WO2018061717A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2018061717A1
WO2018061717A1 PCT/JP2017/032569 JP2017032569W WO2018061717A1 WO 2018061717 A1 WO2018061717 A1 WO 2018061717A1 JP 2017032569 W JP2017032569 W JP 2017032569W WO 2018061717 A1 WO2018061717 A1 WO 2018061717A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavation
work
unit
lift cylinder
vehicle
Prior art date
Application number
PCT/JP2017/032569
Other languages
English (en)
French (fr)
Inventor
祥太 木村
忠史 尾坂
秀一 森木
一雄 石田
徳孝 伊藤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP17855675.9A priority Critical patent/EP3415693B1/en
Priority to CN201780016618.9A priority patent/CN108779622B/zh
Priority to US16/085,402 priority patent/US11035099B2/en
Publication of WO2018061717A1 publication Critical patent/WO2018061717A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission

Definitions

  • the present invention relates to a work vehicle.
  • a wheel loader which is a type of work vehicle, has a work machine for excavation driven by a hydraulic actuator or the like in front of the vehicle body.
  • the operator of the wheel loader advances the vehicle and inserts the tip of the work machine into an excavation target such as crushed stone or earth and sand, and then raises the work machine and scoops the excavation target into the work machine to perform excavation.
  • the operator of the wheel loader usually raises the work machine at the start of excavation and applies a load to the front wheels by the reaction force to prevent tire slip.
  • the timing of raising the work machine is early, the work machine starts to rise before the work machine is sufficiently inserted into the excavation target, and the amount of excavation target scooped up by the work machine decreases.
  • the timing for raising the work implement is late, tire slip occurs as described above. Therefore, the operator of the wheel loader needs to determine the start of excavation at an appropriate timing and perform the ascending operation of the work implement.
  • Patent Document 1 discloses a technique for determining the state of work on a work vehicle based on the hydraulic pressure of a hydraulic cylinder, the operating state of a work machine by an operator, the accelerator opening degree of the work vehicle, and the like.
  • a work vehicle includes a work machine, a hydraulic actuator that drives the work machine, a hydraulic pump that supplies oil to the hydraulic actuator, a hydraulic actuator pressure detector that detects a pressure of the hydraulic actuator, and the hydraulic pressure
  • a control valve that controls the amount of oil supplied from the pump to the hydraulic actuator; a vehicle acceleration detector that detects vehicle acceleration in the front-rear direction; and the pressure of the hydraulic actuator detected by the hydraulic actuator pressure detector;
  • a control device that determines whether or not the work implement has started excavation based on the vehicle acceleration detected by the vehicle acceleration detector.
  • the excavation start timing can be determined quickly and accurately.
  • FIG. 1 is a system configuration diagram of a wheel loader according to an embodiment of the present invention. It is a control block diagram of a control apparatus. It is a control block diagram of an excavation start judgment part. It is a figure which shows the example which changes the threshold value of lift cylinder bottom pressure increase speed, and the threshold value of vehicle acceleration according to the hardness of excavation object. It is a control block diagram of an excavation work prediction unit. It is the figure which showed an example of operation
  • FIG. 1 is a side view of a wheel loader 100 which is a work vehicle according to an embodiment of the present invention.
  • a wheel loader 100 shown in FIG. 1 includes a vehicle body 110 and an articulated work machine 150 attached to the front of the vehicle body 110.
  • the work machine 150 is a work device that is driven by at least one actuator.
  • the work machine 150 illustrated in FIG. 1 includes a lift arm 155 and a bucket 151. Between the work implement 150 and the vehicle body 110, a lift cylinder 152 and a bucket cylinder 153 are attached as hydraulic actuators (hydraulic cylinders) for driving the lift arm 155 and the bucket 151, respectively.
  • hydraulic actuators hydraulic cylinders
  • one lift arm 155 and one lift cylinder 152 are provided on each of the left and right sides of the vehicle body 110, the lift arm 155 and the lift cylinder 152 on the right side of the vehicle body 110 are hidden in FIG.
  • the lift arm 155 pivots up and down (up and down) as the lift cylinder 152 extends and contracts.
  • the bucket 151 rotates (dump operation or cloud operation) as the bucket cylinder 153 expands and contracts.
  • the link mechanism for operating the bucket 151 of the wheel loader 100 shown in FIG. 1 is a Z link type (bell crank type) using a bell crank 154.
  • the lift cylinder 152 is connected to the lift arm 155 and the vehicle body 110.
  • the side connected to the lift arm 155 of the lift cylinder 152 is referred to as the rod side
  • the side connected to the vehicle body 110 is referred to as the bottom side.
  • the bucket cylinder 153 is connected to the bell crank 154 and the vehicle body 110.
  • the side connected to the bell crank 154 of the bucket cylinder 153 is referred to as a rod side
  • the side connected to the vehicle body 110 is referred to as a bottom side.
  • a bucket cylinder stroke detector 250 that detects the bucket cylinder stroke, that is, the stroke amount of the bucket cylinder 153, is attached to the bucket cylinder 153 in order to determine whether the bottom surface of the bucket 151 is horizontal with respect to the ground.
  • a lift arm angle detector 251 for detecting the lift arm angle, that is, the angle of the lift arm 155 is attached in the vicinity of the connection portion of the lift arm 155 with the vehicle body 110 in order to determine the height of the lift arm 155. ing.
  • the operator makes the bottom surface of the bucket 151 horizontal with respect to the ground, and lowers the lift arm 155 to such an extent that the bucket 151 contacts the ground. Move forward.
  • the resistance force from the excavation target acts to shrink the lift cylinder 152, and the pressure on the bottom side of the lift cylinder 152 increases. Therefore, a lift cylinder bottom pressure detector 252 that detects the lift cylinder bottom pressure, that is, the bottom pressure of the lift cylinder 152, is attached to the lift cylinder 152 in order to detect the resistance force from the excavation target received by the work implement 150. ing.
  • the resistance force from the excavation target also acts on the bucket cylinder 153, but the magnitude of the pressure change in the bucket cylinder 153 at this time varies greatly depending on the angle of the bottom surface of the bucket 151 with respect to the ground. Further, the pressure change on the rod side of the lift cylinder 152 due to the resistance force from the excavation target is smaller than the pressure change on the bottom side. Therefore, in order to detect the resistance force from the excavation object, it is suitable to detect the lift cylinder bottom pressure.
  • the vehicle body 110 is provided with four wheels 1a, 1b, 1c, and 1d.
  • the wheels 1a and 1b on the right side of the vehicle body 110 are hidden.
  • the wheels 1a, 1b, 1c, and 1d may be collectively referred to as “wheel 1”.
  • Each wheel 1 is driven by a power transmission device 210 (described later) using an engine 201 (described later) as a power source.
  • the wheel loader 100 moves forward or backward.
  • FIG. 2 is a system configuration diagram of the wheel loader 100 according to the embodiment of the present invention shown in FIG.
  • the engine 201 supplies power to the power transmission device 210 and the hydraulic pump 220.
  • the engine 201 has an electronic control governor 202 that controls the fuel injection amount.
  • the electronic control governor 202 controls the fuel injection amount of the engine 201 based on the operation amount of the accelerator pedal 264 detected by the accelerator operation amount detector 256.
  • the power transmission device 210 is a power transmission mechanism that transmits a part of the power output from the engine 201 to the wheels 1.
  • a torque converter type for example, a torque converter type, an HST (HydroMTStatic Transmission) type, an HMT (Hydro ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Mechanical ⁇ ⁇ Transmission) type, a hybrid type, or the like can be adopted.
  • HST HydroMTStatic Transmission
  • HMT Hydro ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Mechanical ⁇ ⁇ Transmission
  • the hydraulic pump 220 appropriately drives each hydraulic actuator by supplying oil via a control valve 221 to a plurality of hydraulic actuators related to the work implement 150 including the lift cylinder 152 and the bucket cylinder 153 described above.
  • the power source of the hydraulic pump 220 is the engine 201. Therefore, also for each hydraulic actuator using the hydraulic pump 220 as a drive source, the engine 201 is the power source as in the case of the wheel 1.
  • the control valve 221 controls the amount of oil supplied from the hydraulic pump 220 to the hydraulic actuator (lift cylinder 152, bucket cylinder 153) according to the following pilot pressure.
  • the pilot pressure is output from the work machine operation lever 261 for operating the work machine 150 or the control valve control unit 262. Of these pilot pressures, the higher pressure is selected by the high pressure selection valve 263 and acts on the control valve 221. Note that the control valve control unit 262 is driven in accordance with an excavation start determination command output from the control device 240, as will be described later.
  • the vehicle traveling direction detector 253 detects whether the traveling direction of the vehicle, that is, the traveling direction of the wheel loader 100 is forward or backward, from the rotational direction of the propeller shaft 230, and outputs it to the control device 240.
  • the rotational speed of the propeller shaft 230 can be detected by the vehicle traveling direction detector 253, and the acceleration and traveling speed of the wheel loader 100 can be calculated based on the detection result.
  • the acceleration of the wheel loader 100 can be obtained by differentiating the rotational speed of the propeller shaft 230 detected by the vehicle traveling direction detector 253.
  • the vehicle acceleration detector 254 detects the vehicle acceleration with respect to the front-rear direction, that is, the acceleration of the wheel loader 100 and outputs it to the control device 240. In addition, when calculating a vehicle acceleration based on the detection result of the vehicle advancing direction detector 253 as mentioned above, the vehicle acceleration detector 254 may not be provided.
  • the excavation determination notification unit 265 notifies the operator in response to the excavation start determination command output from the control device 240.
  • the excavation judgment notifying unit 265 is configured by a monitor capable of performing a predetermined screen display, for example.
  • the control device 240 is a computer for executing various types of information processing related to the operation of the wheel loader 100, and is configured using, for example, a microcomputer.
  • the control device 240 determines whether or not the work implement 150 has started excavation from the lift cylinder bottom pressure detected by the lift cylinder bottom pressure detector 252 and the acceleration in the front-rear direction of the wheel loader 100 detected by the vehicle acceleration detector 254. If it is determined that the excavation is started, an excavation start determination command is output. Details of the control process performed by the control device 240 will be described later.
  • FIG. 8 is a diagram illustrating a hardware configuration of the control device 240.
  • the control device 240 includes an input unit 91, a central processing unit (CPU) 92 that is a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output unit 95. ing.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • the input unit 91 receives information and signals output from the lift cylinder bottom pressure detector 252, the vehicle traveling direction detector 253, the vehicle acceleration detector 254, the lift arm angle detector 251, the bucket cylinder stroke detector 250, and the like. Input and output to the CPU 92. At this time, A / D conversion is performed as necessary.
  • the ROM 93 is a recording medium that stores programs and the like.
  • the CPU 92 performs predetermined arithmetic processing on information and signals taken from the input unit 91, ROM 93, and RAM 94 in accordance with programs stored in the ROM 93.
  • the output unit 95 creates a signal for output according to the calculation result in the CPU 92 and outputs the signal to the control valve control unit 262 and the excavation determination notification unit 265.
  • 8 includes a ROM 93 and a RAM 94, which are semiconductor memories, as a storage device.
  • the control device 240 may include a magnetic storage device such as a hard disk drive and store a program or the like therein. .
  • FIG. 3 is a control block diagram of the control device 240.
  • the control device 240 includes a work implement-to-ground angle acquisition unit 321, an excavation work prediction unit 320, and an excavation start determination unit 310 as functions of the control processing.
  • the work machine ground angle acquisition unit 321 includes, as information for calculating the work machine ground angle, that is, the ground angle of the work machine 150, a bucket cylinder stroke detected by the bucket cylinder stroke detector 250, and a lift arm angle detector.
  • the lift arm angle detected by 251 is input.
  • the work machine ground angle obtaining unit 321 obtains the ground angle of the work machine 150 by calculating the work machine ground angle based on the input information, and outputs the ground angle to the excavation work prediction unit 320. For example, using a mathematical formula based on dimensional parameters of the lift arm 155, bucket 151, bell crank 154, etc. constituting the work implement 150, the work implement-to-ground angle corresponding to the input bucket cylinder stroke and lift arm angle is geometrically determined. May be calculated.
  • the relation between the stroke amount of the bucket cylinder 153 and the angle of the lift arm 155 and the work implement-to-ground angle is preliminarily stored in the controller 240, and the input bucket cylinder stroke and lift are input using this table.
  • a work machine ground angle corresponding to the arm angle may be obtained.
  • the ground angle of the work machine 150 can be directly measured using a ground angle sensor or the like. By detecting it, the work machine ground angle may be acquired.
  • the work machine 150 will perform excavation based on the work machine ground angle acquired by the work machine ground angle acquisition unit 321 and the vehicle traveling direction detected by the vehicle traveling direction detector 253. Predict whether or not. Specifically, the excavation work prediction unit 320 determines that the wheel loader 100 is in the posture at the start of excavation when the vehicle traveling direction is forward and the work implement-to-ground angle is within a predetermined range. Thus, it is predicted that the work machine 150 performs excavation. At this time, the excavation work prediction unit 320 outputs an excavation work prediction command to the excavation start determination unit 310. On the other hand, when at least one of these conditions is not satisfied, it is predicted that the work implement 150 will not perform excavation, and no excavation operation prediction command is output. Details of the processing of the excavation work prediction unit 320 will be described later.
  • the excavation start determination unit 310 detects the excavation operation prediction command from the excavation operation prediction unit 320 and the lift cylinder bottom pressure detector 252 as information for determining the timing of the appropriate lifting operation of the work machine 150.
  • the lift cylinder bottom pressure and the vehicle acceleration detected by the vehicle acceleration detector 254 are input.
  • the excavation start determination unit 310 determines the excavation start of the work machine 150 based on the lift cylinder bottom pressure and the vehicle acceleration when the excavation operation prediction command is output from the excavation operation prediction unit 320. Specifically, when the excavation work prediction command is output, the increasing speed of the lift cylinder bottom pressure is equal to or higher than a predetermined threshold, and the vehicle acceleration is equal to or lower than the predetermined threshold, the tip of the bucket 151 It is determined that the work machine 150 has started excavation.
  • excavation start determination unit 310 outputs an excavation start determination command to control valve control unit 262 and excavation determination notification unit 265.
  • the excavation work prediction command is not output, or when at least one of the increase speed of the lift cylinder bottom pressure and the vehicle acceleration does not satisfy the above condition, it is determined that the work implement 150 has not started excavation.
  • the excavation start judgment command is not output. Details of the processing of the excavation start determining unit 310 will be described later.
  • the control valve control unit 262 controls the control valve 221 to raise the work machine 150 at an appropriate timing in accordance with the excavation start determination command output from the excavation start determination unit 310. Specifically, the control valve control unit 262 outputs a predetermined pilot pressure to the control valve 221 when the excavation start determination command is output from the excavation start determination unit 310, and the bottom side of the lift cylinder 152 The control valve 221 is controlled so as to start the supply of oil. On the other hand, when the excavation start determination command is not input, the pilot pressure is not output and oil is not supplied to the bottom side of the lift cylinder 152.
  • the control valve control unit 262 controls the control valve 221 so that the maximum amount of oil that can be supplied by the hydraulic pump 220 is supplied to the bottom side of the lift cylinder 152 when the excavation start determination command is output.
  • the control valve 221 may be controlled so as to be a predetermined supply amount less than the maximum amount.
  • the excavation determination notifying unit 265 notifies the operator that the operation of lifting the work implement 150 is promoted at an appropriate timing in accordance with the excavation start determining command output from the excavation start determining unit 310. Specifically, when the excavation start determination command is output from the control device 240, the excavation determination notification unit 265 displays on the monitor that the excavation start is determined to the operator. On the other hand, when the excavation start determination command is not output from the control device 240, the monitor is not displayed. In this way, by notifying the operator of an appropriate excavation start timing by the excavation determination notifying unit 265, the operator can know that the lifting operation of the work implement 150 has been performed at an appropriate timing by the control of the control valve control unit 262. .
  • the excavation determination notification unit 265 notifies the excavation start timing. Accordingly, the operator can perform the raising operation of the work machine 150 without delay. Thereby, the slip of the wheel 1 can be prevented.
  • the excavation determination notification unit 265 may notify the operator by another method in addition to the monitor display as described above or instead of the monitor display. For example, the operator can be informed that the start of excavation has been determined by changing the illuminance of a lighting device in the cabin (not shown), making a sound, or vibrating the work implement operating lever 261. .
  • FIG. 6 is a control block diagram of the excavation work prediction unit 320.
  • the excavation work prediction unit 320 includes a vehicle traveling direction determination unit 610, a work implement-to-ground angle determination unit 620, and an excavation work prediction command unit 630 as functions of the control process.
  • the vehicle advancing direction detected by the vehicle advancing direction detector 253 is input to the vehicle advancing direction determination unit 610.
  • the vehicle traveling direction determination unit 610 determines whether or not the input vehicle traveling direction is forward, and outputs a true / false value indicating the determination result to the excavation work prediction command unit 630. That is, when the vehicle traveling direction is forward, “TRUE” is output, and when the vehicle traveling direction is other than forward (in the case of reverse), “FALSE” is output.
  • the work machine-to-ground angle determination unit 620 receives the work machine-to-ground angle acquired by the work machine-to-ground angle acquisition unit 321.
  • the work machine ground angle determination unit 620 determines whether or not the input work machine ground angle is within a predetermined range, and outputs a true / false value indicating the determination result to the excavation work prediction command unit 630. That is, when the work implement ground angle is within the predetermined range, “TRUE” is output, and when the work implement ground angle is outside the predetermined range, “FALSE” is output.
  • the ground angle of the work machine 150 is set to be substantially horizontal so that the bucket 151 can be easily inserted into the excavation target.
  • the range for the work machine ground angle is set corresponding to the ground angle at which the work machine 150 is substantially horizontal. Further, this range may be a preset value or may be configured so that an operator can set an arbitrary value from an input device such as a button, dial, or touch panel.
  • the excavation work prediction command unit 630 receives the true / false value output from the vehicle traveling direction determination unit 610 and the true / false value output from the work implement-to-ground angle determination unit 620.
  • the excavation work prediction command unit 630 predicts whether or not the work machine 150 performs excavation based on these input truth values, and outputs the excavation work prediction command to the excavation start determination unit 310 according to the prediction result. To do. That is, when both of the two truth values are “TRUE”, the wheel loader 100 is in the posture at the start of excavation, and it is predicted that the work machine 150 will excavate from now on, and the excavation operation prediction command is issued. Output.
  • the excavation work prediction unit 320 based on the control configuration as described above, based on the work machine-to-ground angle acquired by the work machine-to-ground angle acquisition unit 321 and the vehicle travel direction detected by the vehicle travel direction detector 253. It can be predicted whether or not the work machine 150 performs excavation.
  • FIG. 4 is a control block diagram of the excavation start determining unit 310.
  • the excavation start determination unit 310 has, as its control processing function, an excavation work prediction determination unit 410, a lift cylinder bottom pressure increase rate determination unit 420, a lift cylinder bottom pressure increase rate calculation unit 421, The vehicle acceleration determination unit 430 and the excavation start determination command unit 440 are provided.
  • the excavation work prediction command output from the excavation work prediction unit 320 is input to the excavation work prediction determination unit 410.
  • the excavation work prediction determination unit 410 determines whether or not an excavation work prediction command is input, and outputs a true / false value indicating the determination result to the excavation start determination command unit 440. That is, “TRUE” is output when the excavation work prediction command is input, and “FALSE” is output when the excavation work prediction command is not input.
  • the lift cylinder bottom pressure detected by the lift cylinder bottom pressure detector 252 is input to the lift cylinder bottom pressure increase speed calculation unit 421.
  • the lift cylinder bottom pressure increase speed calculation unit 421 calculates an increase amount per unit time of the input lift cylinder bottom pressure.
  • the increase amount per unit time of the lift cylinder bottom pressure (hydraulic actuator pressure) is synonymous with the speed at which the lift cylinder bottom pressure increases, in the following description, the lift cylinder bottom pressure per unit time
  • the amount of increase will be referred to as “lift cylinder bottom pressure increase rate”.
  • the lift cylinder bottom pressure increase rate calculating unit 421 outputs the calculated lift cylinder bottom pressure increase rate to the lift cylinder bottom pressure increase rate determining unit 420.
  • the lift cylinder bottom pressure increase rate determination unit 420 receives the lift cylinder bottom pressure increase rate calculated by the lift cylinder bottom pressure increase rate calculation unit 421.
  • the lift cylinder bottom pressure increase rate determination unit 420 determines whether or not the input lift cylinder bottom pressure increase rate is equal to or greater than a predetermined threshold, and sends a true / false value indicating the determination result to the excavation start determination command unit 440. Output. That is, “TRUE” is output when the lift cylinder bottom pressure increase rate is equal to or greater than the threshold value, and “FALSE” is output when the lift cylinder bottom pressure increase rate is less than the threshold value.
  • the vehicle acceleration detected by the vehicle acceleration detector 254 is input to the vehicle acceleration determination unit 430.
  • the vehicle acceleration determination unit 430 determines whether or not the input vehicle acceleration is equal to or less than a predetermined threshold, that is, whether or not the deceleration of the wheel loader 100 is equal to or greater than a predetermined value.
  • the value is output to excavation start determination command unit 440. That is, when the vehicle acceleration is equal to or less than the threshold value (when the deceleration is equal to or greater than the predetermined value), “TRUE” is output, and when the vehicle acceleration exceeds the threshold value (when the deceleration is less than the predetermined value). Outputs "FALSE".
  • the excavation start determination command unit 440 outputs the truth value output from the excavation work prediction determination unit 410, the truth value output from the lift cylinder bottom pressure increase speed determination unit 420, and the vehicle acceleration determination unit 430. Boolean value is input.
  • the excavation start determination command unit 440 makes an excavation start determination of the work machine 150 based on these input true / false values, and issues an excavation start determination command according to the determination result to the control valve control unit 262 and the excavation determination notification unit 265. Output to. That is, when all three truth values are “TRUE”, it is determined that excavation is started, and an excavation start determination command is output. On the other hand, when at least one of the three true / false values is “FALSE”, it is determined that the excavation start is not started, and the excavation start determination command is not output.
  • the lift cylinder bottom pressure increase speed determination unit 420 it is preferable to set different threshold values for the lift cylinder bottom pressure increase speed depending on the hardness of the object to be excavated. For example, when the excavation target is relatively soft, the increasing speed of the resistance force received from the excavation target when the bucket 151 hits the excavation target is smaller than that when the excavation target is hard. For this reason, if the same threshold is used as when the excavation target is hard, the timing at which the truth value output from the lift cylinder bottom pressure increase speed determination unit 420 changes from “FALSE” to “TRUE” is delayed. As a result, the output of the excavation start determination command from the excavation start determination command unit 440 is delayed, which may cause the wheels 1 to slip. Therefore, it is preferable that the threshold value of the lift cylinder bottom pressure increase rate is set to be larger as the excavation target is harder.
  • the vehicle acceleration threshold is preferably set to be smaller as the excavation target is harder.
  • FIG. 5 is a diagram showing an example of changing the lift cylinder bottom pressure increase speed threshold and the vehicle acceleration threshold according to the hardness of the object to be excavated.
  • a graph 510 shows an example of the relationship between the hardness of the object to be excavated and the threshold value of the lift cylinder bottom pressure increase rate.
  • the threshold value of the lift cylinder bottom pressure increasing speed is set so as to increase linearly as the object to be excavated becomes harder.
  • the lift cylinder bottom pressure increase speed determination unit 420 is not limited to the example of the graph 510 as long as the lift cylinder bottom pressure increase speed threshold increases monotonically as the hardness of the excavation object increases. Is available. This includes a monotonic increase in a broad sense, for example, including a section in which the threshold value of the lift cylinder bottom pressure increase rate is kept constant even when the hardness of the excavation target changes.
  • a graph 520 shows an example of the relationship between the hardness of the excavation target and the threshold value of the vehicle acceleration.
  • the vehicle acceleration threshold is set so as to decrease linearly as the excavation target becomes harder.
  • the present invention is not limited to the example of the graph 520, and any vehicle acceleration threshold that monotonously decreases as the hardness of the excavation object increases can be used in the determination of the vehicle acceleration determination unit 430. This includes a monotonic decrease in a broad sense, such as a form including a section in which the threshold of vehicle acceleration is kept constant even when the hardness of the excavation object changes.
  • the threshold value of the lift cylinder bottom pressure increase speed or the threshold value of the vehicle acceleration are set in consideration of the vehicle size of the wheel loader 100. It is preferable.
  • a table indicating the relationship between the hardness of the object to be excavated according to the vehicle size of the wheel loader 100, the threshold value of the lift cylinder bottom pressure increase speed, and the threshold value of the vehicle acceleration is stored in the control device 240 in advance.
  • the control device 240 obtains the threshold value of the lift cylinder bottom pressure increase rate and the vehicle acceleration threshold value corresponding to this from the table, and lifts the lift.
  • the cylinder bottom pressure increase speed determination unit 420 and the vehicle acceleration determination unit 430 are used in the determination, respectively.
  • the hardness of the excavation target may be set by an operator using an input device such as a button, a dial, or a touch panel, or may be determined based on the previous excavation work.
  • the control device 240 is configured to operate when the increase rate of the lift cylinder bottom pressure exceeds the threshold value and the vehicle acceleration falls below the threshold value. Therefore, it is determined that the bucket 151 has hit the excavation target and the excavation start is determined.
  • the control device 240 is configured to operate when the increase rate of the lift cylinder bottom pressure exceeds the threshold value and the vehicle acceleration falls below the threshold value. Therefore, it is determined that the bucket 151 has hit the excavation target and the excavation start is determined.
  • the control device 240 is configured to operate when the increase rate of the lift cylinder bottom pressure exceeds the threshold value and the vehicle acceleration falls below the threshold value. Therefore, it is determined that the bucket 151 has hit the excavation target and the excavation start is determined.
  • the control device 240 is configured to operate when the increase rate of the lift cylinder bottom pressure exceeds the threshold value and the vehicle acceleration falls below the threshold value. Therefore, it is determined that the bucket 151 has hit the excavation target and the excavation start is determined.
  • the earth and sand may remain without being dropped from the bucket 151 after loading on the dump truck.
  • the lift cylinder bottom pressure exceeds the threshold value even though the bucket 151 does not hit the excavation target, which is incorrect. Judgment may be made. Therefore, in order to prevent misjudgment, the threshold value of the lift cylinder bottom pressure needs to be set to a certain level. For this reason, it is delayed to make a decision to start excavation as compared with the present embodiment, which may cause the wheel 1 to slip.
  • the start of excavation is determined using vehicle acceleration in addition to the lift cylinder bottom pressure increasing speed. Accordingly, it is possible to avoid erroneous determination due to fluctuations in the lift cylinder bottom pressure increase speed that occurs when the lift arm 155 is greatly shaken due to the bounce of the vehicle body 110 on a rough road, and more accurately determine the start of excavation.
  • the excavation work prediction unit 320 predicts the excavation work, and uses the prediction result to determine the start of excavation. Accordingly, when traveling other than immediately before excavation, for example, when carrying out a transport operation for transporting the excavated load or a rise run that moves forward while ascending the work machine 150 in order to load the excavation target onto a dump truck or the like, excavation starts. Can be avoided. Therefore, it is possible to avoid misjudgment that may occur other than during excavation work, and to more accurately determine the start of excavation.
  • FIG. 7 is a diagram showing an example of the operation of the wheel loader 100 according to the embodiment of the present invention configured as described above.
  • a graph 710 indicates a change in traveling speed
  • a graph 720 indicates a change in lift cylinder bottom pressure
  • a graph 730 indicates a change in vehicle acceleration
  • a graph 740 indicates a change in lift cylinder bottom pressure increase rate
  • a graph 750 indicates a work machine.
  • the graph 760 shows the transition of the excavation start judgment command
  • the graph 770 shows the transition of the oil supply amount to the lift cylinder bottom side.
  • the threshold 731 in the graph 730 indicates the vehicle acceleration threshold in the vehicle acceleration determination unit 430
  • the threshold 741 in the graph 740 indicates the lift cylinder bottom pressure increase in the lift cylinder bottom pressure increase speed determination unit 420.
  • the speed threshold is shown.
  • the upper threshold 751 and the lower threshold 752 of the graph 750 indicate the range of the work implement-to-ground angle in the work implement-to-ground angle determination unit 620 described above.
  • the wheel loader 100 is traveling in a state where the work machine ground angle is large, that is, the bucket opening is facing upward. During this period from time T1 to time T1, the wheel loader 100 moves forward toward the object to be excavated as shown in a graph 710 while adjusting to reduce the ground angle to the work implement as shown in the graph 750 in order to shift to excavation work. is doing.
  • excavation work The prediction unit 320 outputs an excavation work prediction command to the excavation start determination unit 310. Thereafter, when the tip of the work implement 150 hits the excavation target at the time T2, the lift cylinder bottom pressure increasing speed starts increasing as shown in the graph 720, and the vehicle acceleration starts decreasing as shown in the graph 730.
  • the excavation work prediction command from the excavation work prediction unit 320 is input as described above, and the lift cylinder bottom pressure increase rate exceeds the threshold 741 as shown in the graph 740, and the graph 730
  • the excavation start determining unit 310 determines that excavation is started and outputs an excavation start determination command to the control valve control unit 262 and the excavation determination notifying unit 265.
  • the control valve control unit 262 controls the control valve 221 to start supplying oil to the bottom side of the lift cylinder 152 or the excavation determination notification unit 265 notifies the operator.
  • the start of excavation is notified, and the operator performs the raising operation of the work machine 150 in response to this. As a result, the lift arm 155 rises.
  • the control device 240 determines the start of excavation based on the increase speed of the hydraulic actuator pressure, that is, the lift cylinder bottom pressure increase speed. Accordingly, it is possible to determine the start of excavation without delay compared to the case where the hydraulic actuator pressure is used as it is. Furthermore, when the vehicle acceleration exceeds a predetermined threshold or when it is predicted that the work implement 150 will not perform excavation, it is not determined that excavation starts. Thereby, it is possible to avoid erroneous determination and more accurately determine the timing for starting excavation. Therefore, the lifting operation of the work machine 150 can be performed at an appropriate timing.
  • FIG. 9 is an example of a system configuration diagram of the wheel loader 100 when a torque converter type power transmission mechanism that converts the power of the engine 201 into an oil flow and transmits it to the wheel 1 is adopted as the power transmission device 210.
  • the wheel loader 100 includes a torque converter 211 coupled to the output shaft of the engine 201 and a stepped transmission 212 that shifts the power output from the torque converter 211 using a gear mechanism.
  • the stepped transmission 212 rotationally drives each wheel 1 via the propeller shaft 230.
  • FIG. 10 is an example of a system configuration diagram of a wheel loader 100 that employs an HST-type power transmission mechanism that converts the power of the engine 201 into hydraulic pressure and transmits it to the wheel 1 as the power transmission device 210.
  • the wheel loader 100 includes a hydraulic pump 213 connected to the output shaft of the engine 201 and a hydraulic motor 214 that is rotationally driven by the oil discharged from the hydraulic pump 213.
  • the hydraulic motor 214 rotationally drives each wheel 1 via the propeller shaft 230.
  • FIG. 11 is an example of a system configuration diagram of a wheel loader 100 that employs an HMT type power transmission mechanism as the power transmission device 210.
  • the wheel loader 100 further includes a power transmission mechanical unit 215 in addition to the hydraulic pump 213 and the hydraulic motor 214 described above.
  • the wheel 1 is driven by the engine 201 via the power transmission mechanical unit 215 while the wheel 1 is driven by driving the propeller shaft 230 via the hydraulic motor 214 by the hydraulic pump 213.
  • Drive The power transmission mechanical unit 215 is a mechanical mechanism that mechanically connects the output shaft of the engine 201 and the propeller shaft 230, and is configured using, for example, a swash plate piston or a planetary gear.
  • FIG. 12 is an example of a system configuration diagram of the wheel loader 100 that employs a hybrid power transmission mechanism that converts the power of the engine 201 into electricity and transmits it to the wheels 1 as the power transmission device 210.
  • the wheel loader 100 includes a motor generator (motor / generator) 216 that is mechanically coupled to the engine 201 and driven by the engine 201, an inverter 218 that controls the motor generator 216, and a differential A traveling motor 217 that is attached to the propeller shaft 230 via the gear Dif and the gear G and drives the four wheels 1, an inverter 219 that controls the traveling motor 217, and an inverter 218 and 219 that are electrically connected via the DCDC converter 291.
  • a motor generator motor / generator
  • Power storage device 290 is formed of, for example, a secondary battery or a capacitor, and transfers DC power between inverter 218 and inverter 219.
  • Power storage device 290 is formed of, for example, a secondary battery or a capacitor, and transfers DC power between inverter 218 and inverter 219.
  • FIG. 12 a configuration example of a so-called series type hybrid system is shown, but a parallel type hybrid system can also be used.
  • the wheel loader 100 that is a work vehicle includes a work machine 150, a lift cylinder 152 that is a hydraulic actuator that drives the work machine 150, a hydraulic pump 220 that supplies oil to the lift cylinder 152, and a pressure of the lift cylinder 152
  • a hydraulic actuator pressure detector that detects a lift cylinder bottom pressure
  • a lift cylinder bottom pressure detector 252 that detects a lift cylinder bottom pressure
  • a control valve 221 that controls the amount of oil supplied from the hydraulic pump 220 to the lift cylinder 152
  • the vehicle acceleration detector 254 for detecting the vehicle acceleration of the vehicle and the control device 240 are provided.
  • control device 240 determines whether or not work implement 150 has started excavation. To do. Since it did in this way, excavation start timing can be judged quickly and correctly.
  • the control device 240 includes an excavation start determination unit 310.
  • the excavation start determination unit 310 calculates the hydraulic actuator pressure increase rate, that is, the lift cylinder bottom pressure increase rate from the lift cylinder bottom pressure by the lift cylinder bottom pressure increase rate calculation unit 421.
  • the lift cylinder bottom pressure increase speed determination unit 420 determines that the lift cylinder bottom pressure increase speed is greater than or equal to a predetermined threshold
  • the vehicle acceleration determination unit 430 determines that the vehicle acceleration is less than or equal to the predetermined threshold
  • the excavation start determination command unit 440 determines that the work machine 150 has started excavation. Since it did in this way, the judgment of an excavation start can be performed quickly, avoiding the misjudgment by the fluctuation
  • the wheel loader 100 further includes a vehicle traveling direction detector 253 that detects whether the vehicle traveling direction is forward or backward.
  • the control device 240 includes a work machine ground angle acquisition unit 321 that acquires the ground angle of the work machine 150, and the work machine 150 excavates when the vehicle traveling direction is forward and the ground angle of the work machine 150 is within a predetermined range.
  • An excavation work prediction unit 320 that predicts to perform the operation. When the excavation work prediction unit 320 predicts that the work machine 150 will excavate, the excavation start determination unit 310 determines whether the work machine 150 has started excavation based on the lift cylinder bottom pressure and the vehicle acceleration. Do. Since it did in this way, the misjudgment which may occur except at the time of excavation work can be avoided, and the excavation start judgment can be performed more accurately.
  • the wheel loader 100 further includes an excavation determination notification unit 265 that notifies the operator that the operation of lifting the work implement 150 is prompted when the control device 240 determines that the work implement 150 has started excavation. Since it did in this way, at the time of an excavation start, an operator can be made to raise the working machine 150 without delay.
  • the wheel loader 100 controls the control valve 221 to start supplying oil from the hydraulic pump 220 to the lift cylinder 152 when the control device 240 determines that the work machine 150 has started excavation.
  • a control valve control unit 262 is further provided. Since it did in this way, the raise operation
  • the wheel loader 100 includes both the control valve control unit 262 and the excavation determination notification unit 265. However, only one of them may be provided. Further, both the control valve control unit 262 and the excavation determination notification unit 265 are not provided, and the excavation start determination command output from the control device 240 is output to the outside via an output terminal or the like provided in the wheel loader 100. You may do it.
  • the control device 240 includes the work implement-to-ground angle acquisition unit 321, the excavation work prediction unit 320, and the excavation start determination unit 310 has been described as illustrated in FIG.
  • the machine-to-ground angle acquisition unit 321 and the excavation work prediction unit 320 may not be provided.
  • the excavation start determination unit 310 does not need to include the excavation work prediction determination unit 410, and the excavation start determination command unit 440 and the true / false value output from the lift cylinder bottom pressure increase speed determination unit 420 and the vehicle acceleration
  • the start of excavation may be determined based on the truth value output from the determination unit 430.
  • the vehicle acceleration determination unit 430 determines that excavation is started and outputs an excavation start determination command.
  • the excavation start determination command is not output. You may do this.
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof.
  • the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted.
  • part of a configuration according to one embodiment can be added to or replaced with a configuration according to another embodiment.
  • Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

掘削開始タイミングを素早く正確に判断する。 ホイールローダは、作業機と、作業機を駆動する油圧アクチュエータであるリフトシリンダ152と、リフトシリンダ152に油を供給する油圧ポンプ220と、リフトシリンダ152の圧力を検知するリフトシリンダボトム圧検知器252と、油圧ポンプ220からリフトシリンダ152に供給される油の量を制御する制御弁221と、前後方向の車両加速度を検知する車両加速度検知器254と、制御装置240とを備える。制御装置240は、リフトシリンダボトム圧検知器252により検知されたリフトシリンダボトム圧と、車両加速度検知器254により検知された車両加速度とに基づいて、作業機が掘削開始したか否かを判断する。

Description

作業車両
 本発明は作業車両に関する。
 作業車両の一種であるホイールローダは、車体前方に油圧アクチュエータ等で駆動される掘削用の作業機を有している。ホイールローダのオペレータは、車両を前進させて作業機先端を砕石や土砂等の掘削対象に差し込んだ後、作業機を上昇させて掘削対象を作業機内に掬い取ることで、掘削を行う。
 ホイールローダによる掘削では、タイヤのスリップを防止するために、掘削開始時に適切なタイミングで作業機を上昇させる必要がある。すなわち、作業機が掘削対象に差し込まれると、作業機が掘削対象から受ける抵抗力は、作業機と車体を連結する油圧アクチュエータが縮まる方向に作用する。このとき、作業機が掘削対象によって上下方向に固定されていると、油圧アクチュエータによって車体が持ち上げられ、地面とタイヤの摩擦力が低下してタイヤがスリップすることがある。タイヤのスリップが発生すると、タイヤの摩耗が早まるだけでなく、タイヤが路面を削ることで路面状況が悪化し、作業効率の低下につながってしまう。そこで、ホイールローダのオペレータは通常、掘削開始時に作業機を上昇させ、その反力で前輪に荷重をかけることで、タイヤのスリップを防止する。しかしながら、作業機を上昇させるタイミングが早いと、掘削対象に作業機が十分に差し込まれる前に作業機が上昇を開始し、作業機に掬い取られる掘削対象の量が減少してしまう。一方、作業機を上昇させるタイミングが遅いと、上記のようにタイヤのスリップが発生してしまう。したがって、ホイールローダのオペレータは、適切なタイミングで掘削開始を判断し、作業機の上昇操作を行う必要がある。
 従来のホイールローダでは、上述したように、オペレータが適切な掘削開始タイミングの判断を行う必要がある。しかしながら、特に経験の浅いオペレータにとっては、たとえば作業機先端を目視できない場合など、適切な掘削開始タイミングの判断が困難な場合がある。これに関して、特許文献1には、油圧シリンダの油圧、オペレータによる作業機の操作状態、作業車両のアクセル開度等に基づいて、作業車両における作業の状態を判断する技術が開示されている。
国際公開第2005/024208号
 特許文献1に記載の従来技術では、油圧シリンダの油圧と予め定められた基準値とを比較し、その比較結果に基づいて作業車両が掘削中であるか否かを判断している。しかし、このような判断方法では、掘削開始タイミングを素早く正確に判断するのは困難である。
 本発明による作業車両は、作業機と、前記作業機を駆動する油圧アクチュエータと、前記油圧アクチュエータに油を供給する油圧ポンプと、前記油圧アクチュエータの圧力を検知する油圧アクチュエータ圧力検知器と、前記油圧ポンプから前記油圧アクチュエータに供給される油の量を制御する制御弁と、前後方向の車両加速度を検知する車両加速度検知器と、前記油圧アクチュエータ圧力検知器により検知された前記油圧アクチュエータの圧力と、前記車両加速度検知器により検知された前記車両加速度とに基づいて、前記作業機が掘削開始したか否かを判断する制御装置と、を備える。
 本発明によれば、掘削開始タイミングを素早く正確に判断することができる。
本発明の一実施の形態に係る作業車両であるホイールローダの側面図である。 本発明の一実施の形態に係るホイールローダのシステム構成図である。 制御装置の制御ブロック図である。 掘削開始判断部の制御ブロック図である。 掘削対象の硬さに応じてリフトシリンダボトム圧増加速度の閾値および車両加速度の閾値を変化させる例を示す図である。 掘削作業予測部の制御ブロック図である。 本発明の一実施の形態に係るホイールローダの動作の一例を示した図である。 制御装置のハードウェア構成を示す図である。 トルクコンバータ式の動力伝達機構を採用した場合のホイールローダのシステム構成図の一例である。 HST式の動力伝達機構を採用したホイールローダのシステム構成図の一例である。 HMT式の動力伝達機構を採用したホイールローダのシステム構成図の一例である。 ハイブリッド式の動力伝達機構を採用したホイールローダのシステム構成図の一例である。
 以下、本発明の実施形態について、図面を用いて説明する。
[ホイールローダ100の構成]
 図1は、本発明の一実施の形態に係る作業車両であるホイールローダ100の側面図である。図1に示すホイールローダ100は、車体110と、車体110の前方に取り付けられた多関節型の作業機150から構成される。
 作業機150は、少なくとも1つのアクチュエータにより駆動される作業装置である。図1に示した作業機150は、リフトアーム155およびバケット151から構成される。作業機150と車体110の間には、リフトアーム155およびバケット151をそれぞれ駆動する油圧アクチュエータ(油圧シリンダ)として、リフトシリンダ152およびバケットシリンダ153が取り付けられている。なお、リフトアーム155とリフトシリンダ152は、車体110の左右にそれぞれ1つずつ装備されているが、図1では車体110の右側にあるリフトアーム155とリフトシリンダ152は隠れている。
 リフトアーム155は、リフトシリンダ152の伸縮駆動に伴って上下方向に回動(俯仰動)する。バケット151は、バケットシリンダ153の伸縮駆動に伴って回動(ダンプ動作またはクラウド動作)する。なお、図1に示したホイールローダ100のバケット151を作動させるリンク機構は、ベルクランク154を用いたZリンク式(ベルクランク式)のものである。
 リフトシリンダ152は、リフトアーム155と車体110に接続されている。以下では、リフトシリンダ152のリフトアーム155と接続する側をロッド側と称し、車体110と接続する側をボトム側と称する。リフトシリンダ152のボトム側に後述する油圧ポンプから油が供給されることにより、リフトシリンダ152のシリンダロッドが伸長され、リフトアーム155は上昇する。また、リフトシリンダ152のロッド側に油圧ポンプから圧油が供給されることにより、リフトシリンダ152のシリンダロッドが縮退され、リフトアーム155は降下する。
 バケットシリンダ153は、ベルクランク154と車体110に接続されている。以下では、バケットシリンダ153のベルクランク154と接続する側をロッド側と称し、車体110と接続する側をボトム側と称する。バケットシリンダ153のボトム側に油圧ポンプから油が供給されることにより、バケットシリンダ153のシリンダロッドが伸長され、バケット151は開口部が上方を向くように回動する。また、バケットシリンダ153のロッド側に油圧ポンプから油が供給されることにより、バケットシリンダ153のシリンダロッドが縮退され、バケット151は開口部が下方を向くように回動する。
 バケットシリンダ153には、バケット151の底面が地面に対して水平であるかを判断するために、バケットシリンダストローク、すなわちバケットシリンダ153のストローク量を検知するバケットシリンダストローク検知器250が取り付けられている。また、リフトアーム155の車体110との接続部近傍には、リフトアーム155の高さを判断するために、リフトアーム角、すなわちリフトアーム155の角度を検知するリフトアーム角検知器251が取り付けられている。
 掘削開始時にオペレータは、バケット151の底面を地面に対して水平にし、バケット151が地面に接触する程度までリフトアーム155を下げた姿勢で、掘削対象である砕石や土砂に向かってホイールローダ100を前進させる。掘削対象に作業機150の先端、すなわちバケット151の先端が当たると、掘削対象からの抵抗力がリフトシリンダ152を縮めるように働き、リフトシリンダ152のボトム側の圧力が大きくなる。そのため、リフトシリンダ152には、作業機150が受ける掘削対象からの抵抗力を検知するために、リフトシリンダボトム圧、すなわちリフトシリンダ152のボトム圧を検知するリフトシリンダボトム圧検知器252が取り付けられている。なお、掘削対象からの抵抗力はバケットシリンダ153にも作用するが、このときのバケットシリンダ153の圧力変化の大きさは、地面に対するバケット151の底面の角度によって大きく変わる。また、掘削対象からの抵抗力によるリフトシリンダ152のロッド側の圧力変化は、ボトム側の圧力変化に比べて小さい。したがって、掘削対象からの抵抗力を検知するためには、リフトシリンダボトム圧を検知するのが適している。
 車体110には、4つの車輪1a、1b、1c、1dが設けられている。なお、図1では車体110の右側にある車輪1a、1bは隠れている。以下では、車輪1a、1b、1c、1dを「車輪1」と総称することもある。各車輪1は、エンジン201(後述)を動力源とする動力伝達装置210(後述)によって駆動される。各車輪1を介して駆動力が地面に伝えられることで、ホイールローダ100は前進または後退する。
 図2は、図1に示した本発明の一実施の形態に係るホイールローダ100のシステム構成図である。
 エンジン201は、動力伝達装置210および油圧ポンプ220に動力を供給する。エンジン201は、燃料噴射量を制御する電子制御ガバナ202を有している。電子制御ガバナ202は、アクセル操作量検知器256により検知されたアクセルペダル264の操作量に基づいて、エンジン201の燃料噴射量を制御する。
 動力伝達装置210は、エンジン201から出力される動力の一部を車輪1へ伝達する動力伝達機構である。動力伝達装置210の方式には、たとえばトルクコンバータ式、HST(Hydro Static Transmission)式、HMT(Hydro Mechanical Transmission)式、ハイブリッド式などを採用することができる。なお、動力伝達装置210の具体例については、図9から図12を用いて後述する。
 油圧ポンプ220は、前述のリフトシリンダ152およびバケットシリンダ153を含む、作業機150に係る複数の油圧アクチュエータ対して、制御弁221を介して油を供給することにより、各油圧アクチュエータを適宜駆動させる。なお、油圧ポンプ220の動力源はエンジン201である。そのため、油圧ポンプ220を駆動源とする各油圧アクチュエータについても、車輪1と同様にエンジン201が動力源となる。
 制御弁221は、下記のパイロット圧に応じて、油圧ポンプ220から油圧アクチュエータ(リフトシリンダ152、バケットシリンダ153)へ供給される油の量を制御する。パイロット圧は、作業機150を操作するための作業機操作レバー261や、制御弁制御部262から出力される。これらのパイロット圧のうち、より高圧な方が高圧選択弁263により選択され、制御弁221に作用する。なお、制御弁制御部262は、後述するように、制御装置240から出力される掘削開始判断指令に応じて駆動される。
 車両進行方向検知器253は、プロペラシャフト230の回転方向から、車両進行方向、すなわちホイールローダ100の進行方向が前進または後退のいずれであるかを検知し、制御装置240に出力する。なお、車両進行方向検知器253によりプロペラシャフト230の回転数などを検知し、その検知結果に基づいてホイールローダ100の加速度や走行速度を演算することもできる。たとえば、車両進行方向検知器253によって検知されたプロペラシャフト230の回転数を微分処理することで、ホイールローダ100の加速度を求めることができる。
 車両加速度検知器254は、前後方向に対する車両加速度、すなわちホイールローダ100の加速度を検知し、制御装置240に出力する。なお、上記のように車両進行方向検知器253の検知結果に基づいて車両加速度を演算する場合には、車両加速度検知器254を設けなくてもよい。
 掘削判断報知部265は、制御装置240から出力される掘削開始判断指令に応じたオペレータへの報知を行う。掘削判断報知部265は、たとえば所定の画面表示を行うことが可能なモニタにより構成されている。
 制御装置240は、ホイールローダ100の動作に関する各種情報処理を実行するためのコンピュータであり、たとえばマイクロコンピュータを用いて構成される。制御装置240は、リフトシリンダボトム圧検知器252により検知されたリフトシリンダボトム圧と、車両加速度検知器254により検知されたホイールローダ100の前後方向の加速度から、作業機150が掘削開始したか否かを判断し、掘削開始と判断した場合には掘削開始判断指令を出力するように構成されている。なお、制御装置240で行われる制御処理の詳細については後述する。
 図8は、制御装置240のハードウェア構成を示す図である。制御装置240は、入力部91と、プロセッサである中央処理装置(CPU)92と、記憶装置であるリードオンリーメモリ(ROM)93およびランダムアクセスメモリ(RAM)94と、出力部95とを有している。
 入力部91は、前述のリフトシリンダボトム圧検知器252、車両進行方向検知器253、車両加速度検知器254、リフトアーム角検知器251、バケットシリンダストローク検知器250等から出力される情報や信号を入力し、CPU92に出力する。このとき、必要に応じてA/D変換を行う。ROM93は、プログラム等が記憶された記録媒体である。CPU92は、ROM93に記憶されたプログラムに従って、入力部91やROM93、RAM94から取り入れた情報や信号に対して所定の演算処理を行う。出力部95は、CPU92での演算結果に応じた出力用の信号を作成し、その信号を制御弁制御部262や掘削判断報知部265に出力する。なお、図8の制御装置240は、記憶装置として半導体メモリであるROM93やRAM94を備えているが、これらの代わりにハードディスクドライブ等の磁気記憶装置を備え、これにプログラム等を記憶してもよい。
[制御装置240の制御処理] 
 次に、制御装置240で実行される制御処理の詳細について説明する。図3は、制御装置240の制御ブロック図である。図3に示すように、制御装置240は、その制御処理の機能として、作業機対地角取得部321と、掘削作業予測部320と、掘削開始判断部310とを有する。
 作業機対地角取得部321には、作業機対地角、すなわち作業機150の対地角を演算するための情報として、バケットシリンダストローク検知器250によって検知されたバケットシリンダストロークと、リフトアーム角検知器251によって検知されたリフトアーム角とが入力される。作業機対地角取得部321は、入力されたこれらの情報を基に作業機対地角を算出することにより、作業機150の対地角を取得し、掘削作業予測部320に出力する。たとえば、作業機150を構成するリフトアーム155やバケット151、ベルクランク154等の寸法パラメータに基づく数式を用いて、入力されたバケットシリンダストロークおよびリフトアーム角に対応する作業機対地角を幾何学的に算出してもよい。または、バケットシリンダ153のストローク量およびリフトアーム155の角度と作業機対地角との関係を予めテーブル化して制御装置240に記憶しておき、このテーブルを用いて、入力されたバケットシリンダストロークおよびリフトアーム角に対応する作業機対地角を求めてもよい。あるいは、バケットシリンダストローク検知器250によって検知されたバケットシリンダストロークや、リフトアーム角検知器251によって検知されたリフトアーム角を用いずに、対地角センサ等を用いて作業機150の対地角を直接検知することで、作業機対地角を取得してもよい。
 掘削作業予測部320は、作業機対地角取得部321によって取得された作業機対地角と、車両進行方向検知器253によって検知された車両進行方向とに基づいて、作業機150がこれから掘削を行うか否かを予測する。具体的には、掘削作業予測部320は、車両進行方向が前進であり、かつ、作業機対地角が所定の範囲内である場合に、ホイールローダ100が掘削開始時の姿勢であると判断して、作業機150が掘削を行うと予測する。このとき掘削作業予測部320は、掘削作業予測指令を掘削開始判断部310に出力する。一方、これらの条件の少なくとも一方が満たされない場合には、作業機150が掘削を行わないと予測して、掘削作業予測指令を出力しない。なお、掘削作業予測部320の処理の詳細については後述する。
 掘削開始判断部310には、適切な作業機150の上昇操作のタイミングを判断するための情報として、掘削作業予測部320からの掘削作業予測指令と、リフトシリンダボトム圧検知器252によって検知されたリフトシリンダボトム圧と、車両加速度検知器254によって検知された車両加速度とが入力される。掘削開始判断部310は、掘削作業予測部320から掘削作業予測指令が出力されているときに、リフトシリンダボトム圧および車両加速度に基づく作業機150の掘削開始判断を行う。具体的には、掘削作業予測指令が出力されており、かつ、リフトシリンダボトム圧の増加速度が所定の閾値以上であり、かつ、車両加速度が所定の閾値以下である場合に、バケット151の先端が掘削対象に当たったことを検知して、作業機150が掘削開始したと判断する。このとき掘削開始判断部310は、掘削開始判断指令を制御弁制御部262および掘削判断報知部265に出力する。一方、掘削作業予測指令が出力されていない場合や、リフトシリンダボトム圧の増加速度および車両加速度の少なくとも一方が上記の条件を満たさない場合には、作業機150が掘削開始していないと判断して、掘削開始判断指令を出力しない。なお、掘削開始判断部310の処理の詳細については後述する。
 制御弁制御部262は、掘削開始判断部310から出力された掘削開始判断指令に応じて、適切なタイミングで作業機150を上昇させるための制御を制御弁221に対して行う。具体的には、制御弁制御部262は、掘削開始判断部310から掘削開始判断指令が出力されている場合には、所定のパイロット圧を制御弁221に出力して、リフトシリンダ152のボトム側に油の供給を開始するよう制御弁221を制御する。一方、掘削開始判断指令が入力されていない場合には、パイロット圧を出力せずに、リフトシリンダ152のボトム側に油が供給されないようにする。これにより、掘削開始判断部310によって判断された適切なタイミングで油圧ポンプ220からリフトシリンダ152のボトム側に油が供給され、遅滞なく作業機150の上昇動作を行うことができるため、車輪1のスリップを防止できる。なお、制御弁制御部262は、掘削開始判断指令が出力されているときに、油圧ポンプ220が供給可能な最大量の油をリフトシリンダ152のボトム側に供給するように制御弁221を制御してもよいし、あるいは、最大量未満で予め定められた供給量となるように制御弁221を制御してもよい。
 掘削判断報知部265は、掘削開始判断部310から出力された掘削開始判断指令に応じて、オペレータに対して適切なタイミングで作業機150の上昇操作を促す旨の報知を行う。具体的には、掘削判断報知部265は、制御装置240から掘削開始判断指令が出力されている場合には、オペレータに対して掘削開始が判断された旨をモニタに表示する。一方、制御装置240から掘削開始判断指令が出力されていない場合には、モニタの表示を行わない。こうして掘削判断報知部265により適切な掘削開始タイミングをオペレータに報知することで、オペレータは制御弁制御部262の制御により作業機150の上昇動作が適切なタイミングで行われたのを知ることができる。また、ホイールローダ100に制御弁制御部262が設けられていない場合など、掘削開始タイミングに応じて作業機150が自動的に上昇されない場合には、掘削判断報知部265による掘削開始タイミングの報知に応じて、オペレータは遅滞なく作業機150の上昇操作を行うことができる。これにより、車輪1のスリップを防止できる。なお、掘削判断報知部265は、上記のようなモニタ表示に加えて、またはモニタ表示に代えて、他の方法でオペレータへの報知を行ってもよい。たとえば、図示しないキャビン内の照明装置の照度を変えたり、音声を発したり、作業機操作レバー261を振動させたりすることで、オペレータに対して掘削開始が判断された旨を報知することができる。
[掘削作業予測部320の制御処理]
 次に、掘削作業予測部320で実行される制御処理の詳細について説明する。図6は、掘削作業予測部320の制御ブロック図である。図6に示すように、掘削作業予測部320は、その制御処理の機能として、車両進行方向判断部610と、作業機対地角判断部620と、掘削作業予測指令部630とを有する。
 車両進行方向判断部610には、車両進行方向検知器253によって検知された車両進行方向が入力される。車両進行方向判断部610は、入力された車両進行方向が前進であるか否かを判断し、その判断結果を示す真偽値を掘削作業予測指令部630に出力する。すなわち、車両進行方向が前進である場合は「TRUE」を出力し、車両進行方向が前進以外の場合(後退の場合)は「FALSE」を出力する。
 作業機対地角判断部620には、作業機対地角取得部321によって取得された作業機対地角が入力される。作業機対地角判断部620は、入力された作業機対地角が所定の範囲内であるか否かを判断し、その判断結果を示す真偽値を掘削作業予測指令部630に出力する。すなわち、作業機対地角が所定範囲内である場合は「TRUE」を出力し、作業機対地角が所定範囲外である場合は「FALSE」を出力する。なお一般的に、掘削開始時にはバケット151を掘削対象に差し込みやすくするため、作業機150の対地角は略水平に設定される。そのため、作業機対地角判断部620において、上記の作業機対地角に対する範囲は、作業機150が概ね水平となる対地角に対応して設定されることが好ましい。さらに、この範囲は予め設定された値としてもよいし、ボタン、ダイヤル、タッチパネル等の入力装置からオペレータが任意の値を設定できるように構成してもよい。
 掘削作業予測指令部630には、車両進行方向判断部610から出力された真偽値と、作業機対地角判断部620から出力された真偽値とが入力される。掘削作業予測指令部630は、入力されたこれらの真偽値に基づいて、作業機150が掘削を行うか否かを予測し、その予測結果に従って掘削作業予測指令を掘削開始判断部310に出力する。すなわち、2つの真偽値が両方とも「TRUE」である場合は、ホイールローダ100が掘削開始時の姿勢となっており、これから作業機150が掘削を行うと予測して、掘削作業予測指令を出力する。一方、2つの真偽値の一方または両方が「FALSE」である場合は、ホイールローダ100が掘削開始時の姿勢とはなっておらず、作業機150が掘削を行わないと予測して、掘削作業予測指令を出力しないようにする。
 掘削作業予測部320では、以上説明したような制御構成により、作業機対地角取得部321によって取得された作業機対地角と、車両進行方向検知器253によって検知された車両進行方向とに基づいて、作業機150が掘削を行うか否かを予測することができる。
[掘削開始判断部310]
 次に、掘削開始判断部310で実行される制御処理の詳細について説明する。図4は、掘削開始判断部310の制御ブロック図である。図4に示すように、掘削開始判断部310は、その制御処理の機能として、掘削作業予測判断部410と、リフトシリンダボトム圧増加速度判断部420と、リフトシリンダボトム圧増加速度演算部421と、車両加速度判断部430と、掘削開始判断指令部440とを有する。
 掘削作業予測判断部410には、掘削作業予測部320から出力された掘削作業予測指令が入力される。掘削作業予測判断部410は、掘削作業予測指令が入力されているか否かを判断し、その判断結果を示す真偽値を掘削開始判断指令部440に出力する。すなわち、掘削作業予測指令が入力されている場合は「TRUE」を出力し、掘削作業予測指令が入力されていない場合は「FALSE」を出力する。
 リフトシリンダボトム圧増加速度演算部421には、リフトシリンダボトム圧検知器252によって検知されたリフトシリンダボトム圧が入力される。リフトシリンダボトム圧増加速度演算部421は、入力されたリフトシリンダボトム圧の単位時間当たりの増加量を求める。ここで、リフトシリンダボトム圧(油圧アクチュエータ圧力)の単位時間当たりの増加量は、リフトシリンダボトム圧の増加する速度と同義であることから、以下の説明において、リフトシリンダボトム圧の単位時間当たりの増加量のことを「リフトシリンダボトム圧増加速度」と称することにする。そして、リフトシリンダボトム圧増加速度演算部421は、算出したリフトシリンダボトム圧増加速度を、リフトシリンダボトム圧増加速度判断部420に出力する。
 リフトシリンダボトム圧増加速度判断部420には、リフトシリンダボトム圧増加速度演算部421によって算出されたリフトシリンダボトム圧増加速度が入力される。リフトシリンダボトム圧増加速度判断部420は、入力されたリフトシリンダボトム圧増加速度が所定の閾値以上であるか否かを判断し、その判断結果を示す真偽値を掘削開始判断指令部440に出力する。すなわち、リフトシリンダボトム圧増加速度が閾値以上である場合は「TRUE」を出力し、リフトシリンダボトム圧増加速度が閾値未満である場合は「FALSE」を出力する。
 車両加速度判断部430には、車両加速度検知器254によって検知された車両加速度が入力される。車両加速度判断部430は、入力された車両加速度が所定の閾値以下であるか否か、すなわちホイールローダ100の減速度が所定値以上であるか否かを判断し、その判断結果を示す真偽値を掘削開始判断指令部440に出力する。すなわち、車両加速度が閾値以下である場合(減速度が所定値以上である場合)は「TRUE」を出力し、車両加速度が閾値を超過している場合(減速度が所定値未満である場合)は「FALSE」を出力する。
 掘削開始判断指令部440には、掘削作業予測判断部410から出力された真偽値と、リフトシリンダボトム圧増加速度判断部420から出力された真偽値と、車両加速度判断部430から出力された真偽値とが入力される。掘削開始判断指令部440は、入力されたこれらの真偽値に基づいて、作業機150の掘削開始判断を行い、その判断結果に従って掘削開始判断指令を制御弁制御部262と掘削判断報知部265に出力する。すなわち、3つの真偽値が全て「TRUE」である場合は、掘削開始と判断して、掘削開始判断指令を出力する。一方、3つの真偽値のいずれか少なくとも一つが「FALSE」である場合は、掘削開始ではないと判断して、掘削開始判断指令を出力しないようにする。
 なお、リフトシリンダボトム圧増加速度判断部420において、上記のリフトシリンダボトム圧増加速度に対する閾値は、掘削対象の硬さに応じて異なる値を設定することが好ましい。たとえば、掘削対象が比較的軟らかい場合、バケット151が掘削対象に当たった際に掘削対象から受ける抵抗力の増加速度は、掘削対象が硬い場合と比べて小さい。そのため、掘削対象が硬い場合と同じ閾値を用いると、リフトシリンダボトム圧増加速度判断部420から出力される真偽値が「FALSE」から「TRUE」に変化するタイミングが遅くなる。その結果、掘削開始判断指令部440から掘削開始判断指令が出力されるのが遅れてしまい、車輪1のスリップを発生させてしまう可能性がある。したがって、リフトシリンダボトム圧増加速度の閾値は、掘削対象が硬いほど大きく設定するのが好ましい。
 また、車両加速度判断部430における上記の車両加速度に対する閾値についても、掘削対象の硬さに応じて異なる値を設定することが好ましい。ただし、車両加速度の閾値は、掘削対象が硬いほど小さく設定されるのが好ましい。
 図5は、掘削対象の硬さに応じてリフトシリンダボトム圧増加速度の閾値および車両加速度の閾値を変化させる例を示す図である。図5において、グラフ510は、掘削対象の硬さとリフトシリンダボトム圧増加速度の閾値との関係の一例を示している。グラフ510の例では、リフトシリンダボトム圧増加速度の閾値は、掘削対象が硬くなるに伴って直線的に増加するように設定されている。なお、グラフ510の例に限らず、掘削対象の硬さが増加するにつれてリフトシリンダボトム圧増加速度の閾値が単調増加するような形態であれば、リフトシリンダボトム圧増加速度判断部420の判断において利用可能である。これは、たとえば掘削対象の硬さが変化してもリフトシリンダボトム圧増加速度の閾値が一定に保持される区間を含む形態など、広義の単調増加も含むものである。
 一方、図5において、グラフ520は、掘削対象の硬さと車両加速度の閾値との関係の一例を示している。グラフ520の例では、車両加速度の閾値は、掘削対象が硬くなるに伴って直線的に減少するように設定されている。なお、グラフ520の例に限らず、掘削対象の硬さが増加するにつれて車両加速度の閾値が単調減少するような形態であれば、車両加速度判断部430の判断において利用可能である。これは、たとえば掘削対象の硬さが変化しても車両加速度の閾値が一定に保持される区間を含む形態など、広義の単調減少も含むものである。
 以上説明したように、掘削対象の硬さに応じてリフトシリンダボトム圧増加速度の閾値や車両加速度の閾値を変化させる場合には、ホイールローダ100の車格を考慮してこれらの閾値を設定することが好ましい。たとえば、ホイールローダ100の車格に応じた掘削対象の硬さとリフトシリンダボトム圧増加速度の閾値および車両加速度の閾値との関係を示すテーブルを、制御装置240に予め記憶しておく。ホイールローダ100が掘削作業を行う際に掘削対象の硬さが設定されると、制御装置240は、これに対応するリフトシリンダボトム圧増加速度の閾値および車両加速度の閾値をテーブルから求めて、リフトシリンダボトム圧増加速度判断部420および車両加速度判断部430の判断においてそれぞれ用いるようにする。なお、掘削対象の硬さは、ボタン、ダイヤル、タッチパネル等の入力装置からオペレータが任意の値を設定してもよいし、前回の掘削作業から判断して設定するものであってもよい。
 以上説明した本実施の形態では、掘削開始判断部310の一連の処理からわかるように、制御装置240は、リフトシリンダボトム圧の増加速度が閾値を上回り、かつ車両加速度が閾値を下回ったときに、バケット151が掘削対象に当たったと判断して掘削開始の判断を下している。このように、リフトシリンダボトム圧の増加速度を用いて判断を行うことにより、リフトシリンダボトム圧をそのまま用いた場合よりも素早く掘削開始の判断を下すことができる。なお、リフトシリンダボトム圧をそのまま用いて判断を行う場合、リフトシリンダボトム圧に対する閾値を小さく設定するほど掘削反力を早く検知して掘削開始の判断を下すことができるが、その分だけ誤判断の可能性が高まる。たとえば、粘土質の土砂を掘削したときには、ダンプトラックへの積み込み後に土砂がバケット151から落としきれずに残ることがある。この場合、バケット151内に残った土砂の重量がリフトシリンダボトム圧に付加されるため、掘削対象にバケット151が当たっていないにもかかわらず、リフトシリンダボトム圧が閾値を超えてしまい、誤った判断を下す可能性がある。したがって、誤判断防止のためには、リフトシリンダボトム圧の閾値はある程度高く設定する必要がある。そのため、本実施の形態と比べて掘削開始の判断を下すのが遅れてしまい、車輪1のスリップを引き起こす可能性がある。
 また、本実施の形態では、リフトシリンダボトム圧増加速度に加えて、車両加速度を用いて掘削開始の判断を行っている。これにより、悪路走行中の車体110のバウンド等によってリフトアーム155が大きく振られる際に発生するリフトシリンダボトム圧増加速度の変動による誤判断を回避し、より正確に掘削開始を判断できる。
 さらに、本実施の形態では、上記に加えて、掘削作業予測部320により掘削作業を予測し、その予測結果を用いて掘削開始の判断を行っている。これにより、掘削直前以外の走行時、たとえば掘削した積荷を運搬する運搬作業や、掘削対象をダンプトラックなどに積み込むために作業機150を上昇しながら前進するライズラン等を行っているときには、掘削開始の判断を行わないようにすることができる。したがって、掘削作業時以外に発生し得る誤判断を回避し、より正確に掘削開始を判断できる。
[実動作]
 図7は、上記のように構成された本発明の一実施の形態に係るホイールローダ100の動作の一例を示した図である。図7において、グラフ710は走行速度の推移を、グラフ720はリフトシリンダボトム圧の推移を、グラフ730は車両加速度の推移を、グラフ740はリフトシリンダボトム圧増加速度推移を、グラフ750は作業機対地角の推移を、グラフ760は掘削開始判断指令の推移を、グラフ770はリフトシリンダボトム側への油供給量の推移をそれぞれ示す。なお、グラフ730の閾値731は、前述の車両加速度判断部430における車両加速度の閾値を示しており、グラフ740の閾値741は、前述のリフトシリンダボトム圧増加速度判断部420におけるリフトシリンダボトム圧増加速度の閾値を示している。また、グラフ750の上限閾値751および下限閾値752は、前述の作業機対地角判断部620における作業機対地角の範囲を示している。
 時刻0の時点では、グラフ750に示すように、作業機対地角が大きい状態、つまりバケット開口部が上方を向いている状態で、ホイールローダ100が走行している。ここから時刻T1までの期間では、掘削作業に移行するため、グラフ750に示すように作業機対地角が小さくなるよう調節しながら、グラフ710に示すようにホイールローダ100が掘削対象に向かって前進している。
 時刻T1の時点で、グラフ710に示すように車両進行方向が前進であり、かつグラフ750に示すように作業機対地角が上限閾値751と下限閾値752の間の範囲内に入ると、掘削作業予測部320が掘削作業予測指令を掘削開始判断部310に出力する。その後、T2の時点で作業機150の先端が掘削対象に当たると、グラフ720に示すようにリフトシリンダボトム圧増加速度が上昇し始めると共に、グラフ730に示すように車両加速度が低下し始める。
 時刻T3の時点で、上記のように掘削作業予測部320による掘削作業予測指令が入力されており、かつ、グラフ740に示すようにリフトシリンダボトム圧増加速度が閾値741を上回り、かつ、グラフ730に示すように車両加速度が閾値731を下回ると、掘削開始判断部310は掘削開始と判断し、制御弁制御部262および掘削判断報知部265に掘削開始判断指令を出力する。こうして掘削開始判断指令が出力されると、制御弁制御部262がリフトシリンダ152のボトム側への油の供給を開始するよう制御弁221を制御するか、掘削判断報知部265がオペレータに対して掘削開始を報知し、これに応じてオペレータが作業機150の上昇操作を行う。これにより、リフトアーム155が上昇する。
 以上説明したように、本実施の形態による制御装置240では、油圧アクチュエータ圧力の増加速度、すなわちリフトシリンダボトム圧増加速度に基づいて、掘削開始の判断を行う。これにより、油圧アクチュエータ圧力をそのまま用いた場合と比べて、遅滞なく掘削開始を判断することができる。さらに、車両加速度が所定の閾値を超えている場合や、作業機150が掘削を行わないと予測された場合には、掘削開始と判断しない。これにより、誤判断を回避して、より正確に掘削開始のタイミングを判断することができる。したがって、適切なタイミングで作業機150の上昇動作を行うことができる。
[動力伝達装置210]
 最後に、動力伝達装置210の具体例について、図9から図12を用いて以下に説明する。
 図9は、動力伝達装置210として、エンジン201の動力を油の流れに変換して車輪1に伝達するトルクコンバータ式の動力伝達機構を採用した場合のホイールローダ100のシステム構成図の一例である。図9に示す例では、ホイールローダ100は、エンジン201の出力軸に連結されたトルクコンバータ211と、トルクコンバータ211から出力された動力を歯車機構で変速する有段変速機212とを備えている。有段変速機212は、プロペラシャフト230を介して各車輪1を回転駆動する。
 図10は、動力伝達装置210として、エンジン201の動力を油圧に変換して車輪1に伝達するHST式の動力伝達機構を採用したホイールローダ100のシステム構成図の一例である。図10に示す例では、ホイールローダ100は、エンジン201の出力軸に連結された油圧ポンプ213と、油圧ポンプ213から吐出される油によって回転駆動される油圧モータ214とを備えている。油圧モータ214は、プロペラシャフト230を介して各車輪1を回転駆動する。
 図11は、動力伝達装置210として、HMT式の動力伝達機構を採用したホイールローダ100のシステム構成図の一例である。図11に示す例では、ホイールローダ100は、上記の油圧ポンプ213および油圧モータ214に加えて、さらに動力伝達機械部215を有している。この例では、油圧ポンプ213で油圧モータ214を介してプロペラシャフト230を駆動することで車輪1を駆動しつつ、エンジン201で動力伝達機械部215を介してプロペラシャフト230を駆動することで車輪1を駆動する。動力伝達機械部215は、エンジン201の出力軸とプロペラシャフト230とを機械的に連結する機械機構であり、たとえば、斜板ピストンや遊星歯車などを用いて構成される。
 図12は、動力伝達装置210として、エンジン201の動力を電気に変換して車輪1に伝達するハイブリッド式の動力伝達機構を採用したホイールローダ100のシステム構成図の一例である。図12に示す例では、ホイールローダ100は、エンジン201に機械的に連結されてエンジン201により駆動される電動発電機(モータ/ジェネレータ)216と、電動発電機216を制御するインバータ218と、ディファレンシャルギアDifおよびギアGを介してプロペラシャフト230に取り付けられ4つの車輪1を駆動する走行電動機217と、走行電動機217を制御するインバータ219と、DCDCコンバータ291を介してインバータ218および219と電気的に接続された蓄電装置290とを備えている。蓄電装置290は、たとえば二次電池やコンデンサにより構成され、インバータ218とインバータ219との間で直流電力の受け渡しを行う。なお、図12のシステム構成図では、いわゆるシリーズ型のハイブリッドシステムの構成例を示したが、パラレル型のハイブリッドシステムも利用可能である。
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。
(1)作業車両であるホイールローダ100は、作業機150と、作業機150を駆動する油圧アクチュエータであるリフトシリンダ152と、リフトシリンダ152に油を供給する油圧ポンプ220と、リフトシリンダ152の圧力を検知する油圧アクチュエータ圧力検知器、すなわちリフトシリンダボトム圧を検知するリフトシリンダボトム圧検知器252と、油圧ポンプ220からリフトシリンダ152に供給される油の量を制御する制御弁221と、前後方向の車両加速度を検知する車両加速度検知器254と、制御装置240とを備える。制御装置240は、リフトシリンダボトム圧検知器252により検知されたリフトシリンダボトム圧と、車両加速度検知器254により検知された車両加速度とに基づいて、作業機150が掘削開始したか否かを判断する。このようにしたので、掘削開始タイミングを素早く正確に判断することができる。
(2)制御装置240は、掘削開始判断部310を備える。掘削開始判断部310は、リフトシリンダボトム圧増加速度演算部421により、リフトシリンダボトム圧から油圧アクチュエータ圧力増加速度、すなわちリフトシリンダボトム圧増加速度を算出する。そして、リフトシリンダボトム圧増加速度判断部420によりリフトシリンダボトム圧増加速度が所定の閾値以上であると判断し、かつ、車両加速度判断部430により車両加速度が所定の閾値以下であると判断した場合に、掘削開始判断指令部440により、作業機150が掘削開始したと判断する。このようにしたので、予期せぬリフトシリンダボトム圧増加速度の変動等による誤判断を回避しつつ、掘削開始の判断を素早く行うことができる。
(3)ホイールローダ100は、車両進行方向が前進または後退のいずれであるかを検知する車両進行方向検知器253をさらに備える。制御装置240は、作業機150の対地角を取得する作業機対地角取得部321と、車両進行方向が前進かつ作業機150の対地角が所定の範囲内である場合に作業機150が掘削を行うと予測する掘削作業予測部320とを有する。掘削開始判断部310は、掘削作業予測部320により作業機150が掘削を行うと予測された場合に、リフトシリンダボトム圧および車両加速度に基づいて作業機150が掘削開始したか否かの判断を行う。このようにしたので、掘削作業時以外に発生し得る誤判断を回避し、より正確に掘削開始の判断を行うことができる。
(4)ホイールローダ100は、制御装置240により作業機150が掘削開始したと判断された場合に、作業機150の上昇操作をオペレータに促す旨を報知する掘削判断報知部265をさらに備える。このようにしたので、掘削開始時に、オペレータに遅滞なく作業機150の上昇操作を行わせることができる。
(5)また、ホイールローダ100は、制御装置240により作業機150が掘削開始したと判断された場合に、制御弁221を制御して油圧ポンプ220からリフトシリンダ152への油の供給を開始させる制御弁制御部262をさらに備える。このようにしたので、掘削開始時に遅滞なく作業機150の上昇動作を行うことができる。
 なお、以上説明した実施の形態では、ホイールローダ100が制御弁制御部262および掘削判断報知部265の両方を備える例を説明したが、いずれか一方のみを備えていてもよい。さらに、制御弁制御部262および掘削判断報知部265の両方とも備えずに、制御装置240から出力された掘削開始判断指令を、ホイールローダ100に設けられた出力端子等を介して外部に出力するようにしてもよい。
 また、以上説明した実施の形態では、図3に示したように、制御装置240が作業機対地角取得部321、掘削作業予測部320および掘削開始判断部310を備える例を説明したが、作業機対地角取得部321および掘削作業予測部320については備えていなくてもよい。この場合、掘削開始判断部310は、掘削作業予測判断部410を備える必要はなく、掘削開始判断指令部440では、リフトシリンダボトム圧増加速度判断部420から出力された真偽値と、車両加速度判断部430から出力された真偽値とに基づいて、掘削開始の判断を行えばよい。すなわち、車両加速度判断部430は、これら2つの真偽値が全て「TRUE」である場合は、掘削開始と判断して、掘削開始判断指令を出力する。一方、2つの真偽値のいずれか一方または両方が「FALSE」である場合は、掘削開始ではないと判断して、掘削開始判断指令を出力しないようにする。このようにしてもよい。
 本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。たとえば本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加または置換することが可能である。本発明の技術的思想の範囲内で考えられるその他の態様も、本発明の範囲内に含まれる。
100・・・ホイールローダ
110・・・車体
150・・・作業機
151・・・バケット
152・・・リフトシリンダ
153・・・バケットシリンダ
154・・・ベルクランク
155・・・リフトアーム
201・・・エンジン
202・・・電子制御ガバナ
210・・・動力伝達装置
220・・・油圧ポンプ
221・・・制御弁
230・・・プロペラシャフト
240・・・制御装置
250・・・バケットシリンダストローク検知器
251・・・リフトアーム角検知器
252・・・リフトシリンダボトム圧検知器
253・・・車両進行方向検知器
254・・・車両加速度検知器
256・・・アクセル操作量検知器
261・・・作業機操作レバー
262・・・制御弁制御部
263・・・高圧選択弁
264・・・アクセルペダル
265・・・掘削判断報知部
310・・・掘削開始判断部
320・・・掘削作業予測部
321・・・作業機対地角取得部
410・・・掘削作業予測判断部
420・・・リフトシリンダボトム圧増加速度判断部
421・・・リフトシリンダボトム圧増加速度演算部
430・・・車両加速度判断部
440・・・掘削開始判断指令部
610・・・車両進行方向判断部
620・・・作業機対地角判断部
630・・・掘削作業予測指令部

Claims (5)

  1.  作業機と、
     前記作業機を駆動する油圧アクチュエータと、
     前記油圧アクチュエータに油を供給する油圧ポンプと、
     前記油圧アクチュエータの圧力を検知する油圧アクチュエータ圧力検知器と、
     前記油圧ポンプから前記油圧アクチュエータに供給される油の量を制御する制御弁と、
     前後方向の車両加速度を検知する車両加速度検知器と、
     前記油圧アクチュエータ圧力検知器により検知された前記油圧アクチュエータの圧力と、前記車両加速度検知器により検知された前記車両加速度とに基づいて、前記作業機が掘削開始したか否かを判断する制御装置と、を備える作業車両。
  2.  請求項1に記載の作業車両において、
     前記制御装置は、入力された前記油圧アクチュエータの圧力から、当該油圧アクチュエータの圧力の単位時間当たりの増加量を算出し、当該増加量が所定の第1閾値以上であり、かつ前記車両加速度が所定の第2閾値以下である場合に、前記作業機が掘削開始したと判断する掘削開始判断部を備える作業車両。
  3.  請求項2に記載の作業車両において、
     車両進行方向が前進または後退のいずれであるかを検知する車両進行方向検知器をさらに備え、
     前記制御装置は、前記作業機の対地角を取得する作業機対地角取得部と、前記車両進行方向が前進かつ前記作業機の対地角が所定の範囲内である場合に前記作業機が掘削を行うと予測する掘削作業予測部と、を有し、
     前記掘削開始判断部は、前記掘削作業予測部により前記作業機が掘削を行うと予測された場合に、前記油圧アクチュエータの圧力および前記車両加速度に基づいて前記作業機が掘削開始したか否かの判断を行う作業車両。
  4.  請求項1に記載の作業車両において、
     前記制御装置により前記作業機が掘削開始したと判断された場合に、前記作業機の上昇操作をオペレータに促す旨を報知する掘削判断報知部をさらに備える作業車両。
  5.  請求項1に記載の作業車両において、
     前記制御装置により前記作業機が掘削開始したと判断された場合に、前記制御弁を制御して前記油圧ポンプから前記油圧アクチュエータへの油の供給を開始させる制御弁制御部をさらに備える作業車両。
PCT/JP2017/032569 2016-09-30 2017-09-08 作業車両 WO2018061717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17855675.9A EP3415693B1 (en) 2016-09-30 2017-09-08 Work vehicle
CN201780016618.9A CN108779622B (zh) 2016-09-30 2017-09-08 作业车辆
US16/085,402 US11035099B2 (en) 2016-09-30 2017-09-08 Work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194662 2016-09-30
JP2016194662A JP6586406B2 (ja) 2016-09-30 2016-09-30 作業車両

Publications (1)

Publication Number Publication Date
WO2018061717A1 true WO2018061717A1 (ja) 2018-04-05

Family

ID=61759525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032569 WO2018061717A1 (ja) 2016-09-30 2017-09-08 作業車両

Country Status (5)

Country Link
US (1) US11035099B2 (ja)
EP (1) EP3415693B1 (ja)
JP (1) JP6586406B2 (ja)
CN (1) CN108779622B (ja)
WO (1) WO2018061717A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194243A (ja) * 2019-05-24 2020-12-03 コニカミノルタ株式会社 作業分析システム、作業分析装置、および作業分析プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851844B2 (en) * 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
JP7450526B2 (ja) 2020-12-17 2024-03-15 日立建機株式会社 作業車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658345A (ja) * 1991-07-08 1994-03-01 Komatsu Ltd 4輪駆動車両のスリップ防止方法
JP2010281326A (ja) * 2003-09-02 2010-12-16 Komatsu Ltd ホイールローダ
US20130345936A1 (en) * 2012-06-22 2013-12-26 Caterpillar Inc. Ride Control System for a Machine
JP2014114778A (ja) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd 作業車両

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879899B2 (en) * 2002-12-12 2005-04-12 Caterpillar Inc Method and system for automatic bucket loading
JP4171467B2 (ja) * 2005-01-20 2008-10-22 株式会社小松製作所 建設機械の制御モード切換装置および建設機械
US8160783B2 (en) * 2008-06-30 2012-04-17 Caterpillar Inc. Digging control system
JP5261419B2 (ja) * 2010-03-05 2013-08-14 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5562893B2 (ja) * 2011-03-31 2014-07-30 住友建機株式会社 ショベル
US8850806B2 (en) * 2011-06-28 2014-10-07 Caterpillar Inc. Hydraulic control system having swing motor energy recovery
EP2857600B1 (en) * 2012-06-04 2020-01-08 Hitachi Construction Machinery Co., Ltd. Work vehicle
JP5996314B2 (ja) * 2012-07-24 2016-09-21 株式会社小松製作所 ホイールローダおよびホイールローダのエンジン制御方法
JP5228132B1 (ja) * 2012-09-12 2013-07-03 株式会社小松製作所 ホイールローダ
CN103628512B (zh) * 2013-11-15 2016-01-27 中外合资沃得重工(中国)有限公司 挖掘机动臂平台回转液压控制方法
JP6324072B2 (ja) * 2014-01-07 2018-05-16 株式会社Kcm ハイブリッド式ホイールローダ
DE112015000030B4 (de) * 2014-06-04 2019-01-10 Komatsu Ltd. Baumaschinensteuersystem, Baumaschine und Baumaschinensteuerverfahren
US9529347B2 (en) * 2014-08-28 2016-12-27 Caterpillar Inc. Operator assistance system for machine
US9805618B2 (en) * 2015-02-06 2017-10-31 Caterpillar Inc. Real time evaluation and coaching system
WO2017047695A1 (ja) * 2015-09-16 2017-03-23 住友重機械工業株式会社 ショベル
GB2543334B (en) * 2015-10-15 2020-03-11 Bamford Excavators Ltd A method for providing an alert
JP6842856B2 (ja) * 2016-07-26 2021-03-17 川崎重工業株式会社 液圧駆動システム
JP6646547B2 (ja) * 2016-08-22 2020-02-14 株式会社神戸製鋼所 エネルギー回生装置、およびこれを備えた作業機械
JP6995467B2 (ja) * 2016-08-26 2022-01-14 株式会社小松製作所 ホイールローダ、およびホイールローダの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658345A (ja) * 1991-07-08 1994-03-01 Komatsu Ltd 4輪駆動車両のスリップ防止方法
JP2010281326A (ja) * 2003-09-02 2010-12-16 Komatsu Ltd ホイールローダ
US20130345936A1 (en) * 2012-06-22 2013-12-26 Caterpillar Inc. Ride Control System for a Machine
JP2014114778A (ja) * 2012-12-11 2014-06-26 Hitachi Constr Mach Co Ltd 作業車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415693A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194243A (ja) * 2019-05-24 2020-12-03 コニカミノルタ株式会社 作業分析システム、作業分析装置、および作業分析プログラム
WO2020241043A1 (ja) * 2019-05-24 2020-12-03 コニカミノルタ株式会社 作業分析システム、作業分析装置、および作業分析プログラム
JP7277256B2 (ja) 2019-05-24 2023-05-18 コニカミノルタ株式会社 作業分析システム、作業分析装置、および作業分析プログラム

Also Published As

Publication number Publication date
US11035099B2 (en) 2021-06-15
JP6586406B2 (ja) 2019-10-02
JP2018053677A (ja) 2018-04-05
CN108779622A (zh) 2018-11-09
CN108779622B (zh) 2021-03-23
EP3415693A1 (en) 2018-12-19
US20190100899A1 (en) 2019-04-04
EP3415693A4 (en) 2019-09-25
EP3415693B1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
JP6242919B2 (ja) 作業車両
JP5092070B1 (ja) ホイールローダ及びホイールローダの制御方法
JP5616579B2 (ja) 作業車両用エンジンのパワー出力の制御方法及び制御装置
JP4493990B2 (ja) 走行式油圧作業機
JP6959899B2 (ja) ホイールローダ
US9014923B2 (en) Position control apparatus and method for working machine of construction machinery
JP2001214466A (ja) トルクの離散値に基づいて土工機械の作業器具を自動制御するシステムと方法。
US11391017B2 (en) Wheel loader
WO2018061717A1 (ja) 作業車両
WO2013145340A1 (ja) ホイールローダ及びホイールローダの制御方法
JP7193288B2 (ja) 作業車両
JP5092069B1 (ja) ホイールローダ及びホイールローダの制御方法
JPWO2020065914A1 (ja) 荷役作業車両
EP3896230A1 (en) Work machine control device, work vehicle, and method for controlling work machine
CN109844229B (zh) 轮式装载机
JP7450526B2 (ja) 作業車両
WO2022158168A1 (ja) 作業車両
JP2011179180A (ja) 作業機を備えた建設車両
JP2010112019A (ja) 作業車両
JPWO2020065915A1 (ja) ホイールローダ
JP2023006408A (ja) 作業機械、及び、作業機械を制御するための方法。
JP2022184017A (ja) 作業機械、及び作業機械を制御するための方法
JP2023124250A (ja) ホイールローダ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017855675

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017855675

Country of ref document: EP

Effective date: 20180913

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE