WO2018061850A1 - コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法 - Google Patents

コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法 Download PDF

Info

Publication number
WO2018061850A1
WO2018061850A1 PCT/JP2017/033631 JP2017033631W WO2018061850A1 WO 2018061850 A1 WO2018061850 A1 WO 2018061850A1 JP 2017033631 W JP2017033631 W JP 2017033631W WO 2018061850 A1 WO2018061850 A1 WO 2018061850A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
core
resin
resin mold
core body
Prior art date
Application number
PCT/JP2017/033631
Other languages
English (en)
French (fr)
Inventor
愛 永野
俊 吉森
吉森 平
Original Assignee
株式会社エス・エッチ・ティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エス・エッチ・ティ filed Critical 株式会社エス・エッチ・ティ
Priority to CN201780060555.7A priority Critical patent/CN109791834B/zh
Priority to EP17855805.2A priority patent/EP3522183B1/en
Priority to KR1020187022478A priority patent/KR102249256B1/ko
Priority to US16/074,944 priority patent/US10802055B2/en
Publication of WO2018061850A1 publication Critical patent/WO2018061850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a core with a gap and a current sensor using the same, and more specifically, a core with a gap in which the core is partially or entirely molded with an electrically insulating resin material, and a current sensor using the same. It is about.
  • a current sensor in which a gap is formed in the core body, the bus bar is disposed so as to penetrate the bus bar opening on the inner peripheral side of the core body, and a magnetic detection element is disposed in the gap (for example, Patent Documents). 1).
  • a gap for a current sensor of Patent Document 1 an annular core body is molded with an electrically insulating resin, and then the core body is cut together with a resin mold portion with a dicing blade (disc-shaped grindstone). By leaving the resin mold part on the inner peripheral side of the core, the core body and the bus bar are insulated.
  • the inventors tried to form a gap with two dicing blades.
  • the core body 20 can be cut as shown in FIG. Only two cuts 16 and 16 enter the inner resin mold portion 30. That is, since the cut core piece 22 and the resin mold portion 32 covering the core piece 22 remain connected to the core body 20 at the portion of the circled portion B, there is a problem that these cannot be removed.
  • An object of the present invention is to appropriately set the gap width of a core body that is entirely or partially covered with a resin mold portion, and to provide insulation between the core body and a bus bar opening, a core with a gap, and a current Is to provide a sensor.
  • the core member according to the present invention is A core member having a gap forming region in which a gap is formed,
  • the core member includes an annular core body having a bus bar opening in which the bus bar is disposed;
  • a resin mold part covering the whole or a part of the core body, and a resin mold part covering at least a part of the gap forming region; Both ends are connected to the resin mold portion, and are resin bridge portions formed between the inner peripheral side of the core body and the bus bar opening, facing the gap forming region, and the core body or resin mold portion.
  • a resin bridge portion which has a gap penetrating in the thickness direction of the core member between, With
  • the gap core of the present invention is The core member described above has a gap formed by cutting the core body in the gap forming region leaving the resin bridge portion.
  • the core with a gap of the present invention is An annular core body having a gap, having a first end face constituting the gap and a second end face facing the first end face, and the first end face extends to the opposite side of the second end face.
  • a core body having a first side surface, the second end surface having a second side surface extending opposite to the first end surface;
  • a first resin mold portion covering the first side surface;
  • a second resin mold portion covering the second side surface;
  • the inner width of the resin bridge portion is wider than the gap.
  • the core body can be entirely covered with a resin mold portion except for the first end surface and the second end surface.
  • the core body can be at least partially covered with a resin mold part on the first side surface and the second side surface.
  • the current sensor of the present invention is A current sensor comprising a gapd core as described above, A bus bar that penetrates the inner peripheral side of the resin bridge portion of the core with gap and through which a current to be measured flows, A magnetic detecting element disposed in the gap and detecting a magnetic field generated in the gap;
  • the core with gap can form a mounting portion for the bus bar and / or the magnetic detection element in the resin bridge portion.
  • the manufacturing method of the core with a gap of the present invention includes: A mold step for forming a resin mold part by molding a part or all of the core body with an electrically insulating resin, The core body is cut together with the resin mold part at a first cutting part and a second cutting part, a first end face cut at the core cutting part at the first cutting part, and a first end face cut at the second cutting part.
  • a method for manufacturing a core with a gap comprising: The molding step includes a step of forming a resin bridge portion on the inner peripheral side of the core main body and having both ends continuous with the resin mold portion and having a gap between the core main body or the resin mold portion in the middle. Including In the cutting step, the first cutting portion and the second cutting portion are opposed to the gap, and the cutting is performed without cutting the resin bridge portion.
  • the gap bridge core is formed by forming the resin bridge portion having a gap on the inner peripheral side of the core main body and cutting the core main body without cutting the resin bridge portion.
  • the resin bridge portion can insulate the core body and the inner peripheral side of the core body. Since the core body is cut at two locations, the first cutting portion and the second cutting portion, the width of the gap to be formed is appropriately set by adjusting the interval between the first cutting portion and the second cutting portion. Can do.
  • a resin bridge portion is formed facing the cut portion of the core body.
  • This resin bridge portion is reinforced, and there is also an advantage that the core body can be prevented from being deformed during and after the core body is cut.
  • FIG. 1 is a plan view of a core member in which a resin mold portion is formed on a core body.
  • FIG. 2 is an enlarged view of the vicinity of the resin bridge portion of the core member.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an enlarged view showing a step of forming a gap in the core member.
  • FIG. 5 is an enlarged view showing a step of forming a gap following FIG.
  • FIG. 6 is an enlarged view of the vicinity of the gap of the core with a gap.
  • FIG. 7 is a plan view of a current sensor according to an embodiment of the present invention.
  • FIG. 8 is an enlarged view of the vicinity of the resin bridge portion of the core member showing a different embodiment of the present invention.
  • FIG. 9 is an enlarged view of the vicinity of the resin bridge portion of the core member showing still another embodiment of the present invention.
  • FIG. 10 is a reference diagram of an attempt to form a gap in the core body in
  • FIG. 1 is a plan view of a core member 10 according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of the vicinity of a resin bridge portion 40 of the core member 10
  • FIG. FIG. As shown in the figure, the core member 10 is a component in which an annular core body 20 is covered with a resin mold portion 30 and a gap is not formed.
  • the gap 21 in the core member 10 the core 50 with gap is manufactured, and the current sensor 60 is obtained by arranging the bus bar 62 and the magnetic detection element 63 on the core 50 with gap.
  • the core body 20 can be made of a magnetic material, and examples thereof include a wound iron core in which a thin plate of magnetic material is wound, a laminated iron core in which thin plates of an annular magnetic material are laminated, and a dust core in which magnetic material powder is compacted.
  • Resin mold part 30 is made of an electrically insulating resin.
  • the resin mold part 30 can be formed by insert molding integrated with the core body 20 by a mold step in which the core body 20 is disposed in a mold and a molten resin is press-fitted.
  • a bus bar opening 12 through which the bus bar 62 described in FIG. 7 is inserted is formed at the center of the resin mold portion 30.
  • the core body 20 is cut to form a gap 21 as shown in FIGS. 4 to 7 described later.
  • both ends of the gap forming region C which is the region where the gap 21 is formed, are connected to the resin mold portion 30 on the inner peripheral side of the core body 20, and the bus bar opening 12.
  • the resin bridge part 40 which has the clearance gap 42 penetrated in the thickness direction of the core main body 20 between is formed.
  • the resin bridge portion 40 and the gap 42 are formed at positions facing the gap forming region C.
  • the resin bridge portion 40 can be formed by providing a protrusion corresponding to the gap 42 on the inner surface of the mold.
  • the thickness of the resin bridge portion 40 is not less than the minimum thickness (about 1 mm) at which insulation performance can be obtained.
  • the inner width of the resin bridge portion 40 that is, the length of the gap 42 in the direction along the core body 20 is wider than the gap 21 to be formed. The reason will be described later.
  • a gap 21 is formed in the gap forming region C in the core member 10 in which the resin mold part 30 including the resin bridge part 40 is formed in the core body 20.
  • the gap 21 can be produced by cutting the core member 10 with two dicing blades 70 and 71 (disk-shaped grindstones).
  • dicing blades 70 and 71 are respectively brought close to the first cutting portion 14 and the second cutting portion 15 facing the gap 42 of the resin bridge portion 40 from the outer peripheral side of the core member 10. Then, the core member 10 is cut by forming the cut (cutting step). The distance between the dicing blades 70 and 71 is adjusted to the width of the gap 21 to be formed. That is, the gap 21 can be set to a desired width within the gap formation region C.
  • the cutting step is performed until the dicing blades 70 and 71 reach the gap 42 as shown in FIG.
  • the core piece 22 and the resin mold portion 32 covering the core piece 22 are completely separated from the core member 10, and as shown in FIG. 50 is produced.
  • the resin bridge portion 40 becomes an insulating member for the core body 20 and a bus bar 62 described later.
  • two dicing blades 70 and 71 may be brought close to the core member 10 at the same time, and the cutting may be performed twice with one dicing blade.
  • the gap 21 can be formed by cutting once with the dicing plate.
  • the inner width of the resin bridge portion 40 that is, the length of the gap 42 in the left-right direction along the core body 20 is made wider. Since the 1 cutting part 14 and the 2nd cutting part 15 reach the clearance gap 42 reliably, the core piece 22 and the resin mold part 32 which has coat
  • the width of the gap 42 formed by the resin bridge portion 40 and the distance between the cut portions 14 and 15, that is, the interval between the dicing blades 70 and 71 can be made variable. Therefore, a dicing blade having a thickness corresponding to the width of the gap 21 to be formed is unnecessary, and the gap 21 having a width wider than that of the dicing blade can be formed.
  • the resin bridge portion 40 is formed so as to face the cut portion of the core body 20, the resin bridge portion 40 serves as a reinforcement, and the gap 21 formed when and after the core body 20 is cut opens. For example, deformation of the core body 20 can be prevented.
  • the width of the gap 21 to be formed can be made variable by changing the distance between the dicing blades 70 and 71, the core member 10 is made common and only the width of the gap 21 to be formed is changed.
  • the resin mold part 30 can be shape
  • FIG. 6 is an enlarged view of the vicinity of the formed gap 21 and resin bridge portion 40.
  • the core body 20 has a first end surface 23 and a second end surface 26 facing the first end surface 23 due to the first cutting portion 14 and the second cutting portion 15, and thereby the gap 21 is formed. It is configured.
  • the core body 20 has a first side surface 24 extending from the first end surface 23 to the opposite side of the second end surface 26 with a resin mold portion (first resin mold portion 34).
  • a second side surface 27 extending in the opposite direction to the one end surface 23 is covered with a resin mold portion (second resin mold portion 35).
  • the first resin mold part 34 and the second resin mold part 35 are connected by the resin bridge part 40 on the inner peripheral side of the core body 20.
  • the resin bridge portion 40 is a surface as it is molded, and there is no trace of being scraped by a dicing blade as in Patent Document 1. On the other hand, since the resin does not adhere to the first end surface 23 and the second end surface of the core body 20, it is possible to discriminate from a gap-equipped core that is resin-molded after a gap is formed in the core body in advance.
  • the bus bar 62 is disposed so as to penetrate the bus bar opening 12, and the magnetic detection element 63 such as a Hall element is disposed in the gap 21.
  • the current sensor 60 is obtained.
  • a current to be measured is passed through the bus bar 62, and a change in the magnetic field generated in the gap 21 can be measured by the magnetic detection element 63.
  • the resin bridge portion 40 exists between the bus bar 62 and the gap 21 of the core body 20, insulation between them is achieved by the resin bridge portion 40.
  • the entire core body 20 is covered with the resin mold portion 30.
  • the resin mold portion 30 includes at least the first cutting portion 14 and the second cutting portion of the core body 20.
  • the position corresponding to the portion 15 and the periphery thereof may be partially covered.
  • the alternate long and short dash line indicates an example of the cutting portions 14 and 15.
  • the resin mold portion 30 is also formed between the gap 42 and the core body 20, but the core body 20 is exposed at this position so that a part of the core body 20 directly forms the gap 42. You may make it become the wall to form.
  • the resin bridge portion 40 can be formed with an attachment portion 44 for attaching the bus bar and an attachment portion 45 for attaching the magnetic detection element.
  • the resin bridge portion 40 is formed so as to protrude from the same side as the gap formation region C of the core body 20, but as shown in FIG. 9, the resin bridge portion 40 includes the gap formation region C. It can also be formed so as to connect two opposite sides. In this way, by connecting two opposite sides with the resin bridge portion 40, the bus bar and the core body 20 can be insulated, and the resin bridge portion 40 is reinforced to cut or cut the core body 20. The effect of suppressing deformation such as the core body 20 opening from the gap 21 portion later can be further enhanced.
  • the shape of the core body 20, the resin mold part 30, the resin bridge part 40, the width of the gap 21 to be formed, and the like are not limited to the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Insulating Of Coils (AREA)

Abstract

本発明は、樹脂モールド部によって全体又は一部が被覆されたコア本体のギャップ幅を適宜設定でき、コア本体とバスバー用開口との絶縁を図ることのできるコア部材、ギャップ付コア及び電流センサーを提供する。 本発明に係るコア部材10は、ギャップ21が形成されるギャップ形成領域Cを有するコア部材であって、前記コア部材は、バスバー62が配置されるバスバー用開口12を具える環状のコア本体20と、前記コア本体の全体又は一部を被覆する樹脂モールド部30であって、少なくとも前記ギャップ形成領域の一部を被覆する樹脂モールド部と、両端が前記樹脂モールド部に連繋され、前記コア本体の内周側と前記バスバー用開口との間に形成される樹脂ブリッジ部40であって、前記ギャップ形成領域と対向し前記コア本体又は樹脂モールド部との間に前記コア部材の厚さ方向に貫通する隙間42を存する、樹脂ブリッジ部と、を具える。

Description

コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法
 本発明は、ギャップ付コア及びこれを用いた電流センサーに関するものであり、より詳細には、コアを電気絶縁性の樹脂材料で部分的又は全体をモールドしたギャップ付コア及びこれを用いた電流センサーに関するものである。
 コア本体にギャップを形成し、コア本体の内周側のバスバー用開口を貫通するようにバスバーを配置すると共に、ギャップに磁気検出素子を配置してなる電流センサーが知られている(たとえば特許文献1参照)。特許文献1の電流センサー用のギャップ付コアでは、環状のコア本体を電気絶縁性の樹脂でモールドした後、ダイシングブレード(円盤状の砥石)で樹脂モールド部と共にコア本体を切断するが、コア本体の内周側の樹脂モールド部を残すことで、コア本体とバスバーとの絶縁を図るようにしている。
特開2007-88019号公報
 近年、ギャップの幅を幅広にすることが求められている。しかしながら、ダイシングブレードの厚さに制限があるため、ダイシングブレードよりも幅広のギャップを形成することはできなかった。
 そこで、発明者らは、2枚のダイシングブレードでギャップを形成することを試みた。しかしながら、コア本体とバスバーとの絶縁のためにコア本体の内周側の樹脂モールド部を残すように切断する場合、図10に示すように、コア本体20を切断できても、コア本体20の内側の樹脂モールド部30には2条の切込み16,16が入るのみである。すなわち、切断されたコア片22とこれを覆う樹脂モールド部32は丸囲み部Bの部分でコア本体20と繋がったままであるから、これらを取り除くことができない問題があった。
 本発明の目的は、樹脂モールド部によって全体又は一部が被覆されたコア本体のギャップ幅を適宜設定でき、コア本体とバスバー用開口との絶縁を図ることのできるコア部材、ギャップ付コア及び電流センサーを提供することである。
 本発明に係るコア部材は、
 ギャップが形成されるギャップ形成領域を有するコア部材であって、
 前記コア部材は、バスバーが配置されるバスバー用開口を具える環状のコア本体と、
 前記コア本体の全体又は一部を被覆する樹脂モールド部であって、少なくとも前記ギャップ形成領域の一部を被覆する樹脂モールド部と、
 両端が前記樹脂モールド部に連繋され、前記コア本体の内周側と前記バスバー用開口との間に形成される樹脂ブリッジ部であって、前記ギャップ形成領域と対向し前記コア本体又は樹脂モールド部との間に前記コア部材の厚さ方向に貫通する隙間を存する、樹脂ブリッジ部と、
 を具える。
 本発明のギャップ付コアは、
 上記記載のコア部材について、前記樹脂ブリッジ部を残して前記ギャップ形成領域で前記コア本体を切断してなるギャップを有する。
 また、本発明のギャップ付コアは、
 ギャップを有する環状のコア本体であって、前記ギャップを構成する第1端面と前記第1端面に対向する第2端面を有し、前記第1端面は、前記第2端面とは逆側に延びる第1側面を有し、前記第2端面は、前記第1端面とは逆側に延びる第2側面を有するコア本体と、
 前記第1側面を被覆する第1樹脂モールド部と、
 前記第2側面を被覆する第2樹脂モールド部と、
 前記コア本体の内周側で前記第1樹脂モールド部と前記第2樹脂モールド部を連繋する樹脂ブリッジ部と、
 を具える。
 前記樹脂ブリッジ部の内幅は、前記ギャップよりも広く形成することが望ましい。
 前記コア本体は、前記第1端面及び前記第2端面以外の側面全体が樹脂モールド部により被覆することができる。
 前記コア本体は、少なくとも前記第1側面と前記第2側面が樹脂モールド部により部分的に被覆することができる。
 本発明の電流センサーは、
 上記記載のギャップ付コアを具える電流センサーであって、
 前記ギャップ付コアの前記樹脂ブリッジ部よりも内周側を貫通し、測定対象の電流が流れるバスバーと、
 前記ギャップに配置され、前記ギャップに発生する磁界を検出する磁気検出素子と、
 を具える。
 前記ギャップ付コアは、前記樹脂ブリッジ部に前記バスバー及び/又は前記磁気検出素子の取付部を形成することができる。
 本発明のギャップ付コアの製造方法は、
 コア本体の一部又は全部を電気絶縁性の樹脂でモールドして樹脂モールド部を形成するモールドステップ、
 前記樹脂モールド部と共に前記コア本体を第1切断部と第2切断部で切断し、前記コア本体に前記第1切断部で切断された第1端面と、前記第2切断部で切断された第2端面を形成し、前記第1端面と前記第2端面との間にギャップを形成する切断ステップと、
 を含むギャップ付コアの製造方法であって、
 前記モールドステップは、前記コア本体の内周側であって両端が前記樹脂モールド部と連続し、中間に前記コア本体又は前記樹脂モールド部との間に隙間を有する樹脂ブリッジ部を形成するステップを含んでおり、
 前記切断ステップは、前記第1切断部と前記第2切断部が前記隙間と対向し、前記切断は前記樹脂ブリッジ部を切除することなく実施される。
 本発明に係るコア部材によれば、コア本体の内周側に隙間を有する樹脂ブリッジ部を形成し、樹脂ブリッジ部を切除することなく残してコア本体を切断することにより、ギャップ付コアを構成できると共に、樹脂ブリッジ部がコア本体とコア本体の内周側の絶縁を図ることができる。コア本体は、第1切断部と第2切断部の二箇所で切断されるから、第1切断部と第2切断部の間隔を調整することで、形成されるギャップの幅を適宜設定することができる。
 また、コア本体の切断部分に対向して樹脂ブリッジ部を形成している。この樹脂ブリッジ部が補強となって、コア本体の切断の際及び切断後にコア本体が変形することを防止できる利点もある。
図1は、コア本体に樹脂モールド部を形成したコア部材の平面図である。 図2は、コア部材の樹脂ブリッジ部近傍の拡大図である。 図3は、図2の線A-Aに沿う断面図である。 図4は、コア部材にギャップを形成する工程を示す拡大図である。 図5は、図4に続くギャップを形成する工程を示す拡大図である。 図6は、ギャップ付コアのギャップの近傍の拡大図である。 図7は、本発明の一実施形態に係る電流センサーの平面図である。 図8は、本発明の異なる実施形態を示すコア部材の樹脂ブリッジ部近傍の拡大図である。 図9は、本発明のさらに異なる実施形態を示すコア部材の樹脂ブリッジ部近傍の拡大図である。 図10は、特許文献1の樹脂モールド部を形成したコア本体にギャップの形成を試みた参考図である。
 以下、本発明の一実施形態に係るコア部材10、ギャップ付コア50及び電流センサー60について、図面を参照しながら説明を行なう。
 図1は、本発明の一実施形態にコア部材10の平面図、図2は、コア部材10の樹脂ブリッジ部40の近傍の拡大図、図3は、図2の線A-Aに沿う断面図である。コア部材10は、図に示すように、環状のコア本体20を樹脂モールド部30によって被覆したものであって、ギャップを形成前の部品である。このコア部材10にギャップ21を形成することでギャップ付コア50が作製され、ギャップ付コア50にバスバー62と磁気検出素子63を配置することで電流センサー60が得られる。
 コア本体20は、磁性材料から構成することができ、磁性材料の薄板を巻回した巻き鉄心、環状の磁性材料の薄板を積層した積層鉄心、磁性材料粉末を圧粉成形したダストコアを例示できる。
 樹脂モールド部30は、電気絶縁性の樹脂から構成される。たとえば、樹脂モールド部30は、金型内にコア本体20を配置して、溶融状態の樹脂を圧入するモールドステップによって、コア本体20と一体化するインサート成型によって形成することができる。樹脂モールド部30の中央には、図7で説明するバスバー62が挿通するバスバー用開口12が形成されている。
 コア部材10には、後述する図4乃至図7に示すように、コア本体20を切断してギャップ21を形成する。このギャップ21が形成される領域となるギャップ形成領域Cには、図1乃至図3に示すように、両端がコア本体20の内周側の樹脂モールド部30と連繋し、バスバー用開口12との間にコア本体20の厚さ方向に貫通する隙間42を有する樹脂ブリッジ部40を形成している。樹脂ブリッジ部40及び隙間42は、ギャップ形成領域Cと対向する位置に形成される。たとえば、樹脂ブリッジ部40は、金型の内面に隙間42と対応する突部を設けることで形成できる。
 樹脂ブリッジ部40の厚さは、絶縁性能を得られる最小肉厚(約1mm)以上とする。
 また、樹脂ブリッジ部40の内幅、すなわち、隙間42のコア本体20に沿う方向の長さは、形成するギャップ21よりも広くしておくことが望ましい。理由は後述する。
 図1乃至図3に示すように、コア本体20に樹脂ブリッジ部40を含む樹脂モールド部30を形成したコア部材10には、ギャップ形成領域Cにギャップ21(図6参照)が形成される。ギャップ21は、2枚のダイシングブレード70,71(円盤状の砥石)でコア部材10を切断することにより作製できる。
 具体的には、図4に示すように、樹脂ブリッジ部40の隙間42と対向する第1切断部14と第2切断部15にコア部材10の外周側からダイシングブレード70,71を夫々接近させて切込みを形成することでコア部材10を切断していく(切断ステップ)。ダイシングブレード70,71の間隔は、形成されるギャップ21の幅に合わせる。すなわち、ギャップ21は、ギャップ形成領域C内であれば所望の幅に設定することができる。
 そして、切断ステップは、図5に示すように、ダイシングブレード70,71が隙間42に到達するまで実施する。これにより、コア片22及びこれを被覆している樹脂モールド部32がコア部材10から完全に分断され、図6に示すように、これらを除去することで、ギャップ21が形成され、ギャップ付コア50が作製される。このとき、樹脂ブリッジ部40が共に切除されないようにすることで、樹脂ブリッジ部40がコア本体20と後述するバスバー62の絶縁部材となる。
 切断ステップでは、ダイシングブレード70,71を2枚同時にコア部材10に接近させて切断を行なってもよいし、1枚のダイシングブレードで2回切断を行なうようにしてもよい。もちろん、形成するギャップ21の幅に対応した厚さのダイシングブレードがあれば、当該ダイシングプレートで1回切断することにより、ギャップ21を形成することもできる。
 なお、樹脂ブリッジ部40の内幅、すなわち、隙間42のコア本体20に沿う左右方向の長さを形成されるギャップ21よりも広くしておくことで、コア部材10を切断したときに、第1切断部14と第2切断部15は確実に隙間42に届くので、コア片22及びこれを被覆している樹脂モールド部32を確実にコア部材10から分断できる。
 上記のように、本発明によれば、樹脂ブリッジ部40によって形成される隙間42の幅と、切断部14,15間の距離、すなわち、ダイシングブレード70,71の間隔を適宜調整することで、形成されるギャップ21の幅を可変にすることができる。従って、形成されるギャップ21の幅に応じた厚さのダイシングブレードは不要であり、ダイシングブレードよりも幅の広いギャップ21を形成することができる。
 さらに、コア本体20の切断部分と対向して樹脂ブリッジ部40を形成したことで、この樹脂ブリッジ部40が補強となって、コア本体20の切断の際及び切断後に形成されたギャップ21が開くなど、コア本体20の変形も防止できる。
 また、ダイシングブレード70,71の間隔を変えることで、形成するギャップ21の幅を可変とすることができるから、コア部材10を共通化して、形成されるギャップ21の幅のみを変える加工を行なうことができ、また、共通の金型で樹脂モールド部30を成型することができる。
 図6は、形成されたギャップ21及び樹脂ブリッジ部40の近傍の拡大図である。図に示すように、コア本体20は、第1切断部14と第2切断部15によって、第1端面23と前記第1端面23に対向する第2端面26が出現し、これらによってギャップ21が構成されている。また、コア本体20は、第1端面23から第2端面26とは逆側に延びる第1側面24が樹脂モールド部(第1樹脂モールド部34)によって被覆され、同様に第2端面26から第1端面23とは逆側に延びる第2側面27が樹脂モールド部(第2樹脂モールド部35)によって被覆されている。そして、第1樹脂モールド部34と第2樹脂モールド部35は、樹脂ブリッジ部40によって、コア本体20の内周側で連繋されている。樹脂ブリッジ部40は、成型された状態のままの表面であり、特許文献1のようにダイシングブレードによって削られた痕跡はない。一方、コア本体20の第1端面23と第2端面には樹脂が付着していないから、予めコア本体にギャップを形成した後、樹脂モールドしたギャップ付コアとも判別は可能である。
 上記によりギャップ21の形成されたコア50には、図7に示すように、バスバー用開口12を貫通するようにバスバー62を配置し、ギャップ21にホール素子等の磁気検出素子63を配置することで、電流センサー60が得られる。そして、バスバー62に測定対象の電流を流し、ギャップ21に発生する磁界の変化を磁気検出素子63で測定することができる。このとき、バスバー62とコア本体20のギャップ21との間には樹脂ブリッジ部40が存在しているため、これらの間の絶縁は樹脂ブリッジ部40によって達成される。
 なお、上記実施形態では、コア本体20の全体を樹脂モールド部30で被覆しているが、樹脂モールド部30は、図8に示すようにコア本体20の少なくとも第1切断部14と第2切断部15に相当する位置とその周縁を部分的に被覆する形態であってもよい。図中、一点鎖線は、切断部14,15の一例を示している。
 また、図1等では隙間42とコア本体20との間にも樹脂モールド部30が形成されているが、この位置でコア本体20を露出させて、コア本体20の一部が直接隙間42を形成する壁となるようにしても構わない。
 さらに、樹脂ブリッジ部40には、図8に示すように、バスバーを取り付けるための取付部44、磁気検出素子を取り付けるための取付部45を形成することもできる。
 上記実施形態では、樹脂ブリッジ部40は、コア本体20のギャップ形成領域Cと同じ辺から突出するよう形成しているが、図9に示すように、樹脂ブリッジ部40は、ギャップ形成領域Cを挟んで対向する二辺を結ぶように形成することもできる。このように、対向する二辺を樹脂ブリッジ部40で連繋することにより、バスバーとコア本体20との絶縁を図れることは勿論、樹脂ブリッジ部40が補強となって、コア本体20の切断又切断後にコア本体20がギャップ21部分から開くなどの変形を抑える効果をより高めることができる。
 上記説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或いは範囲を限縮するように解すべきではない。また、本発明の各部構成は、上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
 たとえば、コア本体20、樹脂モールド部30、樹脂ブリッジ部40の形状、さらには形成するギャップ21の幅等は上記実施形態に限定されないことは勿論である。
10 コア部材
20 コア本体
21 ギャップ
23 第1端面
24 第1側面
25 第2端面
26 第2側面
30 樹脂モールド部
34 第1樹脂モールド部
35 第2樹脂モールド部
40 樹脂ブリッジ部
42 隙間
50 ギャップ付コア
60 電流センサー
C ギャップ形成領域

Claims (9)

  1.  ギャップが形成されるギャップ形成領域を有するコア部材であって、
     前記コア部材は、バスバーが配置されるバスバー用開口を具える環状のコア本体と、
     前記コア本体の全体又は一部を被覆する樹脂モールド部であって、少なくとも前記ギャップ形成領域の一部を被覆する樹脂モールド部と、
     両端が前記樹脂モールド部に連繋され、前記コア本体の内周側と前記バスバー用開口との間に形成される樹脂ブリッジ部であって、前記ギャップ形成領域と対向し前記コア本体又は樹脂モールド部との間に前記コア部材の厚さ方向に貫通する隙間を存する、樹脂ブリッジ部と、
     を具える、
     コア部材。
  2.  請求項1に記載のコア部材について、前記樹脂ブリッジ部を残して前記ギャップ形成領域で前記コア本体を切断してなるギャップを有する、
     ギャップ付コア。
  3.  ギャップを有する環状のコア本体であって、前記ギャップを構成する第1端面と前記第1端面に対向する第2端面を有し、前記第1端面は、前記第2端面とは逆側に延びる第1側面を有し、前記第2端面は、前記第1端面とは逆側に延びる第2側面を有するコア本体と、
     前記第1側面を被覆する第1樹脂モールド部と、
     前記第2側面を被覆する第2樹脂モールド部と、
     前記コア本体の内周側で前記第1樹脂モールド部と前記第2樹脂モールド部を連繋する樹脂ブリッジ部と、
     を具えることを特徴とするギャップ付コア。
  4.  前記樹脂ブリッジ部の内幅は、前記ギャップよりも広い、
     請求項3に記載のギャップ付コア。
  5.  前記コア本体は、前記第1端面及び前記第2端面以外の側面全体が樹脂モールド部により被覆されている、
     請求項3又は請求項4に記載のギャップ付コア。
  6.  前記コア本体は、少なくとも前記第1側面と前記第2側面が樹脂モールド部により部分的に被覆されている、
     請求項3又は請求項4に記載のギャップ付コア。
  7.  請求項3乃至請求項6の何れかに記載のギャップ付コアを具える電流センサーであって、
     前記ギャップ付コアの前記樹脂ブリッジ部よりも内周側を貫通し、測定対象の電流が流れるバスバーと、
     前記ギャップに配置され、前記ギャップに発生する磁界を検出する磁気検出素子と、
     を具える電流センサー。
  8.  前記ギャップ付コアは、前記樹脂ブリッジ部に前記バスバー及び/又は前記磁気検出素子の取付部が形成されている、
     請求項7に記載の電流センサー。
  9.  コア本体の一部又は全部を電気絶縁性の樹脂でモールドして樹脂モールド部を形成するモールドステップ、
     前記樹脂モールド部と共に前記コア本体を第1切断部と第2切断部で切断し、前記コア本体に前記第1切断部で切断された第1端面と、前記第2切断部で切断された第2端面を形成し、前記第1端面と前記第2端面との間にギャップを形成する切断ステップと、
     を含むギャップ付コアの製造方法であって、
     前記モールドステップは、前記コア本体の内周側であって両端が前記樹脂モールド部と連続し、中間に前記コア本体又は前記樹脂モールド部との間に隙間を有する樹脂ブリッジ部を形成するステップを含んでおり、
     前記切断ステップは、前記第1切断部と前記第2切断部が前記隙間と対向し、前記切断は前記樹脂ブリッジ部を切除することなく実施される、
     ギャップ付コアの製造方法。
PCT/JP2017/033631 2016-09-29 2017-09-19 コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法 WO2018061850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780060555.7A CN109791834B (zh) 2016-09-29 2017-09-19 芯构件、带空隙的芯、电流传感器和带空隙的芯的制造方法
EP17855805.2A EP3522183B1 (en) 2016-09-29 2017-09-19 Core member, core with gap, current sensor, and method for manufacturing core with gap
KR1020187022478A KR102249256B1 (ko) 2016-09-29 2017-09-19 코어 부재, 갭이 있는 코어, 전류 센서 및 갭이 있는 코어의 제조 방법
US16/074,944 US10802055B2 (en) 2016-09-29 2017-09-19 Core member, gapped core, current sensor, and method for manufacturing gapped core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190880A JP6719771B2 (ja) 2016-09-29 2016-09-29 コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法
JP2016-190880 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061850A1 true WO2018061850A1 (ja) 2018-04-05

Family

ID=61759634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033631 WO2018061850A1 (ja) 2016-09-29 2017-09-19 コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法

Country Status (7)

Country Link
US (1) US10802055B2 (ja)
EP (1) EP3522183B1 (ja)
JP (1) JP6719771B2 (ja)
KR (1) KR102249256B1 (ja)
CN (1) CN109791834B (ja)
TW (1) TWI697018B (ja)
WO (1) WO2018061850A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461418B1 (ja) * 2018-10-16 2019-01-30 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法
JP6461419B1 (ja) * 2018-10-16 2019-01-30 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307661B2 (ja) * 2019-10-24 2023-07-12 株式会社タムラ製作所 バスバーアセンブリ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052034A (ja) * 1991-06-25 1993-01-08 Mitsubishi Electric Corp 屋外用光センサー装置
JP2005308527A (ja) * 2004-04-21 2005-11-04 Denso Corp 電流センサ
JP2007088019A (ja) * 2005-09-20 2007-04-05 Sht Corp Ltd 電流センサ用磁気コア装置及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084617B2 (en) 2004-04-21 2006-08-01 Denso Corporation Electric current sensor having magnetic gap
CN201478886U (zh) * 2009-07-06 2010-05-19 武汉本杰明自动化设备工程有限公司 一种可拆分矩形微晶铁芯的高压母线取电电源
JP5271291B2 (ja) 2010-01-28 2013-08-21 株式会社エス・エッチ・ティ 電流検出器
CN102483431A (zh) * 2010-03-31 2012-05-30 欧姆龙株式会社 磁芯、具备该磁芯的电流传感器及电流测定方法
JP6131588B2 (ja) 2011-12-27 2017-05-24 株式会社デンソー 電流センサ
EP2741090B1 (en) * 2012-12-07 2015-07-29 LEM Intellectual Property SA Electrical current transducer with wound magnetic core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052034A (ja) * 1991-06-25 1993-01-08 Mitsubishi Electric Corp 屋外用光センサー装置
JP2005308527A (ja) * 2004-04-21 2005-11-04 Denso Corp 電流センサ
JP2007088019A (ja) * 2005-09-20 2007-04-05 Sht Corp Ltd 電流センサ用磁気コア装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461418B1 (ja) * 2018-10-16 2019-01-30 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法
JP6461419B1 (ja) * 2018-10-16 2019-01-30 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法
JP2020064932A (ja) * 2018-10-16 2020-04-23 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法
JP2020064931A (ja) * 2018-10-16 2020-04-23 株式会社エス・エッチ・ティ 電流検出器用のコア及びその製造方法

Also Published As

Publication number Publication date
JP6719771B2 (ja) 2020-07-08
TWI697018B (zh) 2020-06-21
US10802055B2 (en) 2020-10-13
EP3522183B1 (en) 2023-09-06
KR20190058377A (ko) 2019-05-29
CN109791834A (zh) 2019-05-21
CN109791834B (zh) 2022-03-01
JP2018056343A (ja) 2018-04-05
EP3522183A1 (en) 2019-08-07
EP3522183A4 (en) 2020-06-03
US20190033346A1 (en) 2019-01-31
TW201826296A (zh) 2018-07-16
KR102249256B1 (ko) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4681999B2 (ja) 電流センサ用磁気コア装置及びその製造方法
WO2018061850A1 (ja) コア部材、ギャップ付コア、電流センサー及びギャップ付コアの製造方法
KR102141793B1 (ko) 영구 자석식 동기기 및 영구 자석식 동기기의 고정자의 제조 방법
JP2008312304A (ja) ステータコア及びそれを用いたモータ
JP5158426B2 (ja) ステータアッセンブリ
JP2018056343A5 (ja)
JP6814568B2 (ja) 積層鉄心
US11366138B2 (en) Core for electric current detector and method for manufacturing the same
JP2015503321A (ja) マグネットホイール
JP2016031293A (ja) 磁気シールド及びその製造方法
JP3629193B2 (ja) 絶縁部材及び電動機固定子及び電動機固定子の組立方法
TW201728052A (zh) 鐵芯片、分割積層鐵芯及定子,以及分割積層鐵芯之製造方法
JP2008175719A (ja) ノックセンサ
JP2015042122A (ja) ロータ
JP3028948B1 (ja) モータ
US11397195B2 (en) Core for electric current detector and method for manufacturing the same
JP6421424B2 (ja) バスバーアセンブリ、バスバーアセンブリの製造方法
JP2015042123A (ja) ロータ
JP2007295712A (ja) ステータコア
JP5097919B2 (ja) レゾルバステータのリード線接続構造
JP6697433B2 (ja) 固定子及び電動機
JP5510716B2 (ja) 絶縁素子、およびそれを用いた電動機
JP2018163818A (ja) マニホールド及びその製造方法
JPS6314574B2 (ja)
JP2004342749A (ja) 鉄心

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022478

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855805

Country of ref document: EP

Effective date: 20190429