定の関係を満たす範囲で含有すると、導電性に優れることが分かる。図3は、試料No.1-1~No.1-11,試料No.1-101~No.1-104について、和(5×Zr+Fe+2×Si)と、導電率との関係を示すグラフである。横軸は、Zrの含有量の5倍と、Feの含有量と、Siの含有量の2倍との和(5×Zr+Fe+2×Si)(質量%)、左縦軸が導電率(%IACS)を示す。
 和(5×Zr+Fe+2×Si)は、図2に示す和(5×Zr+Fe)を基本として、代入法によって求めた。具体的にはSiの係数をαとするときの和(5×Zr+Fe+α×Si)を仮定し、αを0.5ごとに代入して導電率との関係を求め、高い導電率(61%IACS以上)が得られる値を求めた。
 図3のグラフに示すように、試料No.1-1~No.1-11の和(5×Zr+Fe+2×Si)は、0.381質量%未満の範囲、特に破線で示すように0.34質量%以下の範囲に存在することが分かる。従って、高い導電率(61%IACS以上)を有するには、Zr,Fe,Siの含有量が特定の範囲を満たすと共に、和(5×Zr+Fe+2×Si)が0.34質量%以下を満たすことが好ましいことが示された。
 同一組成であり、鋳造時の冷却速度が異なる試料No.1-11,No.1-14と、試料No.1-105,No.1-106とを比較する。これらの比較から、上述のような高い導電率と優れた耐熱性とをバランスよく備えるアルミニウム合金線は、Al合金を上述の特定の組成とすると共に、鋳造時の冷却速度をより大きくすることで製造できることが分かる。定量的には上記冷却速度は5℃/秒以上、更に7℃/秒以上が好ましいといえる。
 同一組成であり、加工度が異なる試料No.1-11~No.1-13に着目する。これらの試料から、特に冷間加工の加工度(最終線径)を異ならせた場合でも、高い導電率と優れた耐熱性とをバランスよく備えるアルミニウム合金線を製造できることが分かる。また、これらの試料から、伸線加工度が大きいほど(線径が小さいほど)強度に優れ、伸線加工度が小さいほど(線径が大きいほど)耐熱性に優れる傾向にあることが分かる。
 その他、この試験から、耐熱性に関して以下のことがいえる。
(1)Zrを0.019質量%以上、かつFeを0.11質量%以上含むと、耐熱性が93%以上であり、耐熱性により優れる(試料No.1-1~No.1-3,No.1-6,No.1-10)。
(2)Zrが0.05質量%以下の範囲で多ければ、Feがある程度少ない場合でも、耐熱性に優れる(試料No.1-7)。
(3)Feが0.25質量%以下の範囲で多ければ、Zrがある程度少ない場合でも、耐熱性に優れる(試料No.1-8)。
 [試験例2]
 試験例1で作製したAl合金線を複数撚り合せて撚線を作製し、特性を調べた。
 この試験では、線径3.2mmのAl合金線(試料No.1-1~No.1-11,No.1-14,No.1-101~No.1-106)を用意して、導体断面積が異なる以下の撚線a~撚線cを作製した。
 撚線aは、導体断面積が300mmであり、耐熱アルミニウム合金撚線(TAl)を想定したものである。撚線aは、線径3.2mmのAl合金線を37本用いて同心撚りにした同心撚線である。
 撚線bは、導体断面積が240mmであり、中心部にテンションメンバを備え、その外周にAl合金線の撚線部を備えるTACSRを想定したものである。テンションメンバは、線径3.2mmの亜鉛めっき鋼線を7本用いて同心撚りにした同心撚線である。撚線bは、線径3.2mmのAl合金線を合計30本用いて、上記テンションメンバの外周にAl合金線を撚り合せてなるものである(図1も参照)。
 撚線cは、撚線bにおけるテンションメンバの素線をアルミニウム被覆鋼線としたものである。
 得られた撚線a~撚線cについて、電気抵抗(Ω/km)、室温での引張荷重(kN)、耐熱性(kN)を調べた。撚線a~撚線cの測定結果をそれぞれ表2~表4に示す。
 電気抵抗(Ω/km)は、4端子法によって測定した。測定は、室温(ここでは20℃)で行い、標点距離GLを1mとした。
 引張荷重(kN)は、耐熱アルミ合金電線 電気学会電気規格調査会標準規格 JEC-3404に準拠して測定した。
 耐熱性は、以下の加熱後の引張荷重(kN)によって評価した。
 ここでは、各試料の撚線a~撚線cを、試験例1と同様にして、230℃で1時間保持した後、室温(ここでは20℃程度)まで冷却する。冷却後に、各試料の引張荷重を上述のJEC-3404に準拠して測定した。この加熱後の引張荷重が大きいほど、耐熱性に優れる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~表4に示すように、試料No.1-1~No.1-12,No.1-14,No.2-1~No.2-12,No.2-14,No.3-1~No.3-12,No.3-14の撚線(以下、撚線a~c試料群と呼ぶ)は、試料No.1-101~No.1-106,No.2-101~No.2-106,No.3-101~No.3-106の撚線とそれぞれ比較して、低い電気抵抗と高い引張荷重及び優れた耐熱性とをバランスよく備えることが分かる。
 定量的には、撚線a試料群は、表2に示すように、電気抵抗が0.0968Ω/km以下であり、室温での引張荷重が46.7kN以上であり、230℃×1hの加熱後の引張荷重が42.8kN以上である。撚線a試料群は、初期の引張荷重(室温の引張荷重)に対する上記加熱後の引張荷重の残存率が90%以上、更に91%以上、91.5%以上であり、耐熱性に優れることが分かる。
 撚線b試料群は、表3に示すように、電気抵抗が0.116Ω/km以下であり、室温での引張荷重が104.7kN以上であり、230℃×1hの加熱後の引張荷重が101.5kN以上である。撚線b試料群は、上述の引張荷重の残存率が95%以上、更に96%以上、96.5%以上であり、耐熱性に優れることが分かる。
 撚線c試料群は、表4に示すように、電気抵抗が0.110Ω/km以下あり、室温での引張荷重が104.7kN以上であり、230℃×1hの加熱後の引張荷重が101.2kN以上である。撚線c試料群は、上述の引張荷重の残存率が95%以上、更に96%以上、96.5%以上であり、耐熱性に優れることが分かる。
 このような結果が得られた理由として、撚線a~c試料群は、導電率が高く、室温での引張強さも高く、更に耐熱性にも優れる試料No.1-1~No.1-12,No.1-14のAl合金線を備えるためと考えられる。
 その他、この試験から、以下のことが分かる。
(1)撚線a試料群は、撚線b,c試料群よりも導体断面積が大きいため、電気抵抗がより低い。
(2)撚線b,c試料群は、テンションメンバを備えるため、撚線a試料群よりも、室温及び上述の加熱後の引張荷重が大きく、高強度である。
(3)撚線c試料群は、アルミニウム被覆鋼線を備えるため、撚線b試料群よりも電気抵抗がより低い。
 試験例1,2によって、Si,Fe,Znを特定の範囲で含有する特定の組成のアルミニウム合金からなるアルミニウム合金線は、高い導電率と優れた耐熱性とを両立することができることが示された。また、このアルミニウム合金線を素線とする架空送電線は、低い電気抵抗と優れた耐熱性とを両立できることが示された。
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、試験例1のアルミニウム合金の組成や線径、鋳造時の冷却速度などの製造条件、試験例2の撚線に用いる素線の組成や線径、素線数などを適宜変更することができる。
 1 架空送電線
 2 撚線部
 3 テンションメンバ
 12 アルミニウム合金線(Al合金線)
 13 鋼線

Claims (12)

  1.  Siを0質量%以上0.03質量%以下、
     Feを0.05質量%以上0.25質量%以下、
     Zrを0.01質量%以上0.05質量%以下含有し、
     残部がAl及び不純物から構成され、
     線径が1.5mm超であるアルミニウム合金線。
  2.  Zrの含有量の5倍と、Feの含有量との和(5×Zr+Fe)が0.17質量%以上である請求項1に記載のアルミニウム合金線。
  3.  Zrの含有量の5倍と、Feの含有量と、Siの含有量の2倍との和(5×Zr+Fe+2×Si)が0.34質量%以下である請求項1又は請求項2に記載のアルミニウム合金線。
  4.  室温での導電率が61%IACS以上である請求項1から請求項3のいずれか1項に記載のアルミニウム合金線。
  5.  230℃で1時間加熱後の引張強さの残存率が90%以上である請求項1から請求項4のいずれか1項に記載のアルミニウム合金線。
  6.  室温での引張強さが耐熱アルミ合金電線 電気学会電気規格調査会標準規格 JEC-3406において、径ごとに規定される平均の引張強さ以上である請求項1から請求項5のいずれか1項に記載のアルミニウム合金線。
  7.  Siを0.01質量%以上含有する請求項1から請求項6のいずれか1項に記載のアルミニウム合金線。
  8.  請求項1から請求項7のいずれか1項に記載のアルミニウム合金線が複数撚り合わされてなる撚線部を含む架空送電線。
  9.  鋼線を含むテンションメンバと、前記テンションメンバの外周に複数の前記アルミニウム合金線が撚り合わされてなる前記撚線部とを備える架空送電線。
  10.  前記テンションメンバは、アルミニウム被覆鋼線及び亜鉛めっき鋼線の少なくとも一方を含む請求項9に記載の架空送電線。
  11.  Siを0質量%以上0.03質量%以下、Feを0.05質量%以上0.25質量%以下、Zrを0.01質量%以上0.05質量%以下含有し、残部がAl及び不純物から構成されるアルミニウム合金を鋳造して鋳造材を製造する鋳造工程と、
     前記鋳造材に、圧延加工及び伸線加工の少なくとも一方を含む塑性加工を施して、線径が1.5mm超の線材を製造する加工工程とを備え、
     前記鋳造工程では、鋳造時の冷却速度を5℃/秒以上とするアルミニウム合金線の製造方法。
  12.  前記加工工程では、冷間加工を含み、前記冷間加工開始時の素材の線径を8mm以上15mm以下とする請求項11に記載のアルミニウム合金線の製造方法。
PCT/JP2017/035068 2016-09-30 2017-09-27 アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法 WO2018062322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018542809A JP7080174B2 (ja) 2016-09-30 2017-09-27 アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法
KR1020197008526A KR102546527B1 (ko) 2016-09-30 2017-09-27 알루미늄 합금선, 가공 송전선 및 알루미늄 합금선의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193970 2016-09-30
JP2016-193970 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062322A1 true WO2018062322A1 (ja) 2018-04-05

Family

ID=61763477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035068 WO2018062322A1 (ja) 2016-09-30 2017-09-27 アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法

Country Status (3)

Country Link
JP (1) JP7080174B2 (ja)
KR (1) KR102546527B1 (ja)
WO (1) WO2018062322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398315B2 (ja) 2020-03-30 2023-12-14 電源開発株式会社 アルミニウム合金線および電線

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016290B1 (ja) * 1970-12-03 1975-06-12
JPS5964753A (ja) * 1982-09-30 1984-04-12 Dainichi Nippon Cables Ltd 導電用耐熱アルミニウム合金線の製造方法
JPS59110770A (ja) * 1982-12-16 1984-06-26 Dainichi Nippon Cables Ltd 導電用耐熱アルミニウム合金線の製造方法
JPS59226156A (ja) * 1983-06-03 1984-12-19 Sumitomo Electric Ind Ltd 導電用耐熱アルミ合金の製造方法
JPS634621B2 (ja) * 1983-02-25 1988-01-29 Sumitomo Electric Industries
JP2001084838A (ja) * 1999-09-14 2001-03-30 Fujikura Ltd 送電線
JP2006004757A (ja) * 2004-06-17 2006-01-05 Furukawa Electric Co Ltd:The アルミ導電線
JP2013076168A (ja) * 2011-04-11 2013-04-25 Sumitomo Electric Ind Ltd アルミニウム合金線、アルミニウム合金撚り線、被覆電線、及びワイヤーハーネス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018256A (ja) * 1983-07-12 1985-01-30 Furukawa Electric Co Ltd:The 耐クリ−プ性Al合金導体の製造法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016290B1 (ja) * 1970-12-03 1975-06-12
JPS5964753A (ja) * 1982-09-30 1984-04-12 Dainichi Nippon Cables Ltd 導電用耐熱アルミニウム合金線の製造方法
JPS59110770A (ja) * 1982-12-16 1984-06-26 Dainichi Nippon Cables Ltd 導電用耐熱アルミニウム合金線の製造方法
JPS634621B2 (ja) * 1983-02-25 1988-01-29 Sumitomo Electric Industries
JPS59226156A (ja) * 1983-06-03 1984-12-19 Sumitomo Electric Ind Ltd 導電用耐熱アルミ合金の製造方法
JP2001084838A (ja) * 1999-09-14 2001-03-30 Fujikura Ltd 送電線
JP2006004757A (ja) * 2004-06-17 2006-01-05 Furukawa Electric Co Ltd:The アルミ導電線
JP2013076168A (ja) * 2011-04-11 2013-04-25 Sumitomo Electric Ind Ltd アルミニウム合金線、アルミニウム合金撚り線、被覆電線、及びワイヤーハーネス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398315B2 (ja) 2020-03-30 2023-12-14 電源開発株式会社 アルミニウム合金線および電線

Also Published As

Publication number Publication date
KR102546527B1 (ko) 2023-06-22
JPWO2018062322A1 (ja) 2019-07-11
JP7080174B2 (ja) 2022-06-03
KR20190062409A (ko) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6328805B2 (ja) 自動車用アルミ電線
WO2016047617A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6782167B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
JP5247584B2 (ja) Al合金及びAl合金導電線
JP6534809B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材およびアルミニウム合金撚線の製造方法
KR101982913B1 (ko) 알루미늄 합금 도체선, 알루미늄 합금 연선, 피복 전선, 와이어 하니스 및 알루미늄 합금 도체선의 제조 방법
WO2011105584A1 (ja) アルミニウム合金導体
JPWO2015133004A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法およびアルミニウム合金線材の測定方法
KR20150080011A (ko) 알루미늄 합금선 및 그것을 이용한 알루미늄 합금 연선, 피복 전선, 와이어 하네스
WO2016199564A1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
WO2011105585A1 (ja) アルミニウム合金導体
JP7137758B2 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
JP2015096645A (ja) アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
WO2016170992A1 (ja) 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス
JP2012001813A (ja) アルミニウム合金導体電線及びその製造方法
JP5228118B2 (ja) アルミニウム合金導体の製造方法
CN107849670B (zh) 铝合金线的制造方法及铝合金线
WO2018062322A1 (ja) アルミニウム合金線、架空送電線、及びアルミニウム合金線の製造方法
WO2019111468A1 (ja) アルミニウム合金線の製造方法、これを用いた電線の製造方法及びワイヤハーネスの製造方法
JP6635732B2 (ja) アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
CN106636784A (zh) 导电率为59%的中强度铝合金线的制造方法
JP2018154916A (ja) アルミニウム合金線の製造方法、これを用いた電線の製造方法及びワイヤハーネスの製造方法
CN106507679A (zh) 电线或电缆、线束以及制造铝合金股线的方法
WO2019189002A1 (ja) アルミニウム合金、及びアルミニウム合金線
KR20170061900A (ko) 가공송전선용 알루미늄 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542809

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008526

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856271

Country of ref document: EP

Kind code of ref document: A1