WO2018061768A1 - 回転子、回転電機、および圧縮機 - Google Patents

回転子、回転電機、および圧縮機 Download PDF

Info

Publication number
WO2018061768A1
WO2018061768A1 PCT/JP2017/033015 JP2017033015W WO2018061768A1 WO 2018061768 A1 WO2018061768 A1 WO 2018061768A1 JP 2017033015 W JP2017033015 W JP 2017033015W WO 2018061768 A1 WO2018061768 A1 WO 2018061768A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
rotor
magnet
end plates
refrigerant
Prior art date
Application number
PCT/JP2017/033015
Other languages
English (en)
French (fr)
Inventor
一弘 庄野
伊藤 慎一
裕貴 田村
寛治 新川
瑞穂 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17855724.5A priority Critical patent/EP3522337B1/en
Priority to CN201780045611.XA priority patent/CN109792180A/zh
Priority to JP2018542358A priority patent/JP6571293B2/ja
Priority to US16/327,013 priority patent/US10931158B2/en
Publication of WO2018061768A1 publication Critical patent/WO2018061768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • the present invention relates to a rotor, a rotating electrical machine, and a compressor capable of efficiently cooling a permanent magnet and a stator of a rotor.
  • JP-A-8-65933 (paragraphs 0009 to 0011, FIGS. 1 and 2)
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a rotor, a rotating electrical machine, and a compressor that can efficiently cool a permanent magnet and a stator of the rotor.
  • the rotor of the present invention is A laminated iron core formed by laminating a plurality of iron cores; A permanent magnet disposed in a magnet hole formed so as to penetrate in the axial direction of the laminated core; End plates respectively installed at both axial ends of the laminated core; In a rotor that is disposed in a through hole formed in the center of the laminated core and each of the end plates, and includes a rotating shaft that fixes the laminated core and the end plates.
  • a plurality of the magnet holes in which the permanent magnets are arranged are formed in the circumferential direction, and there are gap portions in which the permanent magnets are not arranged at both ends in the circumferential direction of the magnet holes,
  • a through hole is formed penetrating in the axial direction, A part or all of each iron core communicates with a first groove part in which the gap part of the magnet hole communicates with the flow hole, the gap part of the magnet hole and the outer periphery of the iron core, and an exhaust port.
  • At least one of the end plates includes a first hole that exposes the flow hole and serves as an intake port, and a partition that assists intake on the downstream side in the rotation direction of the first hole.
  • the rotating electrical machine of the present invention is The rotor;
  • the rotor includes an outer peripheral surface of the rotor and a stator arranged in a concentric manner with a space therebetween.
  • the compressor of the present invention is A compression mechanism, The rotating electrical machine that drives the compression mechanism section.
  • the rotor's permanent magnet and stator can be cooled efficiently.
  • FIG. 1 It is a perspective view which shows the rotor by Embodiment 1 of this invention. It is sectional drawing which shows the structure of the rotary electric machine using the rotor shown in FIG. It is a top view which shows the structure of the iron core of the rotor shown in FIG. It is sectional drawing which shows the cross section of the iron core shown in FIG. It is the perspective view which showed the detail of the screen part of the rotor shown in FIG. It is a half sectional view which shows the flow of the refrigerant
  • FIG. Embodiments of the present invention will be described below.
  • 1 is a perspective view showing a rotor of a rotating electrical machine according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view showing a configuration of a rotating electrical machine using the rotor shown in FIG.
  • FIG. 3 is a plan view showing the configuration of the iron core of the rotor shown in FIG.
  • FIG. 4A is a cross-sectional view showing a cross section of the iron core shown in FIG. 4B is a cross-sectional view showing a cross section of the iron core shown in FIG. 3 taken along line BB.
  • FIG. 5 is a perspective view showing details of the screen part of the rotor shown in FIG. 6 is a left half sectional view showing the flow of the refrigerant in the rotor shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view showing details of the refrigerant flow in the rotor shown in FIG.
  • the rotor 1 includes a laminated iron core 20, a permanent magnet 21, end plates 100 and 101, and a rotating shaft 3.
  • the laminated iron core 20 is formed by laminating a plurality of iron cores 2 in the axial direction Y.
  • a magnet hole 26 is formed in the laminated core 20 so as to penetrate in the axial direction Y.
  • a plurality of the magnet holes 26 are formed in the circumferential direction Z.
  • six (six poles) magnet holes 26 are formed in the circumferential direction Z.
  • a permanent magnet 21 is installed in each magnet hole 26.
  • gaps 261 in which the permanent magnet 21 is not disposed are formed at both ends in the circumferential direction Z. Therefore, the gap 261 is formed so as to penetrate in the axial direction Y.
  • a flow hole 22 is formed that penetrates in the axial direction Y between the magnet holes 26 adjacent to each other in the circumferential direction Z and on the inner side X ⁇ b> 2 in the radial direction X from the magnet holes 26.
  • the shape of the flow hole 22 is such that the width H1 in the radial direction X is wider than the width H3 in the circumferential direction Z.
  • the end plates 100 and 101 are respectively installed at both ends in the axial direction Y of the laminated core 20.
  • the main function of the end plates 100 and 101 is to hold the permanent magnets 21 in the magnet holes 26 of the laminated core 20, and are usually installed in close contact with the laminated core 20 at both ends in the axial direction Y of the laminated core 20. Is done.
  • the rotating shaft 3 is disposed in a through hole 13 formed in the center between the laminated iron core 20 and the end plates 100 and 101 in the axial direction Y. The rotating shaft 3 fixes the laminated iron core 20 and the end plates 100 and 101.
  • Magnet holes 26, through holes 13, and flow holes 22 are formed in the plurality of iron cores 2 constituting the laminated iron core 20.
  • the iron core 2 includes a first groove portion 24 in which the gap portion 261 of the magnet hole 26 and the flow hole 22 communicate with each other, and the gap portion 261 of the magnet hole 26 and the iron core 2.
  • a second groove portion 25 serving as an exhaust port communicating with the outer periphery. Therefore, the flow hole 22, the first groove portion 24, the gap portion 261, and the second groove portion 25 are formed to communicate with the outer side X ⁇ b> 1 in the radial direction X of the iron core 2, i.e., communicate with the outer periphery of the iron core 2.
  • the flow hole 22 is exposed, the first hole 12 serving as an intake port, and the axial direction Y extends downstream of the rotation direction Z1 of the first hole 12 to intake air.
  • An auxiliary partition 11 is formed.
  • the first hole 12 serving as the refrigerant intake port is provided in a portion corresponding to the flow hole 22 of the end plates 100 and 101, and the second groove portion 25 and the magnet hole 26 are simply rotated by rotating the rotor 1.
  • the refrigerant present in the gap 261 is discharged to the outer side X1 in the radial direction X from the second groove 25 serving as an exhaust port by centrifugal force. Since the gap 261 of the magnet hole 26 has a negative pressure, the refrigerant is sucked from the circulation hole 22 through the first groove 24. Further, the circulation hole 22 sucks in the refrigerant from the first hole 12 serving as an intake port of the end plates 100 and 101.
  • the refrigerant is sucked from the first holes 12 that serve as the inlets of the end plates 100 and 101, and is exhausted from the second groove 25 as the exhaust port, whereby the refrigerant flow F shown in the figure can be obtained. .
  • the same refrigerant flow occurs regardless of the direction of rotation of the rotor 1.
  • the shape of the first hole 12 is such that the width H1 in the radial direction X is wider than the width H2 in the circumferential direction Z.
  • the shape of the 1st hole 12 and the partition part 11 showed the example of substantially rectangular shape (rectangular shape), it is not limited to this, An ellipse, 1/2 elliptical arc, 1/2 arc, etc. It can also be formed.
  • the area of the first hole 12 of the end plate 100 is compared with the area of the flow hole 22, the area of the first hole 12 is formed larger than the area of the flow hole 22. As described above, it is desirable that the entire circulation hole 22 is exposed from the first hole 12. As shown in FIG. 7, the angles ⁇ 1 and ⁇ 2 formed by the surface on the first hole 12 side of the partition 11 and the end surfaces of the end plates 100 and 101 are formed at 30 deg to 60 deg.
  • the iron core 2 is formed by coining (coining) or etching by pressing a magnetic thin plate such as an electromagnetic steel plate, but other methods may be used.
  • the first groove portion 24 and the second groove portion 25 are formed by reducing the thickness of the upper surface side in the axial direction Y of the iron core 2, and may be formed simultaneously with the magnet hole 26, the through hole 13, and the flow hole 22. It may be formed separately.
  • the shape of the 1st groove part 24 and the 2nd groove part 25 is the shape of the whole flow path including the partition part 11 by changing the width
  • the permanent magnet 21 is formed of a neodymium sintered magnet or the like.
  • the end plates 100 and 101 are formed by pressing a nonmagnetic thin plate material such as a nonmagnetic SUS (stainless steel) thin plate. Therefore, the partition part 11 formed by cutting and raising and the first hole 12 are formed simultaneously. Moreover, although the example of cutting up was shown as a shaping
  • the rotating electrical machine 40 includes the rotor 1 and the stator 30.
  • the stator 30 is disposed concentrically with a space from the outer peripheral surface of the rotor 1.
  • the stator 30 includes a stator core 31 and a winding 32.
  • the screen 11 is provided on both end plates 100 and 101 at both ends in the axial direction Y in the same direction with respect to the rotation direction Z1, and the top surfaces of the end plates 100 and 101 and the angles ⁇ 1 and ⁇ 2 (> 90 deg) are provided. Therefore, it arrange
  • the refrigerant sucked into the circulation hole 22 and further introduced cools the permanent magnet 21 while passing through the first groove portion 24 and the gap portion 261, Further, it passes through the second groove 25 and is discharged to the outer side X1 of the rotor 1 in the radial direction X.
  • the refrigerant discharged to the outer side X1 of the rotor 1 in the radial direction X further cools the stator core 31 and the winding 32 of the stator 30 disposed on the outer side X1 of the rotor 1 in the radial direction X.
  • the partition portion 11 In addition to the refrigerant flow F (suction) caused by the centrifugal force caused by the refrigerant flow path having the second groove portion 25 as the discharge port on the outer side X1 in the radial direction X, the partition portion 11 The forced refrigerant flow F is applied to the circulation hole 22 to increase the refrigerant supply and accelerate the refrigerant flow F toward the outer side X1 in the radial direction X of the iron core 2 of the rotor 1. In addition to increasing the cooling effect of the permanent magnet 21, the stator core 31 and the winding 32 of the stator 30 can be effectively cooled.
  • angles ⁇ 1 and ⁇ 2 formed by the partition portion 11 with the end plates 100 and 101 are formed to be 90 deg or less. This is because, when the angles ⁇ 1 and ⁇ 2 approach 90 deg, the probability that the refrigerant that has collided with and reflected by the partition 11 reaches the circulation hole 22 decreases. In addition, when the angles ⁇ 1 and ⁇ 2 approach 0 deg, the amount of refrigerant that hits the partition 11 itself decreases. In order to increase the refrigerant supply capacity, a range of 30 deg ⁇ 1, ⁇ 2 ⁇ 60 deg, more precisely a value around 45 deg is desirable.
  • the angles ⁇ 1 and ⁇ 2 of the partition portions 11 of the end plates 100 and 101 at both ends in the axial direction Y are set to the same angle.
  • the temperature of the refrigerant is different at both ends in the axial direction Y of the rotor 1, for example, in a compressor having a low-pressure shell structure, at the end in the axial direction Y close to the compression mechanism side.
  • the temperature of the distributed refrigerant is lower than that of the refrigerant distributed on the side where the refrigerating machine oil at the end in the opposite axial direction Y is accumulated. In this way, when it is desired to give priority to the refrigerant supply from one end, the values of the angle ⁇ 1 and the angle ⁇ 2 may be set to different values.
  • the refrigerant present in the first groove portion, the gap portion, and the second groove portion is caused to have a diameter of the rotor by centrifugal force generated during rotation.
  • the forced refrigerant flow by the partition is introduced into the first groove and the second groove through the flow holes, so that the flow of the refrigerant increases, and the magnet and winding
  • the cooling efficiency of the wire is improved.
  • the refrigerant can be forcibly supplied by the partition.
  • the refrigerant since the refrigerant is supplied from both ends in the axial direction toward the center of the rotor, the flow rate of the refrigerant passing through the rotor is increased, and improvement in the cooling efficiency of the permanent magnet can be expected.
  • stator disposed outside is cooled by the flow of the refrigerant discharged from the second groove portion of the rotor toward the outside in the radial direction. Therefore, the stator core and the winding of the stator are cooled.
  • the refrigerant reflected from the screen part is shorter than the round hole having the same area through the first hole. Since it can reach the flow hole, the supply efficiency of the refrigerant can be increased without increasing the magnetic resistance of the iron core.
  • the shape of the flow hole and the first hole is not limited to the example shown in the first embodiment. For example, a shape such as an ellipse or a rectangle may be used, and the width in the radial direction is larger than the width in the circumferential direction. Any shape that widens may be used.
  • the angle formed by the surface on the first hole side of the partition and the end surface of the end plate is 30 deg to 60 deg, the refrigerant can be efficiently introduced into the flow hole.
  • the cooling efficiency of the stator windings is further improved.
  • the oscillating mechanism of the compressor connected to the tip of the shaft rotates while being eccentric, so that the influence of the shaft of the rotor 1 can be offset.
  • a substantially semicircular balancer formed of a metal such as brass may be disposed on one side in the direction Y. In that case, about half of the end plate 101 is sandwiched between the balancer and the laminated core 20. Therefore, the shape of the balancer is changed so that the first hole 12 and the partitioning portion 11 are exposed, or the end plate 101 has a first hole in a portion where the balancer is not installed.
  • the balancer may be considered as a part of the end plate 101, and the first hole and the partition may be formed in the balancer itself.
  • the present invention is not limited to this, and the effect is exhibited regardless of the number of poles such as 4 poles and 8 poles To do.
  • the shape of the permanent magnet and the magnet hole is exemplified as a linear shape orthogonal to the axial direction Y, but is not limited to this, and other shapes and forms such as a V shape and a U shape are possible. However, the same effect is obtained.
  • the configuration of the stator may be a concentrated winding or a distributed winding, and the number of slots is 6, 9, 12 for concentrated winding, and 24, 32 for distributed winding. It can be selected from many options such as slots and is not limited to a specific one.
  • Embodiment 2 the case where the partition portion 11 that assists the intake and the first hole 12 that becomes the intake port is formed in both of the end plates 100 and 101 at both ends has been described. Instead, in the second embodiment, an example in which only one end plate 100 is provided with a partition 11 for assisting inspiration and a first hole 12 serving as an intake port will be described. In addition, since each structure is the same as that of the said Embodiment 1, since the same part attaches
  • FIG. 8 is a left half sectional view showing the refrigerant flow F in the rotor according to the second embodiment of the present invention.
  • FIG. 9 is an enlarged sectional view showing details of the refrigerant flow F in the rotor shown in FIG. As shown in each drawing, only the end plate 100 on the upper side in the axial direction Y of the laminated iron core 20 is provided with the partition portion 11 and the first hole 12. The lower end plate 101 is not provided with the partition 11 and the first hole 12.
  • the refrigerant is located on a specific side in the axial direction of the rotor, here, on the upper side in the axial direction on the drawing and from the upper side to the lower side in the axial direction.
  • Can supply for example, in the case of a compressor in which one side is close to the compression mechanism section and one side is close to the side where the compressor oil is stored, such as a low-pressure shell structure compressor, the refrigerant supply from the side storing the refrigerating machine oil is shut off. As a result, the suction of oil contained in the refrigerant is restricted, and cooling can be performed only with the refrigerant having a relatively low temperature.
  • the end plate near the compression mechanism is not formed with a screen part and a first hole.
  • a partition portion and a first hole are formed in the end plate on the side to be saved. According to this, while being able to use the refrigerant containing a large amount of oil, it is possible to reduce the amount of the refrigerant whose temperature has increased due to cooling moving to the compression mechanism side, and to suppress the reduction in compressor efficiency. It becomes possible.
  • the example shown in the first embodiment and the second embodiment is an example, and the formation part and the shape of the partition portion 11 and the first hole 12 are not limited to those shown in the respective embodiments. In addition, it may be formed in an appropriate formation location and shape according to the characteristics of the rotor and the rotating electrical machine.
  • FIG. 10 is a perspective view showing the configuration of the screen part of the rotor according to the third embodiment of the present invention.
  • the partition portion 11 includes a side wall portion 111 extending in the axial direction Y on the outer side X1 in the radial direction X, and a side wall portion 112 extending in the axial direction Y on the inner side X2 in the radial direction X.
  • Each side wall 111, 112 is configured to communicate with the end plate 100.
  • the side wall portion allows the refrigerant that escapes in the radial direction after colliding with the partition portion to produce the same effects as the above-described embodiments. Can be captured. Therefore, the refrigerant supply capacity to the flow hole can be improved, the permanent magnets and the stator coils can be cooled more efficiently, and the efficiency of the rotating electrical machine can be further improved.
  • the present invention is not limited to this.
  • the outer side X1 in the radial direction X that receives centrifugal force in particular tends to escape more easily. Therefore, it is conceivable that only the side wall 111 on the outer side X1 in the radial direction X is provided, and the side wall 112 on the inner side X2 in the radial direction X is not formed. Even in this case, the refrigerant supply capability is improved, and the same effect as in the third embodiment can be obtained.
  • the forming method can be performed by drawing or the like. As another method, it can also be formed by a cutting and bending method. In this case, for example, the side wall portions 111 and 112 are formed by being bent and are continuous with the partition portion 11, but a cut is formed between the side wall portions 111 and 112 and the end plate 100. The same effect as in the third aspect can be obtained.
  • FIG. 11 is a top view showing the shape of the end plate in the rotor of the rotating electrical machine according to the fourth embodiment of the present invention.
  • the end plate 100 includes the second hole 14 through which the gap 261 of the magnet hole 26 is exposed.
  • the second hole is added as well as the same effects as those of the above-described embodiments.
  • Refrigerant is supplied in the axial direction of the gap that is not formed, and further improvement in refrigerant supply capability can be expected.
  • the example which forms the shape of a 2nd hole circularly was shown, it is not restricted to this, As long as the space
  • the second hole may be configured such that the outer peripheral portion of the end plate is also cut out, and the same effect can be obtained.
  • a partition portion 15 can be formed in the second hole 14 to further improve the refrigerant supply capability.
  • the partitioning portions 11 and 15 are not separately formed in the first hole 12 and the second hole 14, but the first hole 12 and the second hole 14 as shown in FIG. One partition 16 may be formed.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the compressor according to Embodiment 5 of the present invention.
  • a compressor 50 includes a shell 51 serving as an exterior, a compression mechanism unit 52 installed in the shell 51, and the rotating electrical machine 40 according to any one of the above embodiments that drives the compression mechanism unit 52. .
  • the rotating shaft of the rotor of the rotating electrical machine 40 is connected to, for example, an orbiting scroll component of the compression mechanism unit 52. And the compression mechanism part 52 drives by the drive of the rotary electric machine 40.
  • the rotor and the rotating electrical machine are not limited to being mounted on the compressor as shown in the fifth embodiment, but are used in other fields, such as industrial motors, Needless to say, the present invention can be applied to a rotating electrical machine having an IPM structure, such as an in-vehicle motor, and an improvement in efficiency can be expected.

Abstract

複数の鉄心(2)が積層された積層鉄心(20)と、軸方向(Y)に形成された磁石孔(26)に配置された永久磁石(21)と、軸方向(Y)の両端の端板(100、101)とを備え、磁石孔(26)は、周方向(Z)に複数個形成され、磁石孔(26)の周方向(Z)の両端には空隙部(261)を有し、周方向(Z)に隣接する磁石孔(26)の間であって、かつ、磁石孔(26)より径方向(X)の内側(X2)に、軸方向(Y)に貫通して流通孔(22)が形成され、各鉄心(2)には、空隙部(261)と流通孔(22)とが連通する第一溝部(24)と、空隙部(261)と鉄心(2)の外周とが連通し、排気口となる第二溝部(25)と、端板(100、101)には、流通孔(22)が露出し、吸気口となる第一孔(12)と、第一孔(12)の回転方向(Z1)の下流側に吸気を補助する衝立部(11)とを備える。

Description

回転子、回転電機、および圧縮機
 この発明は、回転子の永久磁石や固定子を効率良く冷却できる回転子、回転電機、および圧縮機に関するものである。
 従来、永久磁石が埋め込まれている回転子を用いたIPM(Interior Permanent Magnet)モータ等の回転電機では、稼働時の回転電機の発熱により永久磁石の温度が上昇し、トルクを発生させる磁束が低下する。そこで、従来、回転子を冷却する方法として、回転子の積層鉄心の軸方向両端の各1枚に、風孔の縁部に羽根を傾斜姿勢で形成したものが提案されている。この構成によれば、回転子の回転中に風穴の中へ通す風の量を増大し、その風による積層鉄心の冷却を介して永久磁石を効果的に冷却している(例えば、特許文献1参照)。
特開平8-65933号公報(段落0009~0011、図1、2)
 従来の回転子、および回転電機は、風の流れが風穴に限定されており、永久磁石を直接冷却するのには適さないという問題点があった。
 また、風の流れが回転子の積層鉄心を軸方向に貫通するため、固定子の冷却には適さないという問題点があった。
 この発明は上記のような課題を解決するためになされたものであり、回転子の永久磁石や固定子を効率良く冷却できる回転子、回転電機、および圧縮機を提供することを目的とする。
 この発明の回転子は、
複数の鉄心が積層され形成された積層鉄心と、
前記積層鉄心の軸方向に貫通して形成された磁石孔に配置された永久磁石と、
前記積層鉄心の軸方向の両端にそれぞれ設置された端板と、
前記積層鉄心と各前記端板との中央に形成された貫通孔に配置され、前記積層鉄心および前記端板を固定する回転軸とを備えた回転子において、
前記永久磁石が配置された前記磁石孔は、周方向に複数個形成され、前記磁石孔の周方向の両端には前記永久磁石が配置されていない空隙部を有し、
前記積層鉄心には、周方向に隣接する前記磁石孔の間であって、かつ、前記磁石孔より径方向の内側に、軸方向に貫通して流通孔が形成され、
各前記鉄心の一部または全てには、前記磁石孔の前記空隙部と前記流通孔とが連通する第一溝部と、前記磁石孔の前記空隙部と前記鉄心の外周とが連通し、排気口となる第二溝部とが形成され、
前記端板の少なくともいずれか一方には、前記流通孔が露出し、吸気口となる第一孔と、前記第一孔の回転方向の下流側に吸気を補助する衝立部とを備える。
 また、この発明の回転電機は、
 前記回転子と、
前記回転子の外周面と間隔を設けてかつ同心円状に配設された固定子とを備えたものである。
 また、この発明の圧縮機は、
圧縮機構部と、
前記圧縮機構部を駆動する前記回転電機とを備えたものである。
 この発明の回転子、回転電機、および圧縮機によれば、
 回転子の永久磁石や固定子を効率良く冷却できる。
本発明の実施の形態1による回転子を示す斜視図である。 図1に示した回転子を用いた回転電機の構成を示す断面図である。 図1に示した回転子の鉄心の構成を示す平面図である。 図3に示した鉄心の断面を示す断面図である。 図1に示した回転子の衝立部の詳細を示した斜視図である。 図1に示した回転子における冷媒の流れを示す片断面図である。 図6に示した回転子における冷媒の流れの詳細を示す拡大断面図である。 本発明の実施の形態2による回転子における冷媒の流れを示す片断面図である。 図8に示した回転子における冷媒の流れの詳細を示す拡大断面図である。 本発明の実施の形態3による衝立部の詳細を示した斜視図である。 本発明の実施の形態4による回転子の端板の構成を示す平面図である。 本発明の実施の形態4による回転子の他の端板の構成を示す平面図である。 本発明の実施の形態4による回転子の他の端板の構成を示す平面図である。 本発明の実施の形態5による圧縮機の構成を示す断面図である。
実施の形態1.
 以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1における回転電機の回転子を示す斜視図である。図2は図1に示した回転子を用いた回転電機の構成を示す断面図である。図3は図1に示した回転子の鉄心の構成を示す平面図である。
 図4(A)は図3に示した鉄心のA-A線断面を示す断面図である。図4(B)は図3に示した鉄心のB-B線断面を示す断面図である。図5は図1に示した回転子の衝立部の詳細を示した斜視図である。図6は図1に示した回転子における冷媒の流れを示す左片断面図である。図7は図6に示した回転子における冷媒の流れの詳細を示す拡大断面図である。
 図において、回転子1は、積層鉄心20と、永久磁石21と、端板100、101と、回転軸3とにて構成される。積層鉄心20は、複数の鉄心2が軸方向Yに積層され形成される。積層鉄心20には、軸方向Yに貫通して磁石孔26が形成される。この磁石孔26は、周方向Zに複数個形成される。ここでは、周方向Zに6個(6極)の磁石孔26が形成される。各磁石孔26には、永久磁石21がそれぞれ設置される。磁石孔26は、周方向Zの両端に、永久磁石21が配置されていない空隙部261が形成される。よって、この空隙部261は、軸方向Yに貫通して形成される。
 積層鉄心20には、周方向Zに隣接する磁石孔26の間であって、かつ、磁石孔26より径方向Xの内側X2に、軸方向Yに貫通する流通孔22が形成される。流通孔22の形状は、径方向Xの幅H1が周方向Zの幅H3より広く形成される。端板100、101は、積層鉄心20の軸方向Yの両端にそれぞれ設置される。端板100、101の主な機能は、永久磁石21を積層鉄心20の磁石孔26内に保持することであり、通常は積層鉄心20の軸方向Y両端に、積層鉄心20に密着して設置される。回転軸3は、積層鉄心20と各端板100、101との中央に軸方向Yに貫通して形成された貫通孔13に配置される。回転軸3は、積層鉄心20および端板100、101を固定する。
 積層鉄心20を構成する複数の鉄心2には、磁石孔26、貫通孔13、および流通孔22が形成される。また、鉄心2には、特に図3および図4に示すように、磁石孔26の空隙部261と流通孔22とが連通する第一溝部24と、磁石孔26の空隙部261と鉄心2の外周とが連通する排気口となる第二溝部25とを備える。よって、流通孔22、第一溝部24、空隙部261および第二溝部25が、鉄心2の径方向Xの外側X1に連通、すなわち、鉄心2の外周まで連通した構成にて形成される。そして、各端板100、101には、流通孔22が露出し、吸気口となる第一孔12と、第一孔12の回転方向Z1の下流側に軸方向Yに延在し、吸気を補助する衝立部11とが形成される。
 この構成では、端板100、101の、流通孔22に相当する部分に冷媒の吸気口となる第一孔12を設け、回転子1を回転させるだけで、第二溝部25および磁石孔26の空隙部261に存在する冷媒が、遠心力により排気口となる第二溝部25から径方向Xの外側X1に排出される。そして、磁石孔26の空隙部261が負圧となるため、第一溝部24を経由して流通孔22から冷媒が吸い込まれる。さらに、流通孔22は端板100、101の吸気口となる第一孔12から冷媒を吸い込む。このようにして、冷媒は、端板100、101の吸気口となる第一孔12から吸い込まれ、排気口としての第二溝部25から排気され、図に示す冷媒の流れFを得ることができる。尚、この場合、回転子1の回転方向はどちら向きでも同様の冷媒の流れを生じる。
 第一孔12の形状は、径方向Xの幅H1が周方向Zの幅H2より広く形成される。また、第一孔12および衝立部11の形状は略矩形形状(長方形状)の例を示したが、これに限定されるものではなく、長円や1/2楕円弧、1/2円弧などにて形成することも可能である。
 この際、端板100の第一孔12の面積と流通孔22の面積とを比較すると、第一孔12の面積が流通孔22の面積より大きく形成される。このように、流通孔22の全体が第一孔12より露出することが望ましい。図7に示すように、衝立部11の第一孔12側の面と、端板100、101の端面とのなす角度θ1、θ2は、30deg~60degにて形成される。
 鉄心2は、電磁鋼板などの磁性薄板をプレス加工によるコイニング(圧印加工)やエッチング加工などにて形成されるが、それ以外の方法でもよい。第一溝部24、および第二溝部25は、鉄心2の軸方向Yの上面側の厚みを減じることで形成され、磁石孔26、貫通孔13、流通孔22と同時に形成されても良いし、別々に形成されても良い。尚、第一溝部24および第二溝部25の形状は、例示した形状以外にも、例えば第二溝部25の幅や溝深さを変更するなどして、衝立部11を含めた流路全体での流路抵抗のバランスを取るとともに、第一溝部24、および第二溝部25の加工のしやすさを勘案しながら形状を決定することが望ましい。
 永久磁石21は、ネオジム焼結磁石などにて形成される。端板100、101は、非磁性SUS(ステンレス鋼)薄板など非磁性の薄板素材をプレス加工にて形成される。よって、切り起こして形成する衝立部11と、および第一孔12とが同時に形成される。また、衝立部11の成型方法として切り起こしの例を示したが、加工方法はこれに限られるものではなく、衝立部11と端板100、101を別体にて形成し、端板100、101に衝立部11を溶接やろう付け、接着等の方法で接合して形成することも可能である。回転電機40は、回転子1と、固定子30とから構成される。固定子30は、回転子1の外周面と間隔を設けてかつ同心円状に配設される。固定子30は、固定子鉄心31と巻線32とを備える。
 次に上記のように構成された実施の形態1の回転電機の回転子における冷媒の流れFについて、図4、図6および図7を交えて説明する。衝立部11が、軸方向Yの両端の端板100、101の両方に、回転方向Z1に対し同じ向きで設けられるとともに、端板100、101の上面と、角度θ1、θ2(>90deg)をなして、鉄心2に設けられた流通孔22の回転方向Z1の下流側に配置されている。
 このため、回転子1が回転すると、先に述べたように衝立部11がなくとも第一孔12が存在すれば、冷媒を軸方向Yから吸い込み径方向Xの外側X1に排出する流れが生じるが、さらに、図6および図7に示すように、冷媒の流れFは衝立部11に当たって第一孔12方向に向きを変え、第一孔12を通過し流通孔22に導入され、遠心力による吸い込みに追加するかたちで冷媒の流れが増大される。尚、このような衝立部11を用いた構成の場合、効果を得るためには回転子1の回転方向が限定されるため、圧縮機のように、回転子1の回転方向が一方向に限定される機器に対して特に有効的である。
 そして、図4(B)の冷媒の流れFに示すように、流通孔22に吸い込まれ、さらに導入された冷媒は、第一溝部24および空隙部261を通過しながら永久磁石21を冷却し、さらに、第二溝部25を通過して回転子1の径方向Xの外側X1に放出される。そして、回転子1の径方向Xの外側X1に放出された冷媒は、さらに回転子1の径方向Xの外側X1に配置された固定子30の固定子鉄心31および巻線32を冷却する。
 この構成によれば、径方向Xの外側X1に排出口としての第二溝部25を有する冷媒の流路により、遠心力に起因する冷媒の流れF(吸い込み)が生じることに加え、衝立部11による強制的な冷媒の流れFが流通孔22に加えられることで、冷媒供給を増大させ、かつ、回転子1の鉄心2の径方向Xの外側X1への冷媒の流れFを加速することで、永久磁石21の冷却効果を増大させるとともに、固定子30の固定子鉄心31および巻線32を有効に冷却することができる。
 また、衝立部11が端板100、101となす角度θ1、θ2は、90deg以下で形成されている。これは角度θ1、θ2が90degに近づくと、衝立部11に衝突して反射した冷媒が流通孔22に到達する確率が減少するためである。また、角度θ1、θ2が0degに近づくと、衝立部11に当たる冷媒の量自体が減少するためである。冷媒供給能力を増大するためには、30deg<θ1、θ2<60degの範囲、より厳密には45deg前後の値が望ましい。
 本実施の形態1においては、図7に示すように、軸方向Yの両端の端板100、101の各々の衝立部11の角度θ1、θ2を同じ角度に設定する例を示したが、これに限られることはなく、例えば、回転子1の軸方向Yの両端の各々で冷媒の温度が違う場合、例えば、低圧シェル構造の圧縮機で、圧縮機構側に近い軸方向Yの端部に分布する冷媒のほうが、反対側の軸方向Yの端部の冷凍機油をためる側に分布する冷媒より温度が低い場合などがある。このようにどちらか一端からの冷媒供給を優先させたい場合には、角度θ1と角度θ2との値を異なる値に設定してもよい。
 また、積層鉄心20のすべての鉄心2に第一溝部24、および第二溝部25を設けた例を示したが、これに限られることはなく、積層鉄心20の一部の鉄心2、例えば積層鉄心20の軸方向Yの中央付近や、軸方向Yの下端側など特定の領域に配置したり、第一溝部24および第二溝部25が形成された鉄心2を2枚に1枚の割合で配置するなどの構成でも同様の効果を奏する。
 上記のように構成された実施の形態1の回転子および回転電機によれば、回転時に発生する、遠心力により、第一溝部、空隙部、および第二溝部に存在する冷媒が回転子の径方向の外側に放出される流れに加えて、衝立部による強制的な冷媒の流れが流通孔を介して第一溝部および第二溝部に導入されるため、冷媒の流れが増大し、磁石や巻線の冷却効率が向上する。特に、回転子の回転数が低く、遠心力に起因する冷媒の流れが不足する場合であっても、衝立部により強制的に冷媒が供給できる。さらに、軸方向の両端から回転子の中心に向かって冷媒が供給されるため、回転子内を通過する冷媒流量が増加し、永久磁石の冷却効率向上が期待できる。
 さらに、外側に配設された固定子は、回転子の第二溝部から径方向の外側に向かって排出された冷媒の流れにより冷却される。よって、固定子の固定子鉄心および巻線が冷却される。
 流通孔および第一孔の形状において、径方向の幅が周方向の幅より広く形成するため、同一面積を持つ丸孔に比べ、衝立部から反射する冷媒が短い距離で第一孔を介して流通孔に到達できるため、鉄心の磁気抵抗を増大することなく、冷媒の供給効率を高めることが可能となる。尚、流通孔および第一孔の形状は上記実施の形態1に示した例に限られることはなく、例えば楕円や長方形などの形状を用いてよく、周方向の幅よりも径方向の幅が広くなる形状であればよい。
 また、衝立部の第一孔側の面と、端板の端面とのなす角度が30deg~60degにて形成されているため、冷媒を効率よく流通孔に導入することができるため、永久磁石および固定子の巻線の冷却効率がさらに向上する。
 また、当該回転電機40を圧縮機の駆動に用いる場合、シャフトの先端につなげられた圧縮機の揺動機構部が、偏心したまま回転するので、その影響を相殺するため、回転子1の軸方向Yの片側(ここでは端板101側とする)に、例えば略半円状の、黄銅などの金属で成型されたバランサを配置する場合がある。その場合、端板101の約半分はバランサと積層鉄心20との間に挟まれる構成となる。よって、バランサの形状を変更して、第一孔12および衝立部11が露出するような形状にて形成するか、もしくは、端板101において、バランサの設置されていない部分には、第一孔12および衝立部11を設け、かつ、バランサの設置されている部分には第一孔12のみを配置し衝立部11は設けないよう構成してもよい。また、バランサを端板101の一部と考え、バランサ自体に第一孔および衝立部を形成してもよい。
 尚、本実施の形態1においては、回転子1を6極にて形成する例を示したが、これに限られるものではなく、4極、8極など、極数に依存せず効果を発揮する。また、永久磁石および磁石孔の形状は軸方向Yに直交する直線状のものを例示したが、これに限定されるものではなく、V字状やU字状など、他の形状および形態であっても同様の効果を奏する。
 また、固定子の構成は、集中巻のものでも、分布巻のものでもよく、またそのスロット数も、集中巻であれば、6、9、12スロットなど、分布巻であれば、24、32スロットなど多くの選択肢から選択可能で、特定のものに限定されない。
実施の形態2.
 上記実施の形態1においては、両端の端板100、101の両方に、吸気を補助する衝立部11および吸気口となる第一孔12を形成する場合を示したが、これに限られることはなく、本実施の形態2においては、一方の端板100のみに吸気を補助する衝立部11および吸気口となる第一孔12を形成する例について説明する。尚、各構成は上記実施の形態1と同様であるため、同様の部分は同一符号を付して説明を省略するため、本実施の形態2においては、上記実施の形態1と異なる冷媒の流れFについてのみ説明する。
 図8は本発明の実施の形態2による回転子における冷媒の流れFを示す左片断面図である。図9は図8に示した回転子における冷媒の流れFの詳細を示す拡大断面図である。各図に示すように、積層鉄心20の軸方向Yの上方側の端板100のみに、衝立部11および第一孔12を備える。下方側の端板101には衝立部11および第一孔12を備えていない。
 上記のように構成された実施の形態2の回転子によれば、回転子の軸方向の特定の側、ここでは図面上の軸方向の上方側であって、軸方向の上方から下方に冷媒を供給できる。例えば、低圧シェル構造の圧縮機のように、片側は圧縮機構部の近く、片側は圧縮機油をためる側に近くとなる圧縮機の場合には、冷凍機油をためる側からの冷媒供給を遮断することで、冷媒中に含まれている油の吸入を制限し、比較的温度の低い冷媒のみで冷却を行うことが可能となる。
 もしくは、圧縮機の油上がり(冷媒ガスの流動状態に起因して潤滑油が冷媒とともに圧縮機外に大量に吐出される)を抑制したい場合、圧縮機構部側からの冷媒を吸い込み、固定子側に冷凍機油を噴出して、逆側端に落とすことが可能となる。その場合には、第一溝部および第二溝部を、積層鉄芯の軸方向長さのうち、下半分の領域に集中して設けると良い。逆に、圧縮機の効率を優先し、冷媒と冷凍機油による冷却とを併用したい場合には、圧縮機構部に近い側の端板には、衝立部および第一孔を形成せず、冷凍機油をためる側の端板には、衝立部および第一孔を形成する。これによれば、油を多く含んだ冷媒を利用することができるとともに、冷却により温度が上昇した冷媒が圧縮機構側へ移動する量を減らすことができ、圧縮機効率の低下を抑制することが可能となる。
 上記実施の形態1および実施の形態2に示した例は一例であり、衝立部11および第一孔12の形成箇所および形状は、上記各実施の形態に示したものに限定されることはなく、回転子および回転電機の特性に応じて適切な形成箇所および形状にて形成すればよい。
実施の形態3.
 以下の実施の形態においては、一方の端板についてのみ説明するが、両端の端板に同様に形成することも可能であり、その説明は適宜省略する。図10は本発明の実施の形態3による回転子の衝立部の構成を示す斜視図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。衝立部11は、径方向Xの外側X1に軸方向Yに延在する側壁部111と、径方向Xの内側X2に軸方向Yに延在する側壁部112とを備える。各側壁部111、112は、端板100と連通して構成される。
 上記のように構成された実施の形態3の回転電機によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、衝立部に衝突した後、径方向に逃げる冷媒を側壁部にて捕捉できる。よって、流通孔への冷媒供給能力が向上でき、永久磁石および固定子のコイルの冷却をさらに効率良くでき、回転電機の効率がさらに向上する。
 尚、上記実施の形態3においては、衝立部11の径方向Xの外側X1および内側X2の両側に側壁部111、112をそれぞれ形成する例を示したが、これに限られることはない。径方向Xに逃げる冷媒のうち、特に遠心力を受ける径方向Xの外側X1がより逃げやすい。よって、径方向Xの外側X1の側壁部111のみを設けて、径方向Xの内側X2の側壁部112は形成しない場合も考えられる。この場合であっても、冷媒供給能力が向上し、上記実施の形態3と同様の効果を奏することができる。
 また、図10においては側壁部111、112が衝立部11および端板100に連続して形成する例を示したが、その成形方法は絞り加工などにて行うことができる。他の方法としては、切り曲げ方法にて形成することも可能である。その場合、例えば側壁部111、112は折り曲げて形成され、衝立部11とは連続しているが、側壁部111、112と端板100との間には切れ目が形成されるが、上記実施の形態3と同様の効果を奏することができる。
実施の形態4.
 図11は本発明の実施の形態4による回転電機の回転子における端板の形状を示す上面図である。図において、上記実施の形態と同様の部分は同一符号を付して説明を省略する。端板100は、磁石孔26の空隙部261が露出する第二孔14を備える。
 上記のように構成された実施の形態4の回転電機によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、第二孔を追加したので、磁石孔の永久磁石の配置されていない空隙部の軸方向に冷媒が供給され、さらなる冷媒供給能力の向上が期待できる。尚、第二孔の形状は円形に形成する例を示したが、これに限られることはなく、磁石孔の空隙部が露出する形状であれば、長円や楕円、四角形、長方形など、どのような形状でも同様の効果を奏する。また、第二孔を端板の外周部分も切り欠いた構成にしてよく、同様の効果を奏することができる。
 また、図12に示すように、第一孔12の衝立部11と同様に、第二孔14にも衝立部15を形成して、さらなる冷媒の供給能力向上が図ることもできる。また、図12に示すように第一孔12および第二孔14に別々に衝立部11、15を形成するのではなく、図13に示すように第一孔12および第二孔14に対して1つの衝立部16を形成してもよい。
実施の形態5.
 図14は本発明の実施の形態5における圧縮機の構成を示す模式断面図である。図において、圧縮機50は、外装となるシェル51と、シェル51内に設置された圧縮機構部52と、圧縮機構部52を駆動する上記各実施の形態のいずれかの回転電機40とを備える。
 回転電機40の回転子の回転軸が、圧縮機構部52の例えば揺動スクロール部品に接続される。そして、回転電機40の駆動により、圧縮機構部52が駆動する。
 上記のように構成された実施の形態5の圧縮機によれば、上記実施の形態1から実施の形態4のいずれかの回転電機が用いられるため、上記各実施の形態と同様の効果を奏するのはもちろんのこと、回転電機の効率が向上し、ひいては圧縮機の性能が優れている。
 尚、上記回転子および上記回転電機は、当該実施の形態5に示したような圧縮機への搭載に限定されるものではなく、他の分野に使用される回転電機、例えば、産業用モータや車載用モータなど、IPM構造を有する回転電機に適用することが可能であり、効率の向上が期待できることは言うまでもない。
 尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1 回転子、3 回転軸、11 衝立部、111 側壁部、112 側壁部、12 第一孔、13 貫通孔、14 第二孔、20 積層鉄心、2 鉄心、21 永久磁石、22 流通孔、24 第一溝部、25 第二溝部、26 磁石孔、261 空隙部、30 固定子、31 固定子鉄心、32 巻線、40 回転電機、50 圧縮機、51 シェル、52 圧縮機構、F 冷媒の流れ、Y 軸方向、Z 周方向、Z1 回転方向、X 径方向、X1 外側、X2 内側。

Claims (10)

  1. 複数の鉄心が積層され形成された積層鉄心と、
    前記積層鉄心の軸方向に貫通して形成された磁石孔に配置された永久磁石と、
    前記積層鉄心の軸方向の両端にそれぞれ設置された端板と、
    前記積層鉄心と各前記端板との中央に形成された貫通孔に配置され、前記積層鉄心および前記端板を固定する回転軸とを備えた回転子において、
    前記永久磁石が配置された前記磁石孔は、周方向に複数個形成され、前記磁石孔の周方向の両端には前記永久磁石が配置されていない空隙部を有し、
    前記積層鉄心には、周方向に隣接する前記磁石孔の間であって、かつ、前記磁石孔より径方向の内側に、軸方向に貫通して流通孔が形成され、
    各前記鉄心の一部または全てには、前記磁石孔の前記空隙部と前記流通孔とが連通する第一溝部と、前記磁石孔の前記空隙部と前記鉄心の外周とが連通し、排気口となる第二溝部とが形成され、
    前記端板の少なくともいずれか一方には、前記流通孔が露出し、吸気口となる第一孔と、前記第一孔の回転方向の下流側に吸気を補助する衝立部とを備えた回転子。
  2. 前記衝立部および前記第一孔は、前記端板のいずれか1方のみに形成された請求項1に記載の回転子。
  3. 前記衝立部および前記第一孔は、前記端板の両方共に形成された請求項1に記載の回転子。
  4. 前記端板の少なくともいずれか一方には、前記磁石孔の前記空隙部が露出する第二孔を備えた請求項1から請求項3のいずれか1項に記載の回転子。
  5. 前記衝立部は、前記第二孔の回転方向の下流側まで延在して形成された請求項4に記載の回転子。
  6. 前記衝立部の前記第一孔側の面と、前記端板の端面とのなす角度が30deg~60degにて形成された請求項1から請求項5のいずれか1項に記載の回転子。
  7. 前記衝立部は、径方向の外側に軸方向に延在する側壁部を備えた請求項1から請求項6のいずれか1項に記載の回転子。
  8. 前記流通孔および前記第一孔の形状は、径方向の幅が周方向の幅より広く形成された請求項1から請求項7のいずれか1項に記載の回転子。
  9. 請求項1から請求項8のいずれか1項に記載の回転子と、
    前記回転子の外周面と間隔を設けてかつ同心円状に配設された固定子とを備えた回転電機。
  10. 圧縮機構部と、
    前記圧縮機構部を駆動する請求項9に記載の回転電機とを備えた圧縮機。
PCT/JP2017/033015 2016-09-29 2017-09-13 回転子、回転電機、および圧縮機 WO2018061768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17855724.5A EP3522337B1 (en) 2016-09-29 2017-09-13 Rotor, rotary motor, and compressor
CN201780045611.XA CN109792180A (zh) 2016-09-29 2017-09-13 转子、旋转电机以及压缩机
JP2018542358A JP6571293B2 (ja) 2016-09-29 2017-09-13 回転子、回転電機、および圧縮機
US16/327,013 US10931158B2 (en) 2016-09-29 2017-09-13 Rotor, rotary electric machine, and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190472 2016-09-29
JP2016190472 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061768A1 true WO2018061768A1 (ja) 2018-04-05

Family

ID=61759542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033015 WO2018061768A1 (ja) 2016-09-29 2017-09-13 回転子、回転電機、および圧縮機

Country Status (5)

Country Link
US (1) US10931158B2 (ja)
EP (1) EP3522337B1 (ja)
JP (1) JP6571293B2 (ja)
CN (1) CN109792180A (ja)
WO (1) WO2018061768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108842A1 (de) * 2018-11-28 2020-06-04 Robert Bosch Gmbh Rotor einer elektrischen maschine
JP2021095875A (ja) * 2019-12-17 2021-06-24 ダイキン工業株式会社 圧縮機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173104A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 電動機および送風装置
JP7076580B2 (ja) * 2019-01-17 2022-05-27 三菱電機株式会社 回転機械、空気調和装置の室外機、および空気調和装置
CN110729834A (zh) * 2019-11-15 2020-01-24 合肥巨一动力系统有限公司 一种永磁同步电机风冷转子结构
US20230366593A1 (en) * 2020-11-30 2023-11-16 Mitsubishi Electric Corporation Compressor, refrigeration cycle device, and air conditioner
KR20230142070A (ko) * 2022-03-31 2023-10-11 한온시스템 주식회사 전동 압축기
WO2024006756A1 (en) * 2022-07-01 2024-01-04 Atieva, Inc. Electric motor with centrifugal pump to flow fluid in rotor channel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067777A (ja) * 2004-07-30 2006-03-09 Honda Motor Co Ltd 回転電機の冷却構造
JP2007028876A (ja) * 2005-07-21 2007-02-01 Kokusan Denki Co Ltd 磁石発電機
JP2009159763A (ja) * 2007-12-27 2009-07-16 Toshiba Industrial Products Manufacturing Corp 回転電機
JP2011193623A (ja) * 2010-03-15 2011-09-29 Nippon Soken Inc 回転電機
JP2012085517A (ja) * 2010-10-06 2012-04-26 General Electric Co <Ge> 電動機械用の通気ロータ及びステータ
JP2012165600A (ja) * 2011-02-08 2012-08-30 Jtekt Corp モータ及び電動パワーステアリング装置
JP2013090479A (ja) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp 回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機
JP2015231262A (ja) * 2014-06-04 2015-12-21 本田技研工業株式会社 回転電機用のロータ
JP2016007136A (ja) * 2013-03-25 2016-01-14 パナソニックIpマネジメント株式会社 永久磁石埋込型電動機およびその製造方法
DE102015204721A1 (de) * 2015-03-16 2016-09-22 Robert Bosch Gmbh Fluidgekühlter Rotor für elektrische Maschine sowie Fertigungsverfahren hierfür

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865933A (ja) 1994-08-11 1996-03-08 Matsushita Electric Ind Co Ltd モータのロータコア
JP2009177944A (ja) * 2008-01-24 2009-08-06 Calsonic Kansei Corp モータ装置
JP2010028908A (ja) * 2008-07-16 2010-02-04 Toyota Motor Corp 回転電機のロータ
JP6230478B2 (ja) * 2014-04-28 2017-11-15 三菱電機株式会社 回転子、回転電機、および圧縮機
JP6854700B2 (ja) * 2017-05-22 2021-04-07 三菱電機株式会社 回転電機の回転子、回転電機および圧縮機
JP2019017230A (ja) * 2017-07-11 2019-01-31 三菱電機株式会社 回転子、回転電機および圧縮機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067777A (ja) * 2004-07-30 2006-03-09 Honda Motor Co Ltd 回転電機の冷却構造
JP2007028876A (ja) * 2005-07-21 2007-02-01 Kokusan Denki Co Ltd 磁石発電機
JP2009159763A (ja) * 2007-12-27 2009-07-16 Toshiba Industrial Products Manufacturing Corp 回転電機
JP2011193623A (ja) * 2010-03-15 2011-09-29 Nippon Soken Inc 回転電機
JP2012085517A (ja) * 2010-10-06 2012-04-26 General Electric Co <Ge> 電動機械用の通気ロータ及びステータ
JP2012165600A (ja) * 2011-02-08 2012-08-30 Jtekt Corp モータ及び電動パワーステアリング装置
JP2013090479A (ja) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp 回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機
JP2016007136A (ja) * 2013-03-25 2016-01-14 パナソニックIpマネジメント株式会社 永久磁石埋込型電動機およびその製造方法
JP2015231262A (ja) * 2014-06-04 2015-12-21 本田技研工業株式会社 回転電機用のロータ
DE102015204721A1 (de) * 2015-03-16 2016-09-22 Robert Bosch Gmbh Fluidgekühlter Rotor für elektrische Maschine sowie Fertigungsverfahren hierfür

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522337A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108842A1 (de) * 2018-11-28 2020-06-04 Robert Bosch Gmbh Rotor einer elektrischen maschine
CN113039703A (zh) * 2018-11-28 2021-06-25 罗伯特·博世有限公司 电机的转子
JP2022508258A (ja) * 2018-11-28 2022-01-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 電気機械の回転子
JP7185042B2 (ja) 2018-11-28 2022-12-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 電気機械の回転子
US11955846B2 (en) 2018-11-28 2024-04-09 Robert Bosch Gmbh Rotor of an electric machine
JP2021095875A (ja) * 2019-12-17 2021-06-24 ダイキン工業株式会社 圧縮機
WO2021124768A1 (ja) * 2019-12-17 2021-06-24 ダイキン工業株式会社 圧縮機

Also Published As

Publication number Publication date
US10931158B2 (en) 2021-02-23
EP3522337A4 (en) 2019-10-23
JPWO2018061768A1 (ja) 2018-12-20
JP6571293B2 (ja) 2019-09-04
US20190190337A1 (en) 2019-06-20
CN109792180A (zh) 2019-05-21
EP3522337B1 (en) 2021-10-27
EP3522337A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6571293B2 (ja) 回転子、回転電機、および圧縮機
JP5372468B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP6422566B2 (ja) モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
JP5944014B2 (ja) 永久磁石埋込型電動機および圧縮機
CN101536293A (zh) 永久磁铁同步马达及封闭式压缩机
JP2008029095A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
US8410655B2 (en) Stator, motor, and compressor
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
JP2011155780A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
CN109923757B (zh) 永久磁铁式旋转电机及使用永久磁铁式旋转电机的压缩机
JP2010226830A (ja) 電動機及びそれを搭載した圧縮機
JP6297220B2 (ja) 圧縮機用電動機、圧縮機、および冷凍サイクル装置
JP4193726B2 (ja) 同期誘導電動機の回転子及び圧縮機
JP2010093910A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP5710886B2 (ja) 回転電機
JP2010051075A (ja) アキシャルギャップ型回転電機及びそれを用いた圧縮機
JP2013027141A (ja) ロータ、回転電気機械及び圧縮機
JP2011147313A (ja) 電動機および圧縮機並びに冷凍サイクル装置
JP6654414B2 (ja) 電動圧縮機
JP2018102039A (ja) 電動機のロータ、圧縮機
KR102515118B1 (ko) 매립형 영구자석 전동기용 로터
WO2023112078A1 (ja) ステータ、モータ、圧縮機および冷凍サイクル装置
JP4969216B2 (ja) 永久磁石同期電動機及び圧縮機
JP2013209925A (ja) 電動圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018542358

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855724

Country of ref document: EP

Effective date: 20190429