WO2018062197A1 - 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2018062197A1
WO2018062197A1 PCT/JP2017/034779 JP2017034779W WO2018062197A1 WO 2018062197 A1 WO2018062197 A1 WO 2018062197A1 JP 2017034779 W JP2017034779 W JP 2017034779W WO 2018062197 A1 WO2018062197 A1 WO 2018062197A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
organic group
group
aligning agent
Prior art date
Application number
PCT/JP2017/034779
Other languages
English (en)
French (fr)
Inventor
早紀 相馬
佳道 森本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780073289.1A priority Critical patent/CN110036337B/zh
Priority to KR1020197011737A priority patent/KR102369136B1/ko
Priority to JP2018542603A priority patent/JP7107221B2/ja
Publication of WO2018062197A1 publication Critical patent/WO2018062197A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/335Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to a liquid crystal aligning agent using a novel polymer, a liquid crystal aligning film, and a liquid crystal display element using the same.
  • Liquid crystal display elements are widely used as display units for personal computers, mobile phones, smartphones, televisions and the like.
  • the liquid crystal display element includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the alignment of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) for switching an electric signal supplied to the pixel electrode is provided.
  • TFT thin film transistor
  • As a driving method of liquid crystal molecules a vertical electric field method such as a TN method and a VA method, and a horizontal electric field method such as an IPS method and an FFS method are known.
  • the horizontal electric field method in which an electrode is formed only on one side of the substrate and an electric field is applied in a direction parallel to the substrate is wider than the vertical electric field method in which voltage is applied to the electrodes formed on the upper and lower substrates to drive the liquid crystal. It is known as a liquid crystal display element having viewing angle characteristics and capable of high-quality display.
  • the horizontal electric field type liquid crystal cell is excellent in viewing angle characteristics, since there are few electrode portions formed in the substrate, if the voltage holding ratio is low, a sufficient voltage is not applied to the liquid crystal and the display contrast is lowered. Further, if the stability of the liquid crystal alignment is small, the liquid crystal does not return to the initial state when the liquid crystal is driven for a long time, which causes a decrease in contrast and an afterimage. Therefore, the stability of the liquid crystal alignment is important. Furthermore, static electricity is likely to be accumulated in the liquid crystal cell, and charges are accumulated in the liquid crystal cell even when a positive / negative asymmetric voltage generated by driving is applied, and these accumulated charges affect the display as a disorder of liquid crystal alignment or an afterimage. The display quality of the liquid crystal element is significantly reduced. In addition, charges are accumulated by irradiating the liquid crystal cell with backlight light immediately after driving, and afterimages are generated even during short-time driving, and the size of flicker (flicker) changes during driving. It will occur.
  • Patent Document 1 contains a specific diamine and an aliphatic tetracarboxylic acid derivative as a liquid crystal aligning agent that has excellent voltage holding ratio and reduced charge accumulation when used in such a horizontal electric field type liquid crystal display element.
  • a liquid crystal aligning agent is disclosed.
  • the characteristics required for the liquid crystal alignment film are becoming stricter, and it is difficult to sufficiently satisfy all the required characteristics with these conventional techniques.
  • the present invention provides a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can obtain a liquid crystal aligning film that has an excellent voltage holding ratio, quickly reduces accumulated charges, and is less likely to flicker during driving. This is the issue.
  • the present invention is based on this finding and has the following gist.
  • the liquid crystal aligning agent characterized by including the polymer obtained from the diamine which has a structure represented by following formula (1), and an organic solvent.
  • R 1 and R 2 are a hydrogen atom or a monovalent organic group. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group. Represents the binding site.
  • the polymer is at least one selected from the group consisting of a polyimide precursor which is a polycondensate of a diamine having a structure represented by the formula (1) and a tetracarboxylic dianhydride and a polyimide which is an imidized product thereof. 2.
  • the liquid crystal aligning agent according to 1 above which is a seed polymer. 3.
  • equation (2) (In the formula (2), the definition of R 1 and R 2 are the same as those in formula (1), R 3 represents a structure of each independently a single bond or the following formula (3), n is 1 Represents an integer of 3 to 3. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • R 4 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and —
  • * 1 represents a site bonded to the benzene ring in formula (2)
  • * 2 represents formula (2 It represents the site that binds to the amino group in 4).
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine represented by Formula (1)
  • R 5 Is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • X 1 is at least one selected from the group consisting of the structures represented by the following (A-1) to (A-21). 6).
  • the liquid crystal aligning agent according to 4 or 5 wherein the polymer having the structural unit represented by the formula (4) is contained in an amount of 10 mol% or more based on the total polymer contained in the liquid crystal aligning agent. 7). 7.
  • liquid crystal aligning agent according to any one of 1 to 6, wherein the organic solvent contains at least one selected from the group consisting of 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether. 8).
  • a liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of 1 to 7.
  • a liquid crystal display device comprising the liquid crystal alignment film as described in 8 above.
  • At least 1 type of polymer chosen from the group which consists of the polyimide precursor which is a polycondensate of the diamine which has a structure represented by following formula (1), and tetracarboxylic dianhydride, and the polyimide which is the imidation thing.
  • R 1 and R 2 are a hydrogen atom or a monovalent organic group. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group. Represents the binding site.
  • 12 The polymer according to 11 above, wherein the diamine is represented by the following formula (2).
  • R 3 has the structure represented by each independently a single bond or the following formula (3) , N represents an integer of 1 to 3. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • R 4 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and —
  • * 1 represents a site bonded to the benzene ring in formula (2)
  • * 2 represents formula (2 It represents the site that binds to the amino group in (In Formula (4), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, Y 1 is a divalent organic group derived from a diamine represented by Formula (1), and R 5 Is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.) 14 14.
  • X 1 is at least one selected from the group consisting of the structures represented by the following (A-1) to (A-21). 15. Diamine represented by following formula (2).
  • R 1 and R 2 are the same as those in formula (1), R 3 has the structure represented by each independently a single bond or the following formula (3) , N represents an integer of 1 to 3. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • liquid crystal aligning agent of the present invention a liquid crystal aligning film in which accumulated charge is quickly relaxed and flicker (flicker) hardly occurs during driving, and a liquid crystal display element excellent in display characteristics are provided.
  • the diamine represented by the above (1) contained in the polymer contained in the liquid crystal aligning agent of the present invention has a structure in which a conductive pyrrole ring and a benzene ring are conjugated, and is formed by such a liquid crystal aligning agent. This is probably because the liquid crystal alignment film facilitates the movement of the charge applied when the element is driven and promotes the relaxation of the accumulated charge.
  • the liquid crystal aligning agent of this invention contains the polymer obtained from the diamine (it is also called specific diamine in this invention) which has a structure of following formula (1).
  • R 1 and R 2 are as defined above. Among them, R 1 and R 2 are preferably an alkyl group, an alkenyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkenyl group, or a fluoroalkoxy group having 1 to 3 carbon atoms, particularly a hydrogen atom or a methyl group. Is preferred. Moreover, * represents the site
  • the bonding position of the two benzene rings to the pyrrole ring is from the point of charge transfer, and at least one of them is next to the nitrogen atom on the pyrrole ring. It is preferably bonded to a carbon atom.
  • the specific diamine can be represented by, for example, the following formula (1-2), particularly preferably a diamine represented by the following formula (1-3), and further represented by the formula (1-4). Diamine is more preferred. In these formulas, * represents a binding site.
  • R 1 and R 2 are the same as in the formula (1), and Q 1 and Q 2 are each independently a single bond or It is a divalent organic group, that is, Q 1 and Q 2 may have different structures. Further, the two Q 2 in the formula (1-4) may have different structures. Furthermore, any hydrogen atom of the benzene ring may be substituted with a monovalent organic group as in the case of the above formula (1).
  • Preferable examples of the specific diamine include diamines represented by the following formula (2), more preferably diamines represented by the formula (2-1).
  • R 1 and R 2 are the same as those in the above formula (1), each R 3 independently represents a single bond or the structure of the following formula (3), and n is 1 to An integer of 3 is represented. Any hydrogen atom in the benzene ring may be substituted with a monovalent organic group.
  • R 4 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and —
  • * 1 represents a site bonded to the benzene ring in formula (2)
  • * 2 represents formula (2 It represents the site that binds to the amino group in In Formula (2) and Formula (2-1)
  • n represents an integer of 1 to 3. Preferably it is 1 or 2.
  • diamine of the above formula (2) examples include the following, but are not limited thereto. Of these, (2-1-1), (2-1-2), (2-1-3), (2-1-4), (2-1-5) from the viewpoint of relaxation of accumulated charges , (2-1-8), (2-1-9), (2-1-10), (2-1-11) or (2-1-12) are preferred, (2-1-1) , (2-1-2), (2-1-3), (2-1-4), (2-1-5), (2-1-11) or (2-1-12) preferable.
  • the method for synthesizing the specific diamine of the present invention is not particularly limited, and examples thereof include a method of synthesizing a dinitro compound represented by the following formula (1) and further reducing the nitro group to convert it to an amino group. .
  • R 1 , R 2 and R 3 represent hydrogen or a monovalent organic group.
  • the catalyst used in such a reduction reaction is preferably an activated carbon-supported metal available as a commercial product, and examples thereof include palladium-activated carbon, platinum-activated carbon, and rhodium-activated carbon.
  • the catalyst may not necessarily be an activated carbon-supported metal catalyst such as palladium hydroxide, platinum oxide or Raney nickel.
  • palladium-activated carbon is preferable because good results can be obtained.
  • the reaction may be carried out in the presence of activated carbon.
  • the amount of the activated carbon to be used is not particularly limited, but is preferably in the range of 1 to 30% by mass, more preferably 10 to 20% by mass with respect to the dinitro compound.
  • the reaction may be carried out under pressure.
  • it in order to avoid reduction of the benzene nucleus, it is preferably carried out in a pressure range up to 20 atm, more preferably in a pressure range up to 10 atm.
  • a solvent does not react with each raw material, it can be used without a restriction
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
  • aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc.
  • aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane) Etc.
  • lower fatty acid esters methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.
  • the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent.
  • the amount of the solvent used (reaction concentration) is preferably 0.1 to 10 times, more preferably 0.5 to 30 times, and particularly preferably 1 to 10 times the weight of the dinitro compound.
  • the reaction temperature is not particularly limited, but it is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably ⁇ 50 to 150 ° C.
  • the reaction time is usually 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • the method for synthesizing the nitro compound (A-1) is not particularly limited.
  • the substitution positions of the amino group of the compound (A-1) are the 2nd and 4th positions, for example, the following formula (A- 2) can be obtained by reacting the diamine represented by 2) with an aryl halide having a nitro group in the presence of a base, and optionally in the presence of an additive (X is F, Cl, Br, I, Or represents OTf.)
  • aryl halide and aliphatic group in the presence of a base A compound (A-1) can be obtained by reacting with an amine compound.
  • Examples of the base used include inorganic bases such as sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropyl Amines such as ethylamine, pyridine, quinoline, collidine, sodium hydride, potassium hydride and the like can be used.
  • the reaction solvent and reaction temperature are as described above.
  • the product may be purified by recrystallization, distillation, silica gel column chromatography or the like.
  • the NO 2 group may be 2-position, 3-position or 4-position relative to X, and a CN cross-coupling reaction should be used in the presence of an appropriate metal catalyst, ligand, or base.
  • metal catalysts include palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, bis (benzo Nitrile) dichloropalladium, CuCl, CuBr, CuI, CuCN, etc., but are not limited thereto.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, tri-tert-butylphosphine, etc.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • the product may be purified by recrystallization, distillation, silica gel column chromatography or the like.
  • the method for synthesizing the compound (A-2) is not particularly limited.
  • a diamine represented by the following formula (A-3) is synthesized, and R 1 and R 3 are introduced into the NH 2 group.
  • the method of doing is mentioned.
  • any compound that can react with amines may be used.
  • alcohols in which the hydroxyl group of alcohol is substituted with a leaving group such as OMs, OTf, OTs, or the like can be used.
  • the method for introducing a monovalent organic group composed of R 1 and R 3 into the NH 2 group is not particularly limited, and examples thereof include a method of reacting an acid halide in the presence of a suitable base.
  • acid halides include acetyl chloride, propionic acid chloride, methyl chloroformate, ethyl chloroformate, n-propyl chloroformate, i-propyl chloroformate, n-butyl chloroformate, i-butyl chloroformate, t-chloroformate.
  • Examples include butyl, benzyl chloroformate, and 9-fluorenyl chloroformate.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • the NH 2 group may be reacted with an acid anhydride to introduce R 1 and R 3 .
  • acid anhydrides include acetic anhydride, propionic anhydride, dimethyl dicarbonate, diethyl dicarbonate, di-tertiary butyl dicarbonate, dibenzyl dicarbonate, and the like.
  • a catalyst may be used to promote the reaction, and pyridine, collidine, N, N-dimethyl-4-aminopyridine and the like may be used. The amount of the catalyst is preferably 0.0001 to 1 mol with respect to the amount of (A-3) used.
  • the reaction solvent and reaction temperature are the same as described above.
  • R 1 may be introduced by reacting an isocyanate with the NH 2 group.
  • isocyanates include methyl isocyanate, ethyl isocyanate, n-propyl isocyanate, phenyl isocyanate and the like.
  • the reaction solvent and reaction temperature are the same as described above.
  • R 1 and R 3 may be introduced by reacting an NH 2 group with an epoxy compound or an oxetane compound.
  • epoxies and oxetanes include ethylene oxide, propylene oxide, 1,2-butylene oxide, trimethylene oxide, and the like.
  • the reaction solvent and reaction temperature are the same as described above.
  • R 1 and R 3 may be introduced by reacting an alcohol in which the hydroxyl group of the alcohol is substituted with a leaving group such as OMs, OTf, and OTs in the presence of a suitable base in the NH 2 group.
  • alcohols examples include methanol, ethanol, 1-propanol, etc., and by reacting these alcohols with methanesulfonyl chloride, trifluoromethanesulfonyl chloride, paratoluenesulfonic acid chloride, etc., OMs, OTf , Alcohols substituted with leaving groups such as OTs can be obtained.
  • the base the aforementioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • R 1 and R 3 may be introduced by reacting an alkyl halide with NH 2 group in the presence of a suitable base.
  • alkyl halides include methyl iodide, ethyl iodide, n-propyl iodide, methyl bromide, ethyl bromide, n-propyl bromide and the like.
  • base include metal alkoxides such as potassium tert-butoxide and sodium tert-butoxide in addition to the above-mentioned bases.
  • the reaction solvent and reaction temperature are the same as described above.
  • the method for synthesizing the compound (A-3) is not particularly limited, but a nitro compound represented by the following formula (4) is synthesized, and the nitro group of the nitro compound is further reduced to be converted to an amino group.
  • the method of doing can be mentioned.
  • the catalyst, solvent, and temperature used in the reaction are the same as described above.
  • the method for synthesizing the compound (A-4) is not particularly limited, but the 1,4-diketone compound (A-5) represented by the following formula (5) and the primary amine are dehydrated under acidic conditions. It can be synthesized by condensation.
  • the acid used in the reaction may include, but are not limited to, acetic acid, p-toluenesulfonic acid, pyridinium p-toluenesulfonate, and the like.
  • the reaction solvent and reaction temperature are the same as described above.
  • the method for synthesizing compound (A-5) is not particularly limited, but an ⁇ -haloketone having a nitro group represented by the following formula (6) and a ketone having a nitro group are reacted in the presence of a base.
  • X represents Br, I, or OTf.
  • the above-mentioned bases can be used.
  • the reaction solvent and reaction temperature are the same as described above.
  • Additives can be used to accelerate the reaction rate.
  • the additive include zinc chloride, sodium iodide, potassium iodide, tetrabutylammonium iodide, and the like, but are not limited thereto.
  • the polymer of the present invention is a polymer obtained using the specific diamine.
  • Specific examples include polyamic acid, polyamic acid ester, polyimide, polyurea, polyamide and the like.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a specific diamine.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 5 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of easy imidization by heating.
  • Said X 1 is coatability solubility and liquid crystal alignment agent in the solvent of the polymer liquid crystal orientation in the case where the liquid crystal alignment film, the voltage holding ratio, such stored charge, depending on the degree of the properties required May be appropriately selected, and two or more kinds may be included in the same polymer.
  • Specific examples of X 1 include the structures of formulas (X-1) to (X-46) and the like, which are described on pages 13 to 14 of International Publication No. 2015/119168.
  • (A-1) and (A-2) are particularly preferable from the viewpoint of further improving the rubbing resistance, and (A-4) is particularly preferable from the viewpoint of further improving the rate of relaxation of the accumulated charge.
  • (A-15) to (A-17) are particularly preferred from the viewpoint of further improving the liquid crystal orientation and the rate of relaxation of the accumulated charges.
  • the polyimide precursor may have a structural unit represented by the following formula (5) in addition to the structural unit represented by the formula (4).
  • X 2 is as defined in the formula (4). Specific examples of X 2 include those exemplified for X 1 in formula (4), including preferred examples.
  • R 4 has the same definition as in formula (4). At least one of the two R 4 is preferably a hydrogen atom.
  • Y 2 is a divalent organic group derived from a diamine that does not include the structure represented by the above formula (1) in the main chain direction, and the structure is not particularly limited. Y 2 is appropriately selected according to the degree of required properties such as the solubility of the polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when the liquid crystal alignment film is used, the voltage holding ratio, and the accumulated charge. Two or more types may be mixed in the same polymer.
  • (B-28), (B-29) and the like are particularly preferable from the viewpoint of further improving the rubbing resistance, and (B-1) to (B-3) and the like are liquid crystal alignment properties.
  • (B-14) to (B-18) and (B-27) are particularly preferable from the viewpoint of further improving the relaxation rate of the accumulated charge, and (B-26) and the like. Is preferable from the viewpoint of further improving the voltage holding ratio.
  • the structural unit represented by the formula (4) is represented by the formula (4).
  • 10 mol% or more with respect to the total of the formula (5) more preferably 20 mol% or more, and particularly preferably 30 mol% or more.
  • the molecular weight of the polyimide precursor used in the present invention is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. is there.
  • the polyimide of the specific polymer is obtained by ring-closing the polyimide precursor represented by formula (4) or formula (5).
  • the imidation ratio is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • a known method can be used as a method for imidizing the polyimide precursor.
  • Chemical imidization in which a basic catalyst is added to the polyimide precursor solution is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyimide precursor in the presence of a basic catalyst in an organic solvent.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be preferably 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
  • the imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
  • the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. It is preferable to use the liquid crystal aligning agent of the invention. That is, the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyimide powder.
  • liquid crystal aligning agent of this invention contains a specific polymer, in the limit which has an effect as described in this invention, you may contain 2 or more types of specific polymers of a different structure. In addition to the specific polymer, other polymers may be contained. Other polymer types include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or derivatives thereof, poly (styrene-phenylmaleimide) derivative, poly (meta ) Acrylate and the like. Moreover, the polyimide etc.
  • the liquid crystal aligning agent of the present invention contains other polymers, the ratio of the specific polymer to the total polymer components is preferably 5% by mass or more, more preferably 5 to 95% by mass.
  • the liquid crystal aligning agent is used for producing a liquid crystal aligning film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is a coating liquid containing an above-described polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl.
  • -Imidazolidinone methyl ethyl ketone, cyclohexanone, cyclopentanone and the like.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferable.
  • the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents.
  • a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are listed below, but are not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether or Dipropylene glycol dimethyl ether is preferred.
  • the kind and content of such a solvent are suitably selected according to the application device, application conditions, application environment, etc. of the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and the liquid crystal alignment.
  • additional components include dielectrics and conductive materials for adjusting the dielectric constant and electric resistance of the film. Specific examples of these additional components are as disclosed in various known literatures relating to liquid crystal alignment agents. For example, International Publication No. 2015/060357, pages 53 [0105] to 55 [ [0116] and the like.
  • the liquid crystal aligning film of the present invention is obtained from the liquid crystal aligning agent of the present invention. If an example of the method of obtaining a liquid crystal aligning film from a liquid crystal aligning agent is given, a liquid crystal aligning agent in the form of a coating solution is applied to a substrate, dried and baked on a film obtained by rubbing or photo-aligning. And a method of performing an alignment treatment.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque object such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like.
  • a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film of an FFS mode liquid crystal display element.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal cell is used as an element.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystals are disposed at predetermined positions on the liquid crystal alignment film surface.
  • the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and then the liquid crystal is spread over the entire surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material.
  • a liquid crystal cell is obtained.
  • an opening that can be filled with liquid crystal from the outside is provided when a sealing material is disposed at a predetermined location on one substrate.
  • a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
  • liquid crystal material examples include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal aligning agent of the present invention is used, and may be manufactured by other known methods. good. The process from the liquid crystal aligning agent to obtaining the liquid crystal display element is disclosed in, for example, paragraph 17 of page 17 to paragraph 0081 of page 19 of Japanese Unexamined Patent Publication No. 2015-135393.
  • Boc and Fmoc represent groups represented by the following, and Me represents a methyl group.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Zinc chloride (120.3 g, 882 mmol) was added to a 3 L (liter) four-necked flask, and the temperature was raised to 100 ° C., followed by vacuum drying for 1 hour with an oil pump. Then, at room temperature under nitrogen atmosphere, toluene (460 g), diethylamine (45.0 g, 615 mmol), t-butanol (46.4 g, 626 mmol), 2-bromo-4-nitroacetophenone (100.0 g, 410 mmol), And 4-nitroacetophenone (104.2 g, 631 mmol) were sequentially added, and the mixture was stirred at room temperature for 3 days.
  • N-methylpyrrolidone (200 g), pure water (30 g), and potassium hydroxide (20.8 g, 315 mmol) were added to the obtained solid, and the mixture was stirred at 60 ° C. for 30 minutes.
  • HPLC high performance liquid chromatography
  • the reaction solution was added to cold water (1200 g) and stirred for 1 hour.
  • the precipitated crystals were filtered under reduced pressure, washed with 2-propanol (100 g), and then dried to obtain powder crystals (5) (yield 22.9 g, yield 76%).
  • a glass substrate with an electrode having a size of 30 mm length ⁇ 35 mm width and a thickness of 0.7 mm was prepared.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of “U” -shaped electrode elements having a bent central portion (FIG. 3 of Japanese Patent Application Laid-Open No. 2014-77845). reference).
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrode forming each pixel is formed by arranging a plurality of bent “bow” -shaped electrode elements at the center, so the shape of each pixel is not rectangular but is the same as that of the electrode element. It has a shape that resembles a bold “Kugi” that bends in part.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise).
  • the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate surface are mutually It is comprised so that it may become a reverse direction.
  • the polyimide film surface is rubbed with a rayon cloth under the conditions of a roll diameter of 120 mm, a roller rotation speed of 500 rpm, a stage moving speed of 30 mm / sec, and a rubbing cloth indentation pressure of 0.3 mm, and then in pure water for 1 minute. Ultrasonic irradiation was performed, and drying was performed at 80 ° C. for 10 minutes. Using the two types of substrates with the above-mentioned liquid crystal alignment film, the rubbing directions were combined to be antiparallel, the periphery was sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 ⁇ m was produced. .
  • Liquid crystals (MLC-3019, manufactured by Merck & Co., Inc.) were vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for evaluation.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
  • a DC voltage of 1 V was applied at the same time while driving the liquid crystal cell by applying an AC voltage of 30 Hz with a relative transmittance of 23%, and the liquid crystal cell was driven for 30 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the driving was continued for 15 minutes in that state.
  • the time during which the relative transmittance decreased to 30% or less by the time 30 minutes elapsed from the start of application of the DC voltage was quantified.
  • the relative transmittance dropped to 30% or less within 5 minutes it was evaluated as “ ⁇ ”, and when within 6 to 30 minutes, it was evaluated as “ ⁇ ”.
  • the afterimage was not erased and was evaluated as “x”.
  • the afterimage evaluation according to the method mentioned above was performed on the temperature conditions of the state whose temperature of a liquid crystal cell is 23 degreeC.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • the LED backlight that was turned on is temporarily turned off and left to block light for 72 hours, and then the LED backlight is turned on again.
  • the frequency at which the relative transmittance becomes 23% at the same time when the backlight turns on is 30 Hz.
  • the AC voltage was applied and the liquid crystal cell was driven for 60 minutes to track the flicker amplitude.
  • the flicker amplitude is a data collection / data logger switch unit 34970A (Agilent technologies) that connects the transmitted light of the LED backlight that has passed through the two polarizing plates and the liquid crystal cell therebetween, via a photodiode and an IV conversion amplifier. ).
  • z is a value obtained by reading the luminance when driven by an AC voltage with a frequency of 30 Hz with a relative transmittance of 23% by the data collection / data logger switch unit 34970A.
  • the evaluation of the flicker level is defined as “ ⁇ ” when the flicker level is maintained at less than 3% by the time 60 minutes have elapsed from the start of turning on the LED backlight and applying the AC voltage. went.
  • the evaluation was defined as “x”. Evaluation of the flicker level according to the above-described method was performed under temperature conditions where the temperature of the liquid crystal cell was 23 ° C.
  • This substrate is immersed in an EL (ethyl lactate) solution at 25 ° C. for 5 minutes, then immersed in pure water at 25 ° C. for 1 minute, and then heated on a hot plate at 230 ° C. for 30 minutes to provide a substrate with a liquid crystal alignment film Got.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Negative type liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the liquid crystal aligning agent using the novel polymer of the present invention is widely used for a liquid crystal display element of a vertical electric field method such as a TN method or a VA method, particularly a horizontal electric field method such as an IPS method or an FFS method.
  • a vertical electric field method such as a TN method or a VA method
  • a horizontal electric field method such as an IPS method or an FFS method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Pyrrole Compounds (AREA)

Abstract

電圧保持率に優れ、蓄積電荷の緩和が早く、駆動中にフリッカーが起こりにくい液晶配向膜が得られる液晶配向剤、液晶配向膜、及び液晶表示素子を提供する。 下記式(1)で表される構造を有するジアミンから得られる重合体と、有機溶媒とを含有することを特徴とする液晶配向剤。 (R、Rは水素原子又は一価の有機基である。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。*は、結合部位を表す)

Description

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
 本発明は、新規な重合体を使用する液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。
 横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、電圧保持率が低いと液晶に十分な電圧がかからず表示コントラストが低下する。また、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラスト低下や残像の原因となるため、液晶配向の安定性が重要である。更に、静電気が液晶セル内に蓄積されやすく、駆動によって生じる正負非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶素子の表示品位を著しく低下させる。また、駆動直後にバックライト光が液晶セルに照射されることによっても電荷が蓄積され、短時間の駆動でも残像が発生する、駆動中にフリッカー(ちらつき)の大きさが変化する等の問題を生じてしまう。
 このような横電界方式の液晶表示素子に用いた際、電圧保持率に優れ、かつ電荷蓄積を低減した液晶配向剤として、特許文献1には、特定ジアミンと脂肪族テトラカルボン酸誘導体とを含有する液晶配向剤が開示されている。しかし、液晶表示素子の高性能化に伴い、液晶配向膜に要求される特性も厳しくなってきており、これらの従来の技術では全ての要求特性を十分に満足することは難しい。
国際公開公報WO2004/021076号パンフレット
 本発明は、電圧保持率に優れ、蓄積電荷の緩和が早く、駆動中にフリッカー(ちらつき)が起こりにくい液晶配向膜を得ることができる液晶配向剤、液晶配向膜、及び液晶表示素子を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造を導入することで種々の特性が同時に改善されることを見出し、本発明を完成した。
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
1.下記式(1)で表される構造を有するジアミンから得られる重合体と、有機溶媒とを含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(式(1)中、R、Rは、水素原子、又は一価の有機基である。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。*は、結合部位を表す。)
2.前記重合体が、前記式(1)で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である前記1に記載の液晶配向剤。
3.前記ジアミンが、以下の式(2)で表される、前記1又は2に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000015
(式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)の構造を表し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000016
(式(3)中、R4は、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*は式(2)中のベンゼン環と結合する部位を表し、*は式(2)中のアミノ基と結合する部位を表す。)
4.前記ポリイミド前駆体が、下記式(4)で表される構造を有する、前記1~3に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000017
(式(4)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは前記式(1)で表わされるジアミンに由来する2価の有機基であり、R5は水素原子又は炭素数1~5のアルキル基である。)
5.前記式(6)中、Xが下記の(A-1)~(A-21)で表される構造からなる群から選ばれる少なくとも1種である、前記4に記載の液晶配向剤。
6.前記式(4)で表される構造単位を有する重合体が、液晶配向剤に含有される全重合体に対して10モル%以上含有される前記4又は5に記載の液晶配向剤。
7.前記有機溶媒が、4-ヒドロキシ-4-メチル-2-ペンタノン及びジエチレングリコールジエチルエーテルからなる群から選ばれる少なくとも1種を含有する、前記1~6のいずれか1項に記載の液晶配向剤。
8.前記1~7のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。
9.前記8に記載の液晶配向膜を具備する液晶表示素子。
10.液晶表示素子が横電界駆動方式である前記9に記載の液晶表示素子。
11.下記式(1)で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000018
(式(1)中、R、Rは、水素原子、又は一価の有機基である。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。*は、結合部位を表す。)
12.上記ジアミンが、以下の式(2)で表される、前記11に記載の重合体。
Figure JPOXMLDOC01-appb-C000019
(式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)で表される構造を有し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(式(3)中、R4は、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*は式(2)中のベンゼン環と結合する部位を表し、*は式(2)中のアミノ基と結合する部位を表す。)
Figure JPOXMLDOC01-appb-C000021
(式(4)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは前記式(1)で表わされるジアミンに由来する2価の有機基であり、R5は水素原子又は炭素数1~5のアルキル基である。)
14.前記式(6)中、Xが下記の(A-1)~(A-21)で表される構造からなる群から選ばれる少なくとも1種である前記13に記載の重合体。
15.下記式(2)で表されるジアミン。
Figure JPOXMLDOC01-appb-C000022
(式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)で表される構造を有し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
 本発明の液晶配向剤の使用によれば、蓄積電荷の緩和が早く、駆動中にフリッカー(ちらつき)が起こりにくい液晶配向膜及び表示特性に優れた液晶表示素子が提供される。
 本願発明により何故に上記の課題を解決できるかは定かではないが、概ね次のように考えられる。本発明の液晶配向剤に含有される重合体の有する上記(1)で表されるジアミンは、導電性ピロール環とベンゼン環とが共役する構造を有しており、かかる液晶配向剤により形成される液晶配向膜では、素子の駆動時に印加された電荷の移動が容易になり、蓄積電荷の緩和を促進させることができるなどのためと考えられる。
<特定ジアミン>
 本発明の液晶配向剤は、下記式(1)の構造を有するジアミン(本発明では、特定ジアミンともいう。)から得られる重合体を含有する。
Figure JPOXMLDOC01-appb-C000023
 上記式(1)中、R、Rは、上記で定義したとおりである。なかでも、R、Rは、炭素数1~3を有する、アルキル基、アルケニル基、アルコキシ基、フルオロアルキル基、フルオロアルケニル基、若しくはフルオロアルコキシ基が好ましく、特に、水素原子、又はメチル基が好ましい。また、*は、アミノ基、置換アミノ基、他の有機基などと結合する部位を表す。
 特定ジアミンでは、下記式(1-1)に示すように、2つのベンゼン環のピロール環に対する結合位置は電荷移動の点から、その少なくも1つは、ピロール環上の窒素原子の隣にある炭素原子に結合していることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記特定ジアミンは、例えば、下記式(1-2)で表すことができ、特に、下記式(1-3)で表されるジアミンが好ましく、更には、式(1-4)で表されるジアミンがより好ましい。これらの式中、*は、結合部位を表す。
Figure JPOXMLDOC01-appb-C000025
 式(1-2)~式(1-4)において、R及びRの定義は前記式(1)の場合と同様であり、Q、Qは、それぞれ独立して、単結合又は2価の有機基であり、すなわち、QとQとは互いに異なる構造であってもよい。また、式(1-4)における2つのQは互いに異なる構造であってもよい。更に、ベンゼン環の任意の水素原子は、上記式(1)の場合と同様に、一価の有機基で置換されていてもよい。
 上記特定ジアミンの好ましい例としては、下記式(2)で表わされるジアミンを挙げることができ、より好ましくは式(2-1)で表されるジアミンである。
Figure JPOXMLDOC01-appb-C000026
 式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)の構造を表し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000027
(式(3)中、R4は、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*は式(2)中のベンゼン環と結合する部位を表し、*は式(2)中のアミノ基と結合する部位を表す。)
 式(2)及び式(2-1)中、nは1~3の整数を表す。好ましくは1又は2である。
 上記式(2)のジアミンの具体例としては以下が例示できるが、これらに限定されない。なかでも、蓄積電荷の緩和の点から、(2―1―1)、(2―1-2)、(2―1-3)、(2―1-4)、(2―1-5)、(2―1-8)、(2―1-9)、(2―1-10)、(2―1-11)又は(2―1-12)が好ましく、(2―1-1)、(2―1-2)、(2―1-3)、(2―1-4)、(2―1-5)、(2―1-11)又は(2―1-12)が特に好ましい。
Figure JPOXMLDOC01-appb-C000028
<特定ジアミンの合成方法>
 本発明の特定ジアミンの合成する方法は特に限定されないが、例えば、下記式(1)で表されるジニトロ化合物を合成し、さらにニトロ基を還元してアミノ基に変換する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
(R、R及びR水素、又は一価の有機基を表す。)
 かかる還元反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム-活性炭、白金-活性炭、ロジウム-活性炭などが挙げられる。また、該触媒は、水酸化パラジウム、酸化白金、ラネーニッケルなど必ずしも活性炭担持型の金属触媒でなくてもよい。特に、パラジウム-活性炭が良好な結果が得られるので好ましい。
 還元反応をより効果的に進行させるため、活性炭の共存下で反応を実施することもある。この時、使用する活性炭の量は特に限定されないが、ジニトロ化合物に対して1~30質量%の範囲が好ましく、10~20質量%がより好ましい。同様な理由により、加圧下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、20気圧までの加圧範囲で行うのが好ましく、10気圧までの加圧範囲で行うのがより好ましい。
 溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。例えば、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、2種以上混合して用いることもできる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。
 溶媒の使用量(反応濃度)は、ジニトロ化合物に対し、0.1~10質量倍が好ましく、0.5~30質量倍がより好ましく、1~10質量倍が特に好ましい。反応温度は特に限定されないが、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
 一方、ニトロ化合物(A-1)を合成する方法に特に制限はないが、化合物(A-1)のアミノ基の置換位置が2位及び4位である場合は、例えば、下記式(A-2)で表されるジアミンとニトロ基を有するハロゲン化アリールとを塩基存在下、必要に応じて添加剤の存在下で反応させることにより得ることができる(XはF、Cl、Br、I、又はOTfを表す。)
Figure JPOXMLDOC01-appb-C000030
 上記ニトロ基を有するハロゲン化アリールにおいて、XがF又はClであって、かつ、NO基がXに対して2位、または4位にあれば、塩基の存在下、ハロゲン化アリールと脂肪族アミン化合物とを反応させ、化合物(A-1)を得ることができる。使用する塩基は、例えば、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、キノリン、コリジンなどのアミン類や、水素化ナトリウム、水素化カリウムなどを使用できる。反応溶媒、反応温度は前記の記載に準ずる。生成物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製しても良い。
 XがBr又はIであれば、NO基がXに対して2位でも3位でも4位でもよく、適当な金属触媒、配位子、又は塩基存在下でC-Nクロスカップリング反応を用いることでもジニトロ体を得ることができる。金属触媒の例としては、酢酸パラジウム、塩化パラジウム、塩化パラジウム-アセトニトリル錯体、パラジウム-活性炭、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(アセトニトリル)ジクロロパラジウム、ビス(ベンゾニトリル)ジクロロパラジウム、CuCl, CuBr、 CuI、,CuCN等が挙げられるが、これらに限定されるものではない。配位子の例としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリ-tert-ブチルホスフィン等が挙げられるが、これらに限定されるものではない。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。生成物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製しても良い。
 また、化合物(A-2)を合成する方法に特に制限はないが、例えば、下記式(A-3)で表されるジアミンを合成し、さらに、NH基にR、Rを導入する方法が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 R、Rを導入するにあたっては、アミン類と反応が可能な化合物であればよく、例えば、酸ハライド、酸無水物、イソシアネート類、エポキシ類、オキセタン類、ハロゲン化アリール類、ハロゲン化アルキル類が挙げられる。また、アルコールの水酸基をOMs、OTf、OTs等の脱離基に置換したアルコール類などが使用できる。
 NH基にR、Rからなる1価の有機基を導入する方法には、特に制限はないが、適当な塩基の存在下で酸ハライドを反応させる方法が挙げられる。酸ハライドの例としては、アセチルクロリド、プロピオン酸クロリド、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸n‐プロピル、クロロギ酸i‐プロピル、クロロギ酸n‐ブチル、クロロギ酸i‐ブチル、クロロギ酸t‐ブチル、クロロギ酸ベンジル、クロロギ酸-9‐フルオレニルが挙げられる。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基に酸無水物を反応させてR、Rを導入させてもよい。酸無水物の例としては、無水酢酸、無水プロピオン酸、二炭酸ジメチル、二炭酸ジエチル、二炭酸-ジ-ターシャリーブチル、二炭酸ジベンジルなどが挙げられる。反応を促進させるために触媒を使用してもよく、ピリジン、コリジン、N,N-ジメチル-4―アミノピリジンなどを使用してもよい。触媒量は(A-3)の使用量に対し、好ましくは0.0001~1モルである。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基にイソシアネート類を反応させてRを導入させてもよい。イソシアネート類の例としては、メチルイソシアネート、エチルイソシアネート、n-プロピルイソシアネート、フェニルイソシアネートなどが挙げられる。反応溶媒及び反応温度は、前記の記載に準ずる。
 NH基にエポキシ化合物類やオキセタン化合物類を反応させてR、Rを導入させてもよい。エポキシ類やオキセタン類の例としては、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、トリメチレンオキシドなどが挙げられる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基へ適当な塩基存在下でアルコールの水酸基をOMs、OTf、OTs等の脱離基に置換したアルコール類を反応させてR、Rを導入させてもよい。アルコール類の例としては、メタノール、エタノール、1-プロパノールなどが挙げられ、これらのアルコール類と、メタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド、パラトルエンスルホン酸クロリド等とを反応させることで、OMs、OTf、OTs等の脱離基に置換されたアルコールを得ることができる。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 NH基に適当な塩基存在下、ハロゲン化アルキルを反応させてR、Rを導入させてもよい。ハロゲン化アルキル類の例としては、ヨウ化メチル、ヨウ化エチル、ヨウ化n-プロピル、臭化メチル、臭化エチル、臭化n-プロピルなどが挙げられる。塩基の例としては前述の塩基に加え、カリウム-tert-ブトキシド、ナトリウム-tert-ブトキシド、等の金属アルコキシド類を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。
 また、化合物(A-3)を合成する方法に特に制限はないが、下記式(4)で表されるニトロ化合物を合成し、さらに該ニトロ化合物の有するニトロ基を還元してアミノ基に変換する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 該反応に用いられる触媒、溶媒、温度は前記の記載に準ずる。
 また、化合物(A-4)を合成する方法に特に制限はないが、酸性条件下、下記式(5)で表される1,4-ジケトン化合物(A-5)と第一級アミンを脱水縮合することで合成することができる。
Figure JPOXMLDOC01-appb-C000033
 該反応に用いられる酸の例としては、酢酸、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム等を用いることができるが、これらに限定されるものではない。反応溶媒、反応温度は、前記の記載に準ずる。
 また、化合物(A-5)を合成する方法に特に制限はないが、下記式(6)で表されるニトロ基を有するα-ハロケトンとニトロ基を有するケトンとを塩基の存在下で反応させることにより得ることができる
(Xは、Br、I又はOTfを表す。)
Figure JPOXMLDOC01-appb-C000034
 該反応に用いられる塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。反応速度を促進する目的で添加剤を使用できる。当該添加剤としては、塩化亜鉛、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化テトラブチルアンモニウム等を用いることができるが、これらに限定されるものではない。
<特定重合体>
 本発明の重合体は、上記特定ジアミンを用いて得られる重合体である。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられる。なかでも、液晶配向剤としての使用の観点から、下記式(4)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、特定重合体ともいう。)がより好ましい。
Figure JPOXMLDOC01-appb-C000035
 上記式(4)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは特定ジアミンに由来する2価の有機基である。Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
 上記Xは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上であってもよい。
 Xの具体例を示すならば、国際公開公報2015/119168の13頁~14頁に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
 以下に、好ましいXである(A-1)~(A-21)を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 上記のうち、(A-1)、(A-2)はラビング耐性の更なる向上という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
<その他の構造単位>
 上記ポリイミド前駆体は、式(4)で表される構造単位に加えて下記式(5)で表される構造単位を有していても良い。
Figure JPOXMLDOC01-appb-C000038
 式(5)において、Xは、前記式(4)における定義と同じである。Xの具体例としては、好ましい例も含めて式(4)のXで例示したものを挙げることができる。R4は、いずれも、前記式(4)における定義と同じである。2つあるRの少なくとも一方は水素原子であることが好ましい。
 また、Yは、上記式(1)で表される構造を主鎖方向に含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上が混在していてもよい。
 Yの具体例を示すならば、国際公開公報2015/119168の4頁に掲載される式(2)の構造、及び、8頁~12頁に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6頁に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8頁に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8頁に掲載される式(3)の構造;日本公開特許公報2012-173514の8頁に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9頁に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
 以下に、好ましいYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 上記の構造のうち、(B-28)、(B-29)などは、ラビング耐性の更なる向上という観点から特に好ましく、(B-1)~(B-3)などは、液晶配向性の更なる向上という観点から特に好ましく、(B-14)~(B-18)及び(B-27)などは、蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(B-26)などは、電圧保持率の更なる向上という観点から好ましい。
 上記ポリイミド前駆体が、式(4)で表される構造単位のほかに、式(5)で表される構造単位を含む場合、式(4)で表される構造単位は、式(4)と式(5)の合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。
 本発明に用いるポリイミド前駆体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
<ポリイミド>
 特定重合体のうちのポリイミドは、式(4)、式(5)で表されるポリイミド前駆体を閉環させて得られる。この場合のイミド化率は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、既知の方法が使用できる。ポリイミド前駆体の溶液に、塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、ポリイミド前駆体を、有機溶媒中において、塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、好ましくは反応時間は1~100時間で行うことができる。塩基性触媒の量は、アミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。
 ポリイミド前駆体のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 すなわち、上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリイミドの粉末を得ることができる。
 貧溶媒としては、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、特定重合体を含有するものであるが、本発明に記載の効果を奏する限度において、異なる構造の特定重合体を2種以上含有していてもよい。また、特定重合体に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレンまたはその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。また、上記式(5)で表されるポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドから選ばれるポリイミドなどを含有していてもよい。
 本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、より好ましくは5~95質量%が挙げられる。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンが好ましい。
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒などを挙げることができる。
Figure JPOXMLDOC01-appb-C000043
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有しても良い。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、その一例を示すなら、国際公開公報2015/060357号の53頁[0105]~55頁[0116]に開示されている成分などが挙げられる。
<液晶配向膜>
 本発明の液晶配向膜は、上記本発明の液晶配向剤から得られる。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板や窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。
 焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、さらに液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜の全面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。
 または、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
 上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。
 上記の液晶材料としては、ネマチック液晶やスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、日本特開2015-135393号公報)の17頁の段落0074~19頁の段落0081などに開示されている。
 以下に本発明について、実施例等を挙げて具体的に説明する。なお、本発明の解釈はこれらの実施例に限定されるものではない。
 以下における原材料の略号、及び特性評価方法は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
<有機溶媒>
 NMP:N-メチル-2-ピロリドン、
 NEP:N-エチル-2-ピロリドン
 GBL:γ-ブチロラクトン、   BCS:ブチルセロソルブ
 PB:プロピレングリコールモノブチルエーテル
 DME:ジプロピレングリコールジメチルエーテル
 DAA:4-ヒドロキシ-4-メチル-2-ペンタノン
 DEDG:ジエチレングリコールジエチルエーテル
 DIBK:2,6-ジメチル-4-ヘプタノン、
 DIPE:ジイソプロピルエーテル、
 DIBC:2,6-ジメチル-4-ヘプタノール、
 Pd/C:パラジウムカーボン、
 DMSO:ジメチルスルオキシド、   THF:テトラヒドロフラン
<添加剤>
 LS-4668:3-グリシドキシプロピルトリエトキシシラン
<架橋剤>
Figure JPOXMLDOC01-appb-C000046
 なお、明細書中、Boc及びFmocは下記で表される基を示し、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000047
H-NMRの測定)
 装置:Varian NMR system 400NB(400MHz)(Varian社製)、及びJMTC-500/54/SS(500MHz)(JEOL社製)
 測定溶媒:CDCl(重水素化クロロホルム),DMSO-d(重水素化ジメチルスルホキシド)
 基準物質:TMS(テトラメチルシラン)(δ:0.0ppm,H)及びCDCl(δ:77.0ppm,13C)
(イミド化率の測定)
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<ジアミン化合物(DA-1)の合成>
Figure JPOXMLDOC01-appb-C000048
 3L(リットル)の四つ口フラスコに塩化亜鉛(120.3g、882mmol)を加え、100℃にまで昇温し、オイルポンプにて1時間真空乾燥した。その後、窒素雰囲気下、室温にて、トルエン(460g)、ジエチルアミン(45.0g、615mmol)、t-ブタノール(46.4g、626mmol)、2-ブロモー4-ニトロアセトフェノン(100.0g、410mmol)、及び4-ニトロアセトフェノン(104.2g、631mmol)を順次加え、室温にて3日間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、5%硫酸水溶液(400g)を加え、中和し、1時間室温にて撹拌した。析出した結晶を減圧濾過し、トルエン(200g)、純水(300g)、メタノール(200g)で順次洗浄した後、乾燥し、粗結晶を得た。得られた粗結晶をテトラヒドロフラン(1340g)中に、60℃にて全溶解させた後、及びエタノール(1340g)を加え、5℃にて1時間撹拌した。析出した結晶を減圧濾過し、エタノール(200g)で洗浄した後、乾燥し、粉末結晶(1)を得た(収量63g,収率45%)。
1H-NMR(DMSO-d):8.40-8.36(4H,m),8.28-8.24(4H,m),3.53(4H,s)
Figure JPOXMLDOC01-appb-C000049
 2Lの四つ口フラスコに化合物(1)(65.8g,200mmol)、酢酸アンモニウム(84.5g, 1100mmol)、及び酢酸(855g)を仕込み、120℃にまで昇温し、還流下にて3時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、反応液を冷水(4000g)に加え、1時間撹拌した。析出した結晶を減圧濾過し、アセトニトリル(100g)にてリパルプ洗浄した後、乾燥し、粉末結晶(2)を得た(収量53g,収率78%)。
1H-NMR(DMSO-d):11.8(1H,br),8.30-8.26(4H,m),8.11-8.07(4H,m),7.04(2H,s)
Figure JPOXMLDOC01-appb-C000050
 1Lの四つ口フラスコに化合物(2)(41.3g,134mmol)、炭酸カリウム(27.8g,201mmol)、及びジメチルホルムアミド(540g)を仕込み、室温にてヨウ化メチル(38.1g,268mmol)を滴下し、24時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、反応液を冷水(4300g)に加え、1時間撹拌した。析出した結晶を減圧濾過し、2-プロパノール(100g)にて洗浄した後、乾燥し、粉末結晶(3)を得た(収量41.1g,収率90%)。
1H-NMR(DMSO-d):8.34-8.33(4H,m),7.86-7.81(4H,m),6.67(2H,s),3.73(3H,s)
Figure JPOXMLDOC01-appb-C000051
 化合物(3)(40g、124mmol)、5質量%Pd/C(50%含水型)、特級白鷺活性炭(4.0g)、及びジオキサン(400g)の混合物を、水素加圧条件下に80℃で8時間攪拌した。反応終了後、触媒をろ過した後、濃縮を行い、2-プロパノール(400g)を加え、5℃にて1時間撹拌した。析出した結晶を減圧濾過し、2-プロパノール(100g)で洗浄した後、乾燥し、粉末結晶(4)を得た(収量17g,収率52%)。
1H-NMR(DMSO-d):7.11-7.08(4H,m),6.63-6.59(4H,m),5.96(2H,s),5.15(4H,s),3.43(3H,s)
Figure JPOXMLDOC01-appb-C000052
 1Lの四つ口フラスコに化合物(4)(27.4g,104mmol)及びTHF(270g)を仕込み、氷冷下にてトリフルオロ酢酸無水物(46.5g, 220mmol)を滴下し、1時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、濃縮乾固した。得られた固体に対し、THF(600g)、炭酸カリウム(45.1g,326mmol)を加え、室温にてヨウ化メチル(45.8g,324mmol)を滴下し、40℃にて22時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、塩を減圧濾過にて除去し、濃縮乾固した。
 得られた固体に対しN-メチルピロリドン(200g)、純水(30g)、及び水酸化カリウム(20.8g, 315mmol)を加え、60℃にて30分撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、反応液を冷水(1200g)に加え、1時間撹拌した。析出した結晶を減圧濾過し、2-プロパノール(100g)にて洗浄した後、乾燥し、粉末結晶(5)を得た(収量22.9g,収率76%)。
1H-NMR(DMSO-d):7.20-7.17(4H,m),6.60-6.57(4H,m),5.99(2H,s),5.73(2H,q),3.45(3H,s),2.70(6H,d)
Figure JPOXMLDOC01-appb-C000053

 1Lの四つ口フラスコに水素化ナトリウム(19.7g, 494mmol)及びN-メチルピロリドン(20g)を加え、氷冷した。これに対し、窒素フロ―下、化合物(5)(22.9g, 78.7mmol)及びN-メチルピロリドン(115g)の溶液をゆっくりと滴下した後、次いで、4-フルオロニトロベンゼン(44.4g、315mmol)及びN-メチルピロリドン(44g)の溶液を滴下し、室温にて24時間撹拌した。
 HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、反応液を冷水(1800g)に加え、1時間撹拌した。得られた粗結晶をテトラヒドロフラン(450g)にてリパルプ洗浄した後、減圧濾過し、メタノール(100g)にて洗浄、乾燥し、粉末結晶(6)を得た(収量22.7g,収率54%)。
1H-NMR(DMSO-d):8.09(4H,d),7.64(4H,d),7.42(4H,d),6.87(4H,d),6.37(2H,s),3.69(3H,s),3.44(6H,s),
Figure JPOXMLDOC01-appb-C000054
 化合物(6)(22.7g、42.6mmol)、5質量%Pd/C(50%含水型)、特性白鷺活性炭(2.0g)、及びジオキサン(230g)の混合物を、水素加圧条件下に80℃で8時間攪拌した。反応終了後、触媒をろ過した後、濃縮を行い、2-プロパノール(300g)を加え、5℃にて1時間撹拌した。析出した結晶を減圧濾過し、2-プロpノール(100g)で洗浄した後、乾燥し、粉末結晶(DA-1)を得た(収量17.4g,収率86%)。
1H-NMR(DMSO-d):7.20(4H,d),6.89(4H,d),6.67-6.59(8H,m),6.02(2H,s),5.06(4H,s),3.46(3H,s),3.17(6H,s),
[合成例1]
 撹拌装置付き及び窒素導入管付きの100mlの四つ口フラスコにDA-1を(1.99g,4.2mmol)加えた後、NMP:GBL=1:1(質量比)の混合溶媒20.0gを加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながら、CA-1(0.61g,2.8mmol)、CA-2(0.73g,3.7mmol)、及びNMP:GBL=1:1混合溶媒を8.0g加えた後、さらに50℃にて12時間攪拌することでポリアミック酸溶液(PAA-A1)を得た。
[合成例2~6]
 表1にそれぞれ示す、ジアミン成分、テトラカルボン酸成分、及び溶媒を使用した他は、合成例1と同様に実施することにより、ポリアミック酸溶液(PAA-A2)及びポリアミック酸溶液(PAA-B1)~(PAA-B4)を得た。
Figure JPOXMLDOC01-appb-T000055
[合成例7]
 撹拌装置付き及び窒素導入管付きの200mlの四つ口フラスコにDA-6(4.03g,16.5mmol)、DA-7(3.59g、9.0mmol)、及びDA-8(2.51g、4.5mmol)を加えた後、NMP74.0gを加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながらCA-4を(4.37g、19.5mmol)、及びNMPを9.0g加え、40℃条件下にて3時間攪拌した。その後、25℃条件下にてCA-2を(1.71g,8.7mmol)、及びNMPを9.0g加えた後、さらに12時間攪拌することでポリアミック酸溶液を得た。
 このポリアミック酸溶液を80.0g分取し、NMPを20.0g加えた後、無水酢酸を6.8g、及びピリジンを1.8g加え、50℃で3時間反応させた。この反応溶液を434.4gのメタノールに撹拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は75%であった。得られたポリイミド粉末20.0gにNMP80.0gを加えて70℃にて20hr攪拌して溶解させることでポリイミド溶液(SPI-B5)を得た。
[合成例8]
 撹拌装置付き及び窒素導入管付きの1000mLの四つ口フラスコに、DA-5(68.5g, 280mmol)、及びDA-8(23.9g, 70mmol)を量り取り、NMPを586g加えて、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながらCA-4を(74.5g, 332mmol)添加し、更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸溶液を得た。
 このポリアミック酸溶液を200g量り取り、NMPを100g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を21.78g、及びピリジンを2.81g加えて、60℃で3時間反応させた。得られた反応液を624.2gのメタノールに撹拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は68%であった。得られたポリイミド粉末32.7gにNMP239.8gを加えて70℃にて20時間攪拌して溶解させることでポリイミド溶液(SPI-B6)を得た。
[実施例1~12]及び[比較例1~7]
 合成例1~6で得られたポリアミック酸溶液、及び合成例7、8で得られたポリイミド溶液を、それぞれ、表2及び表3に示す組成になるように、攪拌しながら、溶媒及び添加剤を加え、更に室温で2時間撹拌することにより実施例1~12及び比較例1~7の液晶配向剤を得た。
 なお、表2、3中における、※1、※2は、全ての重合体100質量部に対する含有(添加)量(質量部)を示し、※3は、液晶配向剤100質量部に対する溶媒の使用量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
<ラビング法による液晶表示素子の作製>
 縦30mm×横35mmの大きさで、厚さが0.7mmの電極付きのガラス基板を準備した。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する(日本特開2014-77845号公報の図3参照)。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。また、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成し、各基板上に膜厚60nmのポリイミド膜を得た。このポリイミド膜面に、ロール径120mm、ローラー回転数500rpm、ステージ移動速度30mm/sec、ラビング布押し込み圧0.3mmの条件で、レーヨン布によりラビング処理を施した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(メルク社製、MLC-3019)を常温で真空注入した後、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、液晶セルを120℃で1時間加熱し、一晩放置してから評価に使用した。
<残像消去時間の評価>
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、30分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止しその状態で更に15分駆動した。
 残像評価は、直流電圧の印加を開始した時点から30分間が経過するまでに、相対透過率が30%以下に低下した時間を数値化した。5分以内に相対透過率が30%以下に低下した場合は「○」として、6~30分以内であれば「△」として評価した。相対透過率が30%以下に低下するまでに30分間以上を要した場合には、残像消去不可とし、「×」として評価した。そして、上述した方法に従う残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<駆動開始直後に起こるフリッカーシフトの評価>
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 フリッカーレベルの測定では、点灯させておいたLEDバックライトを一旦消灯して72時間遮光放置した後に、LEDバックライトを再度点灯し、バックライト点灯開始と同時に相対透過率が23%となる周波数30Hzの交流電圧を印加して、液晶セルを60分間駆動させてフリッカー振幅を追跡した。フリッカー振幅は、2枚の偏光板及びその間の液晶セルを通過したLEDバックライトの透過光を、フォトダイオード及びI-V変換アンプを介して接続されたデータ収集/データロガースイッチユニット34970A(Agilent technologies社製)で読み取った。フリッカーレベルは以下の数式で算出した。
  フリッカーレベル(%)={フリッカー振幅/(2×z)}×100
 上記式中、zは相対透過率が23%となる周波数30Hzの交流電圧で駆動した際の輝度をデータ収集/データロガースイッチユニット34970Aで読み取った値である。
 フリッカーレベルの評価は、LEDバックライトの点灯及び交流電圧の印加を開始した時点から60分間が経過するまでに、フリッカーレベルが3%未満を維持した場合に、「○」と定義して評価を行った。60分間でフリッカーレベルが3%以上に達した場合には、「×」と定義して評価した。
 上述した方法に従うフリッカーレベルの評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<評価結果>
 上記実施例1、2、4、5及び比較例1~4、6、7の各液晶配向剤を使用する液晶表示素子に関し、上記で実施した残像消去時間、及び駆動開始直後に起こるフリッカーシフトの評価結果を表4~表6に示す。
 なお、表4~6中、※1は、全ての重合体100質量部に対する各重合体の含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
 表4~表6に見られるように、実施例1、2、4、5の液晶配向剤を使用する液晶表示素子は、蓄積電荷の緩和が早く、かつ駆動開始直後に起こるフリッカーシフトが起こりにくいことが判る。
<光配向法による液晶表示素子の作製>
 液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して膜厚100nmの塗膜として、各基板上にポリイミド膜を得た。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を250mJ/cm照射した。
 この基板を、25℃のEL(乳酸エチル)溶液に5分間浸漬させ、次いで25℃の純水に1分間浸漬させた後、230℃のホットプレート上で30分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶のMLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
<残像消去時間の評価>
 ラビング法による液晶表示素子の場合と同様にして、上記で作製した光配向法による液晶表示素子の光学系等を用いて残像の評価を行った。
<駆動直後のフリッカーレベルの評価>
 ラビング法による液晶表示素子の場合と同様にして、上記で作製した光配向法による液晶表示素子の光学系等を用いて残像の評価を行った。
<評価結果>
 上記実施例12及び比較例7で得られた液晶配向剤を使用する液晶表示素子に関し、上記で実施した残像消去時間の評価、及び駆動直後のフリッカーレベルの評価の結果を表7に示す。なお、表7中、※1は、全ての重合体100質量部に対する各重合体の含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000061
 表7に見られるように、実施例12の液晶配向剤を使用する液晶表示素子は、蓄積電荷の緩和が早く、かつ駆動開始直後に起こるフリッカーシフトが起こりにくいことが判る。
 本発明の新規な重合体を使用する液晶配向剤は、TN方式、VA方式等の縦電界方式、特に、IPS方式、FFS方式等の横電界方式の液晶表示素に広く用いられる。
 なお、2016年9月29日に出願された日本特許出願2016-191765号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下記式(1)で表される構造を有するジアミンから得られる重合体と、有機溶媒とを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、Rは、水素原子、又は一価の有機基である。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。*は、結合部位を表す。)
  2.  前記重合体が、前記式(1)で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である、請求項1に記載の液晶配向剤。
  3.  前記ジアミンが、以下の式(2)で表される、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)の構造を表し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R4は、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*は式(2)中のベンゼン環と結合する部位を表し、*は式(2)中のアミノ基と結合する部位を表す。)
  4.  前記ポリイミド前駆体が、下記式(4)で表される構造を有する、請求項1~3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004

    (式(4)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは前記式(1)で表わされるジアミンに由来する2価の有機基であり、R5は水素原子又は炭素数1~5のアルキル基である。)
  5.  前記式(4)中、Xが下記の(A-1)~(A-21)の構造からなる群から選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  6.  前記式(4)で表される構造単位を有する重合体が、液晶配向剤に含有される全重合体に対して10モル%以上含有される、請求項4又は5に記載の液晶配向剤。
  7.  前記有機溶媒4-ヒドロキシ-4-メチル-2-ペンタノン及びジエチレングリコールジエチルエーテルからなる群から選ばれる少なくとも1種を含有する、請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  請求項1~7のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。
  9.  請求項8に記載の液晶配向膜を具備する液晶表示素子。
  10.  液晶表示素子が横電界駆動方式である請求項9に記載の液晶表示素子。
  11.  下記式(1)で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000007
    (式(1)中、R、Rは、水素原子、又は一価の有機基である。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。*は、結合部位を表す。)
  12.  上記ジアミンが、以下の式(2)で表される、請求項11に記載の重合体。
    Figure JPOXMLDOC01-appb-C000008
    (式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)で表される構造を有し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000009
    (式(3)中、R4は、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*は式(2)中のベンゼン環と結合する部位を表し、*は式(2)中のアミノ基と結合する部位を表す。)
  13.  前記ポリイミド前駆体が、下記式(4)で表される請求項11又は12に記載の重合体。
    Figure JPOXMLDOC01-appb-C000010
    (式(4)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは前記式(1)で表わされるジアミンに由来する2価の有機基であり、R5は水素原子又は炭素数1~5のアルキル基である。)
  14.  前記式(6)中、Xが下記の(A-1)~(A-21)で表される構造からなる群から選ばれる少なくとも1種である請求項13に記載の重合体。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
  15.  下記式(2)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000013
    (式(2)中、R及びRの定義は、上記式(1)と同様であり、R3はそれぞれ独立して単結合又は以下の式(3)で表される構造を有し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
PCT/JP2017/034779 2016-09-29 2017-09-26 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 WO2018062197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780073289.1A CN110036337B (zh) 2016-09-29 2017-09-26 液晶取向剂、液晶取向膜及使用其的液晶表示元件
KR1020197011737A KR102369136B1 (ko) 2016-09-29 2017-09-26 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
JP2018542603A JP7107221B2 (ja) 2016-09-29 2017-09-26 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191765 2016-09-29
JP2016-191765 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062197A1 true WO2018062197A1 (ja) 2018-04-05

Family

ID=61760451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034779 WO2018062197A1 (ja) 2016-09-29 2017-09-26 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (2) JP7107221B2 (ja)
KR (1) KR102369136B1 (ja)
CN (1) CN110036337B (ja)
TW (1) TWI745441B (ja)
WO (1) WO2018062197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131657A1 (ja) * 2017-01-13 2019-11-07 日産化学株式会社 芳香族ジアミン化合物前駆体の製造方法
WO2020100918A1 (ja) * 2018-11-14 2020-05-22 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN111971617A (zh) * 2018-04-09 2020-11-20 日产化学株式会社 液晶取向剂、液晶取向膜和使用其的液晶表示元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021076A1 (ja) * 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. 液晶配向剤およびそれを用いた液晶表示素子
CN103922989A (zh) * 2014-04-29 2014-07-16 苏州海泰原新材料有限公司 含邻苯二甲腈结构的吡咯基芳香二胺及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044683A (ja) * 1998-07-29 2000-02-15 Nissan Chem Ind Ltd オリゴアニリンユニットを有するジアミン及びポリイミド
JP4033426B2 (ja) * 1999-01-25 2008-01-16 独立行政法人理化学研究所 感光性樹脂組成物
DE10302905A1 (de) * 2003-01-24 2004-08-05 Basf Ag Co-Tenside mit ungesättigten heterocyclischen Kopfgruppen
CN101589333B (zh) * 2006-12-27 2011-06-08 日产化学工业株式会社 液晶定向剂、使用了该定向剂的液晶定向膜及液晶显示元件
JP4416054B2 (ja) * 2007-08-21 2010-02-17 Jsr株式会社 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP5929298B2 (ja) * 2011-03-02 2016-06-01 Jnc株式会社 ジアミン、これを用いた液晶配向剤、液晶表示素子および液晶配向膜の形成方法
CN105237462B (zh) * 2015-09-08 2018-11-27 湖南工业大学 一种含咔唑结构的具有高平面性二胺单体及其合成方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021076A1 (ja) * 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. 液晶配向剤およびそれを用いた液晶表示素子
CN103922989A (zh) * 2014-04-29 2014-07-16 苏州海泰原新材料有限公司 含邻苯二甲腈结构的吡咯基芳香二胺及其制备方法和应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131657A1 (ja) * 2017-01-13 2019-11-07 日産化学株式会社 芳香族ジアミン化合物前駆体の製造方法
JP7103232B2 (ja) 2017-01-13 2022-07-20 日産化学株式会社 芳香族ジアミン化合物前駆体の製造方法
CN111971617A (zh) * 2018-04-09 2020-11-20 日产化学株式会社 液晶取向剂、液晶取向膜和使用其的液晶表示元件
CN111971617B (zh) * 2018-04-09 2023-06-20 日产化学株式会社 液晶取向剂、液晶取向膜和使用其的液晶表示元件
WO2020100918A1 (ja) * 2018-11-14 2020-05-22 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN113015935A (zh) * 2018-11-14 2021-06-22 日产化学株式会社 液晶取向剂、液晶取向膜及使用其的液晶表示元件
JPWO2020100918A1 (ja) * 2018-11-14 2021-09-30 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7494734B2 (ja) 2018-11-14 2024-06-04 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Also Published As

Publication number Publication date
JP7107221B2 (ja) 2022-07-27
CN110036337A (zh) 2019-07-19
JP7176601B2 (ja) 2022-11-22
JP2022003124A (ja) 2022-01-11
TW201823311A (zh) 2018-07-01
JPWO2018062197A1 (ja) 2019-09-26
CN110036337B (zh) 2022-06-14
TWI745441B (zh) 2021-11-11
KR20190061026A (ko) 2019-06-04
KR102369136B1 (ko) 2022-02-28

Similar Documents

Publication Publication Date Title
JP7176601B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7031606B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7173194B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7315907B2 (ja) ジアミン及びそれを用いた重合体
CN111971617B (zh) 液晶取向剂、液晶取向膜和使用其的液晶表示元件
WO2018124140A1 (ja) 新規重合体及びジアミン化合物、液晶配向剤、液晶配向膜及び液晶表示素子
JP7032700B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2022109969A (ja) ジアミン及び重合体
TWI766889B (zh) 二胺、聚合物、液晶配向劑、液晶配向膜及液晶顯示元件
WO2017065226A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011737

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856147

Country of ref document: EP

Kind code of ref document: A1