WO2018061328A1 - 所在人数予測装置、設備管理システム及びプログラム - Google Patents

所在人数予測装置、設備管理システム及びプログラム Download PDF

Info

Publication number
WO2018061328A1
WO2018061328A1 PCT/JP2017/021146 JP2017021146W WO2018061328A1 WO 2018061328 A1 WO2018061328 A1 WO 2018061328A1 JP 2017021146 W JP2017021146 W JP 2017021146W WO 2018061328 A1 WO2018061328 A1 WO 2018061328A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
people
model
prediction
variation model
Prior art date
Application number
PCT/JP2017/021146
Other languages
English (en)
French (fr)
Inventor
智祐 成井
利宏 妻鹿
裕希 川野
浩 田口
亘 辻田
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN201780056629.XA priority Critical patent/CN109791638B/zh
Priority to JP2018541899A priority patent/JP6724149B2/ja
Publication of WO2018061328A1 publication Critical patent/WO2018061328A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate

Definitions

  • the present invention relates to a location prediction device, a facility management system, and a program, and more particularly to updating a variation model that represents a time variation of the location.
  • JP 2008-298353 A Japanese Patent Laid-Open No. 02-297631 Special table 2010-520556 JP 2012-109680 A International Publication No. 2011/024379 JP 2007-141165 A JP 2011-007359 A
  • the present invention when there is a difference of more than a predetermined value between the number of people in the area and the number of people indicated by the variation model used to predict the number of people in the area, the number of people in the other area and the other area It is an object of the present invention to make it possible to suppress unnecessary update of the variation model of the area based on the relationship with the variation model.
  • the device for predicting the number of people includes a number-of-people acquisition means for acquiring the number of people currently located in a predetermined area in a building, a history of the number of people in the area on the prediction day, and a time variation of the number of people in the area.
  • a number of people prediction means for predicting the number of people in the area on the prediction day based on the fluctuation model to be represented, the actual value of the number of people on the prediction date of the area acquired by the number of people acquisition means, and a fluctuation model of the area If there is a difference of more than a predetermined value between the model value indicated by, the update model of the area is updated based on the relationship between the number of people in the other area in the building and the model of the other area.
  • the determination means has a predetermined value or more between the number of people at the time of prediction on the prediction day of the area as the actual value and the number of people at the time of prediction indicated by the variation model of the area as the model value. When a difference occurs, it is determined whether or not it is necessary to update the variation model in the area.
  • the determination means the history of the number of people until the prediction time on the prediction day of the area as the actual value, the change in the number of people until the prediction time indicated by the variation model of the area as the model value, When a difference of a predetermined value or more is generated during the period, it is determined whether or not it is necessary to update the variation model of the area.
  • the determination means includes a difference of a predetermined value or more between the actual value of the number of people on the prediction day of the other area and the model value indicated by the variation model of the other area. When the number of generated areas is less than the predetermined number, it is determined that the update is necessary.
  • the apparatus further includes a selection unit that selects a variation model used by the number-of-location prediction unit and the determination unit based on a history of the number of locations of the area on the prediction day from the variation model candidate group of the area. is there.
  • an external situation information acquisition unit that acquires external situation information related to an external situation of the building is provided, and the determination unit determines whether or not the variation model of the area needs to be updated with reference to the external situation information. It is.
  • the fluctuation model update means updates the fluctuation model of the area with reference to the external situation information.
  • the external status information acquisition means includes information indicating the relationship between the number of people in the area of the other building and the variation model of the area of the other building, transportation operation information, weather information, or an event held outside At least one piece of information is acquired as external situation information.
  • the facility management system includes a location number predicting device according to each of the above inventions, and a facility management device that manages facilities installed in the building based on the number of locations in the area predicted by the location number predicting device. And.
  • the program according to the present invention represents a computer, a location number acquisition means for acquiring the current number of locations in a predetermined area in a building, a history of the number of locations in the area and a time variation of the number of locations in the area on the prediction day.
  • the number-of-location prediction means for predicting the number of people in the area on the prediction day based on the fluctuation model, the actual value of the number of people on the prediction date of the area acquired by the position-number acquisition means, and the fluctuation model of the area If there is more than a certain difference between the model value and the model value, it is necessary to update the variation model of the area based on the relationship between the number of people in the other area in the building and the variation model of the other area.
  • Determination means for determining the change model, and a change model update means for updating the change model of the area when the determination means determines that the update is necessary. It is intended for causing ability.
  • the present invention when a predetermined difference or more occurs between the number of people in an area and the number of people indicated by the variation model of the area, the number of people in another area and the variation model of the other area Based on this relationship, it is possible to suppress unnecessary update of the variation model of the area.
  • the prediction accuracy of the number of people can be improved by recreating the variation model with reference to external situation information.
  • FIG. 2 is a hardware configuration diagram of a computer forming the occupancy number prediction device in Embodiment 1.
  • FIG. 1 is a block configuration diagram of a occupancy number prediction device in Embodiment 1.
  • FIG. 5 is a flowchart showing a occupancy number prediction process in the first embodiment.
  • FIG. 6 is a diagram used for explaining a method for determining whether or not a variation model needs to be recreated in the first embodiment.
  • It is a block block diagram of the occupancy prediction apparatus in Embodiment 2.
  • FIG. 10 is a flowchart showing a occupancy number prediction process in the second embodiment.
  • FIG. 1 is an overall configuration diagram showing an embodiment of an equipment management system according to the present invention.
  • FIG. 1 shows a plurality of buildings 1, and each building 1 has a network occupancy prediction device 10 and an equipment management device 2, which are one embodiment of the occupancy prediction device according to the present invention. 3 is installed.
  • the facility management device 2 manages the facilities installed in the building based on the number of people in the area predicted by the number of people prediction device 10.
  • FIG. 1 shows the configuration for only one building 1.
  • Each building 1 and the management center 4 are connected by a network 5 such as the Internet. As will be described in detail later, each building 1 holds the fluctuation model information and occupancy information of the building 1, but the management center 4 collects the fluctuation model information and occupancy information of all the buildings at once. Are managed.
  • each floor of the building corresponds to an area in the present invention, and each floor of the building has a room where a tenant occupies, and a person on each floor is in the room. Therefore, in this embodiment, “the number of people in the room” and “the number of people in the room” are synonymous.
  • FIG. 2 is a hardware configuration diagram of a computer forming the occupancy prediction device 10 in the present embodiment.
  • the computer forming the occupancy prediction device 10 can be realized by a general-purpose hardware configuration such as a personal computer (PC). That is, as shown in FIG. 2, the computer connects the CPU 21, ROM 22, RAM 23, hard disk drive (HDD) 24, mouse 25 and keyboard 26 provided as input means, and display 27 provided as a display device. An input / output controller 28 and a network controller 29 provided as communication means are connected to an internal bus 30. Since the facility management apparatus 2 is also realized by a computer, its hardware configuration can be illustrated as in FIG.
  • PC personal computer
  • FIG. 3 is a block configuration diagram of the occupancy prediction device 10 in the present embodiment. Note that components not used in the description of the present embodiment are omitted from FIG.
  • the occupancy number prediction device 10 in the present embodiment includes an occupancy number acquisition unit 11, a re-creation necessity determination unit 12, an external situation information acquisition unit 13, a variation model re-creation unit 14, a occupancy number prediction unit 15, The room number information storage unit 16 and the variation model information storage unit 17 are provided.
  • the occupancy acquisition unit 11 is provided as a occupancy acquisition unit, acquires the current occupancy for each floor in the building 1, and stores it in the occupancy information storage unit 16.
  • the re-creation necessity determination unit 12 is provided as a determination unit, and represents a variation model that represents the actual value of the number of people in the room on the day of prediction obtained by the occupancy number acquisition unit 11 and the time variation of the number of people in the floor. If there is a difference of more than a predetermined value from the model value indicated by, update of the fluctuation model of the floor is based on the relationship between the number of people in the other floor in the building 1 and the fluctuation model of the other floor. Determine if necessary.
  • the external situation information acquisition unit 13 is provided as an external situation information acquisition unit, and acquires external situation information regarding the external situation of the building 1.
  • the variation model re-creation unit 14 is provided as a variation model update unit, and updates the variation model of the floor when the re-creation necessity determination unit 12 determines that the update is necessary.
  • the occupancy prediction unit 15 is provided as a occupancy prediction unit, and is based on a history of the occupancy of each floor on the prediction day and a time variation of the occupancy of the floor on the prediction day. Predict the number of people in the room.
  • the occupancy information stored in the occupancy information storage unit 16 is associated with at least the occupancy of each floor acquired from the occupancy acquisition unit 11, the floor from which the occupancy was acquired, and the acquisition date and time. Formed on each floor.
  • the fluctuation model information storage unit 17 stores information on the fluctuation model set for each floor.
  • the broken line graph in FIG. 5 shows the variation model.
  • the horizontal axis represents time, and the vertical axis represents the number of people in the room.
  • the variation model is set and created every predetermined period, for example, in units of one day (one business day).
  • the shape of the graph of the variation model varies depending on the number of tenants on each floor and the work style. Depending on the tenant working in Building 1, the fluctuation model for one business day typically increases the number of people in the morning working hours and the number of people in the evening working hours. Is greatly reduced. Since many people move outside the building 1 for lunch at lunchtime, the number of people in the room decreases after the lunchtime starts and increases before the lunchtime ends as shown in FIG. It is created in a shape that represents this.
  • the constituent elements 11 to 15 in the occupancy number prediction device 10 are realized by a cooperative operation of a computer that forms the occupancy number prediction device 10 and a program that is operated by the CPU 21 mounted on the computer.
  • Each of the storage units 16 to 17 is realized by the HDD 24 mounted in the occupancy prediction device 10.
  • the RAM 23 or an external storage means may be used via a network.
  • the program used in this embodiment can be provided not only by communication means but also by storing it in a computer-readable recording medium such as a CD-ROM or USB memory.
  • the program provided from the communication means or the recording medium is installed in the computer, and various processes are realized by the CPU of the computer sequentially executing the program.
  • the occupancy prediction process in this embodiment will be described with reference to the flowchart shown in FIG.
  • the occupancy prediction process in the present embodiment is started periodically, for example, every predetermined time (every hour), and it is determined whether or not it is necessary to recreate the variation model each time, and it is determined that recreation is necessary. Recreate the variation model only when.
  • description will be given focusing on one floor (sixth floor in FIG. 5).
  • the occupancy acquisition unit 11 acquires the current occupancy, the acquired date and time, the acquired floor, and the occupancy of the floor are written and stored in the occupancy information storage unit 16 (step 101).
  • the number of people in the room may be estimated by calculating from the number of passengers in the elevator, for example.
  • the number of people in the room may be obtained using a conventional method.
  • the occupancy number acquired by the occupancy number acquisition unit 11 may be an estimated value based on the number of passengers in the elevator, but is also used as an actual value in the present embodiment.
  • the re-creation necessity determination unit 12 reads out the occupancy number at the prediction time on the prediction day from the occupancy number information storage unit 16 and compares the occupancy number with the prediction time point indicated by the variation model. It is determined whether or not there is a difference greater than a predetermined difference between the number of people in the room, that is, a difference that is determined to require updating of the variation model, and if there is no difference (N in step 102), The occupancy prediction unit 15 predicts the occupancy on the day of prediction based on the variation model in the same manner as before (step 106).
  • the re-creation necessity determination unit 12 determines whether the cause of the difference is a factor depending only on the floor or an external factor common to other floors. An example of this determination will be described with reference to FIG.
  • FIG. 5 shows the relationship between the history (actual value) of the number of people in the predicted day on the 5th floor, 6th floor and 7th floor of the building and the fluctuation model of the floor.
  • (b) show examples of different patterns.
  • the 6th floor is a floor to be processed, and the 6th floor has a difference that requires recreation of the variation model between the number of people in the room on the predicted day and the variation model.
  • information on two floors other than the sixth floor, namely the fifth and seventh floors, is acquired and described.
  • the other floors to be acquired may be more or one.
  • the recreation necessity determination unit 12 determines that the other floor (in this example, the 5th floor and the 7th floor).
  • the number of people in the room (actual value) and the fluctuation model are acquired on the day of the prediction.
  • the sixth floor that requires the recreation of the fluctuation model as described above.
  • the variation model is reproduced.
  • the relationship between the actual value and the model value on the other floors (in this example, the fifth floor and the seventh floor) is referred to without immediately starting the creation. If the re-creation necessity determination unit 12 determines that the cause of the difference depends on the sixth floor (N in step 104), the fluctuation model re-creation unit 14 at this time Is re-created and updated by being overwritten in the variation model information storage unit 17 (step 105).
  • the re-creation necessity determination unit 12 determines that the re-creation of the variation model is unnecessary. In other words, it is judged that it is necessary to recreate the variation model on multiple floors of the building, but the same tendency appears in the occurrence of differences on multiple floors, so it is ultimately unnecessary to recreate the variation model Judge. Then, the occupancy prediction unit 15 predicts the occupancy on the day of prediction based on the existing variation model (step 106).
  • the occupancy number prediction unit 15 reports the latest actual value by transmitting the occupancy number information to the management center 4 (step 107).
  • the variation model is recreated, the variation model is transmitted together.
  • the variation model is not recreated because it is a cause common to the entire building (traffic obstacles, etc.) .
  • the external situation information acquisition unit 13 is provided to acquire transportation operation information, weather information, and the like from the outside.
  • the occupancy prediction unit 15 analyzes the acquired external situation information, identifies the cause of the difference, and adjusts the existing variation model for adjustment.
  • the expansion / contraction is to increase or decrease the number of people in the room by expanding or reducing the graph shape of the variation model. That is, the vertical adjustment is performed. Shifting shifts the variation model in the time axis direction. That is, the horizontal adjustment is performed.
  • the re-creation necessity determination unit 12 determines the number of people in the other floors at the time of prediction on the prediction day of the other floors and the room presence at the prediction time indicated by the variation model of the other areas. If the number of floors where the difference between the number of persons is greater than or equal to a predetermined number is less than the predetermined number, it may be determined that the update is necessary.
  • the occupancy prediction unit 15 Information on other areas from the management center 4, that is, fluctuation model information and occupancy information on each floor in another building 1 is acquired as external situation information, and it is necessary to recreate the fluctuation model between the actual value and the fluctuation model Analyzes whether there is a difference between If there is no difference that requires re-creation of the variation model, it is determined that the cause of the difference depends on the floor. On the other hand, if the above difference occurs on other floors of the other building 1, it is determined that the cause of the difference is outside.
  • the variation model needs to be recreated by considering the information in the other building 1.
  • the external status information For example, an employee who commute by train in a building 1 is likely to use the same station on the same railway line as an employee who commutes by train in a neighboring building 1, so if the train is delayed, it will be affected the same. It is easy.
  • the information on the other building 1 is acquired as the external situation information, but instead of or in addition to the information on the other building 1, transportation operation information, weather information, or the outside is held. At least one of the event information may be acquired as external situation information.
  • the external status information is not limited to the above example, and the external status information to be referred to may be appropriately selected according to the installation location of the building 1.
  • the prediction accuracy of the occupancy obtained based on the re-created variation model is improved. You may make it improve more.
  • the number of people at the time of prediction on the day of prediction as the actual value of the number of people on the day of prediction on each floor, and the number of people at the time of prediction as the model value indicated by the fluctuation model of the floor, respectively, This is used to determine whether or not it is necessary to update the fluctuation model of the floor.
  • the present invention is not limited to this.
  • the occupancy history up to the prediction time on the prediction day is used as the actual value of the occupancy on the prediction day of each floor, and the occupancy until the prediction time is used as the model value indicated by the fluctuation model on the floor. You may make it determine the necessity of the update of the fluctuation
  • the correlation coefficient (similarity) of the number of people at each time point for example, every 5 minutes, from the start point of the fluctuation model setting period (one day or one business day) on the prediction day to the prediction time point is obtained. Is lower than a predetermined threshold, it is determined that the variation model needs to be updated.
  • Embodiment 2 a case will be described in which a variation model close to the variation in the number of people on the day of the prediction is selected and used from the variation model candidate group for each floor.
  • the shape of the graph of the variation model on each floor varies depending on the working style, etc., but there may be a plurality of working style patterns on the same floor depending on the day of the week. For example, there may be a case where a fixed leaving day is set on a specific day of the week, or a case where a lunch time is set differently depending on the day. In such a case, prepare multiple variation model candidates for each floor in consideration of the pattern of work style, and select a variation model that is close to the change in the number of people in the room on the day of the prediction from those candidate groups. The selection accuracy can be improved by selecting and using.
  • the occupancy prediction device 10 prepares a plurality of variation models for each floor as a candidate group, and selects a variation model close to the variation of the occupancy on the day of prediction from the variation model candidate group. It was configured to be used.
  • the variation model candidate group on each floor is stored in the variation model information storage unit 17.
  • FIG. 6 is a block configuration diagram of the occupancy prediction device 10 in the present embodiment.
  • the occupancy prediction device 10 shown in FIG. 6 has a configuration in which a variation model selection unit 18 is added to the occupancy prediction device 10 in Embodiment 1 of FIG.
  • the variation model selection unit 18 is provided as a selection unit, and selects a variation model used for prediction from the variation model candidate group on the floor.
  • the occupancy acquisition unit 11 writes and stores the current occupancy in the occupancy information storage unit 16 (step 101), but the variation model selection unit 18 stores the history of the occupancy on the predicted day.
  • a variation model used for prediction is selected from the variation model candidate group on the floor based on the history of the number of people in the room read out from the information storage unit 16 (step S201).
  • the fluctuation model selection unit 18 selects each time point from the start point of the fluctuation model setting period (one day or one business day) on the prediction day to the prediction time point between the history of the number of people in the room and each fluctuation model candidate on the floor. For example, the correlation coefficient (similarity) of the number of people in the room every 5 minutes is obtained, and the candidate having the highest correlation coefficient is selected as a variation model used for prediction.
  • the index used for selecting the variation model is not limited to the correlation coefficient, and other indices such as a distance between data (dissimilarity) may be used.
  • the re-creation necessity determination unit 12 reads the occupancy history on the prediction day from the occupancy information storage unit 16, the occupancy history, and the variation model selected by the variation model selection unit 18. Are compared, and it is determined whether or not there is a difference for which it is determined that the variation model needs to be updated (step 102). Since the subsequent processing is the same as in the first embodiment, the description thereof is omitted. .
  • the fluctuation model re-creation part 14 when the fluctuation model re-creation part 14 re-creates the fluctuation model of the said floor in step 105, the fluctuation model re-creation part 14 makes the fluctuation model selection part 18 in step 201 out of the fluctuation model candidates of the said floor. Only the selected candidate may be recreated, or a candidate other than the candidate may be recreated. Moreover, you may make it recreate in the form which adds the variation model candidate applicable to the prediction day, without changing each existing candidate including the said candidate. Then, the occupancy prediction unit 15 predicts the occupancy number on the prediction day based on the variation model selected by the variation model selection unit 18 in step 201 (step 106).
  • the same effect as in the first embodiment can be obtained.
  • a variation model that is close to the fluctuation in the number of people on the day of the forecast is selected from the variation model candidate group for each floor and used for prediction, the pattern of fluctuation in the number of people in the room varies depending on the day of the week, etc.
  • the prediction accuracy of the number of people in the room can be improved.
  • unnecessary update of the variation model can be suppressed.
  • variation model selection unit 18 may select two or more candidates from the variation model candidate group on the floor. For example, when the correlation coefficient is used as the selection index as described above, all candidates having a correlation coefficient equal to or greater than a predetermined value are selected. Then, the re-creation necessity determination unit 12 obtains a difference between the number of people in the room at the time of prediction and the number of people in the room at the time of prediction indicated by each selected variation model, and changes based on the average value of these differences. Determine whether the model needs to be updated. The occupancy prediction unit 15 sets the average of the predicted values when calculated based on each selected variation model as the final predicted value. The method of calculating the final difference and the predicted value is not limited to a simple average, and may be calculated by other methods such as a weighted average according to the correlation coefficient of each selected variation model.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

エリア内の所在人数と当該エリアの所在人数の予測に用いる変動モデルが示す所在人数との間に当該変動モデルの更新が必要と判断される差異が生じた場合に、他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの不要な更新を抑制可能とする。 各階の在室人数(実績値)と当該階の在室人数の予測に用いる変動モデルが示す在室人数との間に当該変動モデルの更新が必要と判断される差異が生じた場合に、他の階の在室人数と当該他の階の変動モデルとの関係に基づいて当該階の変動モデルの更新の要否を判定する再作成要否判定部12と、再作成要のときのみ変動モデルの再作成を行う変動モデル再作成部14と、変動モデルに基づき各階の在室人数を予測する在室人数予測部15と、を有する。

Description

所在人数予測装置、設備管理システム及びプログラム
 本発明は、所在人数予測装置、設備管理システム及びプログラム、特に所在人数の時間変動を表す変動モデルの更新に関する。
 ビル等の建物の設備を運用管理する上で各階の所定時間後、例えば1時間後の各階の在室人数を予測したい場合がある。従来では、エレベーターの乗降者数に基づき求められた在室人数からモデルを作成し、そのモデルに従って在室人数を予測する技術が提案されている(例えば、特許文献1)。
 ただ、実際には、何らかの原因によりモデル通りの在室人数とはならず誤差が生じる場合がある。この場合、所定時間後の各階の在室人数を精度良く予測するために予測当日の在室人数に基づきモデルをその都度再作成していた。
特開2008-298353号公報 特開平02-297631号公報 特表2010-520556号公報 特開2012-109680号公報 国際公開第2011/024379号 特開2007-141165号公報 特開2011-007359号公報
 しかしながら、従来においては、ある階のモデルの再作成の要否を判断する際、当該階に関する情報のみを参照し、他の階の情報を参照していなかった。従って、例えば交通障害の発生が原因で出勤時間に遅れが生じていた場合、その階に限らず、建物全体において、つまり他の階においても同様に出勤時間に遅れが生じていると推測できる。この例のように、当該階に限定された原因ではなく他の階にも共通した事象の発生が原因で出勤時間に遅れが生じている場合、モデルを再作成する必要はないようにも考えられる。仮に再作成するにしても交通障害の状況を考慮するのが望ましいが、従来においては、実際の在室人数とモデルとの差異の発生の原因について何ら考慮せずにモデルを再作成していた。
 本発明は、エリア内の所在人数と当該エリアの所在人数の予測に用いる変動モデルが示す所在人数との間に所定以上の差異が生じた場合に、他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの不要な更新を抑制可能とすることを目的とする。
 本発明に係る所在人数予測装置は、建物内の所定のエリアの現時点における所在人数を取得する所在人数取得手段と、予測当日における前記エリアの所在人数の履歴及び前記エリアの所在人数の時間変動を表す変動モデルに基づいて予測当日の前記エリアの所在人数を予測する所在人数予測手段と、前記所在人数取得手段により取得された前記エリアの予測当日における所在人数の実績値と、当該エリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じた場合、前記建物内の他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの更新の要否を判定する判定手段と、前記判定手段により更新要と判定された場合に前記エリアの変動モデルを更新する変動モデル更新手段と、を有するものである。
 また、前記判定手段は、前記実績値としての前記エリアの予測当日における予測時点の所在人数と、前記モデル値としての当該エリアの変動モデルが示す予測時点の所在人数と、の間に所定以上の差異が生じた場合に当該エリアの変動モデルの更新の要否を判定するものである。
 また、前記判定手段は、前記実績値としての前記エリアの予測当日における予測時点までの所在人数の履歴と、前記モデル値としての当該エリアの変動モデルが示す予測時点までの所在人数の変動と、の間に所定以上の差異が生じた場合に当該エリアの変動モデルの更新の要否を判定するものである。
 また、前記判定手段は、前記他のエリアのうち、当該他のエリアの予測当日における所在人数の実績値と、当該他のエリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じているエリアが所定数未満の場合、更新要と判定するものである。
 また、前記エリアの変動モデル候補群の中から、予測当日における当該エリアの所在人数の履歴に基づいて、前記所在人数予測手段及び前記判定手段が用いる変動モデルを選択する選択手段をさらに有するものである。
 また、前記建物の外部の状況に関する外部状況情報を取得する外部状況情報取得手段を有し、前記判定手段は、外部状況情報を参照して前記エリアの変動モデルの更新の要否を判定するものである。
 また、前記建物の外部の状況に関する外部状況情報を取得する外部状況情報取得手段を有し、前記変動モデル更新手段は、外部状況情報を参照して前記エリアの変動モデルを更新するものである。
 また、前記外部状況情報取得手段は、他の建物のエリアの所在人数と当該他の建物の当該エリアの変動モデルとの関係を示す情報、交通機関運行情報、天気情報又は外部で開催されるイベント情報の少なくとも1つを外部状況情報として取得するものである。
 本発明に係る設備管理システムは、上記各発明における所在人数予測装置と、前記所在人数予測装置により予測された前記エリアの所在人数に基づき前記建物内に設置された設備の管理を行う設備管理装置と、を有するものである。
 本発明に係るプログラムは、コンピュータを、建物内の所定のエリアの現時点における所在人数を取得する所在人数取得手段、予測当日における前記エリアの所在人数の履歴及び前記エリアの所在人数の時間変動を表す変動モデルに基づいて予測当日の前記エリアの所在人数を予測する所在人数予測手段、前記所在人数取得手段により取得された前記エリアの予測当日における所在人数の実績値と、当該エリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じた場合、前記建物内の他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの更新の要否を判定する判定手段、前記判定手段により更新要と判定された場合に前記エリアの変動モデルを更新する変動モデル更新手段、として機能させるためのものである。
 本発明によれば、エリア内の所在人数と当該エリアの変動モデルが示す所在人数との間に所定以上の差異が生じた場合に、他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの不要な更新を抑制することができる。
 また、外部状況情報を参照することによって変動モデルを再作成しない場合でも予測誤差を低く抑えることが可能になる。
 また、変動モデルを再作成する場合でも、外部状況情報を参照して変動モデルを再作成することによって所在人数の予測精度を向上させることができる。
本発明に係る設備管理システムの一実施の形態を示した全体構成図である。 実施の形態1における在室人数予測装置を形成するコンピュータのハードウェア構成図である。 実施の形態1における在室人数予測装置のブロック構成図である。 実施の形態1における在室人数予測処理を示したフローチャートである。 実施の形態1において変動モデルの再作成の要否の判定方法について説明するために用いる図である。 実施の形態2における在室人数予測装置のブロック構成図である。 実施の形態2における在室人数予測処理を示したフローチャートである。
 以下、図面に基づいて、本発明の好適な実施の形態について説明する。
 図1は、本発明に係る設備管理システムの一実施の形態を示した全体構成図である。図1には、複数のビル1が示されており、各ビル1には、本発明に係る所在人数予測装置の一実施の形態である在室人数予測装置10と設備管理装置2とがネットワーク3に接続された構成が設置される。設備管理装置2は、在室人数予測装置10により予測されたエリアの在室人数に基づき建物内に設置された設備の管理を行う。なお、各ビル1とも同様な構成を設けておけばよいので、図1では1つのビル1のみに構成を図示した。各ビル1と管理センタ4とはインターネット等のネットワーク5で接続される。詳細は後述するが、各ビル1は、当該ビル1の変動モデル情報及び在室人数情報を保持しているが、管理センタ4は、全てのビルの変動モデル情報及び在室人数情報を一括して保持管理している。
 本実施の形態では、建物として複数階建てのテナントビルを想定して説明する。また、ビルの各階は、本発明におけるエリアに相当し、ビルの各階にはテナントが入居する部屋があって、各階にいる者は部屋に在室しているものとする。従って、本実施の形態において「所在人数」と「在室人数」とは同義である。
 図2は、本実施の形態における在室人数予測装置10を形成するコンピュータのハードウェア構成図である。本実施の形態において在室人数予測装置10を形成するコンピュータは、パーソナルコンピュータ(PC)等従前から存在する汎用的なハードウェア構成で実現できる。すなわち、コンピュータは、図2に示したようにCPU21、ROM22、RAM23、ハードディスクドライブ(HDD)24、入力手段として設けられたマウス25とキーボード26、及び表示装置として設けられたディスプレイ27をそれぞれ接続する入出力コントローラ28、通信手段として設けられたネットワークコントローラ29を内部バス30に接続して構成される。設備管理装置2も同様にコンピュータで実現することから、そのハードウェア構成は図2と同様に図示できる。
 図3は、本実施の形態における在室人数予測装置10のブロック構成図である。なお、本実施の形態の説明に用いない構成要素については図3から省略している。本実施の形態における在室人数予測装置10は、在室人数取得部11、再作成要否判定部12、外部状況情報取得部13、変動モデル再作成部14、在室人数予測部15、在室人数情報記憶部16及び変動モデル情報記憶部17を有している。在室人数取得部11は、所在人数取得手段として設けられ、ビル1内の階毎に、現時点における在室人数を取得し、在室人数情報記憶部16に保存する。再作成要否判定部12は、判定手段として設けられ、在室人数取得部11により取得された各階の予測当日における在室人数の実績値と当該階の在室人数の時間変動を表す変動モデルが示すモデル値との間に所定以上の差異が生じた場合、ビル1内の他の階の在室人数と当該他の階の変動モデルとの関係に基づいて当該階の変動モデルの更新の要否を判定する。外部状況情報取得部13は、外部状況情報取得手段として設けられ、ビル1の外部の状況に関する外部状況情報を取得する。変動モデル再作成部14は、変動モデル更新手段として設けられ、再作成要否判定部12により更新要と判定された場合に当該階の変動モデルを更新する。在室人数予測部15は、所在人数予測手段として設けられ、予測当日における各階の在室人数の履歴及び当該階の在室人数の時間変動を表す変動モデルに基づいて予測当日の当該階の在室人数を予測する。
 在室人数情報記憶部16に蓄積される在室人数情報は、在室人数取得部11より取得された各階の在室人数、在室人数が取得された階、取得日時が少なくとも対応付けして階毎に形成される。
 変動モデル情報記憶部17には、階毎に設定される変動モデルに関する情報が記憶される。図5において破線のグラフが変動モデルを示している。横軸は時間で、縦軸は在室人数を示す。変動モデルは、所定期間毎、例えば1日(1営業日)単位で設定され、作成される。変動モデルのグラフの形状は、各階のテナントの人数や勤務形態等によって異なってくる。ビル1に入居しているテナントの勤務形態に依存するが、1営業日における変動モデルは、典型的には午前中の出勤時間に在室人数が大きく増加し、夕方の退勤時間に在室人数が大きく減少する。そして、ランチタイムでは多くの人がビル1の外に移動して昼食を取るため、図5に示したように在室人数はランチタイム開始時点で減少した後、そしてランチタイム終了前に増加することを表す形状で作成される。
 在室人数予測装置10における各構成要素11~15は、在室人数予測装置10を形成するコンピュータと、コンピュータに搭載されたCPU21で動作するプログラムとの協調動作により実現される。また、各記憶部16~17は、在室人数予測装置10に搭載されたHDD24にて実現される。あるいは、RAM23又は外部にある記憶手段をネットワーク経由で利用してもよい。
 また、本実施の形態で用いるプログラムは、通信手段により提供することはもちろん、CD-ROMやUSBメモリ等のコンピュータ読み取り可能な記録媒体に格納して提供することも可能である。通信手段や記録媒体から提供されたプログラムはコンピュータにインストールされ、コンピュータのCPUがプログラムを順次実行することで各種処理が実現される。
 次に、本実施の形態における在室人数予測処理について図4に示したフローチャートを用いて説明する。本実施の形態における在室人数予測処理は、定周期的、例えば所定時間毎(1時間毎)に起動され、その都度変動モデルの再作成の要否が判定され、再作成要と判定されたときのみ変動モデルを再作成する。なお、各階とも同じ処理を実行すればよいので、ここでは1つの階(図5では6階)に着目して説明する。
 在室人数取得部11は、現時点における在室人数を取得すると、取得した日時、取得した階及び当該階の在室人数を組にして在室人数情報記憶部16に書き込み保存する(ステップ101)。在室人数は、例えばエレベーターの乗降者人数から算出して推定するようにしてもよい。在室人数は、従前からある手法を用いて求めればよい。在室人数取得部11が取得する在室人数は、エレベーターの乗降者人数に基づく推定値であるかもしれないが、本実施の形態では実績値としても用いる。
 続いて、再作成要否判定部12は、予測当日における予測時点の在室人数を在室人数情報記憶部16から読み出し、その在室人数と変動モデルが示す予測時点の在室人数を比較し、その在室人数の間に所定以上の差異、すなわち当該変動モデルの更新が必要と判断される差異が生じているかどうかを判定する、そして、差異が生じていない場合(ステップ102でN)、在室人数予測部15は、従前と同様に変動モデルに基づいて予測当日の在室人数を予測する(ステップ106)。
 一方、在室人数(実績値)と変動モデルが示す予測時点の在室人数との間に上記差異があると判定した場合(ステップ102でY)、再作成要否判定部12は、他の階の予測時点の在室人数(実績値)と当該他の階の変動モデルが示す予測時点の在室人数との間の差異を取得する(ステップ103)。そして、再作成要否判定部12は、上記差異の発生原因は、当該階のみに依存する要因なのか、それとも他の階にも共通する外部要因によるものかを判断する。この判断の一例について図5を用いて説明する。
 図5には、建物の階のうち5階、6階及び7階の各階における予測当日の在室人数の履歴(実績値)と当該階の変動モデルとの関係が示されており、(a)と(b)とで異なるパターンの例を示している。ここでは、6階を処理対象の階とし、6階では、予測当日の在室人数と変動モデルとの間に変動モデルの再作成を必要とする差異が生じているものとする。なお、本実施の形態では、6階以外の5,7階の2つの階の情報を取得して説明するが、その取得する他の階としてはそれ以上でもよいし、1つでもよい。
 図5(a)によると、6階には変動モデルの再作成を必要とする差異が生じているので、再作成要否判定部12は、他の階(この例では5階と7階)の予測当日の在室人数(実績値)と変動モデルとを取得する。ここで、予測時点の在室人数と変動モデルが示す在室人数との関係に着目すると、6階では、上記のように変動モデルの再作成を必要とする差異が生じているものの、5,7階ではそのような差異が生じていない。この場合、差異が生じた原因は6階に依存していると判断する。
 一方、図5(b)によると、他の階でも6階と同様に変動モデルの再作成を必要とする差異が生じている。つまり、差異が生じた原因は6階に依存した要因ではなく6階以外にあると判断する。
 以上説明したように、本実施の形態においては、予測当日における予測時点の在室人数と変動モデルが示す予測時点の在室人数との間に所定以上の差異があったとしても変動モデルの再作成を即座に開始せずに他の階(この例では、5階と7階)における実績値とモデル値との関係を参照するようにした。そして、再作成要否判定部12が差異の発生の原因は6階に依存していると判断した場合(ステップ104でN)、変動モデル再作成部14は、この時点で6階の変動モデルを再作成し、変動モデル情報記憶部17に上書保存することで更新する(ステップ105)。
 一方、差異の発生の原因は6階以外の外部にあると判断した場合(ステップ104でY)、再作成要否判定部12は、変動モデルの再作成は不要と判断する。つまり、建物の複数の階に変動モデルの再作成が必要と判断されることになるが、複数の階において差異の発生に同様の傾向が現れているので最終的に変動モデルの再作成は不要と判断する。そして、在室人数予測部15は、既存の変動モデルに基づいて予測当日の在室人数を予測する(ステップ106)。
 以上のように、予測当日の在室人数を予測すると、在室人数予測部15は、在室人数情報を管理センタ4へ送信することで最新の実績値を報告する(ステップ107)。また、変動モデルが再作成された場合には、その変動モデルを合わせて送信する。
 ところで、実績値と変動モデルとの差異に建物内の各階共通の傾向が見られる場合、本実施の形態においては、建物全体に共通した原因(交通障害等)ということで変動モデルを再作成しない。ただ、再作成しないままの変動モデルを用いていたのでは大きい予測誤差が生じてしまう。そこで、本実施の形態においては、外部状況情報取得部13を設けて、外部から交通機関の運行情報や天気情報等を取得するようにした。そして、在室人数予測部15は、その取得された外部状況情報を解析して上記差異の発生原因を特定し、既存の変動モデルを拡縮又はシフトするなどの調整をして対応する。拡縮というのは、変動モデルのグラフ形状を拡張あるいは縮小するなどして在室人数を増減させる。つまり、縦方向の調整を行う。シフトというのは、変動モデルを時間軸方向にずらす。つまり、横方向の調整を行う。
 また、例えば、5,6階では変動モデルの再作成を必要とする差異が生じているものの、7階ではそのような差異が生じていないとする。この場合、5階と6階の2つの階で当該各階に依存する上記差異の発生原因が起きたと考えることができる。あるいは建物の外部で上記差異の発生原因が起きているものの7階ではその影響が出なかった、若しくは影響を受けていても変動モデルの再作成と判断するレベルの差異が生じなかったとも考えられる。また、2階建ての低層ビルにおいて一方のみに上記差異が生じる場合も上記差異の発生原因が当該階にあるのか外部にあるのか特定できない。
 このような場合、再作成要否判定部12は、他の階のうち、当該他の階の予測当日における予測時点の在室人数と、当該他のエリアの変動モデルが示す予測時点の在室人数と、の間に所定以上の差異が生じている階が所定数未満の場合、更新要と判定するようにしてもよい。
 また、上記例のように建物内の他の階の情報(実績値と変動モデルとの差異)だけでは、変動モデルの再作成の要否が判断しづらい場合、在室人数予測部15は、管理センタ4から他のエリアの情報、すなわち他のビル1における各階の変動モデル情報と在室人数情報を外部状況情報として取得し、実績値と変動モデルとの間に変動モデルの再作成を必要とする差異が生じているかどうかを分析する。そして、変動モデルの再作成を必要とする差異が生じていない場合は、上記差異の発生要因は、当該階に依存していると判断する。一方、他のビル1の他の階においても上記差異が生じている場合には、上記差異の発生要因は、外部にあると判断する。このように、他のビル1における情報を考慮することで変動モデルの再作成の要否の判定をより正確に行うことが可能になる。なお、外部状況情報として参照する他のビル1の情報は、同じ外部要因の影響を受けやすい近隣のビル1の情報を参照するのが好適である。例えば、あるビル1の電車通勤する従業員は、近隣のビル1の電車通勤する従業員と同じ鉄道路線上の同じ駅を利用する可能性が高いため、電車が遅延した場合は同じ影響を受けやすいからである。
 本実施の形態では、他のビル1の情報を外部状況情報として取得したが、他のビル1の情報に代えて、あるいはこの情報に加えて交通機関運行情報、天気情報又は外部で開催されるイベント情報の少なくとも1つを外部状況情報として取得してもよい。また、外部状況情報としては、上記例に限るものではなく、ビル1の設置場所に応じて、参照する外部状況情報を適宜選択すればよい。また、変動モデルの再作成の際、交通障害が発生していた日の在室人数情報(実績値)を参照しないことで、再作成された変動モデルに基づき得られる在室人数の予測精度をより向上させるようにしてもよい。
 なお、本実施の形態では、各階の予測当日における在室人数の実績値として予測当日における予測時点の在室人数を、当該階の変動モデルが示すモデル値として予測時点の在室人数を、それぞれ用いて当該階の変動モデルの更新の要否を判定するようにした。しかし、これに限らず、例えば各階の予測当日における在室人数の実績値として予測当日における予測時点までの在室人数の履歴を、当該階の変動モデルが示すモデル値として予測時点までの在室人数の変動を、それぞれ用いて当該階の変動モデルの更新の要否を判定するようにしてもよい。例えば、予測当日における変動モデル設定期間(1日または1営業日)の開始時点から予測時点までの各時点、例えば5分毎の在室人数の相関係数(類似度)を求め、相関係数が所定の閾値より低ければ、変動モデルの更新が必要と判定する。
実施の形態2.
 本実施の形態では、階毎の変動モデル候補群の中から、予測当日の在室人数の変動に近い変動モデルを選択して用いるように構成する場合について示す。
 上記実施の形態1で述べたとおり、各階の変動モデルのグラフの形状は勤務形態等によって異なってくるが、同一階においても曜日等によって勤務形態のパターンが複数存在する場合がある。例えば、特定の曜日に定時退社日が設定されている場合や、日によって昼食時間が異なる時間に設定されている場合等がある。このような場合は、勤務形態のパターンを考慮して階毎に変動モデルの候補を複数用意し、それらの候補群の中から、当該階の予測当日における在室人数の変動に近い変動モデルを選択して用いたほうが予測精度を向上することができる。
 そこで、本実施の形態における在室人数予測装置10は、各階につき複数の変動モデルを候補群として用意し、変動モデル候補群の中から予測当日の在室人数の変動に近い変動モデルを選択して用いるように構成した。各階の変動モデル候補群は、変動モデル情報記憶部17に保存されている。
 図6は、本実施の形態における在室人数予測装置10のブロック構成図である。図6に示した在室人数予測装置10は、図3の実施の形態1における在室人数予測装置10に、変動モデル選択部18を追加した構成を有する。変動モデル選択部18は、選択手段として設けられ、当該階の変動モデル候補群の中から、予測に用いる変動モデルを選択する。
 次に、本実施の形態における在室人数予測処理について図7に示したフローチャートを用いて説明する。なお、図7において、図4に示す処理と同じ処理には同じ符号を付け説明を適宜省略する。
 在室人数取得部11は、現時点における在室人数を在室人数情報記憶部16に書き込み保存するが(ステップ101)、変動モデル選択部18は、予測当日における在室人数の履歴を在室人数情報記憶部16から読み出し、その在室人数の履歴に基づいて、当該階の変動モデル候補群の中から予測に用いる変動モデルを選択する(ステップS201)。変動モデル選択部18は、在室人数の履歴と当該階の各変動モデル候補との間の、予測当日における変動モデル設定期間(1日または1営業日)の開始時点から予測時点までの各時点、例えば5分毎の在室人数の相関係数(類似度)を求め、最も相関係数が高い候補を、予測に用いる変動モデルとして選択する。なお、変動モデルを選択するために用いる指標は相関係数に限定されず、データ間の距離(非類似度)など他の指標を用いてもよい。
 続いて、再作成要否判定部12は、予測当日における在室人数の履歴を在室人数情報記憶部16から読み出し、その在室人数の履歴と、変動モデル選択部18により選択された変動モデルを比較し、当該変動モデルの更新が必要と判断される差異が生じているかどうかを判定することになるが(ステップ102)、これ以降の処理は、実施の形態1と同じなので説明を省略する。
 なお、ステップ105において変動モデル再作成部14が当該階の変動モデルを再作成する場合、変動モデル再作成部14は、当該階の変動モデルの候補のうち、ステップ201で変動モデル選択部18により選択された候補のみを再作成するようにしてもよいし、当該候補以外の候補も含めて再作成するようにしてもよい。また、当該候補も含めて既存の各候補は変更せずに、予測当日に該当する変動モデル候補を追加する形で再作成するようにしてもよい。そして、在室人数予測部15は、ステップ201で変動モデル選択部18により選択された変動モデルに基づいて予測当日の在室人数を予測する(ステップ106)。
 本実施の形態によれば、実施の形態1における効果と同様の効果が得られる。また、階毎の変動モデル候補群の中から、予測当日の在室人数の変動に近い変動モデルを選択して予測に用いるように構成したので、曜日等によって在室人数変動のパターンが異なる場合でも在室人数の予測精度を向上させることができる。さらに、そのような場合でも変動モデルの不要な更新を抑制することができる。
 なお、変動モデル選択部18は、当該階の変動モデル候補群の中から2つ以上の候補を選択するようにしてもよい。例えば、上述のとおり選択の指標に相関係数を用いる場合、相関係数が所定以上の候補をすべて選択するようにする。そして、再作成要否判定部12は、予測時点の在室人数と選択された各変動モデルが示す予測時点の在室人数との間の差異を求め、それらの差異の平均値に基づいて変動モデルの更新の要否を判定する。在室人数予測部15は、選択された各変動モデルに基づいて算出した場合の予測値の平均を最終的な予測値とする。なお、最終的な差異や予測値を算出する方法は単純な平均に限定されず、選択された各変動モデルの相関係数に応じた加重平均とするなど他の方法で算出してもよい。
 1 ビル、2 設備管理装置、3,5 ネットワーク、4 管理センタ、10 在室人数予測装置、11 在室人数取得部、12 再作成要否判定部、13 外部状況情報取得部、14 変動モデル再作成部、15 在室人数予測部、16 在室人数情報記憶部、17 変動モデル情報記憶部、18 変動モデル選択部、21 CPU、22 ROM、23 RAM、24 ハードディスクドライブ(HDD)、25 マウス、26 キーボード、27 ディスプレイ、28 入出力コントローラ、29 ネットワークコントローラ、30 内部バス。

Claims (10)

  1.  建物内の所定のエリアの現時点における所在人数を取得する所在人数取得手段と、
     予測当日における前記エリアの所在人数の履歴及び前記エリアの所在人数の時間変動を表す変動モデルに基づいて予測当日の前記エリアの所在人数を予測する所在人数予測手段と、
     前記所在人数取得手段により取得された前記エリアの予測当日における所在人数の実績値と、当該エリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じた場合、前記建物内の他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの更新の要否を判定する判定手段と、
     前記判定手段により更新要と判定された場合に前記エリアの変動モデルを更新する変動モデル更新手段と、
     を有することを特徴とする所在人数予測装置。
  2.  前記判定手段は、前記実績値としての前記エリアの予測当日における予測時点の所在人数と、前記モデル値としての当該エリアの変動モデルが示す予測時点の所在人数と、の間に所定以上の差異が生じた場合に当該エリアの変動モデルの更新の要否を判定することを特徴とする請求項1に記載の所在人数予測装置。
  3.  前記判定手段は、前記実績値としての前記エリアの予測当日における予測時点までの所在人数の履歴と、前記モデル値としての当該エリアの変動モデルが示す予測時点までの所在人数の変動と、の間に所定以上の差異が生じた場合に当該エリアの変動モデルの更新の要否を判定することを特徴とする請求項1に記載の所在人数予測装置。
  4.  前記判定手段は、前記他のエリアのうち、当該他のエリアの予測当日における所在人数の実績値と、当該他のエリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じているエリアが所定数未満の場合、更新要と判定することを特徴とする請求項1に記載の所在人数予測装置。
  5.  前記エリアの変動モデル候補群の中から、予測当日における当該エリアの所在人数の履歴に基づいて、前記所在人数予測手段及び前記判定手段が用いる変動モデルを選択する選択手段をさらに有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の所在人数予測装置。
  6.  前記建物の外部の状況に関する外部状況情報を取得する外部状況情報取得手段を有し、
     前記判定手段は、外部状況情報を参照して前記エリアの変動モデルの更新の要否を判定することを特徴とする請求項1乃至請求項5のいずれか1項に記載の所在人数予測装置。
  7.  前記建物の外部の状況に関する外部状況情報を取得する外部状況情報取得手段を有し、
     前記変動モデル更新手段は、外部状況情報を参照して前記エリアの変動モデルを更新することを特徴とする請求項1乃至請求項5のいずれか1項に記載の所在人数予測装置。
  8.  前記外部状況情報取得手段は、他の建物のエリアの所在人数と当該他の建物の当該エリアの変動モデルとの関係を示す情報、交通機関運行情報、天気情報又は外部で開催されるイベント情報の少なくとも1つを外部状況情報として取得することを特徴とする請求項6又は7に記載の所在人数予測装置。
  9.  請求項1乃至請求項8のいずれか1項に記載の所在人数予測装置と、
     前記所在人数予測装置により予測された前記エリアの所在人数に基づき前記建物内に設置された設備の管理を行う設備管理装置と、
     を有することを特徴とする設備管理システム。
  10.  コンピュータを、
     建物内の所定のエリアの現時点における所在人数を取得する所在人数取得手段、
     予測当日における前記エリアの所在人数の履歴及び前記エリアの所在人数の時間変動を表す変動モデルに基づいて予測当日の前記エリアの所在人数を予測する所在人数予測手段、
     前記所在人数取得手段により取得された前記エリアの予測当日における所在人数の実績値と、当該エリアの変動モデルが示すモデル値と、の間に所定以上の差異が生じた場合、前記建物内の他のエリアの所在人数と当該他のエリアの変動モデルとの関係に基づいて当該エリアの変動モデルの更新の要否を判定する判定手段、
     前記判定手段により更新要と判定された場合に前記エリアの変動モデルを更新する変動モデル更新手段、
     として機能させるためのプログラム。
PCT/JP2017/021146 2016-09-30 2017-06-07 所在人数予測装置、設備管理システム及びプログラム WO2018061328A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780056629.XA CN109791638B (zh) 2016-09-30 2017-06-07 所在人数预测装置、设备管理系统以及记录介质
JP2018541899A JP6724149B2 (ja) 2016-09-30 2017-06-07 所在人数予測装置、設備管理システム及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192627 2016-09-30
JP2016-192627 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061328A1 true WO2018061328A1 (ja) 2018-04-05

Family

ID=61760460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021146 WO2018061328A1 (ja) 2016-09-30 2017-06-07 所在人数予測装置、設備管理システム及びプログラム

Country Status (3)

Country Link
JP (1) JP6724149B2 (ja)
CN (1) CN109791638B (ja)
WO (1) WO2018061328A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020166530A (ja) * 2019-03-29 2020-10-08 Kddi株式会社 消費電力予測システム、方法およびプログラム
JPWO2023013063A1 (ja) * 2021-08-06 2023-02-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008643B (zh) * 2019-06-20 2024-06-25 三菱电机楼宇解决方案株式会社 所在人数预测装置、设备管理系统以及所在人数预测方法
CN118379032B (zh) * 2024-06-25 2024-10-01 浙江数思信息技术有限公司 一种基于数字孪生的园区智慧管控方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297631A (ja) * 1989-05-11 1990-12-10 Toshiba Corp 推論装置
JPH056500A (ja) * 1990-09-19 1993-01-14 Hitachi Ltd 移動体・施設制御システム
JP2004185412A (ja) * 2002-12-04 2004-07-02 Takenaka Komuten Co Ltd 画像解析を活用した施設運用評価システム
JP2008298353A (ja) * 2007-05-31 2008-12-11 Mitsubishi Electric Building Techno Service Co Ltd 建屋内空調管理システム
JP2014157457A (ja) * 2013-02-15 2014-08-28 Nec Corp 予測装置および予測方法
JP2016074525A (ja) * 2014-10-08 2016-05-12 三菱電機ビルテクノサービス株式会社 所在人数推定装置及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297631A (ja) * 1990-04-16 1991-12-27 Toa Kiko Kk テーパ孔形成用エンボス加工装置
WO2006109423A1 (ja) * 2005-04-01 2006-10-19 Matsushita Electric Industrial Co., Ltd. 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム
CN101729690B (zh) * 2008-10-20 2012-11-28 中兴通讯股份有限公司 一种排班系统和方法
JP5812894B2 (ja) * 2012-02-24 2015-11-17 東芝エレベータ株式会社 エレベータの人数計測装置、および複数のエレベータがそれぞれ人数計測装置を備えるエレベータシステム
CN103974191A (zh) * 2013-01-30 2014-08-06 华为技术有限公司 移动模式预测装置和方法
JP6004084B2 (ja) * 2013-03-29 2016-10-05 富士通株式会社 モデル更新方法、装置、およびプログラム
CN103258232B (zh) * 2013-04-12 2015-10-28 中国民航大学 一种基于双摄像头的公共场所人数估算方法
JP5774072B2 (ja) * 2013-09-30 2015-09-02 東芝エレベータ株式会社 エレベータの群管理システム
JP6097210B2 (ja) * 2013-12-11 2017-03-15 株式会社 日立産業制御ソリューションズ 設備保全支援装置および支援方法
CN103632212B (zh) * 2013-12-11 2017-01-25 北京交通大学 一种时变用户均衡动态网络演化客流预测系统和方法
CN103871082A (zh) * 2014-03-31 2014-06-18 百年金海科技有限公司 一种基于安防视频图像的人流量统计方法
JP2016122373A (ja) * 2014-12-25 2016-07-07 シャープ株式会社 情報処理装置、情報処理システム、端末装置、情報処理方法、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297631A (ja) * 1989-05-11 1990-12-10 Toshiba Corp 推論装置
JPH056500A (ja) * 1990-09-19 1993-01-14 Hitachi Ltd 移動体・施設制御システム
JP2004185412A (ja) * 2002-12-04 2004-07-02 Takenaka Komuten Co Ltd 画像解析を活用した施設運用評価システム
JP2008298353A (ja) * 2007-05-31 2008-12-11 Mitsubishi Electric Building Techno Service Co Ltd 建屋内空調管理システム
JP2014157457A (ja) * 2013-02-15 2014-08-28 Nec Corp 予測装置および予測方法
JP2016074525A (ja) * 2014-10-08 2016-05-12 三菱電機ビルテクノサービス株式会社 所在人数推定装置及びプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020166530A (ja) * 2019-03-29 2020-10-08 Kddi株式会社 消費電力予測システム、方法およびプログラム
JP7002492B2 (ja) 2019-03-29 2022-01-20 Kddi株式会社 消費電力予測システム、方法およびプログラム
JPWO2023013063A1 (ja) * 2021-08-06 2023-02-09
WO2023013063A1 (ja) * 2021-08-06 2023-02-09 三菱電機株式会社 在室モデル選定装置、在室モデル選定方法、及び、在室モデル選定プログラム
GB2628880A (en) * 2021-08-06 2024-10-09 Mitsubishi Electric Corp Occupancy model selection device, occupancy model selection method, and occupancy model selection program

Also Published As

Publication number Publication date
JP6724149B2 (ja) 2020-07-15
CN109791638B (zh) 2023-09-15
JPWO2018061328A1 (ja) 2019-02-14
CN109791638A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2018061328A1 (ja) 所在人数予測装置、設備管理システム及びプログラム
JP6671264B2 (ja) 所在人数予測装置、設備管理システム、所在人数予測方法及びプログラム
WO2016151637A1 (ja) 学習モデル生成システム、方法およびプログラム
US20120059684A1 (en) Spatial-Temporal Optimization of Physical Asset Maintenance
US20220207458A1 (en) Construction project tracking
US20160031083A1 (en) Method and apparatus for industrial robotic energy saving optimization using fly-by
JP5694078B2 (ja) 管理システム及び管理方法
JP6094595B2 (ja) 情報システム構築支援装置、情報システム構築支援方法および情報システム構築支援プログラム
JP7017162B2 (ja) 稼働状況予測システム、稼働状況予測方法および稼働状況予測プログラム
JP6094594B2 (ja) 情報システム構築支援装置、情報システム構築支援方法および情報システム構築支援プログラム
Yoo Repair time model for different building sizes Considering the earthquake hazard
JP2020100488A (ja) エレベーターシステム
JP6697980B2 (ja) 設備点検順位設定装置及び設備点検順位設定方法
WO2020240932A1 (ja) 移動需要推定システム、移動需要推定方法、人流推定システムおよび人流推定方法
JP6204895B2 (ja) 耐用期間推定装置及び方法
CN114008643B (zh) 所在人数预测装置、设备管理系统以及所在人数预测方法
WO2017013740A1 (ja) 規則生成装置、規則生成方法、及びプログラム
JP7422015B2 (ja) ビル情報表示システム及びビル情報表示方法
Krishnan et al. Robust ambulance allocation using risk-based metrics
JP7409831B2 (ja) エレベータの制御装置、エレベータの制御方法、機械学習装置、機械学習方法及びプログラム
Hu et al. A ripple-spreading algorithm to calculate the k best solutions to the project time management problem
JP6824206B2 (ja) 所在人数予測装置及び設備管理システム
WO2023242926A1 (ja) 学習管理装置、学習管理方法、及びプログラム
JP2020087184A (ja) 作業管理システム及び作業管理方法
JP7201050B1 (ja) 出向計画システム、制御方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018541899

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855287

Country of ref document: EP

Kind code of ref document: A1