WO2018056164A1 - 熱延鋼板の冷却装置及び冷却方法 - Google Patents

熱延鋼板の冷却装置及び冷却方法 Download PDF

Info

Publication number
WO2018056164A1
WO2018056164A1 PCT/JP2017/033248 JP2017033248W WO2018056164A1 WO 2018056164 A1 WO2018056164 A1 WO 2018056164A1 JP 2017033248 W JP2017033248 W JP 2017033248W WO 2018056164 A1 WO2018056164 A1 WO 2018056164A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
nozzle
hot
rolled steel
steel sheet
Prior art date
Application number
PCT/JP2017/033248
Other languages
English (en)
French (fr)
Inventor
芹澤 良洋
村井 隆公
芳章 末松
林 聡
智哉 中尾
洋 仁井谷
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/027720 external-priority patent/WO2018055918A1/ja
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP17852941.8A priority Critical patent/EP3498389B1/en
Priority to US16/330,671 priority patent/US11413670B2/en
Priority to JP2018541011A priority patent/JP6816772B2/ja
Priority to BR112019004141A priority patent/BR112019004141A2/pt
Priority to CN201780057160.1A priority patent/CN109715306B/zh
Priority to KR1020197009618A priority patent/KR102244393B1/ko
Publication of WO2018056164A1 publication Critical patent/WO2018056164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • B21B45/0275Cleaning devices
    • B21B45/0278Cleaning devices removing liquids
    • B21B45/0281Cleaning devices removing liquids removing coolants
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases

Definitions

  • the present invention relates to a cooling apparatus and a cooling method for hot-rolled steel sheets that are finish-rolled by a hot finish rolling mill composed of a plurality of stands, and particularly relates to a cooling technique for material control when manufacturing high-functional steel materials.
  • slabs produced by a continuous casting machine are heated in a heating furnace to produce rough rolled steel (coarse bars) using a roughing mill, and then finish rolling is performed using a finishing mill.
  • a steel sheet having a predetermined thickness is used, and the steel sheet is further cooled by a predetermined cooling pattern to obtain a hot-rolled steel sheet.
  • the finish rolling mill a plurality of rolling stands are arranged in series, and the coarsely rolled steel material is finish-rolled by sequentially passing through the plurality of rolling stands.
  • a hot-rolled steel sheet having excellent mechanical properties can be produced by rapidly cooling the steel sheet immediately after finishing rolling, thereby reducing the grain size of the steel sheet crystal grains. That is, for example, finish rolling is finished at or above the Ar 3 transformation point, cooling is started within 0.1 to 0.2 seconds immediately after rolling, and rapid cooling to a temperature below the Ar 3 transformation point is performed, so that Crystal growth can be achieved by suppressing crystal growth of the hot-rolled steel sheet, and material properties such as deep drawability of the final product can be improved. Rapid cooling immediately after finish rolling can be performed by water cooling in which water is sprayed onto the steel sheet immediately after finish rolling.
  • Cooling between rolling stands in conventional finishing mills has been achieved by improving the temperature distribution in the steel sheet due to heating furnaces, non-uniform expansion in the width direction of the rolling rolls, and temperature rise due to increased work heat generation during finish rolling. It was performed for prevention, and it cooled about 20 degreeC with the steel plate temperature at the time of passing between rolling stands. With this level of cooling, the cooling capacity is insufficient to suppress the growth of the crystal grain size. Moreover, in order to start cooling immediately after rolling, it is necessary to install a cooling device at a position as close to the rolling stand as possible.
  • Patent Document 1 a steel plate cooling device provided with a full cone spray nozzle or the like that injects cooling water between the finishing rolling stands is provided, and rapid cooling immediately after rolling is performed with the steel plate cooling device between the preceding finishing rolling stands, Rapid cooling of the temperature range including the Ar 3 transformation point is performed by the steel sheet cooling device between the subsequent finishing rolling stands, and the temperature range passing through the finishing rolling stand sandwiched between the two steel plate cooling devices is defined as the Ar 3 transformation point. It is disclosed that the temperature range is from + 20 ° C. to the Ar 3 transformation point.
  • Patent Document 2 a cooling device is provided between the finishing rolling stands, and the rolling roll of the finishing rolling stand on the downstream side of the cooling device is opened, so that light cooling is not performed after rapid cooling immediately after rolling. Is disclosed.
  • Patent Document 3 discloses a steel plate cooling device disposed on the exit side of a finishing rolling stand.
  • This cooling device includes a cooling box whose inside is a cooling water storage tank, and a spray nozzle for injecting cooling water is disposed in the cooling box.
  • Patent Document 4 a cooling device composed of a plurality of cooling boxes is arranged on the exit side of the finish rolling mill, and when the steel strip traveling on the hot run table is continuously cooled, each cooling box extends over the entire length of the steel strip. It is disclosed that the water density during use is a constant value of 2500 L / min ⁇ m 2 or more, and that the steel strip is cooled using 80% or more of the total number of cooling boxes of the cooling device at the maximum cooling of the steel strip. ing.
  • Patent Document 5 in hot rolling, cooling between the stands of a finish rolling mill is performed, and rolling after cooling is performed at a reduction rate such that the refined crystal grain size is not coarsened again. Describes a draining stand that does not perform substantial rolling.
  • Patent Document 6 as a cooling device for cooling the lower surface of the steel plate during hot rolling, a box header is provided between the lower apron exit side of the lower work roll exit side and the looper roll entrance side, and the upper surface of the box header is provided.
  • a cooling device is disclosed that is equipped with an apron-use nozzle plate in which a large number of cooling water jetting holes are arranged.
  • Patent Document 7 includes a plurality of nozzles for injecting cooling water to the upper surface of the steel sheet and a plurality of nozzles for injecting cooling water to the lower surface of the steel sheet on the lower process side (exit side) of the finishing mill.
  • the maximum collision pressure on the upper surface of the cooling water sprayed from the nozzle on the upper surface side is P C1 (kPa)
  • the minimum collision pressure is P C2 (kPa)
  • the average collision pressure is P S ( kPa)
  • cooling is performed by injecting cooling water onto the upper surface of the steel strip and cooling by injecting cooling water onto the lower surface of the steel strip.
  • a cooling device that includes a lower surface cooling box and injects cooling water from the upper surface cooling box and the lower surface cooling box symmetrically with respect to the steel strip.
  • Patent Document 9 discloses an upper spray bar (a plurality of spray nozzles) that is provided adjacent to a guide on the upper side of the strip on the exit side of the roll stand and sprays cooling water on the upper surface of the strip, and the strip. And a lower spray bar (a plurality of spray nozzles) for spraying cooling water on the lower surface of the strip.
  • the cooling device In order to suppress the coarsening of the crystal grain size, it is desirable to perform strong cooling immediately after rolling as much as possible and from a position as close to the steel plate as possible.
  • the cooling device should not collide with the steel plate after rolling. Must be placed.
  • a guide is usually provided on the exit side of the rolling stand, and when exchanging the rolling roll, it is necessary to retract the guide to a position away from the rolling roll. At this time, when the cooling device is arranged as a separate body in the vicinity of the guide, there is a problem that it takes time to evacuate the cooling device, and the cooling device is arranged away from the rolling mill or the steel plate. There is a problem that it must be done.
  • Patent Documents 1 to 5 describes a specific mounting structure of the cooling device.
  • Patent Document 6 refers to a cooling device only for the lower part of the steel sheet, and the cooling device and the lower apron are separate.
  • the cooling device disclosed in Patent Document 7 the nozzles are arranged along the guides, but the nozzles and the guides are separated from each other.
  • this arrangement since a rolling roll cooling device cannot be installed, there is a concern that the rolling roll is deformed by the heat received from the steel sheet and the shape of the steel sheet is deteriorated.
  • the upper and lower cooling boxes are continuously provided on the guide at a position immediately close to the exit side of the finishing mill.
  • this guide length is more than several times the diameter of the rolling roll (work roll), and the time until the start of cooling becomes longer, and the effect of refining is reduced.
  • This invention is made
  • the present invention is a hot finishing rolling mill comprising a plurality of rolling stands, and injecting cooling water toward one or both of the upper and lower surfaces of the hot-rolled steel sheet immediately after being rolled by the rolling stand.
  • a plurality of nozzles wherein the nozzles are provided in one or both of the guides provided vertically on the exit side of the rolling stand or provided adjacent to the downstream side of the guides.
  • the nozzle injection distance along the injection center axis between the nozzle injection port and the steel plate design position is determined based on the steel plate design position of the hot-rolled steel plate set between the guides of the nozzle in the rolling direction.
  • the cooling device changes depending on the position, and the injection angle of the nozzle at the position where the nozzle injection distance is the longest is the injection angle of the nozzle at the position where the nozzle injection distance is the minimum. Small, in accordance with the nozzle firing distance increases, the injection angle of the nozzle is characterized by comprising the same or smaller.
  • the steel plate design position may be set on a tangent plane (the definition will be described later) at the upper vertex of the lower rolling roll (work roll) of the rolling stand. Or the said steel plate design position may be set to the surface of 1/2 angle of the angle which the said upper and lower guides make.
  • the position where the nozzle injection distance is the smallest may be on the most upstream side of the cooling device, and the position where the nozzle injection distance is the largest may be on the most downstream side of the cooling device.
  • the position where the nozzle injection distance is the largest may be on the most upstream side of the cooling device, and the position where the nozzle injection distance is the smallest may be on the most downstream side of the cooling device.
  • the nozzle may be provided inside the cooling box.
  • the nozzle nozzle of the cooling box is located on the same surface as the surface of the steel plate design position side or on the back side of the surface (center side of the cooling box), and the end opposite to the nozzle outlet is
  • the inner surface of the cooling box may protrude from the inner surface.
  • the injection port of the nozzle may be arranged on the same surface as the surface formed by the guide. Or the injection port of the said nozzle may be arrange
  • the nozzle may be a full cone nozzle, and a collision area in the hot-rolled steel sheet of cooling water sprayed from the nozzle may satisfy the following formula (1).
  • L Nozzle injection distance (m)
  • Nozzle injection angle (degrees) i
  • j Arbitrary rows of the nozzles provided in the rolling direction (i row, j row)
  • the nozzle may be an oblong nozzle, and a collision area in the hot-rolled steel sheet of cooling water sprayed from the nozzle may satisfy the following formula (2).
  • L Nozzle injection distance (m)
  • Nozzle major axis direction injection angle (degrees)
  • Nozzle minor axis direction injection angle (degrees)
  • i, j Arbitrary rows of the nozzles provided in the rolling direction (i row, j row)
  • the water density of the cooling water from the nozzle may satisfy the following formula (3).
  • Wa 0.5 ⁇ Ma / (t ⁇ V) ⁇ 0.08 (3)
  • Wa Water density of cooling water from the nozzle (m 3 / m 2 ⁇ min)
  • Ma Cooling range length in rolling direction in the cooling device (m)
  • t Thickness (mm) of the hot-rolled steel sheet
  • V Plate speed of the hot-rolled steel sheet (m / s)
  • Cooling water is sprayed toward one or both of the upper and lower surfaces of the hot-rolled steel sheet on the downstream side of the measuring device for measuring the hot-rolled steel sheet on the outlet side of the rolling stand on the most downstream side of the hot finish rolling mill.
  • a cooling zone having a plurality of cooling nozzles may be arranged, and the water density of the cooling water from the cooling nozzle may be 2 m 3 / m 2 ⁇ min or more and may satisfy the following formula (4).
  • Wb Water density of cooling water from the cooling nozzle (m 3 / m 2 ⁇ min)
  • Mb cooling range length in the rolling direction in the cooling zone (m)
  • t Thickness (mm) of the hot-rolled steel sheet
  • V Plate speed of the hot-rolled steel sheet (m / s)
  • a draining device for removing the on-plate water leaked from the most downstream rolling stand may be arranged on the outlet side of the rolling stand on the most downstream side of the hot finishing rolling mill.
  • the cooling device is arranged on the outlet side of the rolling stand on the most downstream side of the hot finishing rolling mill, and the draining device for removing the on-plate water leaked from the cooling device is arranged on the downstream side of the cooling device. Also good.
  • the plurality of nozzles are arranged in a width direction to form a row, and a plurality of nozzle groups are arranged in the rolling direction by aligning a predetermined number of the rows in the rolling direction, and the number of the plurality of nozzle groups is a maximum.
  • the number of rows of the nozzles provided in the rolling direction is the same as the number of rows in the rolling direction, and pipes to which cooling water is supplied are connected to the nozzle groups, and three-way valves and flow rate adjusting valves are provided for the pipes. It may be provided.
  • the present invention according to another aspect is a cooling method using the cooling device, on one side or both of the upper and lower surfaces of the hot-rolled steel sheet on the exit side of the rolling stand of the hot finishing mill. Cooling water is jetted from the nozzle.
  • the present invention is a cooling method using the cooling device, on one side or both of the upper and lower surfaces of the hot-rolled steel sheet on the exit side of the rolling stand of the hot finishing mill.
  • injecting cooling water from a nozzle adjusting the number of rolling directions of the nozzle group for injecting cooling water to the hot-rolled steel sheet according to the sheet-feeding speed of the hot-rolled steel sheet, and increasing the sheet-feeding speed
  • the number of nozzle groups for injecting cooling water to the hot-rolled steel sheet is increased from the side closer to the rolling stand to the side in order, and when the plate passing speed is reduced, the side farther from the rolling stand In order, the injection from the nozzles in the nozzle group to the hot-rolled steel sheet is closed, and cooling water is allowed to flow to the drain side.
  • the hot rolled steel sheet immediately after passing through the rolling stand On the other hand, it can cool from a close position. Thereby, the growth of the crystal grain size of the hot-rolled steel sheet after finish rolling can be suppressed and refinement can be achieved, and a high-quality steel sheet can be manufactured at low cost.
  • the nozzle injection angle at the position where the nozzle injection distance is the largest is smaller than the nozzle injection angle at the position where the nozzle injection distance is the smallest, As the nozzle injection distance increases, the nozzle injection angle is the same or decreases, so that the collision surface can be made uniform in the rolling direction, the cooling capacity can be made uniform, and as a result, the hot-rolled steel sheet can be cooled uniformly.
  • the cooling device of the present invention there is no need for trouble in the evacuation work when the rolling roll is replaced.
  • FIG. 1 It is a figure which shows the outline of a structure of the hot rolling equipment provided with the cooling device concerning embodiment of this invention. It is a side view which shows the outline of the structure of the exit side of the finishing rolling stand which provided the cooling device concerning this Embodiment. It is a figure which shows the outline of a structure of the cooling device concerning this Embodiment. It is a figure explaining retention of the water in the cooling box at the time of standby, (a) shows the case where the cooling box is not divided
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of the hot rolling facility 1.
  • the hot rolling facility 1 In the hot rolling facility 1, the heated slab 5 is continuously rolled and the hot rolled steel sheet 10 thinned to a thickness of about 1 to 20 mm is wound up.
  • the hot rolling facility 1 includes a heating furnace 11 that heats the slab 5, a width-direction rolling mill 12 that rolls the slab 5 heated in the heating furnace 11 in the width direction, and rolling in the width direction.
  • a rolling mill 13 that rolls the slab 5 from above and below to form a rough bar 6, a finishing mill 14 that continuously hot-rolls the rough bar 6 to a predetermined thickness, and this finishing mill.
  • said hot rolling equipment 1 is a general equipment structure, Comprising: The hot rolling equipment to which this invention is applied is not restricted to this.
  • the heating furnace 11 is provided with various burners for heating the slab 5.
  • the process which heats the slab 5 carried in from the outside to predetermined temperature is performed.
  • the slab 5 is transferred to the outside of the heating furnace 11, and the process proceeds to a rolling process by the width direction rolling mill 12 and the rough rolling mill 13.
  • the rough rolling mill 13 is provided with a cylindrical rolling roll over a plurality of stands.
  • the rolling roll includes a work roll that directly sandwiches a material to be rolled and a backup roll that suppresses or controls the bending of the work roll.
  • the slab 5 that has been conveyed passes through the gap between these rolling rolls (work rolls), is rolled to a thickness of about 30 to 60 mm, and is then conveyed to the finishing mill 14.
  • the finishing mill 14 has a plurality of, for example, seven rolling stands F1 to F7 each provided with a rolling roll arranged in series.
  • the rolling roll includes a work roll for directly sandwiching the material to be rolled and a backup roll for suppressing or controlling the bending of the work roll. In special cases, an intermediate roll may be sandwiched between the two.
  • the rolling roll mainly refers to a work roll, but it is sometimes used as a generic term including a backup roll.
  • the finish rolling mill 14 the coarse bar 6 after rough rolling is passed through the gap between these rolling rolls (work rolls), and this is gradually rolled to obtain a plate thickness of about 1 to 20 mm (for example, a plate of about several mm). Roll to thickness).
  • the finish-rolled hot-rolled steel sheet 10 is transported by a transport roll (not shown) and sent to the cooling unit 15.
  • a plurality of cooling nozzles that inject cooling water toward the hot-rolled steel sheet 10 are arranged in the cooling unit 15 in the rolling direction above and below the hot-rolled steel sheet 10 to be conveyed.
  • these cooling nozzles for example, slit laminar nozzles, pipe laminar nozzles, and spray nozzles are used.
  • the winding device 16 winds the hot-rolled steel sheet 10 cooled to a predetermined temperature by the cooling unit 15.
  • the hot-rolled steel sheet 10 wound in a coil shape by the winding device 16 is transported outside the hot rolling facility 1.
  • the cooling device 21 which strongly cools the hot-rolled steel plate 10 immediately after finish rolling apart from the cooling unit 15 is provided on the exit side of the rolling stand.
  • the exit side of the rolling stand is a position between the plurality of arranged rolling stands F1 to F7 or downstream of the final rolling stand F7.
  • the hot-rolled steel sheet 10 after being finished and rolled sufficiently The cooling device 21 is provided on the exit side of the subsequent rolling stand close to the final rolling stand F7 of the finish rolling mill 14.
  • the finish rolling mill 14 has seven rolling stands F1 to F7.
  • the cooling devices 21 are arranged at two locations between F5 and F6 and between F6 and F7.
  • the strong cooling is, for example, cooling in which the steel sheet temperature is lowered by 30 ° C. or more by passing through one cooling device 21 at a cooling rate of 50 ° C./s or more.
  • FIG. 2 shows an outline of the configuration of the exit side of the rolling stand provided with the cooling device 21 of the present embodiment.
  • the distance (vertical direction distance) between the upper and lower guides 33 increases from the upstream side to the downstream side in the rolling direction.
  • the reason why the upper and lower guides 33 are arranged in this way is to prevent the hot-rolled steel sheet 10 from colliding with the equipment provided on the upper and lower sides even when the tip of the hot-rolled steel sheet 10 flutters up and down. .
  • the cooling device 21 concerning this Embodiment is provided in the front-end
  • the guide 33 may be referred to as a stripper guide, but is simply referred to as a guide in the present invention.
  • the cooling device 21 includes a cooling box 22 formed of a sealed container, a plurality of nozzles 23 provided in the cooling box 22, and a pipe 24 for supplying cooling water to the cooling box 22. ing.
  • the cooling box 22 is provided so as to be integrated with the tip portion of the upper and lower guides 33 away from the rolling roll (work roll) 31.
  • the cooling box 22 is preferably installed as close as possible to the rolling stand and as close as possible to the hot-rolled steel sheet 10 (steel plate design position) so that the hot-rolled steel sheet 10 is cooled immediately after passing through the rolling stand. As shown in FIG. 2, it is provided immediately after the roll cooling water header 32.
  • the steel plate design position of the hot-rolled steel sheet 10 is a position where the hot-rolled steel sheet 10 is set, which is set when the cooling device 21 is designed. It is determined based on the threading angle at the time. A specific method for determining the steel plate design position will be described later.
  • a plurality of nozzles 23 that inject cooling water toward the hot-rolled steel sheet 10 are provided inside the cooling box 22.
  • a full cone nozzle or an oval blowing nozzle is used, and a plurality of nozzles 23 are provided in the width direction and the rolling direction of the cooling box 22 so that the injection surface thereof is substantially flush with the guide 33. It is done.
  • the injection surface is a surface composed of the injection ports 23a of a plurality of nozzles, and in the case of the cooling box 22 provided at the upper part of the steel plate design position, it is provided at the lower surface and the lower part of the steel plate design position. In the case of the cooling box 22, this is the upper surface.
  • the injection port 23 a of the nozzle 23 is located on the same surface as the surface of the cooling box 22 on the steel plate design position side or on the rear side (center side of the cooling box 22) from the surface. Also good.
  • a nozzle 23 is disposed on the surface of the cooling box 22 on the steel plate design position side. In that case, the injection port 23a of the nozzle 23 does not protrude from the surface on the steel plate design position side, and is located on the same surface as the surface or on the back side of the surface. That is, the injection port 23a of the nozzle 23 is disposed on the same plane as the surface on the steel plate design position side, or is recessed from the surface.
  • the hot-rolled steel sheet 10 has the nozzle 23. Therefore, the nozzle 23 can be prevented from being damaged.
  • the end 23 b of the nozzle 23 opposite to the injection port 23 a protrudes into the inside of the cooling box 22 from the inner surface position inside the cooling box 22. In this case, even when the cooling water is not jetted from the nozzle 23, the nozzle 23 is cooled by the cooling water remaining inside the cooling box 22, and damage to the nozzle 23 can be prevented. In addition, when the cooling water injection from the nozzle 23 is turned ON / OFF, there is water remaining in the cooling box 22, so that the cooling water injection is stopped from the state where the cooling water injection is stopped. Response time can be shortened.
  • the amount of cooling water that falls on the hot-rolled steel sheet 10 after the water supply is stopped to stop the injection of the cooling water from the nozzle 23 can be reduced, that is, the injection of the cooling water is substantially stopped. It is also possible to shorten the response time until it is done.
  • the interior of the cooling box 22 is divided into a plurality of sections 22a in the rolling direction as shown in FIG.
  • Each section 22 a is provided with a pipe 24 to which cooling water is supplied, and a three-way valve 25 and a flow rate adjustment valve 26 are provided for each pipe 24.
  • the three-way valve 25 is provided between the water supply header 27 that supplies the cooling water to the cooling box 22 and the drainage header 28 or the drainage area that discharges the cooling water.
  • the inside of the cooling box 22 is divided so as to become one section 22 a for every two rows of nozzles 23 in the rolling direction, but into one section 22 a for every row of nozzles 23 in the rolling direction.
  • the partition 22a is partitioned for each predetermined number of nozzles 23 and constitutes a nozzle group in the present invention.
  • the inside of the cooling box 22 may not be divided into a plurality of sections 22a but may be a single section 22a.
  • the inside of the pipe 24 is always filled with cooling water. For this reason, when the hot-rolled steel sheet 10 is cooled, the time from when the instruction to open the three-way valve 25 is issued until the cooling water is supplied into the cooling box 22 is short, and the responsiveness is good.
  • the three-way valve 25 for example, an electromagnetic valve is used.
  • the three-way valve 25 is preferably disposed at a height slightly lower than the upper end of the nozzle 23. Although not shown in FIG. 3, this causes the tip of the pipe 24 to be slightly lower than the upper end of the nozzle 23, so that the inside of the pipe 24 is always filled with cooling water.
  • the flow rate of the cooling water can be adjusted for each section 22a, and a wide range of plate passing speeds of the hot-rolled steel sheet 10 can be obtained.
  • the cooling capacity can be controlled in response to various changes. Furthermore, the amount of residual water that can remain in the cooling box 22 during standby increases, and the response speed of the start of cooling water injection can be increased.
  • the distance along the injection center axis (the one-dot chain line in the drawing) from the tip of the nozzle 23 (injection port 23 a) to the steel plate design position of the hot-rolled steel sheet 10 is expressed as nozzle injection. It is defined as a distance L. Since the cooling box 22 is inclined as described above, the nozzle injection distance L is different in the rolling direction of the cooling box 22. That is, as the distance from the rolling stand increases, the nozzle injection distance L increases, the position where the nozzle injection distance L is the shortest is on the most upstream side of the cooling device 21, and the position where the nozzle injection distance L is the largest is the most downstream side of the cooling device 21. It is in.
  • the direction of injection from a position away from the hot-rolled steel sheet 10 increases the spread of the jet collision portion when it hits the hot-rolled steel sheet 10, and injects the same amount of cooling water. In this case, the cooling capacity is lowered. In addition, overlapping of jet impingement portions occurs, resulting in uneven cooling. Therefore, as shown in FIG. 5, the farther from the rolling stand, that is, the longer the nozzle spray distance L, the smaller the spray angle of the nozzle 23.
  • the upper guide 33 and the cooling box 22 at the steel plate design position are arranged so as to be inclined from the rolling direction, and the injection angle of the nozzle 23 is reduced at the upper part, but the nozzle 23 is also provided at the lower part.
  • the injection angle may be reduced.
  • the injection angle of the nozzle 23 at the position where the nozzle injection distance L is the largest (downstream in FIG. 5) is the position where the nozzle injection distance L is the smallest (FIG. 5). Then, it is not necessary to make it smaller than the injection angle of the nozzle 23 on the upstream side.
  • the injection angle of the nozzle 23 at the position where the nozzle injection distance L is the longest is smaller than the injection angle of the nozzle 23 at the position where the nozzle injection distance L is the shortest
  • (2) rolling The two conditions that the injection angle of the nozzle 23 with the smaller nozzle injection distance L relative to the nozzle 23 adjacent in the direction is not smaller than the injection angle of the nozzle 23 with the larger nozzle injection distance L are simultaneously satisfied. If so, the nozzles 23 adjacent to each other in the rolling direction may have the same spray angle.
  • the injection angle of the nozzle 23 is reduced, and the difference in the collision area of the nozzle jet at an arbitrary position in the rolling direction, that is, the difference between the maximum collision area and the minimum collision area is 10%.
  • the decrease in cooling capacity when the distance between the tip of the nozzle 23 and the hot-rolled steel sheet 10 is changed and the collision area is expanded is further suppressed, and the cooling capacity at each position in the rolling direction is made more constant. can do. As a result, the hot-rolled steel sheet 10 can be cooled more uniformly.
  • the collision area of the nozzle jet (the collision area in the hot-rolled steel sheet 10 of the cooling water injected from the nozzle 23 satisfies the following formula (1): 6
  • the injection angle ⁇ of the nozzle 23 is a spread angle of the nozzle jet (diameter D).
  • L Nozzle injection distance (m)
  • Nozzle injection angle (degrees) i
  • j Arbitrary rows of nozzles provided in the rolling direction (i row, j row)
  • the major axis direction injection angle ⁇ and the minor axis direction injection angle ⁇ of the nozzle 23 are set so that the collision area of the nozzle jet satisfies the following formula (2).
  • the long diameter injection angle ⁇ of the nozzle 23 is the spread angle of the long diameter D1 of the nozzle jet
  • the short diameter injection angle ⁇ of the nozzle 23 is This is the spread angle of the minor diameter D2 of the nozzle jet.
  • L Nozzle injection distance (m)
  • Nozzle major axis direction injection angle (degrees)
  • Nozzle minor axis direction injection angle (degrees)
  • i, j Arbitrary rows of nozzles provided in the rolling direction (i row, j row)
  • the hot-rolled steel sheet 10 is formed by the upper and lower guides 33 from 0 (zero) degree which is the rolling direction as shown in FIG.
  • the sheet can be passed through at an angle ⁇ . That is, the angle of the steel plate design position of the hot-rolled steel plate 10 immediately after the finish rolling stand is between 0 degrees and the angle ⁇ .
  • the difference in the nozzle jet flow collision area at any position in the rolling direction that is, the maximum collision, whatever the angle of the sheet passing angle of the hot-rolled steel sheet 10 immediately after the finish rolling stand. It is not easy to make the difference between the area and the minimum collision area 10% or less.
  • the passing angle of the hot-rolled steel sheet 10 immediately after the finish rolling stand is often a substantially constant angle. Therefore, when the cooling device 21 is designed, the sheet passing angle that is a premise of the design is determined in advance based on the sheet passing angle when the hot-rolled steel sheet 10 is in a steady state.
  • the position of the hot-rolled steel sheet 10 determined in this way is the steel sheet design position in the present invention.
  • the difference is made 10% or less. Is possible.
  • the hot-rolled steel sheet 10 when the hot-rolled steel sheet 10 is at a predetermined threading angle, that is, in the case of a steady-state threading angle, the difference can be made 10% or less. As a result, the hot-rolled steel sheet 10 can be cooled more uniformly.
  • the sheet passing angle in the steady state of the hot-rolled steel sheet 10 immediately after the finish rolling stand is from 0 degree shown in FIG. 8 to the angle ⁇ formed by the upper and lower guides 33 as shown in FIG.
  • the angle is up to 1 ⁇ 2 angle. Therefore, in the present embodiment, a specific angle in the sheet passing angle position of the hot-rolled steel sheet 10 of 0 to ⁇ / 2 degrees is set at the time of design so as to satisfy the above formula (1) or (2). It is set as a predetermined plate passing angle.
  • the steel plate design position of the hot-rolled steel plate 10 may be set to 0 degree, that is, the tangent plane at the upper vertex of the lower roll (work roll) 31 of the rolling stand.
  • a tangent plane is a plane which touches the rolling roll containing the line
  • the steel plate design position immediately after the finish rolling stand may be set to a plane that is 1 ⁇ 2 of the angle ⁇ formed by the upper and lower guides.
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the finish rolling stand is an angle ⁇ formed by the upper and lower guides 33 from 0 degrees that is the rolling direction (preferably 1/2 of the angle ⁇ ).
  • the sheet passing angle immediately after the finishing rolling stand in which the collision area in the hot-rolled steel sheet 10 of the cooling water sprayed from the nozzle 23 satisfies the above formula (1) or the above formula (2) is 0 in the rolling direction. If there is a cooling device existing between the angle and the angle ⁇ formed by the upper and lower guides 33 (preferably half the angle ⁇ ), the hot rolled steel sheet immediately after the finishing rolling stand is used by using the cooling device. The sheet can be cooled more uniformly by passing the 10 inclination angles at the “plate passing angle satisfying the above formula (1) or (2)”.
  • the collision area in the hot-rolled steel sheet 10 of the cooling water sprayed from the nozzle 23 is expressed by the above formula ( It can be regarded as a cooling device in which the sheet passing angle immediately after the finish rolling stand satisfying 1) or the above formula (2) is within the angle ⁇ formed by the upper and lower guides 33 from 0 degree which is the rolling direction. Furthermore, in other words, the steel plate design position (the sheet passing angle) immediately after the finish rolling stand means that the collision area in the hot-rolled steel plate 10 of the cooling water sprayed from the nozzle 23 is the above formula (1) or the above formula (2). It can be regarded as an arbitrary angle in the angle satisfying (however, the angle is in the angle ⁇ formed by the upper and lower guides 33 from 0 degree which is the rolling direction).
  • the water density Wa of the cooling water from the nozzle 23 satisfies the following formula (3).
  • Formula (3) has shown the required cooling capacity at the time of lowering
  • the denominator (t ⁇ V) is the volume of the hot-rolled steel sheet (material) that passes through the unit time in the unit width, and corresponds to the amount of heat required to lower the hot-rolled steel sheet by 1 ° C.
  • the cooling range length Ma is, for example, 1 m or more and 3 m or less. In such a case, cooling of 40 ° C. or more from the Ar 3 transformation temperature to the Ar 3 transformation temperature ⁇ 30 ° C. can be performed immediately after rolling, thereby sufficiently preventing the coarsening of the crystal grains and making the crystal grains finer It can be performed.
  • Wa Water density of cooling water from nozzle 23 (m 3 / m 2 ⁇ min)
  • Ma Cooling range length (m)
  • t Thickness (mm) of hot-rolled steel sheet 10
  • V Plate speed of hot-rolled steel sheet 10 (m / s)
  • Japanese Patent Laid-Open No. 2009-241115 discloses that the cooling water quantity density W (liter / m 2 ⁇ min) satisfies W 0.663 ⁇ M ⁇ 260, and the cooling range length It is disclosed that M satisfies 1.8 m or less.
  • W cooling water quantity density
  • M satisfies 1.8 m or less.
  • the conditions of the water density of the cooling water disclosed in Japanese Patent Application Laid-Open No. 2009-241115 are insufficient because there are no conditions for the thickness of the hot-rolled steel sheet and the passing speed of the hot-rolled steel sheet.
  • the angle ⁇ formed by the upper and lower guides 33 is in the range of, for example, 8 degrees to 30 degrees.
  • the angle ⁇ may be, for example, in the range of 8 degrees to 25 degrees or 10 degrees to 30 degrees.
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the finishing rolling stand is equal to or less than the angle ⁇ formed by the upper and lower guides 33. If there is, it may exceed 1/2 angle of the angle ⁇ formed by the upper and lower guides 33.
  • i and j are taken as the arbitrary rows (i row, j row) of the nozzle 23 provided in the rolling direction. This is because the above formula (1) or the above formula (2) calculates (L ⁇ tan ⁇ ) 2 for all nozzle rows, and the ratio between the maximum value and the minimum value (the maximum value is the denominator) is 0. It means 90 or more.
  • the nozzles for all nozzle rows It means that the ratio between the maximum value and the minimum value of the injection distance L (the maximum value is the denominator) is 0.90 or more (0.95 when rounded to two decimal places). That is, in order to satisfy the above formula (1), the difference between the maximum value and the minimum value of the nozzle injection distance L needs to be within 5% of the maximum value.
  • the nozzles used in the cooling device 21 are the same type of nozzles (for example, a full cone nozzle or an oval blowing nozzle).
  • the hot-rolled steel sheet 10 that has been hot-rolled through the rolling stand by the above cooling device 21 is cooled by the cooling water sprayed from the cooling box 22 in a state in which the strain remains immediately after leaving the rolling roll 31. Is done.
  • This cooling is, for example, strong cooling of 30 ° C. or more between the stands at one place, thereby shortening the time to, for example, the Ar 3 transformation point, suppressing the expansion of the crystal grain size, and reducing the grain size.
  • the quality of 10 materials can be improved.
  • the cooling water is sprayed from the nozzle 23 closer to the rolling stand among the nozzles 23 in the cooling box 22.
  • This control is performed by a three-way valve, giving priority to the side closer to the rolling stand according to a preset plate passing speed, supplying cooling water to the section 22a of the nozzle 23 for injecting cooling water,
  • the three-way valve 25 provided in the section 22a of the nozzle 23 far from the rolling stand is opened toward the drain header 28 or drain area.
  • the three-way valve 25 opened toward the drainage header 28 is sequentially opened toward the cooling box 22 from the side closer to the rolling stand to the side farther from the rolling stand.
  • the inlet port in the cooling box 22 of the nozzle 23 also enters the cooling box 22 in the section 22a of the nozzle 23 where the cooling water has not been sprayed until then, slightly below the upper end of the nozzle 23. Since water stays in the pipe 24 and the water is always filled in the pipe 24, the cooling water can be quickly injected from the nozzle 23 when the three-way valve 25 is switched. When the plate passing speed is reduced, the three-way valve 25 is switched to the drain side in order from the section 22a far from the rolling stand.
  • the cooling box 22 is provided in the upper and lower guides 33 provided on the exit side of the rolling stand, and the injection surface of the nozzle 23 in the cooling box 22 is substantially flush with the guide 33, so that The hot-rolled steel sheet 10 can be cooled from a close position, and the hot-rolled steel sheet 10 is not caught by the nozzle 23.
  • the cooling box 22 in the guide 33 cooling can be started from the vicinity of the rolling stand as compared with the conventional cooling device provided as a separate body avoiding the position of the guide 33. Therefore, a large length in the rolling direction of the cooling box 22 can be ensured and the cooling capacity can be increased even between stands where space is limited.
  • the guide 33 collides with the guide 33 at the time of retraction. In order to avoid this, the cooling box 22 must be moved separately. According to the present invention, since the cooling box 22 is provided in the guide 33, the retraction work at the time of replacing the rolling roll 31 does not take time and can be performed in the same manner as when the cooling box 22 is not installed. it can.
  • the sheeting speed in hot rolling generally varies depending on the desired productivity.
  • the change in the plate passing speed is large, it is necessary to make the steel plate temperature constant by changing the cooling capacity accordingly, and to make the quality uniform in the longitudinal direction.
  • the effective control range of the cooling water amount is narrow in the adjustment using only the flow rate adjusting valve 26. If the inside of the cooling box 22 is divided as in the present embodiment, the controllable range can be expanded by performing the water amount control by the divided section 22a in addition to the control range of the flow regulating valve 26.
  • the response speed is delayed because the cooling water is supplied from the state where the supply of the cooling water is stopped.
  • the three-way valve 25 as in the present embodiment, it is only necessary to switch the injection direction. Quick switching is possible even with the amount of water.
  • the large amount of water is, for example, 2 to 10 m 3 / m 2 / min.
  • the plurality of nozzles 23 in the cooling box 22 are provided such that the ejection surface is substantially flush with the guide 33, but the ejection surface is not flush with the guide 33. Also good. As shown in FIG. 10, the ejection surface of the nozzle 23 may be curved from the upstream side in the rolling direction toward the downstream side. Even in such a case, it is possible to enjoy the same effects as in the above embodiment, and by reducing the spray angle of the nozzle 23 from the upstream side to the downstream side in the rolling direction, the cooling capacity is made uniform, and the hot rolled steel sheet Can be cooled uniformly. Further, as in the embodiment of FIG. 10, the ejection surfaces of the plurality of upper nozzles 23 may be the same surface as the guide 33 or may be above the surface. Even in this case, the ejection surfaces of the plurality of lower nozzles 23 may remain the same as the guide 33.
  • the plurality of nozzles 23 in the upper cooling box 22 may be provided such that the ejection surface is above the guide 33.
  • the plurality of nozzles 23 may be provided in the lower cooling box 22 so that the ejection surface is below the guide 33.
  • the ejection surfaces of the plurality of nozzles 23 may be arranged on the opposite side of the steel plate design position of the hot-rolled steel plate 10 from the surface formed by the guide 33.
  • the nozzle injection distance from the plurality of nozzles 23 is increased as the distance from the rolling stand is increased, but the nozzle injection distance is decreased in the lower cooling box 22 as shown in FIG. May be. That is, the position where the nozzle injection distance is the longest may be on the most upstream side of the cooling device 21. Although not shown, the nozzle injection distance may also be reduced in the upper cooling box 22. In both cases where the nozzle injection distance becomes larger and smaller as the distance from the rolling stand increases, (1) the nozzle 23 at the position where the nozzle injection distance L is the largest is the position where the nozzle injection distance L is the smallest.
  • the plurality of nozzles 23 are provided in the cooling box 22.
  • the cooling box 22 is omitted, and the plurality of nozzles 23 are provided in the guide 33.
  • one nozzle group may be constituted by two nozzles 23 in the illustrated example.
  • Each nozzle group is connected to a pipe 24 provided with a three-way valve 25 and a flow rate adjusting valve 26 as in the above embodiment, and the pipe 24 is further connected to a water supply header 27 and a drainage header 28. In such a case, the same effect as that of the above embodiment can be obtained.
  • the plurality of nozzles 23 may be provided only in one of the guide 33 as shown in FIG. 12 or the position adjacent to the downstream side of the guide 33 as shown in FIGS. .
  • the plurality of nozzles 23 may be provided in both the guide 33 and a position adjacent to the downstream side of the guide 33 as shown in FIG.
  • the plurality of nozzles 23 for injecting cooling water toward one surface are included in the guide 33 and the guide. 33 may be provided at both positions adjacent to the downstream side of 33.
  • a plurality of nozzles 23 that inject cooling water toward both the upper and lower surfaces of the hot-rolled steel sheet 10 may be provided both in the guide 33 and at a position adjacent to the downstream side of the guide 33.
  • the present invention also includes these embodiments provided both in the guide 33 and at a position adjacent to the downstream side of the guide 33.
  • the rolling roll 31 of the rolling stand on the downstream side of the cooling device 21 may be opened.
  • the rolling roll 31 of the rolling stand F7 is opened.
  • the roll gap of the rolling roll 31 is aimed at a value equal to or less than a value obtained by adding 7 mm to the plate thickness. In such a case, the amount of on-board water leaking from the rolling stand can be limited. Furthermore, it is preferable to provide a draining device (not shown) on the exit side of the most downstream (final) rolling stand F7. Usually, a measuring device for measuring the dimensions and temperature of the hot-rolled steel sheet 10 is provided on the exit side of the most downstream (final) rolling stand F7.
  • a cooling zone 60 for cooling the upper surface of the steel plate 10 may be provided.
  • the cooling zone 60 is provided, for example, on the upstream side of the cooling unit 15.
  • a plurality of cooling nozzles (not shown) for injecting cooling water toward the upper surface of the hot-rolled steel sheet 10 are arranged in the rolling direction.
  • these cooling nozzles a slit laminar nozzle, a pipe laminar nozzle, and a spray nozzle are used, for example.
  • the water density of the cooling water from the cooling nozzles of the cooling zone 60 is preferably 2 m 3 / m 2 ⁇ min or more and satisfies the following formula (4). If it is less than 2 m 3 / m 2 ⁇ min, it is difficult to refine crystal grains.
  • Formula (4) shows the required cooling capacity when lowering the temperature of the hot-rolled steel sheet 10 to a certain extent, like Formula (3) described above. That is, on the left side of the formula (4), the numerator (Wb 0.5 ⁇ Mb) is (cooling capacity index per unit time unit area corresponding to heat flux) ⁇ (cooling range length), Indicates the cooling capacity.
  • the denominator (t ⁇ V) is the volume of the hot-rolled steel sheet (material) that passes through the unit time in the unit width, and corresponds to the amount of heat required to lower the hot-rolled steel sheet by 1 ° C.
  • the left side of the formula (4) is a certain value of 0.55 or more, the crystal grains can be controlled appropriately.
  • the crystal grains can be refined and the strength can be adjusted.
  • Wb Water density of cooling water from cooling nozzle (m 3 / m 2 ⁇ min)
  • Mb cooling range length of the cooling zone 60 (m)
  • t Thickness (mm) of hot-rolled steel sheet 10
  • V Plate speed of hot-rolled steel sheet 10 (m / s)
  • the cooling zone 60 is provided on the upper surface side of the hot-rolled steel sheet 10, but may be provided on the lower surface side, or may be provided on both the upper surface side and the lower surface side. Good. If the measuring device 50 is not installed, the cooling zone 60 may be arranged on the downstream side of the cooling device 21 of the present invention.
  • a plurality of nozzles 23 with the cooling box 22 or without the cooling box 22 are provided in the upper and lower guides 33 and / or adjacent to the downstream side of the guide 33. However, it may be provided in either one of the upper and lower guides 33 and / or adjacent to the downstream side of the guide 33.
  • the plurality of nozzles 23 with the cooling boxes 22 on both the upper and lower sides or without the cooling box 22 satisfy the above formula (1) or formula (2).
  • a plurality of nozzles 23 with one cooling box 22 or without the cooling box 22 may satisfy the above formula (1) or formula (2).
  • the distance between the upper and lower guides 33 increases from the upstream side in the rolling direction to the downstream side, but a guide that is in the rolling direction (horizontal direction) is further provided on the downstream side of the guide 33. It may be done. Further, such a horizontal guide may be provided with a cooling device for cooling the hot-rolled steel sheet 10. Furthermore, another cooling device without a guide may be provided on the downstream side of the cooling device 21 of the present invention.
  • a hot rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degrees
  • that is, the angle ⁇ formed by the upper and lower guides is 12 degrees
  • the sheet passing angle of the hot rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is set.
  • the ⁇ / 2 angle was set to 6 degrees (see FIG. 9).
  • the nozzle type was a full cone nozzle.
  • Table 1 shows the position of each nozzle and the spread angle of the nozzle jet (nozzle injection angle). In Table 1, in order to evaluate the index (1) (the difference between the maximum collision area and the minimum collision area of the nozzle jet is 10% or less), the difference is + 10% from the reference collision area.
  • the spread angle (spread angle + 10% in the table) and the spread angle (spread angle ⁇ 10% in the table) that is a difference of ⁇ 10% from the reference collision area are also shown.
  • Example 1 to 3 the spreading angles of the nozzle jets on the upper surface side and the lower surface side are respectively reduced from the upstream side to the downstream side in the rolling direction. Further, in Examples 2 and 3, both of the nozzles on the upper surface side and the lower surface side also satisfy the above formula (1). In such a case, the temperature variation in the width direction could be reduced to 18 ° C., 11 ° C., 13 ° C., and 20 ° C. or less. And the hot-rolled steel plate excellent in mechanical property can be manufactured by cooling a hot-rolled steel plate uniformly in this way. The underlined portion of Example 1 in Table 2 did not satisfy the above formula (1), and the effect of uniform cooling was less than that of Examples 2 to 3.
  • Comparative Examples 1 to 3 when the spread angles of the upstream and downstream nozzle jets were made the same in the rolling direction, the temperature variation in the width direction was as large as 25 ° C., 27 ° C., and 26 ° C. . Therefore, in Comparative Examples 1 to 3, a deviation occurred in the mechanical properties of the hot-rolled steel sheet.
  • a hot rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degree
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is 0 degree that is the rolling direction (see FIG. 8).
  • the nozzle type was a full cone nozzle.
  • Table 3 shows the position of each nozzle and the spread angle of the nozzle jet (nozzle injection angle).
  • the difference is + 10% from the reference collision area.
  • the spread angle (spread angle + 10% in the table) and the spread angle (spread angle ⁇ 10% in the table) that is a difference of ⁇ 10% from the reference collision area are also shown.
  • Example 4 the spread angle of the nozzle jet on the upper surface side is the same or smaller from the upstream side in the rolling direction to the downstream side, and in Example 5, the nozzle on the upper surface side also satisfies the above formula (1).
  • the temperature variation in the width direction could be reduced to 18 ° C., 11 ° C., and 20 ° C. or less.
  • the hot-rolled steel plate excellent in mechanical property can be manufactured by cooling a hot-rolled steel plate uniformly in this way.
  • the underlined portion of Example 4 in Table 4 did not satisfy the above formula (1), and the effect of uniform cooling was smaller than that of Example 5.
  • Comparative Examples 4 and 5 when the spread angles of the upstream and downstream nozzle jets were made the same in the rolling direction, the temperature variation in the width direction increased to 27 ° C. and 29 ° C. Therefore, in Comparative Examples 4 and 5, a deviation occurred in the mechanical properties of the hot-rolled steel sheet.
  • a hot rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degrees
  • that is, the angle ⁇ formed by the upper and lower guides is 12 degrees
  • the sheet passing angle of the hot rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is set.
  • the ⁇ / 2 angle was set to 6 degrees (see FIG. 9).
  • the nozzle type was an oblong nozzle.
  • Table 5 shows the position of each nozzle and the spread angle (nozzle injection angle) of the major axis and minor axis of the nozzle jet. In Table 5, in order to evaluate the index (2) (the difference between the maximum collision area and the minimum collision area of the nozzle jet is 10% or less), the difference is + 10% from the reference collision area.
  • the spread angle (spread angle + 10% in the table) and the spread angle (spread angle ⁇ 10% in the table) that is a difference of ⁇ 10% from the reference collision area are also shown.
  • Example 6 the major axis spread angle and minor axis spread angle of the nozzle jet on the upper surface side and the major axis spread angle and minor axis spread angle of the nozzle jet on the lower surface side are the same or smaller from the upstream side to the downstream side in the rolling direction. Yes. In such a case, the temperature variation in the width direction could be reduced to 17 ° C. And the hot-rolled steel plate excellent in mechanical property can be manufactured by cooling a hot-rolled steel plate uniformly in this way. However, the underlined portion of Example 6 in Table 6 does not satisfy the above formula (2).
  • Example 7 the major axis spread angle and the minor axis spread angle of the nozzle jet on the uppermost stream side (0 mm) compared to the most downstream side (1200 mm), the major axis spread angle and the minor axis of the nozzle jet on the lower surface side.
  • the spread angle is small.
  • the major axis spread angle and the minor axis spread angle of the nozzle jet on the upper surface side, and the major axis spread angle and the minor axis spread angle of the nozzle jet on the lower surface side are respectively reduced from the upstream side to the downstream side in the rolling direction. Both the side and the lower surface satisfy the above formula (2). In such a case, the temperature variation in the width direction could be sufficiently reduced to 12 ° C.
  • a hot rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degree
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is 0 degree that is the rolling direction (see FIG. 8).
  • the nozzle type was an oblong nozzle.
  • Table 7 shows the position of each nozzle and the spread angle (nozzle injection angle) of the major axis and minor axis of the nozzle jet. In Table 7, the difference (+ 10%) from the reference collision area is used to evaluate the index (2) (the difference between the maximum collision area and the minimum collision area of the nozzle jet is 10% or less).
  • the spread angle (spread angle + 10% in the table) and the spread angle (spread angle ⁇ 10% in the table) that is a difference of ⁇ 10% from the reference collision area are also shown.
  • Example 8 the major axis spread angle and the minor axis spread angle of the nozzle jet on the upper surface side decrease from the upstream side in the rolling direction to the downstream side, respectively, and the upper surface side nozzle (major axis side) satisfies the above formula (2). ing. In such a case, the temperature variation in the width direction could be reduced to 16 ° C. And the hot-rolled steel plate excellent in mechanical property can be manufactured by cooling a hot-rolled steel plate uniformly in this way. However, the underlined portion of Example 8 in Table 8 does not satisfy the above formula (2).
  • Example 9 the major axis spread angle and the minor axis spread angle of the nozzle jet on the uppermost stream side (0 mm) on the uppermost stream side (0 mm) are smaller than those on the most downstream side (1200 mm). Further, the major axis spread angle and the minor axis spread angle of the nozzle jet on the upper surface side are the same or smaller from the upstream side to the downstream side in the rolling direction, respectively, and both the upper surface side and the lower surface side satisfy the above formula (2). Yes. In such a case, the temperature variation in the width direction could be sufficiently reduced to 11 ° C., and the effect of uniform cooling was greater than in Example 8.
  • a hot-rolled steel sheet having a sheet width of 1200 mm under the conditions shown in Table 9 was hot finish-rolled, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length and the water density of the upper and lower surfaces were as shown in Table 9, and the nozzle rows were 5 rows.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degrees
  • the sheet passing angle of the hot rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is set. It was 0 degree.
  • the nozzle type was a full cone nozzle.
  • each nozzle and the spread angle of the nozzle jet (nozzle injection angle) are as shown in Table 3.
  • the spread angle was set as in Example 4 in Table 4.
  • Table 9 shows the results.
  • the index of formula (3) the left side of formula (3) is 0.08 or more
  • the temperature drop of the steel sheet is reduced to the Ar 3 transformation temperature as long as the conditions satisfy formula (3) as shown in Examples 10 to 18. It was possible to obtain a temperature drop of 40 ° C. or higher that can be cooled from higher temperature to Ar 3 transformation temperature ⁇ 30 ° C. or lower.
  • Comparative Examples 6 to 9 when the condition of the formula (3) is not satisfied, the temperature drop is 40 ° C. or less, and the cooling is insufficient to obtain the desired effect of refining the metal structure. It was.
  • a hot rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F6 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide is 12 degrees
  • the inclination angle of the lower guide is 0 degree
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the rolling stand F6 by the looper 34 is 0 degree that is the rolling direction (see FIG. 8).
  • the nozzle type was a full cone nozzle.
  • the position of each nozzle and the spread angle of the nozzle jet (nozzle injection angle) are as shown in Table 3.
  • Example 4 of Table 4 the spread angle of the nozzle jet on the upper surface side (upper surface spread angle in the table) and the spread angle of the nozzle jet on the lower surface side (lower surface spread angle in the table) are set. did.
  • a draining device is installed on the exit side of the F7 stand, and the gap of the F7 stand is changed from +3 mm to +15 mm.
  • the thickness exceeds +7 mm, the amount of effluent increases, and the amount of draining water on the exit side of the F7 stand increases. It was found that unless the thickness was increased to 1.5 times or more of the case of the plate thickness +7 mm or less, a portion where the plate thickness measurement or the plate temperature measurement could not be performed occurred on the downstream side of the draining device.
  • a hot-rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F7 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide was 12 degrees, and the inclination angle of the lower guide was 0 degrees.
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the rolling stand F7 is 0 degree that is the rolling direction.
  • the nozzle type was a full cone nozzle.
  • the position of each nozzle and the spread angle of the nozzle jet (nozzle injection angle) are as shown in Table 3.
  • Example 4 of Table 4 the spread angle of the nozzle jet on the upper surface side (upper surface spread angle in the table) and the spread angle of the nozzle jet on the lower surface side (lower surface spread angle in the table) are set. did.
  • a draining device is installed on the exit side of the rolling stand F7, the amount of draining water on the exit side of the rolling stand F7, the cooling device 21 is installed on the exit side of the rolling stand F6, and the rolling roll is opened to release the rolling stand F7.
  • Example 6 As compared with the case of the above-described Example 6 that functioned as, when it was set to be twice or more, it was found that the thickness measurement and the plate temperature measurement were not affected on the downstream side of the draining device.
  • a hot-rolled steel sheet having a plate thickness of 3 mm and a plate width of 1200 mm was hot-finished and rolled at a plate passing speed of 400 to 600 mpm, and the cooling device 21 according to this example was installed on the exit side of the rolling stand F7 in FIG.
  • the cooling length was 1.2 m, and the nozzle rows were 5 rows.
  • the water density of the cooling water from the nozzle on the upper surface side was 7 m 3 / m 2 ⁇ min, and the water density of the cooling water from the nozzle on the lower surface side was 10 m 3 / m 2 ⁇ min.
  • the inclination angle of the upper guide was 12 degrees, and the inclination angle of the lower guide was 0 degrees.
  • the sheet passing angle of the hot-rolled steel sheet 10 immediately after the rolling stand F7 is 0 degree that is the rolling direction.
  • the nozzle type was a full cone nozzle.
  • the position of each nozzle and the spread angle of the nozzle jet (nozzle injection angle) are as shown in Table 3.
  • the cooling zone 60 shown in FIG. 15 is further installed on the upstream side of the cooling unit 15 and on the upper surface side of the hot-rolled steel sheet 10.
  • the cooling range length (equipment length) of the cooling zone 60 was 15 m.
  • the water volume density of the cooling water from the cooling nozzle of the cooling zone 60 was 3 m 3 / m 2 ⁇ min.
  • the cooling zone 60 satisfies the above formula (4).
  • the hot-rolled steel plate is also compared with the case of Example 7 in which the cooling device 21 is provided and the cooling zone 60 is not provided.
  • the refinement of 10 metallographic structures could be further advanced.
  • the present invention is applied as a cooling device and a cooling method for refining the crystal grain size of a hot-rolled steel sheet after finish rolling in a hot rolling process.
  • high-tensile steel high tensile
  • ultra-low carbon steel It is suitable for improving the quality of high-quality steel such as IF steel (Interstitial atom free steel).

Abstract

熱間仕上圧延機において圧延スタンドで圧延された直後の熱延鋼板の上下面の一方または両方に向けて冷却水を噴射する複数のノズルを有し、ノズルは上下のガイドの中または当該ガイドの下流側に隣接して設けられ、ノズル噴射距離が圧延方向のノズルの位置により変化する冷却装置であって、ノズル噴射距離が最も大きい位置のノズルの噴射角度が、ノズル噴射距離が最も小さい位置のノズルの噴射角度より小さく、ノズル噴射距離が大きくなるに従い、ノズルの噴射角度が同じまたは小さくなる。

Description

熱延鋼板の冷却装置及び冷却方法
 本発明は、複数スタンドからなる熱間仕上圧延機で仕上圧延する熱延鋼板の冷却装置及び冷却方法に関し、殊に高機能鋼材を製造する際の材質制御のための冷却技術に関するものである。
 熱延鋼板の製造では、連続鋳造機などで製造された鋳片(スラブ)を加熱炉で加熱し、粗圧延機で粗圧延鋼材(粗バー)とし、次いで仕上圧延機で仕上圧延を行って所定の板厚の鋼板とし、さらに所定の冷却パターンで鋼板を冷却して熱延鋼板とする。仕上圧延機では、複数の圧延スタンドが直列に並んでおり、粗圧延鋼材はこれら複数の圧延スタンドを順次通過することによって仕上圧延される。
 熱延鋼板の製造においては、仕上圧延終了直後に鋼板を急冷することにより、鋼板結晶粒の粒径を細粒化し、機械的性質に優れた熱延鋼板を製造できることが知られている。すなわち、例えばAr変態点以上で仕上圧延を終了し、圧延直後0.1~0.2秒以内に冷却を開始し、Ar変態点未満の温度まで急速冷却することにより、仕上圧延後の熱延鋼板の結晶の成長を抑制して結晶微細化が達成され、最終製品の深絞り性等の材質特性を向上させることができる。仕上圧延直後からの急速冷却は、仕上圧延を終了した直後の鋼板に水を噴射する水冷却によって行うことができる。
 従来行われてきた仕上圧延機における圧延スタンド間の冷却は、加熱炉起因、圧延ロールの幅方向不均一膨張起因等による鋼板内の温度分布の改善や、仕上圧延での加工発熱増加による温度上昇防止のために行われるものであり、圧延スタンド間を通過する際の鋼板温度で20℃程度冷却するものであった。そして、この程度の冷却では、結晶粒径の成長を抑制するには冷却能力が不足していた。また、圧延直後に冷却を開始するためには、極力圧延スタンドに近い位置に冷却装置を設置する必要がある。
 特許文献1には、仕上圧延スタンド間に、冷却水を噴射するフルコーンスプレーノズル等を備えた鋼板冷却装置を設け、先行する仕上圧延スタンド間の鋼板冷却装置で圧延直後の急冷却を行い、後行する仕上圧延スタンド間の鋼板冷却装置でAr変態点を含む温度域の急冷却を行い、2つの鋼板冷却装置の間に挟まれた仕上圧延スタンドを通過する温度域をAr変態点+20℃からAr3変態点までの温度域とすることが開示されている。
 特許文献2には、仕上圧延スタンド間に冷却装置を設け、当該冷却装置の下流側の仕上圧延スタンドの圧延ロールを開放することで、圧延直後の急冷却を行った後に軽圧下を行わないことが開示されている。
 特許文献3には、仕上圧延スタンドの出側に配置される鋼板冷却装置が開示されている。この冷却装置は、内部が冷却水の貯槽となった冷却ボックスを備え、当該冷却ボックス内には、冷却水を噴射するスプレーノズルが配置されている。
 特許文献4には、仕上圧延機の出側において複数の冷却ボックスからなる冷却装置を配置し、ホットランテーブル上を走行する鋼帯を連続的に冷却するに際し、鋼帯全長に亘り、各冷却ボックス使用時の水量密度を2500L/分・m以上の一定値とし、且つ鋼帯の最大冷却時に冷却装置の有する全冷却ボックス数の80%以上を使用して鋼帯を冷却することが開示されている。
 特許文献5には、熱間圧延において、仕上圧延機のスタンド間冷却を行い、冷却後の圧延は、微細化された結晶粒径が再び粗大化しない程度の圧下率で行い、最下流のスタンドは実質的な圧延を行わない水切りスタンドとすることが記載されている。
 特許文献6には、熱間圧延中の鋼板の下面を冷却する冷却装置として、下ワークロール出側の下部エプロン出側とルーパロール入側との間にボックスヘッダーを設け、該ボックスヘッダーの上面に冷却水噴出用キリ孔を多数配設したエプロン兼用のノズルプレートを取付けた冷却装置が開示されている。
 特許文献7には、仕上圧延機の下工程側(出側)において、鋼板上面に対して冷却水を噴射する複数のノズルと、鋼板下面に対して冷却水を噴射する複数のノズルとを備えた冷却装置を配置し、上面側のノズルから噴射された冷却水の鋼板上面における最大衝突圧をPC1(kPa)とし、最小衝突圧をPC2(kPa)とし、平均衝突圧をP(kPa)としたとき、(PC1-PC2)/P≧1.4を満たすことが開示されている。
 特許文献8には、仕上圧延機の出側直近の位置において、鋼帯上面に対して冷却水を噴射して冷却する上面冷却ボックスと、鋼帯下面に対して冷却水を噴射して冷却する下面冷却ボックスとを備え、これら上面冷却ボックスと下面冷却ボックスから鋼帯に対して上下対称に冷却水を噴射する冷却装置が開示されている。
 特許文献9には、ロールスタンドの出側において、ストリップの上方側のガイドに隣接して設けられ、ストリップの上面に対して冷却水をスプレーする上のスプレーバー(複数のスプレーノズル)と、ストリップの下方側のガイドに隣接して設けられ、ストリップの下面に対して冷却水をスプレーする下のスプレーバー(複数のスプレーノズル)とを備えた冷却装置が開示されている。
特開2009-241115号公報 特開2009-241113号公報 特開2009-241114号公報 特開2005-279736号公報 特開2003-305502号公報 特開平4-200816号公報 特開2014-50878号公報 特開2001-246412号公報 特表2010-516473号公報
 結晶粒径の粗大化を抑制するためには、できるだけ圧延直後に、且つ、できるだけ鋼板に近い位置から強冷却することが望ましいが、一方で、冷却装置は、圧延後の鋼板に衝突しないように配置しなければならない。また、圧延スタンドの出側には、通常、ガイドが設けられており、圧延ロールを交換する際には、ガイドを圧延ロールから離れた位置に退避させる必要がある。このとき、ガイドに近接して、別体として冷却装置が配置されている場合には、冷却装置を退避させる作業に手間がかかるという問題や、冷却装置を圧延機や鋼板から離れた場所に配置せざるを得ないという問題がある。また、ガイドの鋼板と反対側には圧延ロールの冷却装置を設置する必要があり、冷却装置の構造が課題となる。また、冷却装置を仕上圧延機の最終段に設置する場合は、仕上圧延機後の板厚測定装置や板温度測定装置が必要であり、板厚や板温度の適正な管理を行うためには冷却機長を長くすることは好ましくない。
 しかしながら、特許文献1~5のいずれにも冷却装置の具体的な取り付け構造についての記載がない。また、特許文献6は鋼板の下部のみの冷却装置に言及したものであり、また冷却装置と下部エプロンとは別体になっている。さらに、特許文献7に開示された冷却装置では、ガイドに沿ってノズルが配置されているが、やはりノズルとガイドとは別体になっている。また、この配置では圧延ロールの冷却装置を設置することができないため、圧延ロールが鋼板から受けた熱で変形し、鋼板の形状が悪化する懸念がある。
 この点、特許文献8に開示された冷却装置では、上下面の冷却ボックスは、仕上圧延機の出側直近の位置においてガイドに連続して設けられている。しかしながら、このガイド長さは、圧延ロール(ワークロール)直径の数倍以上となっており、冷却開始までの時間が長くなり、細粒化効果が低減されてしまう。また、仕上圧延後から冷却終了までに通常設置されるべき板厚測定装置、板温度測定装置などを設置する場所がなく、板厚の高精度化、材質の管理が困難である。また、特許文献9に開示された冷却装置では、ロール交換時にガイドを移動させる場合の干渉があり、冷却装置を圧延機に充分近接させることは困難である。加えてスプレーノズルとストリップとの間の距離が圧延方向に変化するため、スプレーノズルからスプレーされた冷却水の、ストリップにおける衝突面が圧延方向に不均一になり、やはり冷却の不均一を生じる。なお、他の特許文献1~7の冷却装置においても、仕上圧延後の鋼板が傾斜した場合は考慮されておらず、やはり冷却不均一の課題が生じ得る。
 本発明は、かかる点に鑑みてなされたものであり、熱間仕上圧延直後(各圧延スタンドによる圧延の直後を含む。)の鋼板をできるだけ近い位置から冷却し、仕上圧延直後の熱延鋼板の結晶の成長を抑制して結晶微細化を達成しつつ、熱延鋼板を均一に冷却し、且つ、圧延ロール交換時の手間を簡略化できる熱延鋼板の冷却装置および冷却方法を提供することを目的とする。
 上記課題を解決するため、本発明は、複数の圧延スタンドからなる熱間仕上圧延機において、前記圧延スタンドで圧延された直後の熱延鋼板の上下面の一方または両方に向けて冷却水を噴射する複数のノズルを有し、前記ノズルは、前記圧延スタンドの出側において上下に設けられたガイドのうち、一方または両方のガイドの中または当該ガイドの下流側に隣接して設けられ、前記上下のガイドの間に設定される前記熱延鋼板の鋼板設計位置を基準とし、前記ノズルの噴射口から前記鋼板設計位置までの間の噴射中心軸に沿ったノズル噴射距離が、圧延方向のノズルの位置により変化する冷却装置であって、前記ノズル噴射距離が最も大きい位置の前記ノズルの噴射角度が、前記ノズル噴射距離が最も小さい位置の前記ノズルの噴射角度より小さく、前記ノズル噴射距離が大きくなるに従い、前記ノズルの噴射角度が同じまたは小さくなることを特徴とする。
 前記鋼板設計位置は、前記圧延スタンドの下側圧延ロール(ワークロール)の上部頂点における接平面(定義については後述する。)に設定されていてもよい。あるいは、前記鋼板設計位置は、前記上下のガイドのなす角度の1/2角度の面に設定されていてもよい。
 前記ノズル噴射距離が最も小さい位置が、前記冷却装置の最上流側にあり、前記ノズル噴射距離が最も大きい位置が、前記冷却装置の最下流側にあってもよい。あるいは、前記ノズル噴射距離が最も大きい位置が、前記冷却装置の最上流側にあり、前記ノズル噴射距離が最も小さい位置が、前記冷却装置の最下流側にあってもよい。
 前記ノズルは冷却ボックスの内部に設けられていてもよい。前記冷却ボックスの前記ノズルの噴射口は、前記鋼板設計位置側の表面と同一面又は当該表面よりも奥側(冷却ボックスの中心側)に位置し、前記ノズルの噴出口と反対側端部は、前記冷却ボックス内側の内面位置よりも冷却ボックス内に突出していてもよい。
 前記ノズルの噴射口は、前記ガイドがなす面と同一面上に配置されていてもよい。あるいは、前記ノズルの噴射口は、前記ガイドがなす面より前記鋼板設計位置の反対側に配置されていてもよい。
 前記ノズルはフルコーンノズルであり、前記ノズルから噴射された冷却水の前記熱延鋼板における衝突領域が下記式(1)を満たしていてもよい。
Figure JPOXMLDOC01-appb-M000003
ただし、
L:ノズル噴射距離(m)
α:ノズル噴射角度(度)
i、j:圧延方向に設けられた前記ノズルの任意の列(i列、j列)
 前記ノズルは長円吹ノズルであり、前記ノズルから噴射された冷却水の前記熱延鋼板における衝突面積が下記式(2)を満たしていてもよい。
Figure JPOXMLDOC01-appb-M000004
ただし、
L:ノズル噴射距離(m)
β:ノズル長径方向噴射角度(度)
γ:ノズル短径方向噴射角度(度)
i、j:圧延方向に設けられた前記ノズルの任意の列(i列、j列)
 前記ノズルからの冷却水の水量密度は下記式(3)を満たしていてもよい。
Wa0.5×Ma/(t×V)≧0.08 ・・・(3)
ただし、
Wa:前記ノズルからの冷却水の水量密度(m/m・分)
Ma:前記冷却装置における圧延方向の冷却範囲長さ(m)
t:前記熱延鋼板の板厚(mm)
V:前記熱延鋼板の通板速度(m/s)
 熱間仕上圧延機の最下流側の前記圧延スタンドの出側の前記熱延鋼板の計測を行う計測装置の下流側に、前記熱延鋼板の上下面の一方または両方に向けて冷却水を噴射する複数の冷却ノズルを備えた冷却帯を配置し、前記冷却ノズルからの冷却水の水量密度は2m/m・分以上で、下記式(4)を満たしていてもよい。
Wb0.5×Mb/(t×V)≧0.55 ・・・(4)
ただし、
Wb:前記冷却ノズルからの冷却水の水量密度(m/m・分)
Mb:前記冷却帯における圧延方向の冷却範囲長さ(m)
t:前記熱延鋼板の板厚(mm)
V:前記熱延鋼板の通板速度(m/s)
 前記圧延スタンド間に前記冷却装置を配置し、前記冷却装置よりも下流側の前記圧延スタンドの圧延ロールを開放し、当該圧延ロール(ワークロール)のロールギャップを狙い板厚に7mmを加えた値以下とし、熱間仕上圧延機の最下流側の前記圧延スタンドの出側において、当該最下流側の圧延スタンドから漏出した板上水を除去する水切り装置を配置してもよい。
 熱間仕上圧延機の最下流側の前記圧延スタンドの出側に前記冷却装置を配置し、前記冷却装置の下流側に、当該冷却装置から漏出した板上水を除去する水切り装置を配置してもよい。
 前記複数のノズルは、幅方向に配設されて列をなし、この列を圧延方向に所定数合わせて圧延方向に並ぶ複数のノズル群を構成し、前記複数のノズル群の数は、最大で、圧延方向に設けられた前記ノズルの圧延方向の列数と同じ数であり、前記ノズル群毎にそれぞれ冷却水が供給される配管が接続され、前記配管毎にそれぞれ三方弁および流量調整弁が設けられていてもよい。
 また、別な観点による本発明は、前記冷却装置を用いた冷却方法であって、熱間仕上圧延機の圧延スタンドの出側で、熱延鋼板の上下面の一方または両方に対して、前記ノズルから、冷却水を噴射することを特徴とする。
 また、別な観点による本発明は、前記冷却装置を用いた冷却方法であって、熱間仕上圧延機の圧延スタンドの出側で、熱延鋼板の上下面の一方または両方に対して、前記ノズルから冷却水を噴射するに際し、前記熱延鋼板の通板速度に応じて前記熱延鋼板に冷却水を噴射する前記ノズル群の圧延方向の数を調整し、前記通板速度が増加する際には、前記圧延スタンドに近い側から順に遠い側へ、前記熱延鋼板に冷却水を噴射する前記ノズル群の数を増やし、前記通板速度が減速する際には、前記圧延スタンドから遠い側から順に、前記ノズル群内のノズルから前記熱延鋼板への噴射を閉止して排水側へ冷却水を流すことを特徴とする。
 本発明によれば、圧延スタンドの出側に設置されている既存のガイドの中または当該ガイドの下流側に隣接して複数のノズルを設けることにより、圧延スタンドを通過した直後の熱延鋼板に対して、近い位置から冷却することができる。これにより、仕上圧延後の熱延鋼板の結晶粒径の成長を抑制して細粒化を図ることができ、高品質な鋼板を低コストで製造することができる。また、ノズル噴射距離が圧延方向のノズルの位置により変化する場合、本発明では、ノズル噴射距離が最も大きい位置のノズルの噴射角度が、ノズル噴射距離が最も小さい位置のノズルの噴射角度より小さく、ノズル噴射距離が大きくなるに従い、ノズルの噴射角度が同じまたは小さくなるので、衝突面を圧延方向に均一にして、冷却能力を均一にでき、その結果熱延鋼板を均一に冷却することができる。しかも、本発明の冷却装置においては、圧延ロール交換時の退避作業に手間がかかることもない。
本発明の実施の形態にかかる冷却装置を備えた熱間圧延設備の構成の概略を示す図である。 本実施の形態にかかる冷却装置を設けた仕上圧延スタンドの出側の構成の概略を示す側面図である。 本実施の形態にかかる冷却装置の構成の概略を示す図である。 待機時の冷却ボックス内の水の滞留を説明する図であり、(a)は冷却ボックスが分割されていない場合、(b)は冷却ボックスが複数の区画に分割されている場合を示す。 ノズル噴射距離に応じたノズルの噴射角度を説明する図である。 フルコーンノズルからの噴射角度(ノズル噴流の広がり角度)を示す説明図である。 長円吹ノズルからの噴射角度(ノズル噴流の広がり角度)を示す説明図であり、(a)は長径方向の噴射角度を示し、(b)は短径方向の噴射角度を示す。 仕上圧延スタンド直後の熱延鋼板の通板角度(鋼板設計位置)が0度である場合を示す説明図である。 仕上圧延スタンド直後の熱延鋼板の通板角度(鋼板設計位置)が上下のガイドのなす角度θの1/2である場合を示す説明図である。 他の実施の形態にかかる冷却装置を設けた仕上圧延スタンドの出側の構成の概略を示す側面図である。 他の実施の形態にかかる冷却装置を設けた仕上圧延スタンドの出側の構成の概略を示す側面図である。 他の実施の形態にかかる冷却装置を設けた仕上圧延スタンドの出側の構成の概略を示す側面図である。 他の実施の形態にかかる冷却装置の構成の概略を示す図である。 他の実施の形態にかかる冷却装置を設けた仕上圧延スタンドの出側の構成の概略を示す側面図である。 他の実施の形態にかかる冷却装置を備えた熱間圧延設備の構成の概略を示す図である。
 以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 先ず、本実施の形態における冷却装置を備えた熱間圧延設備について説明する。図1は、熱間圧延設備1の構成の概略を示す説明図である。
 熱間圧延設備1では、加熱したスラブ5を連続的に圧延し、1~20mm程度の板厚まで薄くした熱延鋼板10を巻き取る。図1に示すように、熱間圧延設備1は、スラブ5を加熱する加熱炉11と、加熱炉11で加熱されたスラブ5を幅方向に圧延する幅方向圧延機12と、幅方向に圧延されたスラブ5を上下方向から圧延して粗バー6にする粗圧延機13と、粗バー6をさらに所定の厚みまで連続して熱間仕上圧延をする仕上圧延機14と、この仕上圧延機14により熱間仕上圧延された熱延鋼板10を所定の温度まで冷却する冷却部15と、冷却部15で冷却された熱延鋼板10をコイル状に巻き取る巻取装置16とを備えている。なお、上記の熱間圧延設備1は一般的な設備構成であって、本発明が適用される熱間圧延設備はこれに限るものではない。
 加熱炉11には、スラブ5を加熱する各種バーナが備えられている。加熱炉11では、外部から搬入されてきたスラブ5を所定の温度に加熱する処理が行われる。加熱炉11における加熱処理が終了すると、スラブ5は加熱炉11外へと搬送され、幅方向圧延機12および粗圧延機13による圧延工程へ移行する。
 粗圧延機13には、複数スタンドに亘って円柱状の圧延ロールが配設されている。圧延ロールには、被圧延材を直接挟み込むワークロールとワークロールの撓みを抑制または制御するバックアップロールとがある。粗圧延機13では、搬送されてきたスラブ5が、これらの圧延ロール(ワークロール)の間隙を通過し、厚さ30~60mm程度の板厚まで圧延され、その後仕上圧延機14へと搬送される。
 仕上圧延機14には、それぞれ圧延ロールを備えた複数基、例えば7基の圧延スタンドF1~F7が直列に配置されている。圧延ロールには、被圧延材を直接挟み込むワークロールとワークロールの撓みを抑制または制御するバックアップロールとがあり、特殊な場合は両者の間に中間ロールを挟む場合もある。本発明の冷却装置との関係では、圧延ロールとは、主としてワークロールのことを指すが、稀にバックアップロールを含む総称として用いる場合もある。仕上圧延機14では、これらの圧延ロール(ワークロール)の間隙に粗圧延後の粗バー6を通過させ、これを徐々に圧延し、1~20mm程度の板厚(例えば、数mm程度の板厚)まで圧延する。仕上圧延された熱延鋼板10は、図示しない搬送ロールにより搬送されて冷却部15へと送られる。
 冷却部15には、搬送される熱延鋼板10の上下に、熱延鋼板10に向けて冷却水を噴射する冷却ノズルが、圧延方向に複数並べて配置されている。これらの冷却ノズルとしては、例えばスリットラミナーノズルやパイプラミナーノズル、スプレーノズルが用いられる。
 巻取装置16は、冷却部15により所定温度まで冷却された熱延鋼板10を巻き取る。巻取装置16によりコイル状に巻き取られた熱延鋼板10は、熱間圧延設備1外へと搬送される。
 そして、本発明では、冷却部15とは別に、仕上圧延直後の熱延鋼板10を強冷却する冷却装置21が、圧延スタンドの出側に設けられる。圧延スタンドの出側とは、複数配列された圧延スタンドF1~F7同士の間、あるいは最終の圧延スタンドF7の下流側の位置であり、好ましくは、十分に仕上圧延された後の熱延鋼板10を冷却するために、冷却装置21は、仕上圧延機14の最終の圧延スタンドF7に近い後段の圧延スタンドの出側に設けられる。本実施の形態では、仕上圧延機14は7基の圧延スタンドF1~F7を有し、例えばF5とF6との間、およびF6とF7との間の2箇所に、冷却装置21が配置される。ここで、強冷却とは、例えば冷却速度が50℃/s以上、1箇所の冷却装置21を通過することにより鋼板温度が30℃以上低下する冷却とする。
 図2は、本実施の形態の冷却装置21を設けた圧延スタンドの出側の構成の概略を示す。上下のガイド33間の距離(鉛直方向距離)は、圧延方向上流側から下流側に向けて大きくなる。このように上下のガイド33が配置されているのは、熱延鋼板10の先端が上下にバタついても、当該熱延鋼板10がその上下に設けられた設備に衝突しないようにするためである。そして、この上下のガイド33の先端部に、本実施の形態にかかる冷却装置21が設けられている。ガイド33は、ストリッパガイドという場合もあるが、本発明では単にガイドという。
 冷却装置21は、図3に示すように、密閉容器からなる冷却ボックス22と、冷却ボックス22内に設けられた複数のノズル23と、冷却ボックス22に冷却水を供給する配管24とを有している。冷却ボックス22は、図2に示すように上下それぞれのガイド33の圧延ロール(ワークロール)31から離れた方の先端部に一体化させて設けられている。冷却ボックス22は、熱延鋼板10が圧延スタンドを通過した直後に冷却されるように、圧延スタンドにできるだけ近く、且つ、熱延鋼板10(鋼板設計位置)にできるだけ近く設置することが好ましく、図2に示すように、ロール冷却水ヘッダー32の直後から設けられる。なお、熱延鋼板10の鋼板設計位置は、冷却装置21の設計時に設定される、熱延鋼板10が通板する位置であって、上下のガイド33の間において、例えば熱延鋼板10の定常状態時の通板角度等を踏まえて決定される。この鋼板設計位置の具体的な決定方法については後述する。
 冷却ボックス22の内部には、熱延鋼板10に向けて冷却水を噴射する複数のノズル23が備えられている。ノズル23には、フルコーンノズルまたは長円吹ノズルが用いられ、その噴射面がガイド33と略同一面上になるように、冷却ボックス22の幅方向および圧延方向にそれぞれ複数のノズル23が設けられる。なお、噴射面とは、複数のノズルの噴射口23aから構成される面であって、鋼板設計位置の上部に設けられた冷却ボックス22の場合には下面、鋼板設計位置の下部に設けられた冷却ボックス22の場合には上面となる面である。
 なお、図3に示すように、ノズル23の噴射口23aは、冷却ボックス22の鋼板設計位置側の表面と同一面又は当該表面よりも奥側(冷却ボックス22の中心側)に位置していてもよい。冷却ボックス22の鋼板設計位置側の表面にノズル23を配置する。その際、鋼板設計位置側の表面からノズル23の噴射口23aが突出せず、表面と同一面又は当該表面よりも奥側に位置する。すなわち、ノズル23の噴射口23aは、鋼板設計位置側の表面と同一面に配置されるか、あるいは当該表面より凹んで配置されている。かかる場合、仕上圧延において、熱延鋼板10の先端や尾端が圧延スタンドを通過する際、当該先端や尾端が上下に振れて冷却ボックス22に衝突したとしても、熱延鋼板10はノズル23には衝突しないので、ノズル23の損傷を防止することができる。
 また、ノズル23において噴射口23aと反対側の端部23bは、冷却ボックス22の内側の内面位置よりも、冷却ボックス22の内部に突出している。かかる場合、ノズル23から冷却水を噴射していない際にも、ノズル23が冷却ボックス22の内部に残存する冷却水によって冷却され、ノズル23の損傷を防止することができる。加えて、ノズル23からの冷却水の噴射をON/OFFする場合に、冷却ボックス22の内部に残存する水があるため、冷却水の噴射を停止した状態から冷却水の噴射を開始するまでの応答時間を短縮化することができる。また、ノズル23からの冷却水の噴射を停止するために給水を停止してから熱延鋼板10上に落ちる冷却水の量を低減することができ、すなわち、冷却水の噴射が実質的に停止されるまでの応答時間を短縮化することもできる。
 冷却ボックス22の内部は、図3に示すように、圧延方向において複数の区画22aに分割されている。各区画22aには、冷却水が供給される配管24が設けられ、配管24毎に、それぞれ三方弁25と流量調整弁26とが設けられている。三方弁25は、冷却ボックス22に冷却水を供給する給水ヘッダー27と、冷却水を排出する排水ヘッダー28あるいは排水エリアとの間に設けられている。図3では、冷却ボックス22の内部が、圧延方向に2列のノズル23毎に1つの区画22aになるように分割されているが、圧延方向に1列のノズル23毎に1つの区画22aになるように分割してもよく、また、圧延方向に3列以上のノズル23毎に1つの区画22aになるように分割しても構わない。このように区画22aは所定数のノズル23毎に区画され、本発明におけるノズル群を構成している。また、冷却ボックス22の内部が、複数の区画22aに分割されず、ひとつの区画22aであってもよい。
 配管24に三方弁25を設けることにより、配管24の内部には常に冷却水が満たされるようになっている。このため、熱延鋼板10を冷却する際、三方弁25を開く指示が出されてから冷却ボックス22内に冷却水が供給されるまでの時間が短く、応答性が良い。三方弁25には、例えば電磁弁が用いられる。また、三方弁25は、ノズル23の上端よりも僅かに低い高さに配置されることが好ましい。図3に図示はしないが、これにより、配管24の先端がノズル23の上端よりも僅かに低い高さになり、配管24の内部には常に冷却水が満たされることになる。
 冷却ボックス22内を圧延方向に複数の区画22aに分割し、それぞれの区画22aに配管24を設けることにより、区画22a毎に冷却水の流量を調整でき、熱延鋼板10の通板速度の広範囲な変化に対応して冷却能力を制御することができる。さらに、待機中に冷却ボックス22内に残留水が滞留できる量が多くなり、冷却水の噴射開始の応答速度を速めることができる。ガイド33に沿った方向で冷却ボックス22を設置すると、例えば上側のガイド33の先端に設けた冷却ボックス22は、図4に示すように傾斜する。この傾斜した冷却ボックス22内が分割されずに1つの空間に全てのノズル23が配置されている場合には、図4(a)に示すように、冷却水を噴射しないときには、最も低い位置のノズル23の上端よりも低い位置までしか水を滞留させておくことができない。この状態から、全てのノズル23から冷却水を噴射させるためには、最も高い位置のノズルの上端よりも高い位置まで水を供給するまでの応答時間がかかる。しかし、冷却ボックス22内を圧延方向に分割することにより、図4(b)に示すように、区画22a毎に、それぞれ低い方のノズル23の上端よりも低い位置まで水を滞留させておくことができる。したがって、噴射開始時には、より少ない冷却水の供給によって、全てのノズル23からの噴射が開始され、応答性が向上する。圧延方向に1列のノズル23毎に1つの区画22aになるように分割すれば、全てのノズル23の上端よりも僅かに低い位置まで水を滞留させておくことができるので、噴射時の応答を最も速くできる。
 ここで、図5に示すようにノズル23の先端(噴射口23a)から、熱延鋼板10の鋼板設計位置までの間の噴射中心軸(図中の一点鎖線)に沿った距離を、ノズル噴射距離Lと定義する。そして、上述したように冷却ボックス22が傾斜しているため、ノズル噴射距離Lが、冷却ボックス22の圧延方向で異なる。つまり、圧延スタンドから遠くなるほどノズル噴射距離Lが大きくなり、ノズル噴射距離Lが最も小さい位置が冷却装置21の最上流側にあり、ノズル噴射距離Lが最も大きい位置が冷却装置21の最下流側にある。したがって、全てのノズル23の噴射角度を等しくすると、熱延鋼板10から離れた位置から噴射した方が、熱延鋼板10に当たるときの噴流衝突部の広がりが大きくなり、同量の冷却水を噴射した場合、冷却能力が低くなる。また、噴流衝突部の重なりが発生し、冷却の不均一を生じる。そこで、図5に示すように、圧延スタンドから遠い、すなわちノズル噴射距離Lが長くなるほど、ノズル23の噴射角度を小さくする。なお、本実施の形態では、鋼板設計位置の上部のガイド33と冷却ボックス22が圧延方向から傾斜して配置されており、当該上部においてノズル23の噴射角度を小さくするが、下部においてもノズル23の噴射角度を小さくしてもよい。
 ここで、本発明において、圧延方向に隣接するノズル23について、ノズル噴射距離Lが最も大きい位置(図5では下流側)のノズル23の噴射角度が、ノズル噴射距離Lが最も小さい位置(図5では上流側)のノズル23の噴射角度より小さくする必要はない。つまり、本発明においては、(1)ノズル噴射距離Lが最も大きい位置のノズル23の噴射角度が、ノズル噴射距離Lが最も小さい位置のノズル23の噴射角度より小さいこと、且つ、(2)圧延方向に隣接するノズル23に対しノズル噴射距離Lがより小さい側のノズル23の噴射角度が、ノズル噴射距離Lが大きい側のノズル23の噴射角度より小さくないことという2つの条件を同時に満足していれば、圧延方向に隣接するノズル23が互いに同じ噴射角度であってもよい。
 ノズル噴射距離Lが大きくなるにしたがってノズル23の噴射角度を小さくしたうえで、さらに、圧延方向の任意の位置におけるノズル噴流の衝突面積の差、すなわち最大衝突面積と最小衝突面積の差を10%以下にすることにより、ノズル23の先端と熱延鋼板10との距離が変化して衝突面積が拡大した際の冷却能力の低下をより抑制し、圧延方向各位置での冷却能力をより一定にすることができる。その結果、熱延鋼板10をより均一に冷却することができる。
 具体的には、ノズル23がフルコーンノズルの場合、ノズル噴流の衝突面積(ノズル23から噴射された冷却水の熱延鋼板10における衝突面積が下記式(1)を満たすように、ノズル23の噴射角度αが設定される。なお、図6に示すようにノズル23の噴射角度αは、ノズル噴流(径D)の広がり角度である。
Figure JPOXMLDOC01-appb-M000005
ただし、
L:ノズル噴射距離(m)
α:ノズル噴射角度(度)
i、j:圧延方向に設けられたノズルの任意の列(i列、j列)
 ノズル23が長円吹ノズルの場合、ノズル噴流の衝突面積が下記式(2)を満たすように、ノズル23の長径方向噴射角度βと短径方向噴射角度γが設定される。なお、図7(a)に示すようにノズル23の長径噴射角度βは、ノズル噴流の長径D1の広がり角度であり、図7(b)に示すようにノズル23の短径噴射角度γは、ノズル噴流の短径D2の広がり角度である。
Figure JPOXMLDOC01-appb-M000006
ただし、
L:ノズル噴射距離(m)
β:ノズル長径方向噴射角度(度)
γ:ノズル短径方向噴射角度(度)
i、j:圧延方向に設けられたノズルの任意の列(i列、j列)
 ルーパー34によって仕上圧延スタンド直後の熱延鋼板10の進行方向を傾斜させることで、熱延鋼板10は、図8に示すように圧延方向である0(ゼロ)度から、上下のガイド33のなす角度θの中で通板することができる。すなわち、仕上圧延スタンド直後の熱延鋼板10の鋼板設計位置の角度は、0度から角度θの間にある。このガイド33の角度θ次第ではあるが、仕上圧延スタンド直後の熱延鋼板10の通板角度がどの角度であっても、圧延方向の任意の位置におけるノズル噴流の衝突面積の差、すなわち最大衝突面積と最小衝突面積の差を10%以下にすることは、容易ではない。
 しかしながら、圧延の開始時や終了時などを除く定常状態では、仕上圧延スタンド直後の熱延鋼板10の通板角度はほぼ一定の角度になる場合が多い。そこで、冷却装置21の設計時には、熱延鋼板10が定常状態時の通板角度等を踏まえ、設計の前提となる通板角度を予め決定する。このようにして決定される熱延鋼板10の位置が、本発明における鋼板設計位置である。そして、熱延鋼板10が予め決定された通板角度にある場合に、つまり、熱延鋼板10が定常状態時の通板角度にある場合などには、前記の差を10%以下にすることは可能である。このようにすることにより、熱延鋼板10が予め決定された通板角度にある場合、つまり、定常状態の通板角度の場合などにおいて、前記の差を10%以下とすることができ、この結果、熱延鋼板10をより均一に冷却することができる。
 ここで、実操業においては、仕上圧延スタンド直後の熱延鋼板10の定常状態の通板角度は、図8に示した0度から、図9に示すように上下のガイド33のなす角度θの1/2角度までの角度となる場合が多い。そこで、本実施の形態では、上記式(1)または式(2)を満たすように、熱延鋼板10の通板角度位置が0~θ/2度の中のある特定の角度が、設計時に予め決定された通板角度としている。そして、図8に示したように熱延鋼板10の鋼板設計位置は0度、すなわち圧延スタンドの下側の圧延ロール(ワークロール)31の上部頂点における接平面に設定されていてもよい。なお、接平面は、隣接する圧延スタンドの下側の圧延ロール(ワークロール)31の上部頂点を結ぶ線を含む圧延ロールに接する平面であり、隣接する圧延スタンドとは、冷却装置21が2つの圧延スタンド間にある場合は当該2つの圧延スタンドをいい、冷却装置21が最終の圧延スタンドF7の出側にある場合は、圧延スタンドF6、F7をいう。また、図9に示したように仕上圧延スタンド直後の鋼板設計位置は、上下のガイドのなす角度θの1/2の面に設定されていてもよい。このように冷却装置21を設計すると、仕上圧延スタンド直後の熱延鋼板10の通板角度が圧延方向である0度から上下のガイド33のなす角度θ(好ましくは、その角度θの1/2角度)までの中のある特定の角度となった場合に、ノズル23から噴射された冷却水の熱延鋼板10における衝突面積が上記式(1)または上記式(2)を満たすように冷却できる。
 換言すると、ノズル23から噴射された冷却水の熱延鋼板10における衝突面積が上記式(1)または上記式(2)を満たすような仕上圧延スタンド直後の通板角度が、圧延方向である0度から上下のガイド33のなす角度θ(好ましくは、その角度θの1/2角度)までの中に存在する冷却装置があれば、その冷却装置を用いて、仕上圧延スタンド直後の熱延鋼板10の傾斜角度を、その「上記式(1)または上記式(2)を満たすような通板角度」で通板しさえすれば、より均一に冷却することができる。
 本発明の冷却装置は、仕上圧延スタンド直後に、ある通板角度で熱延鋼板10が通板すると仮定した場合、ノズル23から噴射された冷却水の熱延鋼板10における衝突面積が上記式(1)または上記式(2)を満たす仕上圧延スタンド直後の通板角度が、圧延方向である0度から上下のガイド33のなす角度θの中にある冷却装置と見做すことができる。さらに、換言すると、仕上圧延スタンド直後の鋼板設計位置(の通板角度)とは、ノズル23から噴射された冷却水の熱延鋼板10における衝突面積が上記式(1)または上記式(2)を満たす角度(ただし、その角度は、圧延方向である0度から上下のガイド33のなす角度θの中にある。)の中の任意の角度と見做すことができる。
 なお、本実施の形態において、ノズル23からの冷却水の水量密度Waが下記式(3)を満たすのが好ましい。式(3)は、熱延鋼板10の温度をある一定程度下げる際の必要冷却能力を示している。すなわち、式(3)の左辺において、分子である(Wa0.5×Ma)は、(熱流束に相当する単位時間単位面積当たりの冷却能力指標)×(冷却範囲長さ)であり、全冷却能力を示している。また、分母である(t×V)は、単位時間に通過する熱延鋼板(材料)の単位幅での体積であり、熱延鋼板を1℃下げるのに必要な熱量に相当している。そして、発明者らが鋭意検討した結果、式(3)の左辺が一定値0.08以上であれば、結晶粒を適切に制御できることを見出した。なお、冷却範囲長さMaは、例えば1m以上3m以下である。かかる場合、Ar変態温度からAr変態温度-30℃までの40℃以上の冷却を圧延直後に行うことができ、これにより、結晶粒の粗大化を十分に防止し、結晶粒の微細化を行うことができる。
Wa0.5×Ma/(t×V)≧0.08 ・・・(3)
ただし、
Wa:ノズル23からの冷却水の水量密度(m/m・分)
Ma:冷却範囲長さ(m)
t:熱延鋼板10の板厚(mm)
V:熱延鋼板10の通板速度(m/s)
 なお、上記式(3)に関し、特開2009-241115号公報には、冷却水の水量密度W(リットル/m・分)がW0.663×M≧260を満足し、冷却範囲長さMが1.8m以下を満足することが開示されている。しかしながら、この特開2009-241115号公報に開示された、冷却水の水量密度の条件では、熱延鋼板の板厚や熱延鋼板の通板速度の条件がなく、不十分である。
 また、上下のガイド33のなす角度θは、例えば8度以上30度以下の範囲内にある。前記角度θを、例えば、8度以上25度以下または10度以上30度以下の範囲内としてもよい。
 また、本実施の形態では除外したが、本発明においては、冷却装置の設計時に予め決定される仕上圧延スタンド直後の熱延鋼板10の通板角度を、上下のガイド33のなす角度θ以下であれば、上下のガイド33のなす角度θの1/2角度を超えてもよい。
 また、上記式(1)または上記式(2)の中で、iおよびjは、圧延方向に設けられたノズル23の任意の列(i列、j列)としている。これは、上記式(1)または上記式(2)は、すべてのノズル列に対し(L・tanα)を算出し、その最大値と最小値との比(最大値が分母)が0.90以上であることを意味する。さらに言えば、上記式(1)においてノズル噴射角度αが一定の場合、圧延方向の任意の位置におけるノズル噴流の衝突面積の差を10%以下にするには、すべてのノズル列に対し、ノズル噴射距離Lの最大値と最小値との比(最大値が分母)が0.90の平方根(小数点以下2桁に丸めると0.95)以上であることを意味する。すなわち、上記式(1)を満たすためには、ノズル噴射距離Lの最大値と最小値との差が、その最大値の5%以内である必要がある。同様に、上記式(2)においても、ノズル長径方向噴射角度βが一定であり、且つ、ノズル短径方向噴射角度γが一定の場合、ノズル噴射距離Lの最大値と最小値との差が、その最大値の5%以内である必要がある。
 また、本冷却装置21において使用されるノズルは、同一種類のノズル(例えば、フルコーンノズル、長円吹きノズル)であることが、好ましい。
 以上の冷却装置21により、圧延スタンドを通過して熱間圧延された熱延鋼板10は、圧延ロール31を離れた直後にひずみが残存した状態で、冷却ボックス22から噴射される冷却水により冷却される。この冷却は、例えば一箇所のスタンド間で30℃以上の強冷却とし、これにより、例えばAr変態点までの時間を短縮し、結晶粒径の拡大を抑制して細粒化し、熱延鋼板10の材質の品質向上を図ることができる。
 熱延鋼板10の通板速度が遅い場合には、冷却ボックス22内のノズル23のうち、圧延スタンドに近い方のノズル23から冷却水を噴射する。この制御は三方弁により行われ、予め設定した通板速度に応じて、圧延スタンドに近い側を優先して、冷却水を噴射するノズル23の区画22aに冷却水を供給し、それ以外の、圧延スタンドから遠い方のノズル23の区画22aに設けられた三方弁25を排水ヘッダー28あるいは排水エリアに向けて開放する。通板速度が増加して冷却能力を向上させたい場合には、排水ヘッダー28に向けて開放していた三方弁25を、圧延スタンドに近い側から遠い側へ順次、冷却ボックス22に向けて開放し、熱延鋼板10に冷却水を噴射する区画22aを増やす。それまで冷却水を噴射していなかったノズル23の区画22aにも、ノズル23の冷却ボックス22内での流入口が冷却ボックス22内に入り込んでいるため、ノズル23の上端よりも僅かに下方までは水が滞留しており、また配管24内にも常に水が満たされているので、三方弁25を切り替えると速やかにノズル23から冷却水を噴射することができる。通板速度が減速する際には、圧延スタンドから遠い側の区画22aから順に、三方弁25を排水側へ切り替える。
 以上のように、圧延スタンドの出側に設けられた上下のガイド33に冷却ボックス22を設け、冷却ボックス22内のノズル23の噴射面をガイド33と略同一面とすることにより、圧延直後の熱延鋼板10を近い位置から冷却できるうえ、熱延鋼板10がノズル23に引っかからない。また、ガイド33に冷却ボックス22を設けることにより、ガイド33の位置を避けて別体として設けていた従来の冷却装置よりも、圧延スタンドの近くから冷却を開始することができる。したがって、スペースが限られたスタンド間でも、冷却ボックス22の圧延方向の長さ寸法を大きく確保し、冷却能力を高めることができる。
 また、圧延スタンドの圧延ロール31を交換する際には、ガイド33を圧延方向下流側に退避させる必要があり、冷却ボックス22とガイド33とが分離した構造の場合、退避時のガイド33に衝突しないように、冷却ボックス22を別途移動させなければならない。本発明によれば、ガイド33に冷却ボックス22が設けられているので、圧延ロール31交換時の退避作業に手間がかかることがなく、冷却ボックス22が設置されていないときと同様に行うことができる。
 熱間圧延での通板速度は、一般には所望する生産性等により変動している。通板速度の変化が大きい場合には、冷却能力もそれに応じて変化させることにより鋼板温度を一定にし、品質を長手方向で均一にすることが必要である。このとき、低圧での水の噴射は、噴流形状が悪化して冷却能が均一でないことを考慮すると、流量調整弁26のみによる調整では、冷却水量の実質的な制御範囲が狭いと考えられる。本実施の形態のように、冷却ボックス22内を分割すれば、流量調整弁26の制御範囲に加えて、分割した区画22aによる水量制御を行うことで、制御可能範囲を広げることができる。また、オンオフ弁の場合、冷却水の供給が停止した状態から冷却水を流すため応答速度が遅れるが、本実施の形態のように三方弁25を設けることにより、噴射方向を切り替えるだけで、大水量でも迅速な切り替えが可能となる。なお、大水量とは、例えば2~10m/m/minである。
 以上の実施の形態では、冷却ボックス22において複数のノズル23は、噴射面がガイド33と略同一面上になるように設けられていたが、当該噴射面はガイド33と同一面上になくてもよい。図10に示すようにノズル23の噴射面は、圧延方向上流側から下流側に向けて湾曲していてもよい。かかる場合でも上記実施の形態と同様の効果を享受することができ、ノズル23の噴射角度を、圧延方向上流側から下流側に向けて小さくすることで、冷却能力を均一にして、熱延鋼板を均一に冷却することができる。また、図10の実施の形態のように、上側の複数のノズル23の噴射面は、ガイド33と同一面と同じか、またはその面の上方にあってもよい。この場合でも、下側の複数のノズル23の噴射面は、ガイド33と同一の面のままとしてもよい。
 また、図11に示すように上側の冷却ボックス22において複数のノズル23は、噴射面がガイド33より上方になるように設けられていてもよい。図示はしないが、下側の冷却ボックス22においても複数のノズル23は、噴射面がガイド33より下方になるように設けられていてもよい。このように複数のノズル23の噴射面は、ガイド33がなす面より、熱延鋼板10の鋼板設計位置の反対側に配置されていてもよい。
 また、以上の実施の形態では、圧延スタンドから遠くなるほど、複数のノズル23からのノズル噴射距離は大きくなっていたが、図11に示すように下側の冷却ボックス22においてノズル噴射距離は小さくなってもよい。すなわち、ノズル噴射距離が最も大きい位置が冷却装置21の最上流側にあってもよい。図示はしないが、上側の冷却ボックス22においてもノズル噴射距離は小さくなってもよい。圧延スタンドから遠くなるほど、ノズル噴射距離は大きくなる場合と小さくなる場合のいずれの場合でも、(1)ノズル噴射距離Lが最も大きい位置のノズル23の噴射角度が、ノズル噴射距離Lが最も小さい位置のノズル23の噴射角度より小さいこと、且つ、(2)圧延方向に隣接するノズル23に対しノズル噴射距離Lがより小さい側のノズル23の噴射角度が、ノズル噴射距離Lが大きい側のノズル23の噴射角度より小さくないことという2つの条件を同時に満足していれば、熱延鋼板10における冷却水の衝突面積を圧延方向に均一にでき、上記実施の形態と同様の効果を享受することができる。
 また、以上の実施の形態では、複数のノズル23は冷却ボックス22に設けられていたが、図12に示すように冷却ボックス22を省略し、複数のノズル23は、ガイド33に設けられていてもよい。さらにこの場合、図13に示すように所定数のノズル23毎に、図示の例においては2つのノズル23で1つのノズル群を構成してもよい。各ノズル群は、上記実施の形態と同様に三方弁25と流量調整弁26が設けられた配管24に接続され、さらに配管24は給水ヘッダー27と排水ヘッダー28に接続されている。そして、かかる場合にも、上記実施の形態と同様の効果を享受することができる。
 複数のノズル23は、図12に示したようにガイド33の中、または、図8~11に示したようにガイド33の下流側に隣接した位置、のいずれか片方のみに設けられてもよい。一方で、複数のノズル23は、図14に示すようにガイド33の中とガイド33の下流側に隣接した位置の両方に設けられてもよい。この場合、熱延鋼板10の上下面の両方に向けて冷却水を噴射するノズル23がある場合、一方の面に向けて冷却水を噴射する複数のノズル23のみが、ガイド33の中とガイド33の下流側に隣接した位置の両方に設けられてもよい。また、熱延鋼板10の上下面の両方に向けて冷却水を噴射する複数のノズル23が、共にガイド33の中とガイド33の下流側に隣接した位置の両方に設けられてもよい。本発明は、ガイド33の中とガイド33の下流側に隣接した位置の両方に設けられた、これらの実施形態も含むものとする。
 以上の実施の形態では、冷却装置21を、圧延スタンドF5とF6との間、および圧延スタンドF6とF7との間の2箇所に設ける例を示したが、所望する熱延鋼板10の性能によって、圧延スタンドF6とF7との間の1箇所のみでもよい。あるいは、最終の圧延スタンドF7の出側に1箇所だけ設けてもよい。この場合には、仕上圧延機14の下流側に設けられている熱延鋼板10の寸法や温度等を計測する計測装置(図15の計測装置50に相当する。)が水の影響を受けないように、冷却装置21の下流側に水切り装置を設けることが好ましい。
 また、以上の実施の形態において、圧延スタンド間に冷却装置21を配置する場合、当該冷却装置21よりも下流側の圧延スタンドの圧延ロール31を開放してもよい。例えば圧延スタンドF6とF7の間に冷却装置21を配置する場合、圧延スタンドF7の圧延ロール31を開放する。かかる場合、圧延直後の急冷却を行った後の軽圧下がないので、軽圧下の悪影響が発生することなく、仕上圧延直後の急冷却によって熱延鋼板10の機械的特性を向上することができる。
 また、上述のように圧延ロール31を開放する場合、当該圧延ロール31のロールギャップを狙い板厚に7mmを加えた値以下とするのが好ましい。かかる場合、圧延スタンドから漏出する板上水の量を制限することができる。さらに、最下流側(最終)の圧延スタンドF7の出側に水切り装置(図示せず)を設けるのが好ましい。通常、最下流側(最終)の圧延スタンドF7の出側に、熱延鋼板10の寸法や温度等を計測する計測装置が設けられている。このような場合、圧延スタンドF7の出側に水切り装置を設けると、圧延スタンドF7による圧下を行わないにもかかわらず、仕上圧延機14の下流側の計測装置に悪影響を及ぼすことがなくなるためである。なお、最終の圧延スタンドF7の下流側に本発明の冷却装置21がある場合、前記計測装置の位置は、本発明の冷却装置21の下流側となる。
 以上の実施の形態において、図15に示すように仕上圧延機14の最終の圧延スタンドF7の出側の、熱延鋼板10の寸法や温度等を計測する計測装置50の下流側に、熱延鋼板10の上面を冷却する冷却帯60を備えていてもよい。冷却帯60は、例えば冷却部15の上流側に設けられる。また、冷却帯60には、例えば熱延鋼板10の上面に向けて冷却水を噴射する冷却ノズル(図示せず)が、圧延方向に複数並べて配置されている。なお、これらの冷却ノズルとしては、例えばスリットラミナーノズルやパイプラミナーノズル、スプレーノズルが用いられる。
 冷却帯60の冷却ノズルからの冷却水の水量密度は2m/m・分以上で、下記式(4)を満たすのが好ましい。2m/m・分未満になると結晶粒の微細化が困難である。式(4)は、上述した式(3)と同様に、熱延鋼板10の温度をある一定程度下げる際の必要冷却能力を示している。すなわち、式(4)の左辺において、分子である(Wb0.5×Mb)は、(熱流束に相当する単位時間単位面積当たりの冷却能力指標)×(冷却範囲長さ)であり、全冷却能力を示している。また、分母である(t×V)は、単位時間に通過する熱延鋼板(材料)の単位幅での体積であり、熱延鋼板を1℃下げるのに必要な熱量に相当している。そして、発明者らが鋭意検討した結果、式(4)の左辺が一定値0.55以上であれば、結晶粒を適切に制御できることを見出した。かかる場合、例えば圧延スタンドF7の出側に設けられた冷却装置21で圧延直後の熱延鋼板10を冷却することにより、結晶粒の粗大化を防止し、さらに冷却帯60で熱延鋼板10を冷却することにより、結晶粒の微細化を図り、強度調整を行うことができる。
Wb0.5×Mb/(t×V)≧0.55 ・・・(4)
ただし、
Wb:冷却ノズルからの冷却水の水量密度(m/m・分)
Mb:冷却帯60の冷却範囲長さ(m)
t:熱延鋼板10の板厚(mm)
V:熱延鋼板10の通板速度(m/s)
 なお、図示の例においては、冷却帯60は熱延鋼板10の上面側に設けられていたが、下面側に設けられていてもよく、あるいは上面側と下面側の両側に設けられていてもよい。万一計測装置50が設置されていない場合、冷却帯60は本発明の冷却装置21の下流側に配置されてもよい。
 以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施の形態では、冷却ボックス22を伴ったまたは冷却ボックス22を省略した複数のノズル23を、上下両側のガイド33の中および/または当該ガイド33の下流側に隣接して設けることとしたが、上下のうちいずれか一方のみのガイド33の中および/または当該ガイド33の下流側に隣接して設けてもよい。また、上記実施の形態では、上下両側の冷却ボックス22を伴ったまたは冷却ボックス22を省略した複数のノズル23が、上記式(1)または式(2)を満たしていたが、上下のうちいずれか一方の冷却ボックス22を伴ったまたは冷却ボックス22を省略した複数のノズル23が、上記式(1)または式(2)を満たしていてもよい。
 また、上記実施の形態では、上下のガイド33間の距離は、圧延方向上流側から下流側に向けて大きくなるが、さらに当該ガイド33の下流側に圧延方向(水平方向)となるガイドが設けられていてもよい。また、このような水平方向のガイドにも、熱延鋼板10を冷却する冷却装置が設けられていてもよい。さらには、本発明の冷却装置21の下流側に、ガイドがない別の冷却装置が設けられてもよい。
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、すなわち上下のガイドのなす角度θを12度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度をθ/2角度である6度とした(図9参照)。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)を表1に示す。なお、表1においては、上記(1)の指標(ノズル噴流の最大衝突面積と最小衝突面積の差を10%以下にする)についても評価すべく、基準の衝突面積から+10%の差異となる広がり角度(表中、広がり角度+10%)と、基準の衝突面積から-10%の差異となる広がり角度(表中、広がり角度-10%)も併せて表記する。
 そして、表2に示すように、上面側のノズル噴流の広がり角度(表中、上面広がり角度)と、下面側のノズル噴流の広がり角度(表中、下面広がり角度)とを変動させて、熱延鋼板の幅方向の温度バラツキを確認した。なお、表2においては、冷却による幅方向最大温度降下も併せて表記している。
 実施例1~3では、上面側および下面側のノズル噴流の広がり角度がそれぞれ、圧延方向上流側から下流側に小さくなっている。さらに実施例2、3では上面側および下面側のノズルともに上記式(1)も満たしている。かかる場合、幅方向の温度バラツキを18℃、11℃、13℃と、20℃以下に小さくできた。そして、このように熱延鋼板を均一に冷却することで、機械的性質に優れた熱延鋼板を製造できる。なお、表2中の実施例1の下線部は上記式(1)を満たしておらず、実施例2~3に比べて均一冷却の効果は小さかった。
 一方、比較例1~3に示すように、上流側および下流側のノズル噴流の広がり角度を、圧延方向に同一にすると、幅方向の温度バラツキが25℃、27℃、26℃と大きくなった。したがって、比較例1~3では、熱延鋼板の機械的性質に偏差が生じた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度を圧延方向である0度とした(図8参照)。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)を表3に示す。なお、表3においては、上記(1)の指標(ノズル噴流の最大衝突面積と最小衝突面積の差を10%以下にする)についても評価すべく、基準の衝突面積から+10%の差異となる広がり角度(表中、広がり角度+10%)と、基準の衝突面積から-10%の差異となる広がり角度(表中、広がり角度-10%)も併せて表記する。
 そして、表4に示すように、上面側のノズル噴流の広がり角度(表中、上面広がり角度)と、下面側のノズル噴流の広がり角度(表中、下面広がり角度)とを変動させて、熱延鋼板の幅方向の温度バラツキを確認した。なお、表4においては、冷却による幅方向最大温度降下も併せて表記している。
 実施例4では、上面側のノズル噴流の広がり角度が、圧延方向上流側から下流側に同じまたは小さくなり、さらに実施例5では、上面側のノズルは上記式(1)も満たしている。かかる場合、幅方向の温度バラツキを18℃、11℃と、20℃以下に小さくできた。そして、このように熱延鋼板を均一に冷却することで、機械的性質に優れた熱延鋼板を製造できる。なお、表4中の実施例4の下線部は上記式(1)を満たしておらず、実施例5に比べて均一冷却の効果は小さかった。
 一方、比較例4、5に示すように、上流側および下流側のノズル噴流の広がり角度を圧延方向に同一にすると、幅方向の温度バラツキが27℃、29℃と大きくなった。したがって、比較例4、5では、熱延鋼板の機械的性質に偏差が生じた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、すなわち上下のガイドのなす角度θを12度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度をθ/2角度である6度とした(図9参照)。ノズルの種類は長円吹ノズルとした。各ノズルの位置およびノズル噴流の長径および短径の広がり角度(ノズルの噴射角度)を表5に示す。なお、表5においては、上記(2)の指標(ノズル噴流の最大衝突面積と最小衝突面積の差を10%以下にする)についても評価すべく、基準の衝突面積から+10%の差異となる広がり角度(表中、広がり角度+10%)と、基準の衝突面積から-10%の差異となる広がり角度(表中、広がり角度-10%)も併せて表記する。
 そして、表6に示すように、上面側のノズル噴流の広がり角度(表中、長径広がり角度および短径広がり角度)と、下面側のノズル噴流の広がり角度(表中、長径広がり角度および短径広がり角度)とを変動させて、熱延鋼板の幅方向の温度バラツキを確認した。なお、表6においては、冷却による幅方向最大温度降下も併せて表記している。
 実施例6では、上面側のノズル噴流の長径広がり角度および短径広がり角度、下面側のノズル噴流の長径広がり角度および短径広がり角度がそれぞれ、圧延方向上流側から下流側に同じまたは小さくなっている。かかる場合、幅方向の温度バラツキを17℃に小さくできた。そして、このように熱延鋼板を均一に冷却することで、機械的性質に優れた熱延鋼板を製造できる。但し、表6中の実施例6の下線部は上記式(2)を満たしていない。
 また、実施例7では、最下流側(1200mm)に比べて最上流側(0mm)の上面側のノズル噴流の長径広がり角度および短径広がり角度、下面側のノズル噴流の長径広がり角度および短径広がり角度はそれぞれ小さい。また、上面側のノズル噴流の長径広がり角度および短径広がり角度、下面側のノズル噴流の長径広がり角度および短径広がり角度はそれぞれ、圧延方向上流側から下流側に小さくなっており、さらに、上面側と下面側ともに上記式(2)を満たしている。かかる場合、幅方向の温度バラツキを12℃と十分に小さくできた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度を圧延方向である0度とした(図8参照)。ノズルの種類は長円吹ノズルとした。各ノズルの位置およびノズル噴流の長径および短径の広がり角度(ノズルの噴射角度)を表7に示す。なお、表7においては、上記(2)の指標(ノズル噴流の最大衝突面積と最小衝突面積の差を10%以下にする)についても評価すべく、基準の衝突面積から+10%の差異となる広がり角度(表中、広がり角度+10%)と、基準の衝突面積から-10%の差異となる広がり角度(表中、広がり角度-10%)も併せて表記する。
 そして、表8に示すように、上面側のノズル噴流の広がり角度(表中、長径広がり角度および短径広がり角度)と、下面側のノズル噴流の広がり角度(表中、長径広がり角度および短径広がり角度)とを変動させて、熱延鋼板の幅方向の温度バラツキを確認した。なお、表8においては、冷却による幅方向最大温度降下も併せて表記している。
 実施例8では、上面側のノズル噴流の長径広がり角度および短径広がり角度がそれぞれ、圧延方向上流側から下流側に小さくなり、さらに上面側のノズル(長径側)は上記式(2)を満たしている。かかる場合、幅方向の温度バラツキを16℃に小さくできた。そして、このように熱延鋼板を均一に冷却することで、機械的性質に優れた熱延鋼板を製造できる。但し、表8中の実施例8の下線部は上記式(2)を満たしていない。
 また、実施例9では、最下流側(1200mm)に比べて最上流側(0mm)の上面側のノズル噴流の長径広がり角度および短径広がり角度はそれぞれ小さい。また、上面側のノズル噴流の長径広がり角度および短径広がり角度はそれぞれ、圧延方向上流側から下流側に同じまたは小さくなっており、さらに、上面側と下面側ともに上記式(2)を満たしている。かかる場合、幅方向の温度バラツキを11℃と十分に小さくでき、実施例8に比べて均一冷却の効果は大きかった。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 板幅1200mmの表9の条件の熱延鋼板を、熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長・上下面の水量密度はともに表9のものとし、ノズル列は5列とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、すなわち上下のガイドのなす角度θを12度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度を0度とした。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)は表3に示したとおりである。表4の実施例4のように広がり角度を設定した。表9にその結果を示す。式(3)の指標(式(3)の左辺が0.08以上)に従い、実施例10~18に示すように式(3)を満たす条件であれば、鋼板の温度降下をAr変態温度より高い温度からAr変態温度-30℃以下に冷やすことが可能な40℃以上の温度降下を得ることができた。しかし、比較例6~9に示すように式(3)の条件を満たさない状態では、温度降下は40℃以下であり、所望する金属組織微細化の効果を得るには不十分な冷却であった。
Figure JPOXMLDOC01-appb-T000015
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF6の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とし、ルーパー34による圧延スタンドF6直後の熱延鋼板10の通板角度を圧延方向である0度とした(図8参照)。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)は表3に示したとおりである。
 そして、表4の実施例4に示すように、上面側のノズル噴流の広がり角度(表中、上面広がり角度)と、下面側のノズル噴流の広がり角度(表中、下面広がり角度)とを設定した。F7スタンドの出側には、水切り装置を設置し、F7スタンドのギャップを板厚+3mmから+15mmまで変化させたところ、板厚+7mmを超えると流出水が多くなり、F7スタンド出側の水切り水量を板厚+7mm以下の場合の1.5倍以上にしないと、水切り装置の下流側において、板厚計測や板温度計測ができない箇所が発生することがわかった。
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF7の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とした。なお、圧延スタンドF7の後方にはルーパー34は設置されないので、圧延スタンドF7直後の熱延鋼板10の通板角度は圧延方向である0度となる。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)は表3に示したとおりである。
 そして、表4の実施例4に示すように、上面側のノズル噴流の広がり角度(表中、上面広がり角度)と、下面側のノズル噴流の広がり角度(表中、下面広がり角度)とを設定した。圧延スタンドF7の出側には、水切り装置を設置し、圧延スタンドF7出側の水切り水量を、圧延スタンドF6の出側に冷却装置21を設置し圧延スタンドF7を圧延ロールを開放して水切り装置として機能させた上記実施例6の場合に比較して、2倍以上に設定したところ、水切り装置の下流側において、板厚計測や板温度計測に影響しないことがわかった。
 板厚3mm、板幅1200mmの熱延鋼板を、通板速度400~600mpmで熱間仕上圧延し、図1の圧延スタンドF7の出側に、本実施例にかかる冷却装置21を設置した。冷却長は1.2m、ノズル列は5列とした。上面側のノズルからの冷却水の水量密度は7m/m・分とし、下面側のノズルからの冷却水の水量密度は10m/m・分とした。上側ガイドの傾き角度は12度、下側ガイドの傾き角度は0度とした。なお、圧延スタンドF7の後方にはルーパー34は設置されないので、圧延スタンドF7直後の熱延鋼板10の通板角度は圧延方向である0度となる。ノズルの種類はフルコーンノズルとした。各ノズルの位置およびノズル噴流の広がり角度(ノズルの噴射角度)は表3に示したとおりである。
 また、本実施例ではさらに、図15に示した冷却帯60を、冷却部15の上流側、且つ熱延鋼板10の上面側に設置した。冷却帯60の冷却範囲長さ(設備長さ)は15mとした。冷却帯60の冷却ノズルからの冷却水の水量密度は3m/m・分とした。本実施例において冷却帯60は、上記式(4)を満たしている。
 本実施例のように冷却装置21と冷却帯60による熱延鋼板10の冷却を行った場合、冷却装置21を設け冷却帯60を設けない実施例7の場合と比較しても当該熱延鋼板10の金属組織の微細化をさらに進めることができた。
 本発明は、熱間圧延工程の仕上圧延後の熱延鋼板の結晶粒径を細粒化するための冷却装置および冷却方法として適用され、例えば高張力鋼(ハイテン)や、極低炭素鋼(IF鋼:Interstitial atom free steel)等のような高品質鋼の品質向上効果を図る際に好適である。
1  熱間圧延設備
5  スラブ
6  粗バー
10 熱延鋼板
11 加熱炉
12 幅方向圧延機
13 粗圧延機
14 仕上圧延機
15 冷却部
16 巻取装置
21 冷却装置
22 冷却ボックス
22a 区画
23 ノズル
23a 噴射口
23b 端部
24 配管
25 三方弁
26 流量調整弁
27 給水ヘッダー
28 排水ヘッダー
31 圧延ロール(ワークロール)
32 ロール冷却水ヘッダー
33 ガイド
34 ルーパー
50 計測装置
60 冷却帯
F1、F2、F3、F4、F5、F6、F7 圧延スタンド(仕上圧延スタンド)

Claims (18)

  1. 複数の圧延スタンドからなる熱間仕上圧延機において、前記圧延スタンドで圧延された直後の熱延鋼板の上下面の一方または両方に向けて冷却水を噴射する複数のノズルを有し、
    前記ノズルは、前記圧延スタンドの出側において上下に設けられたガイドのうち、一方または両方のガイドの中または当該ガイドの下流側に隣接して設けられ、
    前記上下のガイドの間に設定される前記熱延鋼板の鋼板設計位置を基準とし、前記ノズルの噴射口から前記鋼板設計位置までの間の噴射中心軸に沿ったノズル噴射距離が、圧延方向のノズルの位置により変化する冷却装置であって、
    前記ノズル噴射距離が最も大きい位置の前記ノズルの噴射角度が、前記ノズル噴射距離が最も小さい位置の前記ノズルの噴射角度より小さく、
    前記ノズル噴射距離が大きくなるに従い、前記ノズルの噴射角度が同じまたは小さくなることを特徴とする、熱延鋼板の冷却装置。
  2. 前記鋼板設計位置は、前記圧延スタンドの下側圧延ロールの上部頂点における接平面に設定されていることを特徴とする、請求項1に記載の熱延鋼板の冷却装置。
  3. 前記鋼板設計位置は、前記上下のガイドのなす角度の1/2角度の面に設定されていることを特徴とする、請求項1に記載の熱延鋼板の冷却装置。
  4. 前記ノズル噴射距離が最も小さい位置が、前記冷却装置の最上流側にあり、
    前記ノズル噴射距離が最も大きい位置が、前記冷却装置の最下流側にあることを特徴とする請求項1~3のいずれか一項に記載の熱延鋼板の冷却装置。
  5. 前記ノズル噴射距離が最も大きい位置が、前記冷却装置の最上流側にあり、
    前記ノズル噴射距離が最も小さい位置が、前記冷却装置の最下流側にあることを特徴とする請求項1~3のいずれか一項に記載の熱延鋼板の冷却装置。
  6. 前記ノズルは冷却ボックスの内部に設けられていることを特徴とする、請求項1~5のいずれか一項に記載の熱延鋼板の冷却装置。
  7. 前記冷却ボックスの前記ノズルの噴射口は、前記鋼板設計位置側の表面と同一面又は当該表面よりも奥側(冷却ボックスの中心側)に位置し、
    前記ノズルの噴出口と反対側端部は、前記冷却ボックス内側の内面位置よりも冷却ボックス内に突出していることを特徴とする、請求項6に記載の熱延鋼板の冷却装置。
  8. 前記ノズルの噴射口は、前記ガイドがなす面と同一面上に配置されていることを特徴とする、請求項1~6のいずれか一項に記載の熱延鋼板の冷却装置。
  9. 前記ノズルの噴射口は、前記ガイドがなす面より前記鋼板設計位置の反対側に配置されていることを特徴とする、請求項1~6のいずれか一項に記載の熱延鋼板の冷却装置。
  10. 前記ノズルはフルコーンノズルであり、
    前記ノズルから噴射された冷却水の前記熱延鋼板における衝突領域が下記式(1)を満たすことを特徴とする、請求項1~9のいずれか一項に記載の熱延鋼板の冷却装置。
    Figure JPOXMLDOC01-appb-M000001
    ただし、
    L:ノズル噴射距離(m)
    α:ノズル噴射角度(度)
    i、j:圧延方向に設けられた前記ノズルの任意の列(i列、j列)
  11. 前記ノズルは長円吹ノズルであり、
    前記ノズルから噴射された冷却水の前記熱延鋼板における衝突面積が下記式(2)を満たすことを特徴とする、請求項1~9のいずれか一項に記載の熱延鋼板の冷却装置。
    Figure JPOXMLDOC01-appb-M000002
    ただし、
    L:ノズル噴射距離(m)
    β:ノズル長径方向噴射角度(度)
    γ:ノズル短径方向噴射角度(度)
    i、j:圧延方向に設けられた前記ノズルの任意の列(i列、j列)
  12. 前記ノズルからの冷却水の水量密度は下記式(3)を満たすことを特徴とする、請求項1~11のいずれか一項に記載の熱延鋼板の冷却装置。
    Wa0.5×Ma/(t×V)≧0.08 ・・・(3)
    ただし、
    Wa:前記ノズルからの冷却水の水量密度(m/m・分)
    Ma:前記冷却装置における圧延方向の冷却範囲長さ(m)
    t:前記熱延鋼板の板厚(mm)
    V:前記熱延鋼板の通板速度(m/s)
  13. 熱間仕上圧延機の最下流側の前記圧延スタンドの出側の前記熱延鋼板の計測を行う計測装置の下流側に、前記熱延鋼板の上下面の一方または両方に向けて冷却水を噴射する複数の冷却ノズルを備えた冷却帯を配置し、前記冷却ノズルからの冷却水の水量密度は2m/m・分以上で、下記式(4)を満たすことを特徴とする、請求項1~12のいずれか一項に記載の熱延鋼板の冷却装置。
    Wb0.5×Mb/(t×V)≧0.55 ・・・(4)
    ただし、
    Wb:前記冷却ノズルからの冷却水の水量密度(m/m・分)
    Mb:前記冷却帯における圧延方向の冷却範囲長さ(m)
    t:前記熱延鋼板の板厚(mm)
    V:前記熱延鋼板の通板速度(m/s)
  14. 前記圧延スタンド間に前記冷却装置を配置し、
    前記冷却装置よりも下流側の前記圧延スタンドの圧延ロールを開放し、当該圧延ロールのロールギャップを狙い板厚に7mmを加えた値以下とし、
    熱間仕上圧延機の最下流側の前記圧延スタンドの出側において、当該最下流側の圧延スタンドから漏出した板上水を除去する水切り装置を配置することを特徴とする、請求項1~13のいずれか一項に記載の熱延鋼板の冷却装置。
  15. 熱間仕上圧延機の最下流側の前記圧延スタンドの出側に前記冷却装置を配置し、
    前記冷却装置の下流側に、当該冷却装置から漏出した板上水を除去する水切り装置を配置することを特徴とする、請求項1~13のいずれか一項に記載の熱延鋼板の冷却装置。
  16. 前記複数のノズルは、幅方向に配設されて列をなし、この列を圧延方向に所定数合わせて圧延方向に並ぶ複数のノズル群を構成し、
    前記複数のノズル群の数は、最大で、圧延方向に設けられた前記ノズルの圧延方向の列数と同じ数であり、
    前記ノズル群毎にそれぞれ冷却水が供給される配管が接続され、
    前記配管毎にそれぞれ三方弁および流量調整弁が設けられていることを特徴とする、請求項1~15のいずれか一項に記載の熱延鋼板の冷却装置。
  17. 請求項1~16のいずれか一項に記載の熱延鋼板の冷却装置を用いた冷却方法であって、
    熱間仕上圧延機の圧延スタンドの出側で、熱延鋼板の上下面の一方または両方に対して、前記ノズルから、冷却水を噴射することを特徴とする、熱延鋼板の冷却方法。
  18. 請求項16に記載の熱延鋼板の冷却装置を用いた冷却方法であって、
    熱間仕上圧延機の圧延スタンドの出側で、熱延鋼板の上下面の一方または両方に対して、前記ノズルから冷却水を噴射するに際し、
    前記熱延鋼板の通板速度に応じて前記熱延鋼板に冷却水を噴射する前記ノズル群の圧延方向の数を調整し、
    前記通板速度が増加する際には、前記圧延スタンドに近い側から順に遠い側へ、前記熱延鋼板に冷却水を噴射する前記ノズル群の数を増やし、
    前記通板速度が減速する際には、前記圧延スタンドから遠い側から順に、前記ノズル群内のノズルから前記熱延鋼板への噴射を閉止して排水側へ冷却水を流すことを特徴とする、熱延鋼板の冷却方法。
PCT/JP2017/033248 2016-09-23 2017-09-14 熱延鋼板の冷却装置及び冷却方法 WO2018056164A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17852941.8A EP3498389B1 (en) 2016-09-23 2017-09-14 Device and method for cooling hot-rolled steel sheet
US16/330,671 US11413670B2 (en) 2016-09-23 2017-09-14 Cooling device and cooling method of hot-rolled steel sheet
JP2018541011A JP6816772B2 (ja) 2016-09-23 2017-09-14 熱延鋼板の冷却装置及び冷却方法
BR112019004141A BR112019004141A2 (pt) 2016-09-23 2017-09-14 dispositivo e método para resfriar folha de aço laminada a quente
CN201780057160.1A CN109715306B (zh) 2016-09-23 2017-09-14 热轧钢板的冷却装置和冷却方法
KR1020197009618A KR102244393B1 (ko) 2016-09-23 2017-09-14 열연 강판의 냉각 장치 및 냉각 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016185395 2016-09-23
JP2016-185395 2016-09-23
JPPCT/JP2017/027720 2017-07-31
PCT/JP2017/027720 WO2018055918A1 (ja) 2016-09-23 2017-07-31 熱延鋼板の冷却装置及び冷却方法

Publications (1)

Publication Number Publication Date
WO2018056164A1 true WO2018056164A1 (ja) 2018-03-29

Family

ID=61690440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033248 WO2018056164A1 (ja) 2016-09-23 2017-09-14 熱延鋼板の冷却装置及び冷却方法

Country Status (2)

Country Link
CN (1) CN109715306B (ja)
WO (1) WO2018056164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174980A (zh) * 2018-08-23 2019-01-11 武汉钢铁有限公司 轧机机架间钢带冷却喷淋集管及其安装结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570410A (en) * 1978-11-03 1980-05-27 Davy Loewy Ltd Guide apparatus of rolling mill stand
JP2001246412A (ja) * 2000-03-01 2001-09-11 Nkk Corp 熱延鋼帯の冷却装置と、その冷却方法
JP2004306064A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Ind Ltd 高温鋼板の冷却装置
JP2008043988A (ja) * 2006-08-18 2008-02-28 Nippon Steel Corp 鋼板の冷却方法
JP2008110353A (ja) * 2006-10-30 2008-05-15 Jfe Steel Kk 熱延鋼帯の冷却方法
JP2009241114A (ja) * 2008-03-31 2009-10-22 Nippon Steel Corp 鋼板冷却装置
JP2009241113A (ja) * 2008-03-31 2009-10-22 Nippon Steel Corp 熱延鋼板の製造方法
JP2011011221A (ja) * 2009-06-30 2011-01-20 Sumitomo Metal Ind Ltd 熱延鋼板の冷却装置及びその動作制御方法、並びに、熱延鋼板の製造装置及び熱延鋼板の製造方法
WO2011065290A1 (ja) * 2009-11-24 2011-06-03 住友金属工業株式会社 熱延鋼板の製造装置、および熱延鋼板の製造方法
WO2012011578A1 (ja) * 2010-07-22 2012-01-26 新日本製鐵株式会社 鋼板の冷却装置及び鋼板の冷却方法
JP2014050878A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 鋼板の冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448632B (zh) * 2009-06-30 2014-09-03 新日铁住金株式会社 热轧钢板的冷却装置、冷却方法、制造装置及制造方法
JP5573837B2 (ja) * 2009-06-30 2014-08-20 新日鐵住金株式会社 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570410A (en) * 1978-11-03 1980-05-27 Davy Loewy Ltd Guide apparatus of rolling mill stand
JP2001246412A (ja) * 2000-03-01 2001-09-11 Nkk Corp 熱延鋼帯の冷却装置と、その冷却方法
JP2004306064A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Ind Ltd 高温鋼板の冷却装置
JP2008043988A (ja) * 2006-08-18 2008-02-28 Nippon Steel Corp 鋼板の冷却方法
JP2008110353A (ja) * 2006-10-30 2008-05-15 Jfe Steel Kk 熱延鋼帯の冷却方法
JP2009241114A (ja) * 2008-03-31 2009-10-22 Nippon Steel Corp 鋼板冷却装置
JP2009241113A (ja) * 2008-03-31 2009-10-22 Nippon Steel Corp 熱延鋼板の製造方法
JP2011011221A (ja) * 2009-06-30 2011-01-20 Sumitomo Metal Ind Ltd 熱延鋼板の冷却装置及びその動作制御方法、並びに、熱延鋼板の製造装置及び熱延鋼板の製造方法
WO2011065290A1 (ja) * 2009-11-24 2011-06-03 住友金属工業株式会社 熱延鋼板の製造装置、および熱延鋼板の製造方法
WO2012011578A1 (ja) * 2010-07-22 2012-01-26 新日本製鐵株式会社 鋼板の冷却装置及び鋼板の冷却方法
JP2014050878A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 鋼板の冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498389A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174980A (zh) * 2018-08-23 2019-01-11 武汉钢铁有限公司 轧机机架间钢带冷却喷淋集管及其安装结构

Also Published As

Publication number Publication date
CN109715306B (zh) 2022-01-14
CN109715306A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
JP4029871B2 (ja) 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
KR100976758B1 (ko) 열연 강대의 냉각 장치 및 방법
TWI460031B (zh) 熱軋鋼板之冷卻裝置
EP1935522B1 (en) Reversing rolling mill with cooling facility and corresponding method of cooling a steel plate or sheet
JP4586682B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
WO2010131467A1 (ja) 熱延鋼板の冷却方法及び冷却装置
JP4876782B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
WO2018055918A1 (ja) 熱延鋼板の冷却装置及び冷却方法
JP2016193446A (ja) 熱延鋼板の冷却方法及び冷却装置
JP5482070B2 (ja) 熱延鋼板の冷却方法及び冷却装置
JP6569843B1 (ja) 厚鋼板の冷却装置および冷却方法ならびに厚鋼板の製造設備および製造方法
JP5673530B2 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
JP5130970B2 (ja) 鋼材の冷却装置および冷却方法
KR20180098542A (ko) 금속 기판을 냉각하기 위한 프로세스 및 기기
WO2018056164A1 (ja) 熱延鋼板の冷却装置及び冷却方法
JP4337157B2 (ja) 鋼板の冷却方法およびその装置
JP6699808B1 (ja) 熱延鋼板の冷却装置および熱延鋼板の冷却方法
JP2006192455A (ja) 鋼板の冷却方法及び冷却装置
KR102638366B1 (ko) 연속 주조 주편의 2 차 냉각 방법 및 장치
JP2005288463A (ja) 鋼帯の冷却装置及び冷却方法
JP5467022B2 (ja) 熱延鋼帯の通板ガイドを有する冷却装置
JP3173574B2 (ja) 高温鋼板の冷却装置
JP2011045896A (ja) 熱延鋼板の冷却設備および冷却方法
JP2003145212A (ja) 熱延鋼帯の冷却制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541011

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004141

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009618

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017852941

Country of ref document: EP

Effective date: 20190315

ENP Entry into the national phase

Ref document number: 112019004141

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190228