WO2012011578A1 - 鋼板の冷却装置及び鋼板の冷却方法 - Google Patents
鋼板の冷却装置及び鋼板の冷却方法 Download PDFInfo
- Publication number
- WO2012011578A1 WO2012011578A1 PCT/JP2011/066742 JP2011066742W WO2012011578A1 WO 2012011578 A1 WO2012011578 A1 WO 2012011578A1 JP 2011066742 W JP2011066742 W JP 2011066742W WO 2012011578 A1 WO2012011578 A1 WO 2012011578A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spray nozzle
- water
- cooling
- nozzle row
- row group
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0233—Spray nozzles, Nozzle headers; Spray systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
Definitions
- the present invention relates to a cooling device that cools a steel plate obtained by hot rolling while horizontally restraining it with a restraining roll and a method for cooling the steel plate.
- the hot-rolled steel sheet after finish rolling in hot rolling is cooled to a predetermined temperature while being transported after being restrained by restraint rolls after the finish rolling mill. Between each restraining roll pair, a plurality of spray nozzles that inject cooling water onto the upper and lower surfaces of the cooling device, for example, the hot steel plate, are arranged, and the hot steel plate is cooled by the cooling water.
- the cooling mode after finish rolling is an important factor that determines the mechanical properties, workability, and weldability of the steel sheet, and the hot steel sheet is uniformly cooled to a predetermined temperature. It is important to do.
- the hot steel sheet is cooled by the cooling water as described above, it is difficult to uniformly cool the hot steel sheet due to the influence of the hot water on the hot steel sheet, particularly on the upper surface side of the hot steel sheet. That is, the on-board water on the hot steel plate is discharged in the width direction of the hot steel plate, but the on-board water and the water jet of cooling water injected on the hot steel plate interfere with each other. Thereby, a cooling water becomes non-uniform
- Patent Document 1 discloses a cooling method that allows the water jet to sufficiently reach the upper surface of the thermal steel sheet by adjusting the collision area of the water jet from the spray nozzle or adjusting the spread angle of the water jet. Has been. In the case of this method, sufficient cooling capacity can be secured and the hot steel sheet can be cooled uniformly.
- the cooling capacity required for the cooling device differs depending on the type and application of the steel plate. Therefore, it is desired that the cooling device can uniformly cool the hot steel sheet as described above and can select a wide cooling capacity control range.
- Patent Document 2 discloses a cooling device that has spray nozzles having different amounts of cooling water to be sprayed and uses the spray nozzles according to the required cooling capacity (cooling water amount).
- the required cooling capacity cooling water amount
- Patent Document 3 discloses a cooling device provided with an air-water spray nozzle that injects two fluids (air and cooling water) in order to ensure a spray pattern.
- the air-water spray nozzle requires an air compressor, air piping, and the like for supplying air, and the manufacturing cost of the cooling device increases.
- the nozzle structure of the air / water spray nozzle is complicated and easily clogged, the maintenance cost is increased in addition to the manufacturing cost of the cooling device.
- the pressure control between air and water is complicated, and it is difficult to keep the air / water ratio constant, and the cooling capacity changes depending on the air / water ratio.
- the cooling device has a problem that it is difficult to accurately control the cooling capacity because there are too many influence factors.
- the present invention has been devised in view of the above-described problems, and when cooling a hot-rolled steel sheet after hot rolling, a steel sheet cooling apparatus that uniformly cools the steel sheet while controlling the cooling capacity over a wide range. And it aims at provision of the cooling method of a steel plate.
- a steel sheet cooling device includes a plurality of restraint roll pairs for restraining and passing a steel sheet; and disposed opposite to each other with the steel sheet interposed between the restraint roll pairs.
- An upper cooling device and a lower cooling device having a plurality of spray nozzle rows, wherein the plurality of spray nozzle rows are arranged along the plate passing direction of the steel plate, and each spray nozzle row is A plurality of the same spray nozzles arranged in the width direction of the steel plate; when viewed along the plate passing direction, each spray nozzle row is a group of upstream spray nozzle rows relatively upstream And the downstream spray nozzle row group relatively downstream; the number of the spray nozzles belonging to the upstream spray nozzle row group is the spray nozzle belonging to the downstream spray nozzle row group Less than the number.
- the ratio of the total number of the spray nozzle rows to the number of spray nozzle rows belonging to the upstream spray nozzle row group is the spray nozzle. It is preferably an integer ratio that is the same or approximate to the ratio between the maximum injection amount and the minimum injection amount of each spray nozzle belonging to the column.
- the steel sheet cooling device further includes a control unit that controls cooling water sprayed from the plurality of spray nozzle rows toward the steel sheet; sprayed toward the steel sheet.
- a control unit that controls cooling water sprayed from the plurality of spray nozzle rows toward the steel sheet; sprayed toward the steel sheet.
- the steel sheet cooling device is supplied to the water supply header; a water supply header that supplies the cooling water to the upstream spray nozzle row group and the downstream spray nozzle row group; A flow control valve that adjusts the flow rate of the cooling water; a first control valve that controls permission or prohibition of the supply of the cooling water supplied from the water supply header to the upstream spray nozzle row group; and the water supply header And a second control valve that controls permission or prohibition of supply of the cooling water supplied to the downstream spray nozzle row group.
- the steel sheet cooling device supplies a first water supply header that supplies the cooling water to the upstream spray nozzle row group, and supplies the cooling water to the downstream spray nozzle row group.
- the adjacent intervals in the plate passing direction of the spray nozzle rows belonging to the upstream spray nozzle row group are It is preferable that the adjacent intervals in the plate passing direction of the spray nozzle rows belonging to the downstream spray nozzle row group are the same.
- the amount of water on the steel plate is small, and the water on the plate is moved in the plate passing direction of the steel plate as the steel plate moves. That is, it is discharged to the downstream side of the steel sheet and does not stay so much on the upstream side. For this reason, the cooling water sprayed to the upstream side of the steel plate is not affected by the water on the plate, and the steel plate can be cooled uniformly.
- the steel plate according to any one of (1) to (5) above
- the cooling device moves toward the upstream position along the plate passing direction with respect to the area of the plate water that stays on the steel plate.
- the upstream spray nozzle row group may be arranged so that the cooling water is jetted from the side spray nozzle row group.
- the total amount of water to be sprayed toward the steel plate is the upstream spray.
- the cooling water is jetted from both the upstream spray nozzle row group and the downstream spray nozzle row group, while the total water amount is the upstream spray nozzle row.
- the control unit may control the injection of the cooling water so that the cooling water is injected only from the upstream spray nozzle row group.
- uniform cooling can be performed with a smaller number of spray nozzles, a smaller number of nozzle rows, and a smaller flow rate control valve, and a wide cooling capacity range.
- the equipment configuration is simple and there is only one type of nozzle, it is possible to reduce equipment construction costs and maintenance costs.
- FIG. 1 shows a schematic configuration of a part of a hot rolling facility having a cooling device 1 according to the present embodiment.
- a finish rolling mill 2 In the hot rolling facility, as shown in FIG. 1, a finish rolling mill 2, a hot straightening device 3, and a cooling device 1 are provided in this order in the sheet passing direction of a steel plate (hot steel plate) H. Yes.
- the rolling mill 2 hot-rolls the steel sheet H discharged from a heating furnace (not shown) and rolled by a rough rolling mill (not shown).
- the hot straightening device 3 straightens the shape of the steel plate H after finish rolling.
- the cooling device 1 cools the steel sheet H after hot correction to a predetermined temperature, for example, 350 ° C.
- the steel sheet H rolled by the finish rolling mill 2 is corrected by the hot straightening device 3 and then cooled by the cooling device 1 during conveyance.
- the hot straightening device 3 may be provided on the downstream side (rear side) of the cooling device 1. Alternatively, the hot straightening device 3 may be provided on both the upper side and the lower side across the steel plate H of the cooling device 1.
- the cooling device 1 includes a plurality of restraining roll pairs 10, an upper cooling device 11 and a lower cooling device 12, and a control unit 5.
- the plurality of constraining roll pairs 10 includes a constraining roll 10a disposed above the steel plate H and a transporting roll 10b disposed below.
- the restraining roll 10a and the transporting roll 10b are arranged in the horizontal direction along the plate passing direction of the steel plate H, and cause the steel plate H to pass through.
- Each constraining roll pair 10 is composed of two constraining rolls arranged vertically.
- the steel plate H is conveyed in a state of being sandwiched between the upper and lower restraining rolls.
- the lower restraining roll may be referred to as a transport roll. Further, the steel roll H is sandwiched between the restraining roll 10a and the transport roll 10b.
- An upper cooling device 11 that cools the upper surface side of the steel plate H and a lower cooling device 12 that cools the lower surface side of the steel plate H are respectively disposed between the adjacent pair of restraining rolls 10 and 10.
- the upper cooling device 11 and the lower cooling device 12 are disposed to face each other with the steel plate H interposed therebetween.
- the cooling device 1 can cool the upper and lower surfaces of the steel plate H.
- the upper cooling device 11 and the lower cooling device 12 have a plurality of spray nozzle rows 21. This spray nozzle row 21 is arranged along the plate passing direction of the steel plate H, and each spray nozzle row 21 has a plurality of identical spray nozzles 20 arranged in the width direction of the steel plate H. .
- the lower cooling device 12 is provided with a plurality of spray nozzles, for example, full cone spray nozzles (not shown) arranged side by side in the sheet passing direction and the width direction of the steel plate H. Although the full cone nozzle of the lower cooling device 12 is not shown, the discharge water amount is slightly larger than the full cone spray nozzle of the upper cooling device 11 shown in FIG. Cooling water is sprayed onto the steel plate H from the full cone spray nozzle, and the steel plate H is cooled from the lower surface side by a water jet of cooling water.
- the upper cooling device 11 has a plurality of spray nozzles for injecting cooling water onto the upper surface of the steel sheet H as shown in FIGS. 2 and 3, and in this embodiment, a full cone spray nozzle 20.
- the full cone spray nozzle 20 can inject a conical water jet as shown in FIG.
- the plurality of full cone spray nozzles 20 form nozzle rows in the width direction of the steel plate H as shown in FIGS. 2 and 3, and the nozzle rows are arranged in a plurality of rows in the sheet passing direction.
- positioned along with 9 rows is comprised.
- a plurality of spray nozzles 20 are arranged in the width direction of the steel plate H in each of the spray nozzle rows 21a to 21i. That is, the plurality of full cone nozzles 20 are arranged in a staggered manner in a horizontal sectional view. With this configuration, the cooling water sprayed from the full cone spray nozzle 20 is sprayed onto the upper surface of the steel plate H.
- the nine spray nozzle rows 21a to 21i are spray nozzle rows 21a to 21a in which each spray nozzle row 21 is relatively upstream when viewed in the plate passing direction.
- it is grouped into two spray nozzle row groups 22 and spray nozzle row groups 23 arranged in the plate passing direction of the steel plate H.
- the spray nozzle row group disposed on the upstream side of the steel plate H upstream side of the steel plate H
- the upstream spray nozzle row group 22 the spray disposed on the downstream side of the steel plate H (downstream side of the steel plate H).
- the nozzle row group is referred to as a downstream spray nozzle row group 23.
- the upstream spray nozzle row group 22 includes, for example, three spray nozzle rows 21a to 21c
- the downstream spray nozzle row group 23 includes, for example, six spray nozzle rows 21d to 21i. Yes.
- a method of setting the number of spray nozzle rows 21a to 21i in the upstream spray nozzle row group 22 and the downstream spray nozzle row group 23 will be described later.
- the arrangement position of the upstream spray nozzle row group 22 will also be described later.
- Each end of the full cone spray nozzle 20 is connected to one end of a supply pipe 24 that supplies cooling water to the full cone spray nozzle 20.
- the supply pipe 24 extends vertically upward from the full cone spray nozzle 20, and the other end of the supply pipe 24 is disposed in a nozzle box 30 capable of storing cooling water.
- the inside of the nozzle box 30 is divided into two storage chambers 31 and 32.
- the supply pipe 24 of the full cone spray nozzle 20 of the upstream spray nozzle row group 22 is accommodated in the upstream storage chamber 31 disposed on the upstream side of the steel plate H.
- the supply pipe 24 of the full cone spray nozzle 20 of the downstream spray nozzle row group 23 is accommodated in the downstream storage chamber 32 arranged on the downstream side of the steel plate H.
- cooling water is always stored up to the position of the other end of the supply pipe 24.
- the cooling water is immediately supplied to the full cone spray nozzle 20 via the supply pipe 24. Therefore, the reaction of the upper cooling part 11 becomes quick, and the steel plate H can be cooled appropriately. Even when cooling is not performed, the cooling water stored in the storage chambers 31 and 32 can prevent the nozzle box 30 from being damaged by heating (from the hot steel plate).
- a supply header 40 for supplying cooling water to the nozzle box 30 (upstream spray nozzle row group 22 and downstream spray nozzle row group 23) is disposed above (upstream side) the nozzle box 30.
- a flow rate adjustment valve 41 is provided above (upstream) the supply header 40. By opening / closing the flow rate adjusting valve 41, the cooling water flows through the supply header 40, and the flow rate of the cooling water supplied to the supply header 40 is adjusted (controlled).
- a pipe 42 communicating with the supply header 40 is connected to the upstream storage chamber 31.
- An on / off control valve (first control valve) 43 is provided in the pipe 42, and the on / off control valve 43 supplies cooling water from the supply header 40 to the upstream storage chamber 31 (upstream spray nozzle row group 22).
- Permit or prohibit (on / off or valve opening / closing) is controlled.
- a pipe 44 communicating with the supply header 40 is also connected to the downstream storage chamber 32.
- An on / off control valve (second control valve) 45 is provided in the pipe 44, and the on / off control valve 45 supplies cooling water from the supply header 40 to the downstream storage chamber 32 (downstream spray nozzle array group 23).
- Permit or prohibit (on / off or valve opening / closing) is controlled.
- the flow rate adjustment valve 41, the on / off control valve 43, and the on / off control valve 45 are connected to the control unit 5.
- the control unit 5 controls the cooling water sprayed from the plurality of spray nozzle rows 21 toward the steel plate H.
- the spray nozzle rows 21 belonging to the upstream spray nozzle row group 22 have the same adjacent interval a in the plate passing direction, and each spray nozzle belonging to the downstream spray nozzle row group 23. It is preferable that the adjacent space
- the spray nozzle row 21c disposed on the most downstream spray nozzle row group 23 side of each spray nozzle row 21 belonging to the upstream spray nozzle row group 22, and each spray nozzle belonging to the downstream spray nozzle row group 23 It is preferable that the adjacent space
- column 21 is equal to the adjacent space
- the required amount of cooling water is determined from the cooling rate required for the steel sheet H and the cooling stop temperature.
- the flow rate adjustment valve 41 is controlled by the control unit 5 so that the cooling water amount of the cooling water is supplied, and the flow rate of the cooling water supplied to the supply header 40 is adjusted.
- the controller 5 determines whether both the on / off control valves 43 and 45 are opened or only the on / off control valve 43 is opened, as will be described later.
- both the on / off control valves 43 and 45 are opened by the control unit 5, while the required amount of cooling water is increased in the upstream spray row.
- the on / off control valve 43 When it is less than the maximum amount of water in the group 22, only the on / off control valve 43 is opened by the control unit 5. Then, for example, the cooling water is supplied from the supply header 40 to the upstream storage chamber 31 by opening the on / off control valve 43. The cooling water in the upstream storage chamber 31 is injected to the steel sheet H through the supply pipe 24 and the full cone spray nozzle 20 of the upstream spray nozzle row group 22. Similarly, for example, by opening the on / off control valve 45, the cooling water is supplied from the supply header 40 through the outlet storage chamber 32, the supply pipe 24 of the downstream spray nozzle array group 23, and the full cone spray nozzle 20. Is injected into. As described above, in the upper cooling device 11, the injection of the cooling water is controlled for each of the spray nozzle row groups 22 and 23.
- the rated maximum load pressure of the full cone nozzle 20 is 0.3 MPa.
- the injection angle ⁇ of the water jet from the full cone spray nozzle 20 shown in FIG. 4 depends on the nozzle load pressure of the full cone spray nozzle 20.
- FIG. 5 shows the result of investigation by the inventors on this point.
- the horizontal axis in FIG. 5 indicates the nozzle load pressure, and the vertical axis indicates the change rate of the injection angle. Referring to FIG. 5, it can be seen that when the nozzle load pressure is about 0.04 MPa (dotted line in FIG.
- the rate of change of the spray angle of the full cone spray nozzle 20 decreases rapidly.
- the nozzle load pressure is 0.04 MPa or less, it is not possible to secure a so-called spray pattern, which is an area where the water jet from the full cone spray nozzle 20 collides with the steel plate H. Therefore, in order to cool the steel plate H appropriately, it turns out that the nozzle load pressure of the full cone spray nozzle 20 is 0.04 MPa or more. In this embodiment, the nozzle load pressure is 0.04 MPa or more, but this is only an example.
- the inventors investigated the cooling water amount of the full cone spray nozzle 20 necessary for ensuring the nozzle load pressure of 0.04 MPa or more, that is, for ensuring the spray pattern.
- the result is shown in FIG.
- the horizontal axis in FIG. 6 indicates the nozzle load pressure, and the vertical axis indicates the cooling water amount of the full cone spray nozzle 20.
- the range of the cooling water amount that secures the spray pattern is a range in which the ratio of the maximum water amount and the minimum water amount of the full cone spray nozzle 20 is approximately 3: 1.
- FIG. 7 shows the relationship between the nozzle load pressure of the full cone spray nozzle 20 and the water density of the cooling water supplied from the upper cooling device 11.
- the water density indicates the amount of cooling water per unit area of cooling water sprayed on the steel plate H between the pair of restraining rolls 10a and 10b arranged with the steel plate H interposed therebetween. Therefore, hereinafter, the water density or the cooling water quantity may be described, but both are synonymous.
- the cooling capacity required for the cooling device 1 that is, the required cooling water amount (water density) differs depending on the type and application of the steel plate H.
- the required amount of cooling water is larger than the maximum amount of water in the upstream spray row group 22 (the range of the solid line on the upper side in the graph of FIG. 7)
- Cooling water is jetted onto the upper surface of the steel plate H from both the side spray nozzle row group 22 and the downstream spray nozzle row group 23.
- the on-board water 50 staying on the steel plate H spreads over the entire upper surface of the steel plate H between the pair of restraining rolls 10 and 10.
- the on-board water 50 and the cooling water sprayed from the upstream spray nozzle row group 22 and the downstream spray nozzle row group 23 are forcibly stirred over the entire surface of the steel plate H, the steel plate H Is uniformly cooled at least in the width direction of the steel plate H. Therefore, in order to avoid the influence of the on-plate water 50, it is necessary to secure the spray pattern of each full cone spray nozzle 20.
- the nozzle load pressure of the full cone spray nozzle 20 needs to be 0.04 MPa or more.
- such nozzle load pressure can be ensured, and the steel sheet H can be cooled appropriately.
- the nozzle load pressure of the full cone spray nozzle 20 when the required amount of cooling water (water density) decreases, the nozzle load pressure of the full cone spray nozzle 20 also decreases.
- the water density required in FIG. 7 is about 0.55 m 3 / m 2 / min or less, that is, when it is less than the maximum water quantity of the upstream spray row group 22, the upstream spray nozzle row group 22 and the downstream spray nozzle. If cooling water is supplied from both of the row groups 23, it becomes impossible to secure a nozzle load pressure of 0.04 MPa in each full cone spray nozzle 20.
- the cooling water is sprayed onto the upper surface of the steel sheet H only from the upstream spray nozzle row group 22 and the cooling water injection from the downstream spray nozzle row group 23 is stopped.
- the required water density is a water density of about 0.55 m 3 / m 2 / min or less (the range of the solid line on the lower side in the graph of FIG. 7), that is, the maximum water quantity of the upstream spray train group 22.
- the on-board water 50 on the steel plate H becomes small as shown in FIG. 9, and the on-board water 50 flows in the plate passing direction of the steel plate H, that is, downstream of the steel plate H as the steel plate H moves.
- the ratio of the number of the spray nozzle rows 21a to 21c of the group 22 (three rows) is the ratio of the maximum water amount to the minimum water amount of the full cone spray nozzle 20, that is, the above-mentioned 3: 1.
- the nozzle load pressure of each full cone spray nozzle 20 is when the number of rows in the upstream spray nozzle row group 22 is 3.
- a spray pattern can be secured when the number of upstream spray nozzle array groups 22 is 3, but the number of upstream spray nozzle array groups 22 is less. In the case of four or more rows, the spray pattern may not be secured. That is, when the number of upstream spray nozzle row groups 22 is 4 or more, the range of water density that can secure the spray pattern and cool the steel plate H appropriately is the number of upstream spray nozzle row groups 22. It becomes narrower than the range of the water density in the case of three rows. Incidentally, in the present embodiment, the ratio of the controllable maximum water density to the minimum water density, that is, the cooling capacity control range is as wide as 9: 1.
- the ratio between the number of all the spray nozzle rows 21a to 21i and the number of the spray nozzle rows 21a to 21c of the upstream spray nozzle row group 22 is the maximum water amount and the minimum amount of the full cone spray nozzle 20. Most preferably, it is an integer ratio that is the same as or close to the ratio to the amount of water.
- the ratio of the maximum water amount to the minimum water amount of the full cone spray nozzle 20 is 3: 1
- the number of rows of all the spray nozzle rows 21a to 21i and the upstream spray nozzle row group 22 is 3: 1
- the ratio of the number of spray nozzle rows 21a to 21c to the number of rows is 3: 1
- the ratio of the number of spray nozzle rows is not limited to this.
- the ratio of the number of spray nozzle rows is the ratio of the maximum water amount and the minimum water amount of the spray nozzle, the ratio of the number of spray nozzle rows can be set to various values.
- the ratio of the maximum water amount to the minimum water amount is, for example, 7: 3, the number of rows of all spray nozzle rows (7 rows) and the spray nozzles of the upstream spray nozzle row group
- the ratio of the number of columns (3 columns) is also set to 7: 3.
- the ratio between the maximum water amount and the minimum water amount of the full cone spray nozzle 20 is not expressed as an integer ratio
- the ratio of the number of rows to 21c may be set to an integer ratio that approximates the ratio of the maximum water amount and the minimum water amount of the full cone spray nozzle 20.
- the ratio of the maximum water volume when the minimum water volume is 1 is rounded off to the integer.
- the ratio of the maximum water amount to the minimum water amount is, for example, 1: 3.1, it can be set to 1: 3 by rounding off the decimal point of 3.1.
- the integer ratio between the maximum water amount and the minimum water amount of the full cone spray nozzle 20 obtained in this way may be set to the approximate integer ratio. It is not preferred that there is an uncontrollable water density range between the maximum water density and the minimum water density. Accordingly, the ratio of the number of spray nozzle rows of the upstream spray nozzle row group 22 to the number of rows of all spray nozzle rows may be approximated to be smaller than the ratio of the maximum water amount and the minimum water amount of the spray nozzle. preferable. In the present invention, it is not necessary to provide an upper limit for the ratio of the number of spray nozzle rows. However, even if the nozzle load pressure is increased to, for example, about 0.7 MPa, the ratio of the maximum water amount to the minimum water amount is about 4 and may be 4 or less. If necessary, the upper limit may be 3.5, 3 or 2.5.
- the on-board water 50 may flow and stay on the downstream side of the steel plate H depending on the required amount of cooling water.
- the upstream spray nozzle row group 22 is preferably arranged so that the cooling water sprayed from the upstream spray nozzle row group 22 does not interfere with the on-board water 50.
- the upstream spray nozzle row group 22 is arranged so that the cooling water is jetted from the upstream spray nozzle row group 22.
- the inventors have intensively studied the range where the on-board water 50 exists on the steel plate H when the cooling water is injected only from the upstream spray row group 22. Specifically, first, in a state where the steel plate H is stationary, the cooling water having the maximum water amount W in the upstream spray row group 22 is injected from the upper cooling device H to the steel plate H, and the plate at the center in the plate width direction is injected. The height hc of clean water was derived from experiments. Next, when cooling water having the same water density W is sprayed on the steel plate H that has been passed at the plate passing speed Ls, an experiment is conducted on the range in which the cooling water spreads as the plate water 50 to the steel plate H as shown in FIG. went.
- the range X 0 where the on-board water 50 shown in FIG. 9 exists is represented by the following formula (1).
- the range X 0 is the distance from the center of the constraining roll pair 10 on the downstream side of the steel sheet H to the end of the plate clean water 50.
- the board water height hc in Formula (1) shows the height of the board water 50 in the center of the width direction of the steel plate H, and is represented by the following formula (2).
- X 0 horizontal extent of the plate clean water 50 (m)
- hc height of the plate clean water 50 in the plate width direction center of the case steel H is in a quiescent state (m)
- S constraining roll pair 10 10
- center-to-center distance m
- Ls plate speed of steel plate H (m / min)
- “29.4” is a constant having a dimension of (m / min 2 ).
- W density of cooling water sprayed from the upper cooling device 11 (m 3 / m 2 / min)
- B width of the steel plate H (m)
- “0.04” is a constant having a dimension of (m ( ⁇ 1/3) / min (2/3) ).
- the range X 0 where the on-board water 50 exists on the steel plate H is calculated by the above formula (1).
- the position of the upstream end of the range X 0 is present the plate clean water 50 is substantially the same as the position of the upstream end of the example downstream spray nozzle row group 23 as shown in FIG.
- the upstream spray nozzle row group 22 is located at a position where the water jet of the cooling water jetted from the downstream spray nozzle row 21c does not interfere with the plate water 50, that is, the downstream end of the water jet is on the downstream side. It is arranged in the center range X 0 or more away from the constraining roll pair 10.
- the upstream spray nozzle row group 22 injects the cooling water in a place where there is almost no on-plate water 50, the region of the steel plate H to which the injected cooling water hits is uniformly cooled. That is, since the flowing direction of the on-board water 50 is the same as the passing direction of the steel plate H, the on-board water 50 is not much stirred. Thus, the steel plate H can be cooled uniformly by suppressing the stirring of the on-plate water 50.
- injection of the cooling water to the upper surface of the steel plate H is controlled for each of the spray nozzle row groups 22 and 23.
- the required cooling capacity is high, that is, when the required amount of cooling water is larger than the maximum amount of water in the upstream spray row group 22 (in the range of the upper solid line in the graph of FIG. 7)
- Cooling water whose flow rate is controlled is supplied to the supply header 40.
- both of the on / off control valves 43 and 45 are opened, and cooling water is sprayed onto the upper surface of the steel plate H from all the spray nozzle row groups 22 and 23.
- the nozzle load pressure of the full cone spray nozzle 20 is high, even if the plate water 50 stays on the steel plate H, the spray pattern of each full cone spray nozzle 20 can be secured, and the plate water 50 as a whole. Therefore, the steel plate H can be uniformly cooled. Therefore, the steel plate H can be uniformly cooled to a predetermined temperature.
- the flow rate adjustment The flow rate of the cooling water is controlled by the valve 41, and this cooling water is supplied to the supply header 40. Then, only the on / off control valve 43 is opened, for example, the cooling water is injected onto the upper surface of the steel plate H only from the upstream spray nozzle row group 22 of the steel plate H, and the cooling water is injected from the downstream spray nozzle row group 23 of the steel plate. To stop.
- the nozzle load pressure of the full cone spray nozzle 20 is high, and the amount of cooling water sprayed onto the steel sheet H can be set to a predetermined amount while maintaining the spray pattern.
- the plate water 50 on the steel plate H becomes a small amount, and the plate water 50 flows in the plate passing direction of the steel plate H as the steel plate H moves, that is, on the downstream side of the steel plate H.
- the cooling water sprayed to the upstream side of the steel plate H is not influenced by the plate water 50, and the steel plate H can be cooled uniformly. Therefore, the steel plate H can be uniformly cooled to a predetermined temperature.
- the steel sheet H can be uniformly cooled to a predetermined temperature while controlling the cooling capacity over a wide range.
- the cooling capacity of all the full cone spray nozzles 20 in the upper cooling device 11 is the same.
- the cooling water sprayed from the full cone spray nozzle 20 affects each other. Since the feeding can be suppressed, the cooling water does not become uneven with respect to the steel sheet H.
- the injection of the cooling water is controlled for each of the upstream spray nozzle array group 22 and the downstream spray nozzle array group 23, so that it is also applicable when the required cooling capacity is high or low, or at the boundary of the cooling capacity. it can. Therefore, the cooling capacity control range can be selected over a wide range.
- the cooling capability of all the full cone spray nozzles 20 is the same, there exists an effect that control of the full cone spray nozzle 20 at the time of cooling the steel plate H becomes easy.
- the number of rows of all the spray nozzle rows 21a to 21i and the number of rows and ratios of the spray nozzle rows 21a to 21c of the upstream spray nozzle row group 22 are the ratios of the maximum water amount and the minimum water amount of each full cone spray nozzle 20. Is set to For this reason, when the required cooling capacity decreases, the injection of the cooling water from the downstream spray nozzle row group 23 can be stopped at an appropriate timing as described above. Therefore, the cooling capacity control range can be maximized while ensuring the required cooling capacity.
- the upstream spray nozzle row group 22 is disposed at a position where the water jet of the cooling water sprayed from the downstream spray nozzle row 21c does not interfere with the plate water 50, the upstream spray nozzle row group.
- the cooling water jetted from 22 is not affected by the on-board water 50.
- the spray pattern of each full cone spray nozzle 20 can be secured as described above. Therefore, even when the required cooling capacity is low, the steel sheet H can be appropriately cooled.
- the steel plate H can be uniformly cooled in the present embodiment, but the inventors have verified this effect. Specifically, when the required amount of cooling water is smaller than the maximum amount of water in the upstream spray row group 22, the cooling water was sprayed onto the steel sheet H only from the upstream spray nozzle row group 22 as shown in FIG. 9.
- FIG. 11 The horizontal axis in FIG. 11 indicates the position in the width direction of the steel plate H, and the vertical axis indicates the cooling rate at each position in the width direction of the steel plate H. Referring to FIG. 11, the cooling rate is substantially uniform in the width direction of the steel plate H, and it was confirmed that the steel plate H can be cooled uniformly.
- a cooling device according to a second embodiment of the present invention will be described.
- 12 to 15 show the steel plate cooling apparatus according to the second embodiment.
- the steel material is a thick plate, and the member and apparatus on the upper side of the steel plate will be described.
- the description of the same members as those in the first embodiment is omitted.
- the second embodiment is different in that a water supply header is provided for each of the upstream spray nozzle row group and the downstream spray nozzle row group, and a flow rate adjusting valve is provided for each of the water supply headers. This is different from the first embodiment.
- the steel plate cooling device 100 includes an upper cooling device 111 and a lower cooling device 112.
- the upper cooling device 111 includes a small flow rate cooling unit (upstream spray nozzle row group) 110 and a large flow rate cooling unit (downstream spray nozzle row group) 130 as shown in FIG.
- the small flow rate cooling unit 110 and the large flow rate cooling unit 130 are disposed on the upper side of the steel plate H.
- the small flow rate cooling unit 110 includes a small flow rate water supply header (first water supply header) 117.
- the small flow rate water supply header 117 supplies cooling water to the small flow rate cooling unit 110.
- the large flow rate cooling unit 130 includes a large flow rate water supply header (second supply header) 137.
- the large flow rate water supply header 137 supplies cooling water to the large flow rate cooling unit 130.
- the steel plate cooling apparatus 100 includes a flow rate adjusting valve (first flow rate adjusting valve) 114 that adjusts the flow rate of the cooling water supplied to the small flow rate water supply header 117, and the flow rate of the cooling water supplied to the large flow rate water supply header 137. And a flow rate adjustment valve (second flow rate adjustment valve) 134 for adjusting the pressure. Further, the flow rate adjusting valves 114 and 134 are connected to a flow rate adjusting unit (control unit) 149. Further, flow path switching three-way valves 115 and 135 which are one of on / off control valves are connected to the flow rate adjusting unit 149.
- first flow rate adjusting valve first flow rate adjusting valve
- second flow rate adjustment valve second flow rate adjustment valve
- the flow rate adjusting unit 149 controls opening and closing of the flow rate adjusting valves 114 and 134 and the flow path switching three-way valves 115 and 135, and controls the cooling water sprayed from the plurality of cooling water spray nozzles 126 toward the steel plate H.
- the small flow rate water supply header 117 is connected to a cooling water tank (not shown) via a small flow rate cooling water supply pipe 112.
- a flow rate adjusting valve 114 and a flow path switching three-way valve 115 are attached to the small flow rate cooling water supply pipe 112.
- One outlet of the flow path switching three-way valve 115 is connected to a small flow rate water supply header 117 via a small flow rate cooling water supply pipe 112.
- this direction switching is referred to as opening.
- the other outlet of the flow path switching three-way valve 115 is connected to a cooling water tank (not shown) via a return pipe (not shown).
- this direction switching is referred to as closing.
- the large flow rate cooling unit 130 also includes a large flow rate cooling water supply pipe 132, a flow rate adjustment valve 134, and a flow path switching three-way valve 135.
- the flow control valve 114 of the small flow cooling unit 110 and the flow control valve 134 of the large flow cooling unit 130 are proportional to the ratio of the number of cooling water spray nozzles of the large flow cooling unit 130 to the number of cooling water spray nozzles of the small flow cooling unit 110. It is preferable to set the opening so as to achieve the supplied water density. Thereby, the amount of cooling water from the cooling water spray nozzle 126 of the small flow rate cooling unit 110 and the cooling water spray nozzle 146 of the large flow rate cooling unit 130 is maintained constant, and the steel sheet H can be uniformly cooled.
- the small flow rate cooling unit 110 includes a small flow rate nozzle header 122, and the large flow rate cooling unit 130 includes a large flow rate cooling water nozzle header 142.
- a small flow rate nozzle water supply pipe 119 is connected to the small flow rate nozzle header 122, and a large flow rate nozzle water supply pipe 139 is connected to the large flow rate nozzle header 142.
- a small flow cooling water spray nozzle 126 is attached to the small flow nozzle header 122, and a large flow cooling water spray nozzle 146 is attached to the large flow nozzle header 142.
- the small flow cooling water spray nozzle 126 and the large flow cooling water spray nozzle 146 are the same. Further, the intervals in the plate passing direction of the small flow cooling water spray nozzle 126 and the large flow cooling water spray nozzle 146 are equal. Further, the intervals in the plate passing direction of the cooling water spray nozzles 126 and 146 of the adjacent small flow rate cooling unit 110 and the large flow rate cooling unit 130 are also equal to the intervals in the plate passing direction of the other cooling water spray nozzles 126 and 146. Yes. As a result, the deviation in the amount of water on the plate is reduced, and the steel plate is uniformly cooled.
- the small-flow-rate cooling water spray nozzle 126 penetrates the bottom plate 124 of the small-flow-rate nozzle header 122, the upper-end cooling water inlet 127 is located near the top plate 123, and the lower-end jet outlet 28 is the bottom plate. Projecting downward from 124.
- the large flow nozzle header 142 has the same structure as the small flow nozzle header 122, and the large flow cooling water spray nozzle 146 has the same structure as the small flow cooling water spray nozzle 126.
- the distance g between the top plate 123 of the small flow rate nozzle header 122 and the cooling water inlet 127 of the small flow rate cooling water spray nozzle 126 and the top plate 143 of the large flow rate nozzle header 142 and the cooling water inlet 147 of the large flow rate cooling water spray nozzle 146. Is preferably 3 to 8 mm.
- the gap g is less than 3 mm, the pressure applied to each cooling water inlet is not uniform, and water is likely to be discharged from the cooling water spray nozzle closest to the nozzle water supply pipes 119 and 139. Thereby, the difference in the amount of water sprayed from each spray nozzle 126, 146 may occur.
- the interval g exceeds 8 mm, it takes too much time for the small flow nozzle header 122 and the large flow nozzle header 142 to be filled with water after the start of water injection. Furthermore, when the gap g exceeds 8 mm, water accumulated between the cooling water inlets 127 and 147 and the top plates 123 and 142 of the headers when water injection from the cooling water spray nozzles 126 and 146 is stopped. The water will droop from the cooling water spray nozzles 126 and 146 until they are all gone.
- a small flow rate cooling unit 150 and a large flow rate cooling unit 170 on the lower side of the steel plate H similar to the small flow rate cooling unit 110 and the large flow rate cooling unit 130 are arranged.
- the gap g is the gap g between the bottom plate 64 of the small flow nozzle header 162 and the cooling water inlet 67 of the small flow cooling water spray nozzle 166, and the large flow nozzle header. This is the distance g between the bottom plate 184 of 182 and the cooling water inlet 187 of the large flow rate cooling water spray nozzle 186.
- FIG. 14 schematically shows the arrangement of the small flow cooling water spray nozzle 126 (166) and the large flow cooling water spray nozzle 146 (186).
- a large number of small-flow-rate cooling water spray nozzles 126 (166) and large-flow-rate cooling water spray nozzles 146 (186) are arranged at regular intervals in the steel plate width direction and the steel plate conveyance direction, respectively.
- the small flow cooling water spray nozzle 126 (166) and the large flow cooling water spray nozzle 146 (186) have the same nozzle diameter, and the number of small flow cooling water spray nozzles is smaller than the number of large flow cooling water spray nozzles.
- FIG. 15 shows the relationship between the water supply density (m 3 / m 2 / min) and the nozzle water supply pressure (MPa).
- the spray pattern securing limit pressure is a nozzle water supply pressure (for example, 30 kPa) indicating whether or not a predetermined spray pattern determined by the nozzle can be secured.
- the nozzle water supply pressure needs to be equal to or higher than the spray pattern securing limit pressure.
- the water supply density for obtaining a necessary cooling rate is determined. This is a region where the nozzle water supply pressure is equal to or higher than the spray pattern securing limit pressure with reference to FIG. 15 and the water supply density, and water is supplied to both the small flow nozzle header 122 and the large flow nozzle header 142 or to one of them.
- the flow rate adjustment unit 149 determines whether to do this.
- cooling water is supplied to both the small flow nozzle header 122 and the large flow nozzle header 142, and a to If it is in the range of b, the cooling water is supplied only to the small flow rate nozzle header 122.
- the flow rate control valves 114 and 134 adjust the spray water amount and the spray pressure from each nozzle through the small flow nozzle header 122 and the large flow nozzle header 142 so as to be constant.
- the steel plate cooling device 100 includes a flow rate adjusting unit 149 on the upper surface side of the steel plate as shown in FIG.
- the flow rate adjusting unit 149 controls the cooling water sprayed toward the steel plate H from the small flow rate cooling water spray nozzle 126 and the large flow rate cooling water spray nozzle 146.
- the cooling rate is determined from, for example, the component and mechanical characteristics (material) of the target steel plate by a host computer, and the zone water supply density is obtained from this cooling rate and the plate thickness of the target steel plate.
- the flow rate adjusting unit 149 determines the zone water supply density and the nozzle header (both the large flow rate water supply header 137 and the small flow rate water supply header 117 or only the small flow rate water supply header 117) to be used from FIG.
- the zone water supply density and the nozzle header information to be supplied are input to the flow rate adjustment unit 149.
- the nozzle header information uses both the large flow rate water supply header 137 and the small flow rate water supply header 117
- the water supply amount density ratio is further input to the flow rate adjustment unit 149.
- the flow rate adjusting unit 149 determines the valve opening signal of the flow rate adjusting valves 114 and 134 and the flow path switching three-way valves 115 and 135 based on the input zone water supply density, nozzle header information, and water supply density ratio. And a signal for releasing the.
- the flow rate adjustment unit 149 closes the flow path switching three-way valve 115, opens the flow path switching three-way valve 135, and sets the flow rate control valve.
- a valve opening signal 134 is output.
- the flow rate adjustment unit 149 closes the flow path switching three-way valve 135, opens the flow path switching three-way valve 115, and sets the flow rate control valve.
- the valve opening signal 114 is output. The same applies to the flow rate adjustment unit (control unit) 189 on the lower surface side of the steel plate H.
- the cooling units 110 and 130 (upper cooling device 111) on the upper side of the steel plate have been described above, but the cooling units 150 and 170 (lower cooling device 112) on the lower side of the steel plate H have the same structure as that on the upper side. That is, the cooling water feed pipe 152, the feed water header 157, the nozzle feed pipe 159, the nozzle header 162, and the cooling water spray nozzle 166, and the cooling water feed pipe 172, the feed water header 177, the nozzle feed pipe 179, the nozzle header 182 and the cooling
- the water spray nozzle 186 has the same structure as the upper cooling device 111 on the upper side of the steel plate H.
- the flow rate adjusting valves 154 and 174, the flow path switching three-way valves 155 and 175, and the flow rate adjusting unit 189 also have the same structure as the upper cooling device 111 on the upper side of the steel plate H.
- the steel sheet cooling device 100 Prior to accepting the rolled hot thick steel plate H, the steel sheet cooling device 100 supplies water at a zone water supply density (for example, 1.5 m 3 / m 2 / min) in the cooling zone in which the steel plate cooling device 100 is disposed.
- the nozzle header information for example, the large flow rate water supply header 137 and the small flow rate water supply header 117
- the feed amount density ratio for example, 2.0
- the flow rate adjusting unit 149 supplies the water supply density of each of the small flow rate cooling unit 110 and the large flow rate cooling unit 130 (for example, the small flow rate cooling unit: 0.5 m 3 / m 2 / min, the large flow rate cooling unit: 1 0.0 m 3 / m 2 / min), the opening degree of the flow control valves 114 and 134 is determined based on the determined water supply density, and the flow control valves 114 and 134 are The opening degree information from which the water supply density is obtained is output. The flow rate adjusting valves 114 and 134 are activated when the opening degree information is input, and the opening degree corresponds to the information.
- the cooling water in the small flow rate cooling water supply pipe 112 sequentially passes through the small flow rate water supply header 117 and the small flow rate nozzle supply pipe 119 and flows into the small flow rate unit 122.
- the cooling water in the large flow rate cooling water supply pipe 132 passes through the large flow rate water supply header 137 and the large flow rate nozzle supply pipe 139 in the same manner as described above and flows into the large flow rate unit 142.
- the cooling water fills the small flow unit 122 and the large flow unit 142 in a short time, and the cooling water is supplied from the small flow side cooling water spray nozzle 122 of the small flow unit 122 and the large flow side cooling water spray nozzle 146 of the large flow unit 142. Are injected almost simultaneously.
- the water supply density ratio output from the host computer to the flow rate adjusters 149 and 189 is calculated from the cooling zone water supply density.
- the water supply density ratio is preferably a water supply density ratio proportional to the number of nozzles of the large flow nozzle header 142 relative to the number of nozzles of the small flow nozzle header 122, or a value close thereto, but in any case both headers It is necessary to set the pressure in 122 and 142 to a value equal to or higher than the spray pattern securing limit pressure. Further, the lower cooling units 50 and 70 of the steel plate H are similarly adjusted.
- the hot thick steel plate H is passed and cooling is started.
- the water injection stop information is input from the host computer to the flow rate adjusting unit 149. .
- the flow path switching three-way valves 115 and 135 are closed and the water supply is stopped.
- the injection of cooling water from the small flow rate side cooling water spray nozzle 122 and the large flow rate side cooling water spray nozzle 146 is immediately stopped.
- the above description is a case where the cooling water is injected from both the small flow unit 110 and the large flow unit 130.
- the nozzle header information small flow rate water supply header 117 for supplying water is input from the host computer to the flow rate adjustment units 149 and 189.
- the opening degree of the flow rate adjustment valve 114 of the water supply target unit 110 is determined, and the flow rate adjustment valve 114 and the flow path switching three-way valve 115 are sent from the host computer to the flow rate adjustment units 149 and 189 in the same manner as described above.
- An operation signal is output.
- the present invention is not limited to the first and second embodiments. That is, (A) Although the embodiment has been described for a thick plate, the present invention can also be used for a thin plate and a shaped steel. In the case of a thick plate, it can also be used for roller quenching, which is a cooling facility after heat treatment. (B) Although the flow rate adjusting units (control units) 149 and 189 are provided in the upper cooling device and the lower cooling device, one flow rate adjusting unit may control both the upper cooling device and the lower cooling device. (C) In each of the above embodiments, a full cone nozzle has been described. However, in the present invention, other nozzle types may be used. (D) In each of the above embodiments, the nozzle types and the number of rows of the upper cooling device and the lower cooling device may be different.
- the present invention is useful for cooling a steel sheet obtained by hot rolling while horizontally restraining it with a restraining roll.
- Cooling device 1 Finishing rolling mill 3 Hot straightening device 10a Restraining roll 10b Conveying roll 10 Restraining roll pair 11 Upper cooling device 12 Lower cooling device 20 Full cone spray nozzles 21a to 21i Spray nozzle row 22 Upstream spray nozzle row group 23 downstream spray nozzle array group 24 supply pipe 30 nozzle box 31 upstream storage chamber 32 downstream storage chamber 40 header 41 flow control valve 42 piping 43 on / off control valve 44 piping 45 on / off control valve 50 plate water 100 steel plate cooling device 110 , 150 Small flow rate cooling unit 112, 152 Small flow rate cooling water feed pipe 114, 154 Flow rate control valve 115, 155 Three-way valve for channel switching 117, 157 Small flow rate water feed header 119, 159 Small flow rate nozzle feed pipe 122, 162 Flow Nozzle Header 126, 166 Small Flow Cooling Water Spray Nozzle 130, 170 Large Flow Cooling Unit 132, 172 Large Flow Cooling Water Supply Pipe 134, 174 Flow Control Valve 135, 175 Three-way Valve
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
本願は、2010年07月22日に、日本に出願された特願2010-164522号及び2010年10月19日に、日本に出願された特願2010-234715号に基づき優先権を主張し、その内容をここに援用する。
すなわち、
(1)本発明の一態様に係る鋼板の冷却装置は、鋼板を拘束通板させる複数の拘束ロール対と;これら拘束ロール対間の位置で前記鋼板を間に挟んで互いに対向して配置され、複数のスプレーノズル列を有する上部冷却装置及び下部冷却装置と;を備え、前記複数のスプレーノズル列が、前記鋼板の通板方向に沿って配列されており、各々のスプレーノズル列が、前記鋼板の幅方向に並べられた複数の同一のスプレーノズルを有し;前記通板方向に沿って見た場合に、前記各スプレーノズル列が、相対的に上流側にある上流側スプレーノズル列群と、相対的に下流側にある下流側スプレーノズル列群とに分類され;前記上流側スプレーノズル列群に属する前記スプレーノズルの数が、前記下流側スプレーノズル列群に属する前記スプレーノズルの数より少ない。
このような場合で且つ、鋼板上の板上水が鋼板の下流側の拘束ロール対側に滞留する場合において、(8)上記(1)から(5)のいずれか1項に記載の鋼板の冷却装置は、前記上流側スプレーノズル列群から最大噴射量を噴射させたとき、前記鋼板上に滞留する板上水の領域よりも前記通板方向に沿った上流側の位置に向かって前記上流側スプレーノズル列群から前記冷却水が噴射されるように、前記上流側スプレーノズル列群が配置されていてもよい。
以下、本発明の第1実施の形態について説明する。図1は本実施の形態にかかる冷却装置1を有する熱延設備の一部の構成の概略を示している。
なお、冷却後に矯正するようなレイアウトつまり、熱間矯正装置3を冷却装置1の下流側(後面側)としても差し支えない。あるいは、冷却装置1の鋼板Hを挟んで上部側及び下部側の双方に熱間矯正装置3を備えていても良い。
複数の拘束ロール対10は、鋼板Hよりも上側に配置されている拘束ロール10aと下側に配置されている搬送ロール10bとを備えている。この拘束ロール10a及び搬送ロール10bは、鋼板Hの通板方向に沿って水平方向に並べられており、鋼板Hを拘束通板させる。各拘束ロール対10は、上下に配置された2つの拘束ロールにより構成されている。鋼板Hは、この上下の拘束ロールの間に挟み込まれた状態で搬送される。なお、下側の拘束ロールを搬送ロールと称する場合もある。
また、拘束ロール10aと搬送ロール10bとは、鋼板Hを挟み込んでいる。
また、流量調節弁41、オンオフ制御弁43、オンオフ制御弁45は、制御部5に接続されている。制御部5は、複数のスプレーノズル列21から鋼板Hに向かって噴射させる冷却水を制御する。
更には、各スプレーノズル列21の鋼板の幅方向における互いの隣接間隔eが全て同一であることが好ましい。
図4に示したフルコーンスプレーノズル20からの水噴流の噴射角度αは、フルコーンスプレーノズル20のノズル負荷圧力に依存する。この点について発明者らが調べた結果を図5に示す。図5の横軸はノズル負荷圧力を示し、縦軸は噴射角度の変化率を示している。図5を参照すると、ノズル負荷圧力が約0.04MPa(図5中の点線)以下において、フルコーンスプレーノズル20の噴射角度の変化率が急激に減少することが分かる。このことは、ノズル負荷圧力が0.04MPa以下の場合、フルコーンスプレーノズル20からの水噴流の鋼板Hへの衝突部面積、いわゆるスプレーパターンが確保できないことを示している。したがって、鋼板Hを適切に冷却するためには、フルコーンスプレーノズル20のノズル負荷圧力が0.04MPa以上必要であることが分かる。なお、本実施形態では、ノズル負荷圧力が0.04MPa以上としたが、一例に過ぎない。
最大水量密度と最少水量密度の間に、制御できない水量密度範囲があることは好ましくない。そこで、全てのスプレーノズル列の列数との上流側スプレーノズル列群22のスプレーノズル列の列数の比が、スプレーノズルの最大水量と最小水量との比より小さくなるように近似することが好ましい。
本発明において、前記のスプレーノズル列数の比に、上限を設ける必要はない。しかしながら、ノズル負荷圧力をたとえば0.7MPa程度まで上げても最大水量と最小水量の比とは4程度であり,4以下としてもよい。必要に応じて、その上限を3.5、3又は2.5としてもよい。
また、上記式(1)中、「29.4」は(m/min2)の次元を有する定数である。
また、上記式(2)中、「0.04」は(m(-1/3)/min(2/3))の次元を有する定数である。
この場合、図10に示すように、板上水50が噴射領域より上流側に流れる。板上水50の流れる方向と鋼板Hの通板方向とが逆であるため、板上水50に不規則な流れが生じ、噴射領域の上流側で鋼板Hの冷却が幅方向や長手方向に不均一になる。したがって、下流側スプレーノズル列群23からのみ冷却水を噴射させることは好ましくない。
次に、本発明の第2の実施形態の冷却装置について説明する。
図12~図15は、この第2の実施の形態であり、鋼板冷却装置を示している。以下、鋼材が厚板であり、鋼板上側の部材および装置について説明する。以下の説明において、第1の実施の形態と同様の部材の説明は省略する。
また、第2実施の形態は、上流側スプレーノズル列群,下流側スプレーノズル列群それぞれに給水ヘッダーが設けられている点、及びこれら給水ヘッダーごとに流量調節弁が設けられている点において第1実施の形態と相違する。
小流量冷却ユニット110は、小流量給水ヘッダー(第1給水ヘッダー)117を備えている。この小流量給水ヘッダー117は、小流量冷却ユニット110に冷却水を供給する。また、大流量冷却ユニット130は大流量給水ヘッダー(第2供給ヘッダー)137を備えている。この大流量給水ヘッダー137は、大流量冷却ユニット130に冷却水を供給する。
また、鋼板冷却装置100は、小流量給水ヘッダー117に供給される冷却水の流量を調節する流量調節弁(第1流量調節弁)114と、大流量給水ヘッダー137に供給される冷却水の流量を調節する流量調節弁(第2流量調節弁)134とを備えている。
さらに、流量調節弁114,134は、流量調整部(制御部)149に接続されている。さらに、オンオフ制御弁のひとつである流路切替用三方弁115,135が流量調整部149に接続されている。
流量調整部149は、流量調節弁114,134及び流路切替用三方弁115,135の開閉を制御し、複数の冷却水スプレーノズル126から鋼板Hに向かって噴射させる冷却水を制御する。
同様に、大流量冷却ユニット130も大流量冷却水給水管132、流量調節弁134、および流路切替用三方弁135を備えている。
また、鋼板Hの上側には、小流量冷却ユニット110および大流量冷却ユニット130と同様の鋼板Hの下側の小流量冷却ユニット150および大流量冷却ユニット170が配置されている。この小流量冷却ユニット150および大流量冷却ユニット170では、上記間隔gはそれぞれ小流量ノズルヘッダー162の底板64と小流量冷却水スプレーノズル166の冷却水入口67との間隔g、および大流量ノズルヘッダー182の底板184と大流量冷却水スプレーノズル186の冷却水入口187との間隔gである。
(A)実施の形態は厚板について説明したが、この発明は薄板、形鋼にも利用可能である。また、厚板の場合、熱処理後の冷却設備であるローラークエンチにも利用できる。
(B)上部冷却装置及び下部冷却装置にそれぞれ流量調整部(制御部)149,189を設けたが、1つの流量調整部が上部冷却装置及び下部冷却装置の両方を制御しても良い。
(C)上記各実施の形態では、フルコーンノズルで説明したが、本発明では,他のノズルの形式を使用することも可能である。
(D)上記各実施の形態では、上部冷却装置及び下部冷却装置のノズル形式,列数が異なっていても良い。
1 冷却装置
2 仕上げ圧延機
3 熱間矯正装置
10a 拘束ロール
10b 搬送ロール
10 拘束ロール対
11 上部冷却装置
12 下部冷却装置
20 フルコーンスプレーノズル
21a~21i スプレーノズル列
22 上流側スプレーノズル列群
23 下流側スプレーノズル列群
24 供給管
30 ノズルボックス
31 上流側貯留室
32 下流側貯留室
40 ヘッダー
41 流量調節弁
42 配管
43 オンオフ制御弁
44 配管
45 オンオフ制御弁
50 板上水
100 鋼板冷却装置
110、150 少流量冷却ユニット
112、152 小流量冷却水給水管
114、154 流量調節弁
115、155 流路切替用三方弁
117、157 小流量給水ヘッダー
119、159 小流量ノズル給水管
122、162 小流量ノズルヘッダー
126、166 小流量冷却水スプレーノズル
130、170 大流量冷却ユニット
132、172 大流量冷却水給水管
134、174 流量調節弁
135、175 流路切替用三方弁
137、177 大流量給水ヘッダー
139、179 大流量ノズル給水管
142、182 大流量ノズルヘッダー
146、186 大流量冷却水スプレーノズル
149、189 流量調整部
Claims (10)
- 鋼板を拘束通板させる複数の拘束ロール対と;
これら拘束ロール対間の位置で前記鋼板を間に挟んで互いに対向して配置され、複数のスプレーノズル列を有する上部冷却装置及び下部冷却装置と;
を備え、
前記複数のスプレーノズル列が、前記鋼板の通板方向に沿って配列されており、各々のスプレーノズル列が、前記鋼板の幅方向に並べられた複数の同一のスプレーノズルを有し;
前記通板方向に沿って見た場合に、前記各スプレーノズル列が、相対的に上流側にある上流側スプレーノズル列群と、相対的に下流側にある下流側スプレーノズル列群とに分類され;
前記上流側スプレーノズル列群に属する前記スプレーノズルの数が、前記下流側スプレーノズル列群に属する前記スプレーノズルの数より少ない;
ことを特徴とする鋼板の冷却装置。 - 前記複数のスプレーノズル列の総列数と、前記上流側スプレーノズル列群に属するスプレーノズル列の列数との比が、前記スプレーノズル列に属する各スプレーノズルの最大噴射量と最小噴射量との比に同一又は近似する整数比である
ことを特徴とする請求項1に記載の鋼板の冷却装置。 - 前記複数のスプレーノズル列から前記鋼板に向かって噴射される冷却水を制御する制御部をさらに備え;
前記鋼板に向かって噴射されるべき総水量が前記上流側スプレーノズル列群の最大噴射量以上である場合には、前記上流側スプレーノズル列群及び前記下流側スプレーノズル列群の両方から前記冷却水を噴射させる一方、前記総水量が前記上流側スプレーノズル列群の最大噴射量よりも少ない場合には、前記上流側スプレーノズル列群のみから前記冷却水を噴射させるように、前記制御部が前記冷却水の噴射を制御する;
ことを特徴とする請求項2に記載の鋼板の冷却装置。 - 前記上流側スプレーノズル列群及び前記下流側スプレーノズル列群に対して前記冷却水を供給する給水ヘッダーと;
前記給水ヘッダーに供給される前記冷却水の流量を調節する流量調節弁と;
前記給水ヘッダーから前記上流側スプレーノズル列群へ供給される前記冷却水の供給の許可または禁止を制御する第1制御弁と;
前記給水ヘッダーから前記下流側スプレーノズル列群へ供給される前記冷却水の供給の許可または禁止を制御する第2制御弁と;
をさらに備えることを特徴とする請求項3に記載の鋼板の冷却装置。 - 前記上流側スプレーノズル列群に冷却水を供給する第1給水ヘッダーと、
前記下流側スプレーノズル列群に冷却水を供給する第2給水ヘッダーと、
前記第1給水ヘッダーに供給される前記冷却水の流量を調節する第1流量調節弁と、
前記第2給水ヘッダーに供給される前記冷却水の流量を調節する第2流量調節弁と、
前記複数のスプレーノズル列から前記鋼板に向かって噴射される冷却水を制御する制御部と、
をさらに備え;
前記鋼板に向かって噴射されるべき総水量が前記上流側スプレーノズル列群の最大噴射量以上である場合には、前記上流側スプレーノズル列群及び前記下流側スプレーノズル列群の両方から前記冷却水を噴射させる一方、前記総水量が前記上流側スプレーノズル列群の最大噴射量よりも少ない場合には、前記上流側スプレーノズル列群のみから前記冷却水を噴射させるように、前記制御部が前記冷却水の噴射を制御する;
ことを特徴とする請求項1に記載の鋼板の冷却装置。 - 前記上流側スプレーノズル列群に属する前記各スプレーノズル列の前記通板方向における互いの隣接間隔が同一であり;
前記下流側スプレーノズル列群に属する前記各スプレーノズル列の前記通板方向における互いの隣接間隔が同一である;
ことを特徴とする請求項1から請求項5のいずれか1項に記載の鋼板の冷却装置。 - 前記通板方向における前記各スプレーノズル列の隣接間隔が全て同一であることを特徴とする請求項1から請求項5のいずれか1項に記載の鋼板の冷却装置。
- 前記上流側スプレーノズル列群から最大噴射量を噴射させたとき、
前記鋼板上に滞留する板上水の領域よりも前記通板方向に沿った上流側の位置に向かって前記上流側スプレーノズル列群から前記冷却水が噴射されるように、前記上流側スプレーノズル列群が配置されている
ことを特徴とする請求項1から請求項5のいずれか1項に記載の鋼板の冷却装置。 - 請求項3から請求項5のいずれか1項に記載の鋼板の冷却装置を用いて前記鋼板を冷却する際に、
前記鋼板に向かって噴射されるべき総水量が前記上流側スプレーノズル列群の最大噴射量以上である場合には、前記上流側スプレーノズル列群及び前記下流側スプレーノズル列群の両方から前記冷却水を噴射させる一方、前記総水量が前記上流側スプレーノズル列群の最大噴射量よりも少ない場合には、前記上流側スプレーノズル列群のみから前記冷却水を噴射させるように、前記制御部により前記冷却水の噴射を制御する;
ことを特徴とする鋼板の冷却方法。 - 前記上流側スプレーノズル列群から前記冷却水を最大噴射量で噴射させたときに前記鋼板上に滞留する板上水の領域を予め求め;
前記領域よりも前記通板方向に沿った上流側の位置に、前記上流側スプレーノズル列群から前記冷却水が噴射されるように、前記上流側スプレーノズル列群を配置する;
ことを特徴とする請求項9に記載の鋼板の冷却方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127025406A KR101266736B1 (ko) | 2010-07-22 | 2011-07-22 | 강판의 냉각 장치 및 강판의 냉각 방법 |
EP11809748.4A EP2540407B1 (en) | 2010-07-22 | 2011-07-22 | Steel plate cooling system and steel plate cooling method |
CN201180016857.7A CN102834193B (zh) | 2010-07-22 | 2011-07-22 | 钢板的冷却装置和钢板的冷却方法 |
JP2011544714A JP4903920B1 (ja) | 2010-07-22 | 2011-07-22 | 鋼板の冷却装置及び鋼板の冷却方法 |
BR112012024915-0A BR112012024915B1 (pt) | 2010-07-22 | 2011-07-22 | Sistema de resfriamento de chapa de aço e método de resfriamento de chapa de aço |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-164522 | 2010-07-22 | ||
JP2010164522 | 2010-07-22 | ||
JP2010-234715 | 2010-10-19 | ||
JP2010234715 | 2010-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011578A1 true WO2012011578A1 (ja) | 2012-01-26 |
Family
ID=45496995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066742 WO2012011578A1 (ja) | 2010-07-22 | 2011-07-22 | 鋼板の冷却装置及び鋼板の冷却方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2540407B1 (ja) |
JP (1) | JP4903920B1 (ja) |
KR (1) | KR101266736B1 (ja) |
CN (1) | CN102834193B (ja) |
BR (1) | BR112012024915B1 (ja) |
WO (1) | WO2012011578A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847732A (zh) * | 2012-08-20 | 2013-01-02 | 燕山大学 | 一种大型筒节热轧喷淋冷却方法 |
WO2014032838A1 (de) | 2012-09-03 | 2014-03-06 | Sms Siemag Ag | Verfahren und vorrichtung zur dynamischen versorgung einer kühleinrichtung zum kühlen von metallband oder sonstigem walzgut mit kühlmittel |
WO2018056164A1 (ja) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | 熱延鋼板の冷却装置及び冷却方法 |
WO2018055918A1 (ja) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | 熱延鋼板の冷却装置及び冷却方法 |
CN109374675A (zh) * | 2018-12-14 | 2019-02-22 | 安徽工业大学 | 研究矩阵排布喷嘴快速冷却高温板(坯)传热的实验装置 |
US20200384516A1 (en) * | 2018-02-26 | 2020-12-10 | Sms Group Gmbh | Cooling device for cooling a material to be cooled |
CN114592112A (zh) * | 2022-02-25 | 2022-06-07 | 东北大学 | 一种钢板回火后柔性冷却装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2767352A1 (de) | 2013-02-14 | 2014-08-20 | Siemens VAI Metals Technologies GmbH | Kühlung eines Metallbandes mit positionsgeregelter Ventileinrichtung |
EP2777836A1 (de) * | 2013-03-14 | 2014-09-17 | Siemens VAI Metals Technologies GmbH | Kühleinrichtung mit Spritzbalken mit verlängerten Auslässen |
CN110087802B (zh) * | 2016-12-26 | 2021-11-23 | 宝山钢铁股份有限公司 | 一种薄带连铸带钢冷却机构及其冷却方法 |
EP3653312B1 (en) * | 2017-09-28 | 2022-08-17 | JFE Steel Corporation | Steel plate manufacturing equipment and steel plate manufacturing method |
KR102329511B1 (ko) * | 2018-04-30 | 2021-11-19 | 주식회사 포스코 | 압연설비 및 압연방법 |
EP3763836B1 (en) * | 2019-07-11 | 2023-06-07 | John Cockerill S.A. | Cooling device for blowing gas onto a surface of a traveling strip |
CN113245381B (zh) * | 2020-03-24 | 2022-11-18 | 宝山钢铁股份有限公司 | 一种无缝钢管定径后的在线冷却系统及其冷却方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035510A1 (fr) * | 2006-09-19 | 2008-03-27 | Nippon Steel Corporation | Procédé de refroidissement d'une plaque en acier |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB806786A (en) | 1955-10-11 | 1958-12-31 | British Thomson Houston Co Ltd | Improvements in and relating to cooling equipment |
US3533261A (en) | 1967-06-15 | 1970-10-13 | Frans Hollander | Method and a device for cooling hot-rolled metal strip on a run-out table after being rolled |
US3604234A (en) | 1969-05-16 | 1971-09-14 | Gen Electric | Temperature control system for mill runout table |
JPS5848019B2 (ja) * | 1979-11-09 | 1983-10-26 | 石川島播磨重工業株式会社 | 鋼板の噴霧冷却方法及びその装置 |
JPS63118018A (ja) * | 1986-11-07 | 1988-05-23 | Sumitomo Metal Ind Ltd | 厚鋼板の冷却方法 |
JPH10180338A (ja) | 1996-12-24 | 1998-07-07 | Kawasaki Steel Corp | 熱間仕上圧延におけるスケール疵防止方法 |
JP3287253B2 (ja) * | 1997-01-29 | 2002-06-04 | 日本鋼管株式会社 | 高温鋼板の冷却方法 |
JP3276318B2 (ja) * | 1997-08-28 | 2002-04-22 | 三菱重工業株式会社 | 鋼板端部の冷却装置 |
DE19850253A1 (de) | 1998-10-31 | 2000-05-04 | Schloemann Siemag Ag | Verfahren und System zur Regelung von Kühlstrecken |
CN201346566Y (zh) * | 2008-12-29 | 2009-11-18 | 中冶南方工程技术有限公司 | 中厚钢板控制冷却侧喷系统 |
-
2011
- 2011-07-22 WO PCT/JP2011/066742 patent/WO2012011578A1/ja active Application Filing
- 2011-07-22 JP JP2011544714A patent/JP4903920B1/ja active Active
- 2011-07-22 KR KR1020127025406A patent/KR101266736B1/ko active IP Right Grant
- 2011-07-22 CN CN201180016857.7A patent/CN102834193B/zh active Active
- 2011-07-22 BR BR112012024915-0A patent/BR112012024915B1/pt active IP Right Grant
- 2011-07-22 EP EP11809748.4A patent/EP2540407B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035510A1 (fr) * | 2006-09-19 | 2008-03-27 | Nippon Steel Corporation | Procédé de refroidissement d'une plaque en acier |
Non-Patent Citations (1)
Title |
---|
See also references of EP2540407A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847732A (zh) * | 2012-08-20 | 2013-01-02 | 燕山大学 | 一种大型筒节热轧喷淋冷却方法 |
WO2014032838A1 (de) | 2012-09-03 | 2014-03-06 | Sms Siemag Ag | Verfahren und vorrichtung zur dynamischen versorgung einer kühleinrichtung zum kühlen von metallband oder sonstigem walzgut mit kühlmittel |
RU2608921C2 (ru) * | 2012-09-03 | 2017-01-26 | Смс Зимаг Аг | Способ и устройство для динамического снабжения охлаждающим средством охлаждающего устройства для охлаждения металлической полосы или подобного прокатываемого изделия |
WO2018056164A1 (ja) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | 熱延鋼板の冷却装置及び冷却方法 |
WO2018055918A1 (ja) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | 熱延鋼板の冷却装置及び冷却方法 |
JPWO2018056164A1 (ja) * | 2016-09-23 | 2019-06-24 | 日本製鉄株式会社 | 熱延鋼板の冷却装置及び冷却方法 |
TWI676507B (zh) * | 2016-09-23 | 2019-11-11 | 日商日本製鐵股份有限公司 | 熱軋鋼板之冷卻裝置及冷卻方法 |
US11413670B2 (en) | 2016-09-23 | 2022-08-16 | Nippon Steel Corporation | Cooling device and cooling method of hot-rolled steel sheet |
US20200384516A1 (en) * | 2018-02-26 | 2020-12-10 | Sms Group Gmbh | Cooling device for cooling a material to be cooled |
US11872615B2 (en) * | 2018-02-26 | 2024-01-16 | Sms Group Gmbh | Cooling device for cooling a material to be cooled |
CN109374675A (zh) * | 2018-12-14 | 2019-02-22 | 安徽工业大学 | 研究矩阵排布喷嘴快速冷却高温板(坯)传热的实验装置 |
CN114592112A (zh) * | 2022-02-25 | 2022-06-07 | 东北大学 | 一种钢板回火后柔性冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
BR112012024915A2 (pt) | 2016-07-12 |
KR101266736B1 (ko) | 2013-05-28 |
CN102834193A (zh) | 2012-12-19 |
EP2540407B1 (en) | 2016-01-20 |
JP4903920B1 (ja) | 2012-03-28 |
EP2540407A1 (en) | 2013-01-02 |
KR20120120972A (ko) | 2012-11-02 |
BR112012024915B1 (pt) | 2020-12-15 |
JPWO2012011578A1 (ja) | 2013-09-09 |
CN102834193B (zh) | 2014-12-17 |
EP2540407A4 (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4903920B1 (ja) | 鋼板の冷却装置及び鋼板の冷却方法 | |
EP2116313B1 (en) | Device and method for cooling hot-rolled steel strip | |
KR100935490B1 (ko) | 후강판의 냉각 장치 | |
WO2010114083A1 (ja) | 熱延鋼板の冷却装置 | |
CN102421544B (zh) | 热轧钢板的冷却方法及冷却装置 | |
WO2007026906A1 (ja) | 鋼板の冷却設備および冷却方法 | |
KR101219195B1 (ko) | 후강판의 제조 장치 | |
WO2007026905A1 (ja) | 鋼板の熱間圧延設備および熱間圧延方法 | |
JP4876782B2 (ja) | 鋼板の熱間圧延設備および熱間圧延方法 | |
JP4214134B2 (ja) | 厚鋼板の冷却装置 | |
CN111492071A (zh) | 厚钢板的冷却装置及冷却方法以及厚钢板的制造设备及制造方法 | |
CN112703067B (zh) | 热轧钢板的冷却装置及热轧钢板的冷却方法 | |
JP4091934B2 (ja) | 厚鋼板の冷却方法 | |
JP7151265B2 (ja) | 熱延鋼板の冷却装置、および熱延鋼板の冷却方法 | |
JP4478083B2 (ja) | 鋼板の上下面均一冷却装置 | |
JP4061286B2 (ja) | 金属板の冷却装置および冷却方法 | |
JP2006212666A (ja) | 厚鋼板の冷却装置および冷却方法 | |
JP5428452B2 (ja) | 熱延鋼帯の下面冷却方法および下面冷却装置 | |
JP4377832B2 (ja) | 鋼板の上下面均一冷却装置 | |
JP4453522B2 (ja) | 鋼板の冷却装置及び冷却方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180016857.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011544714 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11809748 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8361/DELNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127025406 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011809748 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012024915 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012024915 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120928 |