WO2018056088A1 - 水力発電システム - Google Patents

水力発電システム Download PDF

Info

Publication number
WO2018056088A1
WO2018056088A1 PCT/JP2017/032620 JP2017032620W WO2018056088A1 WO 2018056088 A1 WO2018056088 A1 WO 2018056088A1 JP 2017032620 W JP2017032620 W JP 2017032620W WO 2018056088 A1 WO2018056088 A1 WO 2018056088A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
flow rate
fluid
value
generator
Prior art date
Application number
PCT/JP2017/032620
Other languages
English (en)
French (fr)
Inventor
敬宏 阿部
淳 須原
貴裕 横山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17852865.9A priority Critical patent/EP3496263B1/en
Priority to CN201780057649.9A priority patent/CN109716642A/zh
Priority to BR112019005236-4A priority patent/BR112019005236B1/pt
Priority to CA3036637A priority patent/CA3036637C/en
Priority to ES17852865T priority patent/ES2927707T3/es
Priority to US16/332,430 priority patent/US11041476B2/en
Publication of WO2018056088A1 publication Critical patent/WO2018056088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/08Regulating, i.e. acting automatically by speed, e.g. by measuring electric frequency or liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/16Regulating, i.e. acting automatically by power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/20Application within closed fluid conduits, e.g. pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric power generation system.
  • hydroelectric power generation system that generates power using a fluid (for example, water) flowing through a water channel (for example, a pipeline).
  • a fluid for example, water
  • a water channel for example, a pipeline
  • a water turbine fluid machine
  • the generator connected to the water wheel is driven.
  • the output power of the generator is supplied to an electric power system (for example, commercial power source) by, for example, reverse power flow.
  • the present invention has been made paying attention to the above-mentioned problem, and aims to enable control of electric power while maintaining a physical quantity (for example, total flow rate) of a fluid at a desired value.
  • the first aspect is A fluid machine (W) disposed in the flow path (1) through which the fluid flows; A generator (G) driven by the fluid machine (W); A control unit (20, 30) for controlling the power generated by the generator (G) and supplying the power generated by the generator (G) to the power system (5); A power information acquisition unit (32) that acquires power supply and demand information including power that the power system (5) can accept or information correlated with the power; A fluid information acquisition unit (17, 18) for acquiring fluid information including information correlated with a physical quantity in the fluid flowing out of the flow path (1); With The control unit (20, 30) uses the power supply and demand information to control the power supplied to the power system (5) below the power that the power system (5) can accept, while the fluid information And controlling at least one of the physical quantity and the generated power of the flow path (1) or the generator (G) so that the physical quantity becomes a desired value. It is.
  • the hydroelectric power generation system is controlled in consideration of both the power of the generator (G) and the physical quantity in the fluid.
  • the second aspect is the first aspect,
  • the flow path (1) is provided with a bypass (13) of the fluid machine (W),
  • the physical quantity includes a total flow rate (QT) of the fluid in the flow path (1),
  • the controller (20, 30) controls the fluid flow rate (Q2) in the bypass (13) to bring the total flow rate (QT) closer to a predetermined target total flow rate (QT *).
  • the total flow rate (QT) is controlled to the desired target total flow rate (QT *) by controlling the flow rate of the bypass (13) along with the generated power.
  • the third aspect is the first aspect or the second aspect
  • the control unit (20, 30) is a detectable characteristic related to the generator (G), and is based on a characteristic that correlates with a flow rate (Q1) and an effective head (H) in the fluid machine (W).
  • the flow rate (Q1) and the effective head (H) in the fluid machine (W) are estimated, and the relationship between the effective head (H) and the total flow rate (QT) in the flow path (1) is shown.
  • the total flow rate (QT) is estimated based on the flow resistance characteristic line (S), the estimated flow rate (Q1), and the effective head (H).
  • the fourth aspect is any one of the first to third aspects.
  • the flow path (1) is a pipe line, A flow control valve (15) connected in series to the fluid machine (W) and controlling the flow rate of the fluid flowing into the fluid machine (W);
  • the value of the physical quantity includes the pressure (P2) of the fluid flowing out of the flow path (1),
  • the controller (20, 30) is characterized in that the pressure (P2) is brought close to a predetermined target pressure (P *) by controlling the opening degree of the flow control valve (15).
  • the fluid pressure (P2) is controlled to the desired target pressure (P *) by controlling the flow rate control valve (15) as well as the generated power.
  • the fifth aspect is any one of the first to fourth aspects.
  • the said control part (20,30) acquires the said electric power supply-and-demand information based on the voltage value (Vac) of the distribution line of the said electric power grid
  • the power that can be accepted by the power system (5) is detected by the voltage value (Vac).
  • a sixth aspect is any one of the first to fifth aspects,
  • the control unit (20, 30) supplies a part or all of the generated power to the power consumption unit (40) so that the power supplied to the power system (5) becomes a desired value. It is a characteristic hydroelectric power generation system.
  • the power supplied to the power system (5) is adjusted by the power consumption unit (40), so that the control unit (20, 30) is changed to the generator controller (20) as in the embodiment described later.
  • the grid interconnection inverter (30), the power suppression by the grid interconnection inverter (30) and the power suppression by the generator controller (20) can be easily linked.
  • a seventh aspect is any one of the first to sixth aspects,
  • the control unit (20, 30) controls the flow rate (Q1) in the fluid machine (W) so that the power supplied to the power system (5) becomes a desired value. System.
  • the power supplied to the power system (5) is adjusted by controlling the flow rate (Q1) in the fluid machine (W).
  • control unit (20, 30) controls the generated power while controlling the opening of the flow control valve (15) so that the power supplied to the power system (5) becomes a desired value.
  • This is a hydroelectric power generation system characterized by this.
  • the first aspect it is possible to control the power supplied while maintaining the physical quantity of the fluid at a desired value.
  • the cost of the hydroelectric power generation system can be reduced.
  • FIG. 1 shows an overall schematic configuration of a pipeline including a hydroelectric power generation system according to a first embodiment.
  • FIG. 2 is a power system diagram of the hydroelectric power generation system.
  • FIG. 3 is a flowchart of control performed in the hydroelectric power generation system.
  • FIG. 4 is a flowchart of control performed in the hydraulic power generation system according to the modification of the first embodiment.
  • FIG. 5 is a block diagram of the generator controller and the grid interconnection inverter in the second embodiment.
  • FIG. 6 is a flowchart of control performed in the hydraulic power generation system according to the second embodiment.
  • FIG. 7 is a diagram showing a characteristic map of the fluid system.
  • FIG. 8 shows an overall schematic configuration of a pipeline including the hydroelectric power generation system of the fourth embodiment.
  • FIG. 9 is a power system diagram of the hydroelectric power generation system according to the fourth embodiment.
  • FIG. 10 is a characteristic map for explaining the concept of control in the fourth embodiment.
  • FIG. 1 shows an overall schematic configuration of a pipe line (1) including a hydroelectric power generation system (10) according to Embodiment 1 of the present invention.
  • This pipe line (1) has a drop and fluid flows, and is an example of the flow path of the present invention.
  • the pipe line (1) is a part of the water supply (4).
  • the water supply (4) is provided with a storage tank (2) and a water receiving tank (3).
  • the pipe line (1) of the present embodiment includes a storage tank (2) and the storage tank (2). It arrange
  • FIG. 1 is a power system diagram of the hydroelectric power generation system (10).
  • the hydroelectric power generation system (10) includes a generator controller (20), a grid interconnection inverter (30), and a regenerative resistor (40). I have.
  • the generated power is supplied to the power system (5).
  • the power system (5) is a so-called commercial power source, and the hydroelectric power generation system (10) performs so-called power sale by supplying power to the commercial power source (5) (so-called reverse power flow).
  • the generator (G) is controlled so that the generator (G) has a rated output, and power is supplied to the power system (5) (normally Called driving).
  • the rated output is the maximum power output of the generator (G) that can be exhibited in the hydroelectric power generation system (10).
  • the generated power is set so that the AC voltage value (Vac) of the distribution line of the power system (5) falls within a predetermined voltage regulation range (Vr). Control.
  • the operation for suppressing the power supplied to the power system (5) (described later) Power generation suppression operation).
  • the total flow rate (QT) is controlled to a predetermined target total flow rate (QT *) during both the normal operation and the generated power suppression operation.
  • the water wheel (W) is disposed in the middle of the pipe line (1) and is an example of the hydraulic machine of the present invention.
  • the water wheel (W) includes an impeller and a casing (both are not shown).
  • An impeller provided for the spiral pump is used for the impeller.
  • a rotation shaft (19) is fixed to the center of the impeller.
  • the impeller rotates by receiving pressure from a water flow (not shown) formed in the casing and rotates the rotating shaft (19).
  • the fluid flowing into the water wheel (W) is discharged from a fluid discharge port (not shown) formed in the casing.
  • the generator (G) is connected to the rotating shaft (19) of the water turbine (W) and is rotationally driven to generate power.
  • the generator (G) includes a permanent magnet embedded rotor and a stator having a coil (both not shown).
  • a inflow pipe (11), an outflow pipe (14), a first branch pipe (12), and a second branch pipe (13) are connected to the pipe line (1).
  • the pipe line (1) of the present embodiment is constituted by a metal pipe (for example, a ductile cast iron pipe).
  • a storage tank (2) is connected to the inflow end of the inflow pipe (11).
  • a water receiving tank (3) is connected to the outflow end of the outflow pipe (14).
  • a first branch pipe (12) and a second branch pipe (13) are connected in parallel between the inflow pipe (11) and the outflow pipe (14).
  • a 1st branch pipe (12) comprises the flow path by the side of the water turbine through which the water which drives a water turbine (W) flows.
  • the second branch pipe (13) constitutes a detour that bypasses the water turbine (W).
  • the first branch pipe (12) has a first flow meter (17), a first motor-operated valve (15), and a water wheel (W) (in detail, a fluid inlet of the water wheel (W) in this order from upstream to downstream. ) Is connected.
  • An outflow pipe (14) is connected to the fluid discharge port of the water turbine (W).
  • a second flow meter (18) and a second motor-operated valve (16) are connected to the second branch pipe (13) in order from upstream to downstream.
  • the first flow meter (17) and the second flow meter (18) are configured to be operated by electricity.
  • the first flow meter (17) detects the flow rate of water flowing through the water turbine (W) and outputs a detection signal.
  • the second flow meter (18) detects the flow rate of water flowing through the second branch pipe (13), and outputs a detection signal.
  • the first motor-operated valve (15) and the second motor-operated valve (16) control the flow rate of fluid by driving the valve body with an electric motor.
  • the first motor-operated valve (15) is closed during maintenance or the like of the water turbine (W), and prohibits water from passing through the stopped water wheel (W).
  • the first motor operated valve (15) is opened at a predetermined opening (for example, a fixed value) during operation of the hydroelectric power generation system (10).
  • a 2nd motor operated valve (16) controls the flow volume of the water which flows through a 2nd branch pipe (13).
  • the sum of the detected value of the first flow meter (17) and the detected value of the second flow meter (18) is the total flow rate (QT) of the fluid flowing out from the pipe (1).
  • This total flow rate (QT) is an example of “fluid information including information correlated with a physical quantity in the fluid flowing out from the flow path” of the present invention.
  • the first flow meter (17) and the second flow meter (18) constitute an example of the fluid information acquisition unit of the present invention.
  • the AC / DC converter unit (21) includes a plurality of switching elements, and switches power (AC power) generated by the generator (G) to convert it into DC power.
  • the DC power is smoothed by a smoothing capacitor (not shown) and supplied to the grid interconnection inverter (30).
  • the DC voltage detector (22) detects the output voltage of the AC / DC converter (21).
  • the detected value (DC voltage (Vdc)) by the DC voltage detection unit (22) is transmitted to the flow rate command determination unit (24).
  • the flow rate detection unit (23) reads the detection values of the first flow meter (17) and the second flow meter (18) and controls the detection value periodically or according to the request of the flow rate control unit (25). Part (25).
  • the flow rate command determining unit (24) is configured using a microcomputer and a memory device storing a program for operating the microcomputer.
  • the flow rate command determining unit (24) calculates the flow rate that is the target value of the flow rate (Q1) of the water turbine (W) from the target value of power and the target total flow rate (QT *) that is the target value of the total flow rate (QT). Determine the command value (Q1 *).
  • the target value of power is normally a rated output described later, but in the hydroelectric power generation system (10), the target value is a detected value of the DC voltage detection unit (22) as described in detail later. Will be changed according to In order to generate the flow rate command value (Q1 *), for example, it is conceivable to use a function defined in the program in advance or a characteristic map (M) described later.
  • the flow controller (25) is configured using a microcomputer and a memory device storing a program for operating the microcomputer.
  • the microcomputer and the memory device may be shared with those constituting the flow rate command determining unit (24) or may be provided separately.
  • the flow rate control unit (25) controls the generated power of the generator (G) by controlling switching in the AC / DC converter unit (21). Specifically, the flow rate control unit (25) performs feedback control according to the difference between the flow rate command value (Q1 *) and the current flow rate (Q1), thereby generating power ( Output voltage).
  • the flow control unit (25) also controls the total flow rate (QT) in the pipe line (1).
  • the flow control unit (25) has a difference between the target value of the total flow rate (QT) (hereinafter referred to as the target total flow rate (QT *)) of the pipe (1) and the current flow rate (Q1).
  • the opening degree of the second motor operated valve (16) is controlled so as to flow through the two branch pipe (13).
  • the grid interconnection inverter (30) includes an inverter unit (31), an AC voltage detection unit (32), and a voltage rise determination unit (33).
  • the inverter unit (31) includes a plurality of switching elements, receives DC power from the generator controller (20), and converts the DC power into AC power by switching.
  • the AC power generated by the inverter unit (31) is supplied (reverse power flow) to the power system (5).
  • an inverter part (31) controls the electric power (voltage) made to flow backward to an electric power grid
  • the AC voltage detection unit (32) acquires power supply and demand information including power that can be received by the power system (5) or information correlated with the power. That is, the AC voltage detection unit (32) is an example of the power information acquisition unit of the present invention. Specifically, the AC voltage detection unit (32) detects the voltage value (AC voltage value (Vac)) of the distribution line of the power system (5) as power supply and demand information. The AC voltage value (Vac) is transmitted to the voltage increase determination unit (33).
  • the voltage increase determination unit (33) compares the AC voltage value (Vac) detected by the AC voltage detection unit (32) with a predetermined first threshold (Th1), and compares the result with the inverter unit (31). Output to.
  • the first threshold value (Th1) may be determined in consideration of laws and regulations as an example. For example, in a commercial power supply (5) that supplies 100V AC, the law stipulates that the voltage on the distribution line is maintained in the range of 95V to 107V, and the voltage is likely to exceed the upper limit of the range. There is an example in which suppression of power supply (reverse power flow) on the power selling side is required. In such an example, 95V to 107V corresponds to the voltage regulation range (Vr), and the first threshold (Th1) is set to a voltage value slightly lower than 107V, which is the upper limit value of the voltage regulation range (Vr). Good.
  • Fig. 3 shows a flowchart of electric power and flow rate control performed in the hydroelectric power generation system (10).
  • the flow rate control unit (25) controls the switching in the AC / DC converter unit (21) so that the generated power of the generator (G) becomes a target value, and the pipeline
  • the opening degree of the second motor-operated valve (16) is controlled so that the total flow rate (QT) of (1) becomes the target total flow rate (QT *).
  • the flow rate control unit (25) causes the flow rate (Q1) of the water turbine (W) to flow rate by, for example, feedback control.
  • the switching of the AC / DC converter unit (21) is controlled so as to become the command value (Q1 *).
  • the output of the generator (G) converges to the target generated power.
  • the flow control unit (25) opens the opening of the second motor operated valve (16). Adjust. At this time, the flow rate control unit (25) transmits the detected value of the second flow meter (18) and the target value of the flow rate (Q2) (target total flow rate (QT *)) transmitted from the flow rate detection unit (23). The opening degree of the second motor-operated valve (16) is adjusted while comparing with the flow rate (difference in Q1). For example, feedback control can be used for the opening adjustment.
  • the target total flow rate (QT *) can be set to the total flow rate required by the manager of the water supply (4). This target total flow rate (QT *) may be a fixed value, or may be changed depending on the time zone, for example.
  • step (S02) the AC voltage detector (32) detects the AC voltage value (Vac). That is, in this embodiment, power supply and demand information is acquired based on the AC voltage value (Vac) of the distribution line.
  • step (S03) the voltage increase determination unit (33) compares the AC voltage value (Vac) with the first threshold value (Th1). The comparison result by the voltage rise determination unit (33) is output to the inverter unit (31).
  • step (S04) when the AC voltage value (Vac) is larger than the first threshold value (Th1), the inverter unit (31) performs the process of step (S04).
  • step (S04) the inverter unit (31) performs switching control to reduce the power (voltage) to be reversely flowed, and by turning on the switch (SW) connected to the regenerative resistor (40). Then, a part or all of the DC power output from the AC / DC converter unit (21) is consumed by the regenerative resistor (40) (this operation is referred to as generated power suppression operation). That is, the regenerative resistor (40) is an example of the power consumption unit of the present invention.
  • step (S05) the DC voltage detection unit (22) detects the DC voltage (Vdc) of the AC / DC converter unit (21).
  • Step (S06) the flow rate command determination unit (24) compares the DC voltage (Vdc) with a predetermined second threshold value (Th2). If the power (voltage) to be reversely flowed in step (S04) is reduced, the DC voltage (Vdc) may increase. As a result of the comparison in the flow rate command determination unit (24), when the DC voltage (Vdc)> the second threshold value (Th2), the process of step (S07) is performed.
  • step (S07) the flow rate command determination unit (24) changes the target value of the generated power (reducing the target value), and based on the changed target value of the generated power, the flow rate command value (Q1 *) Is changed (the target value is reduced) to instruct the flow rate control unit (25) to perform the generated power suppression operation.
  • step (S01) When the processing in step (S07) is completed, the processing in the generator controller (20) shifts to step (S01) (in this case, step (S01) may also be considered as part of the generated power suppression operation).
  • step (S01) switching control in the AC / DC converter unit (21) is performed based on the flow rate command value (Q1 *).
  • step (S07) When the process moves from step (S07) to step (S01), the flow rate command value (Q1 *) has been changed, and the flow rate (Q1) of the water turbine (W) decreases. As a result, the power generated by the generator (G) decreases, and the voltage of the distribution line falls within the voltage regulation range (Vr).
  • the opening degree of the second motor-operated valve (16) is controlled by the flow rate control unit (25), and the total flow rate (QT) of the pipe (1) converges to the target total flow rate (QT *). That is, in this embodiment, it is possible to maintain the total flow rate (QT) at the target total flow rate (QT *) while controlling the power (distribution line voltage) to be reversely flowed to a desired value.
  • step (S08) When the comparison result in step (S03) is AC voltage value (Vac) ⁇ first threshold value (Th1), or the comparison result in step (S06) is DC voltage (Vdc) ⁇ second threshold value (Th2) ), The process of step (S08) is performed.
  • step (S08) when the generated power suppression operation is currently being performed, the switch (SW) is turned off to terminate the power consumption by the regenerative resistor (40).
  • the flow rate command determination unit (24) corrects the flow rate command value (Q1 *) so as to restore the suppressed power. Specifically, the flow rate command determination unit (24) returns the flow rate command value (Q1 *) to the original value (value at the rated output) so that the generator (G) has a rated output.
  • the flow control unit (25) controls the AC / DC converter unit (21) accordingly (step (S01)). Moreover, switching according to the rated output of a generator (G) is also performed in an inverter part (31), and the rated output in an inverter part (31) is performed (step (S01)). Thereby, normal operation is performed.
  • the power is controlled while maintaining the physical quantity of fluid (here, the total flow rate (QT)) at a desired value. It becomes possible.
  • step (S01) shown in the flowchart of FIG. 4 the flow rate control unit (25) controls switching in the AC / DC converter unit (21) so that the generated power of the generator (G) becomes a target value.
  • the opening degree of the second motor-operated valve (16) is controlled so that the total flow rate (QT) of the pipe line (1) becomes the target total flow rate (QT *).
  • the flow rate control unit (25) causes the flow rate (Q1) of the water turbine (W) to flow rate by, for example, feedback control.
  • the switching of the AC / DC converter unit (21) is controlled so as to become the command value (Q1 *).
  • the output of the generator (G) converges to the target generated power.
  • the flow control unit (25) opens the opening of the second motor operated valve (16). Adjust. At this time, the flow rate control unit (25) transmits the detected value of the second flow meter (18) and the target value of the flow rate (Q2) (target total flow rate (QT *)) transmitted from the flow rate detection unit (23). The opening degree of the second motor-operated valve (16) is adjusted while comparing with the flow rate (difference in Q1). For example, feedback control can be used for the opening adjustment.
  • the target total flow rate (QT *) can be set to the total flow rate required by the manager of the water supply (4). This target total flow rate (QT *) may be a fixed value, or may be changed depending on the time zone, for example.
  • step (S02) the AC voltage detector (32) detects the AC voltage value (Vac). That is, in this embodiment, power supply and demand information is acquired based on the AC voltage value (Vac) of the distribution line.
  • step (S03) the voltage increase determination unit (33) compares the AC voltage value (Vac) with the first threshold value (Th1). The comparison result by the voltage rise determination unit (33) is output to the inverter unit (31).
  • step (S03) when the AC voltage value (Vac) is larger than the first threshold value (Th1), the inverter unit (31) performs the process of step (S04). In this step (S04), the inverter unit (31) performs switching control to reduce the power (voltage) to be reversely flowed (this operation is referred to as generated power suppression operation).
  • step (S05) the DC voltage detection unit (22) detects the DC voltage (Vdc) of the AC / DC converter unit (21).
  • Step (S06) the flow rate command determination unit (24) compares the DC voltage (Vdc) with a predetermined second threshold value (Th2). If the power (voltage) to be reversely flowed in step (S04) is reduced, the DC voltage (Vdc) may increase. As a result of the comparison in the flow rate command determination unit (24), when the DC voltage (Vdc)> the second threshold value (Th2), the process of step (S07) is performed.
  • step (S07) of this modification by turning on the switch (SW) connected to the regenerative resistor (40), a part or all of the DC power output from the AC / DC converter unit (21) is regenerated. It is consumed with the vessel (40).
  • the flow rate command determination unit (24) changes the target value of the generated power (reducing the target value), and based on the changed target value of the generated power, the flow rate command value (Q1 *) Is changed (the target value is reduced) to instruct the flow rate control unit (25) to control the generated power.
  • step (S01) When the processing in step (S07) is completed, the processing in the generator controller (20) shifts to step (S01) (in this case, step (S01) may also be considered as part of the generated power suppression operation).
  • step (S01) switching control in the AC / DC converter unit (21) is performed based on the flow rate command value (Q1 *).
  • step (S07) When the process moves from step (S07) to step (S01), the flow rate command value (Q1 *) has been changed, and the flow rate (Q1) of the water turbine (W) decreases. As a result, the power generated by the generator (G) decreases, and the voltage of the distribution line falls within the voltage regulation range (Vr).
  • the opening degree of the second motor-operated valve (16) is controlled by the flow rate control unit (25), and the total flow rate (QT) of the pipe (1) converges to the target total flow rate (QT *). That is, in this embodiment, it is possible to maintain the total flow rate (QT) at the target total flow rate (QT *) while controlling the power (distribution line voltage) to be reversely flowed to a desired value.
  • step (S08) If the comparison result in step (S06) is DC voltage (Vdc) ⁇ second threshold (Th2), the process of step (S08) is performed.
  • step (S08) the switch (SW) is turned off to end the power consumption by the regenerative resistor (40).
  • the regenerative resistor (40) absorbs power during the period of DC voltage (Vdc)> second threshold (Th2), and the capacity of the regenerative resistor (40) absorbs excess power during that period. It is necessary to set the capacity so that it can.
  • step (S08) when the generated power suppression operation is currently being performed, the flow rate command determination unit (24) sets the flow rate command value (Q1 * so as to restore the suppressed power to the original state. ). Specifically, the flow rate command determination unit (24) returns the flow rate command value (Q1 *) to the original value (value at the rated output) so that the generator (G) has a rated output.
  • the flow control unit (25) controls the AC / DC converter unit (21) accordingly (step (S01)). Moreover, switching according to the rated output of a generator (G) is also performed in an inverter part (31), and the rated output in an inverter part (31) is performed (step (S01)). Thereby, normal operation is performed.
  • step (S09) If the result of the comparison in step (S03) is AC voltage value (Vac) ⁇ first threshold (Th1), the process in step (S09) is performed. In step (S09), if the power generation suppression operation is currently being performed by the grid interconnection inverter (30), the grid interconnection inverter (30) is returned to the rated operation, and then the process proceeds to step (S05). To do.
  • Embodiment 2 of the Invention another example of the generated power suppression operation will be described.
  • the configurations of the generator controller (20) and the grid interconnection inverter (30) are different from those in the first embodiment.
  • the regenerative resistor (40) and the switch (SW) are not provided.
  • the present embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 5 shows a block diagram of the generator controller (20) and the grid interconnection inverter (30) in the second embodiment of the present invention.
  • the generator controller (20) includes an AC / DC converter unit (21), a flow rate detection unit (23), a flow rate command determination unit (24), a flow rate control unit (25), and an AC voltage detection unit. (32) and a voltage rise determination unit (33). That is, the AC voltage detection unit (32) and the voltage rise determination unit (33) provided in the grid interconnection inverter (30) in the first embodiment are provided in the generator controller (20) in the present embodiment. Yes.
  • the destination of the comparison result by the voltage rise determination unit (33) is the flow rate command determination unit (24).
  • the flow rate command determination unit (24) generates a new flow rate command value (Q1 *) according to the comparison result transmitted from the voltage increase determination unit (33).
  • a function defined in the program in advance or a characteristic map (M) described later for example, it is conceivable to use a function defined in the program in advance or a characteristic map (M) described later.
  • the functions of the other components constituting the generator controller (20) are the same as those in the first embodiment.
  • the grid interconnection inverter (30) includes an inverter unit (31).
  • the inverter unit (31) has the same configuration as that of the first embodiment.
  • FIG. 6 shows a flowchart of electric power and flow rate control performed in the hydraulic power generation system (10) of the second embodiment.
  • the flow rate control unit (25) controls the switching in the AC / DC converter unit (21) so that the generated power of the generator (G) becomes the target value.
  • the opening degree of the second motor-operated valve (16) is controlled so that the total flow rate (QT) of the path (1) becomes the target total flow rate (QT *). That is, the control in this step (S11) is the same as in step (S01) of the first embodiment.
  • step (S12) the AC voltage detector (32) detects the AC voltage value (Vac).
  • the generator controller (20) detects the AC voltage value (Vac).
  • step (S13) the voltage increase determination unit (33) compares the AC voltage value (Vac) with the first threshold value (Th1). The comparison result by the voltage increase determination unit (33) is output to the flow rate command determination unit (24).
  • step (S14) As a result of the comparison in step (S13), when the AC voltage value (Vac) is larger than the first threshold value (Th1), the process of step (S14) is performed.
  • the flow control unit (25) controls switching in the AC / DC converter unit (21) to reduce the power (voltage) to be reversely flowed (this operation is referred to as generated power suppression operation). ).
  • the flow rate command determination unit (24) generates a new flow rate command value (Q1 *) according to the difference between the AC voltage value (Vac) and the target value, Is transmitted to the flow rate control unit (25).
  • the flow rate command value (Q1 *) is reduced.
  • the flow rate command value (Q1 *) can be generated using the same method as in the first embodiment.
  • step (S11) may also be considered as part of the generated power suppression operation.
  • step (S11) switching control in the AC / DC converter unit (21) is performed based on the flow rate command value (Q1 *).
  • the flow rate command value (Q1 *) has been changed, and the torque value (T) and rotational speed (N) of the turbine (W) fluctuate.
  • the flow rate (Q1) decreases.
  • the power generated by the generator (G) decreases, and the voltage of the distribution line falls within the voltage regulation range (Vr).
  • the opening degree of the second motor-operated valve (16) is controlled by the flow rate control unit (25), and the total flow rate (QT) of the pipe (1) converges to the target total flow rate (QT *). That is, in this embodiment, it is possible to maintain the total flow rate (QT) at the target total flow rate (QT *) while controlling the power (distribution line voltage) to be reversely flowed to a desired value.
  • step (S15) If the result of the comparison in step (S13) is AC voltage value (Vac) ⁇ first threshold (Th1), the process in step (S15) is performed.
  • the processing performed in step (S15) is the same as that in step (S08) of the first embodiment, and the flow rate command determination unit (24) sets the flow rate command value (Q1 so as to restore the suppressed power. *) Is corrected.
  • the flow rate command determination unit (24) returns the flow rate command value (Q1 *) to the original value (value at the rated output) so that the generator (G) has a rated output.
  • the flow rate control unit (25) controls the AC / DC converter unit (21) accordingly.
  • switching according to the rated output of a generator (G) is also performed in an inverter part (31), and the rated output in an inverter part (31) is performed.
  • the power is controlled while maintaining the physical quantity of fluid (here, the total flow rate (QT)) at a desired value. It becomes possible.
  • the output of the AC / DC converter unit (21) is suppressed without waiting for power suppression of the inverter unit (31). It is not necessary to provide (40), and the hydroelectric power generation system (10) can be configured compactly.
  • Embodiment 3 of the Invention a control example in which the first flow meter (17) and the second flow meter (18) are not used will be described.
  • a characteristic map (M) is stored in the memory device of the flow rate control unit (25) (see FIG. 7).
  • This characteristic map (M) is on the HQ map where the vertical axis is the effective head (H) of the pipe (1) and the horizontal axis is the flow rate flowing out of the pipe (1) (ie, the total flow rate (QT)).
  • the characteristics that can be detected by the generator (G) and correlate with the flow rate (Q1) and the effective head (H) in the water turbine (W) are recorded.
  • the characteristics correlating with the flow rate (Q1) and the effective head (H) are the torque value (T), the rotational speed (N), and the generated power (P) of the generator (G). More specifically, the characteristic map (M) of the present embodiment is obtained by recording a plurality of equal torque curves and a plurality of equal rotation speed curves on the HQ map. Is stored in the memory device constituting the flow rate control unit (25).
  • the vehicle In this water wheel region, the vehicle is basically driven by being rotated by the water wheel (W).
  • a region on the left side of the unconstrained speed curve is a turbine brake region (power running region).
  • a curve (E) connecting the vertices of the plurality of equal generated power curves is a maximum generated power curve at which the generator (G) obtains the maximum generated power.
  • a hydraulic power generation system (10) is connected to the characteristic map (M) in which the torque value (T), rotational speed (N), and generated power (P) of the generator (G) are recorded on the HQ map. It is unrelated to the pipeline (1) and is a characteristic map specific to the hydroelectric power generation system (10).
  • This system loss curve (S) is also stored in the memory device constituting the flow rate control unit (25) in the form of a table (several table) or a mathematical expression (function) in the program.
  • the effective head (H) decreases with a quadratic curve as the total flow rate (QT) increases, and its curvature has a value unique to the pipe (1) in FIG.
  • the total flow rate (QT) and effective head (H) in the pipeline (1) including the hydropower system (10) correspond to points on the system loss curve (S).
  • the flow rate in the water turbine (W) is the conduit (1) including the hydroelectric power generation system (10)
  • the point corresponding to the flow rate (Q1) and effective head (H) of the water turbine (W) at that time is on the system loss curve (S).
  • the operating point of the water turbine (W) is on the system loss curve (S).
  • the total value of the flow rate in the water wheel (W) and the flow rate in the second branch pipe (13) is This is the total flow rate (QT) of the pipeline (1) including the hydroelectric power generation system (10).
  • the total flow rate (QT) and the effective head (H) at that time correspond to the points on the system loss curve (S).
  • the operating point of the turbine (W) is not on the system loss curve (S).
  • the operating point of the water turbine (W) can be known by using the characteristic map (M), thereby , You can know the current flow rate (Q1) in the water turbine (W). Then, the total flow rate (QT) and the flow rate (Q2) of the second branch pipe (13) can also be known.
  • the current operation point is the intersection of the equal rotation speed curve corresponding to the current rotation speed (N) and the equal torque curve corresponding to the current torque value (T). is there.
  • the flow rate (Q1a), which is the value of the horizontal scale corresponding to the operating point, is the flow rate (Q1) of the water turbine (W).
  • the intersection of the system loss curve (S) and the line parallel to the horizontal axis that passes through the operating point is obtained, and the flow rate (QTa) that is the value of the horizontal scale corresponding to the intersection is the total flow rate (QT) ).
  • QTa-Q1a is the flow rate (Q2) of the second branch pipe (13) at that time.
  • the operating point of the water turbine (W) can be determined by using the characteristic map (M). Then, as described above, the flow rate of the fluid to be flowed to the water wheel (W) can be determined, and the value can be used as the flow rate command value (Q1 *). For example, a line parallel to the horizontal axis that passes through a point on the system loss curve (S) corresponding to the current total flow rate (QT) (referred to as flow rate (QTa)), and an equal generated power line corresponding to the target generated power Is the target operating point (see FIG. 7). When the target operating point is determined, the flow rate (Q1a), which is the value of the horizontal scale corresponding to the operating point, becomes the flow rate command value (Q1 *) for obtaining the target generated power.
  • the system loss curve with the vertical axis representing the pressure difference (effective pressure difference) before and after the turbine (W) is the vertical axis. It is equivalent to a system loss curve (S) with an effective head (H). That is, a system loss curve may be used in which the vertical axis represents the pressure difference before and after the turbine (W) and the horizontal axis represents the total flow rate (QT).
  • the operating point on the characteristic map (M) of the generator (G) can be determined by combining the rotational speed (N) and the generated power (P), and the torque value (T) and the generated power (P). It may be a combination.
  • the characteristics of the generator (G) used in the characteristic map (M) are the characteristics of the generator (G) that correlate with the flow rate (Q1) and the effective head (H) in the water turbine (W), and this is detected. Any characteristic is possible.
  • the hydroelectric power generation system (10) if it is possible to associate the characteristics (detectable) of the generator (G) with the flow rate (Q1) and effective head (H) of the turbine (W), the hydroelectric power generation system (10)
  • the form of the water wheel (W) and generator (G) which comprise is not specifically limited. For example, even when the operation of the water turbine (W) cannot be varied by the generator (G), the flow rate (Q1) and the effective head (H) can be estimated as in this embodiment.
  • Embodiment 4 of the Invention the pressure of the fluid supplied through the pipe (1) (that is, the physical quantity of the fluid, which is named here as the supply pressure) is maintained at a desired value (target pressure (P *)).
  • target pressure (P *) target pressure
  • An example of a hydroelectric power generation system (10) capable of controlling the power to be reversely flowed will be described.
  • the hydroelectric power generation system (10) of the present embodiment can recover fluid energy that has not been used as electric power, for example, by arranging it as an alternative device for the pressure reducing valve provided in the water supply (4). it can.
  • FIG. 8 shows an overall schematic configuration of the pipe line (1) including the hydroelectric power generation system (10) according to the fourth embodiment of the present invention.
  • the inflow pipe (11) and the outflow pipe (14) are connected to the pipe line (1) of this embodiment.
  • a storage tank (2) is connected to the inflow end of the inflow pipe (11).
  • a water receiving tank (3) is connected to the outflow end of the outflow pipe (14).
  • the inlet pipe (11) has an inlet side pressure gauge (50), a first motor operated valve (15), and a water wheel (W) (specifically, a fluid inlet of the water wheel (W)) in order from upstream to downstream. It is connected. That is, the first motor-operated valve (15) is connected in series to the water wheel (W).
  • An outflow pipe (14) is connected to the fluid discharge port of the water turbine (W).
  • the outlet side pressure gauge (51) is connected to the outflow pipe (14) in the middle thereof.
  • the inlet side pressure gauge (50) detects the pressure (P1) of the fluid supplied to the water turbine (W), and the outlet side pressure gauge (51) detects the pressure of the fluid flowing out of the water wheel (W) (P2). To detect.
  • the detection value of the outlet side pressure gauge (51) corresponds to the supply pressure.
  • the outlet side pressure gauge (51) is an example of the fluid information acquisition unit of the present invention.
  • the first electric valve (15) controls the flow rate of the fluid by driving the valve element by an electric motor.
  • the opening degree of the first motor operated valve (15) is controlled by a generator controller (20) described later. Thereby, the flow rate of the fluid flowing into the water turbine (W) is controlled. That is, this 1st motor operated valve (15) is an example of the flow control valve of the present invention.
  • FIG. 9 shows a power system diagram of the hydroelectric power generation system (10) of the fourth embodiment.
  • the hydroelectric power generation system (10) includes a generator controller (20) and a grid interconnection inverter (30).
  • the configuration of the grid interconnection inverter (30) is the same as that of the first embodiment, but the configuration of the generator controller (20) is different from that of the first embodiment.
  • the generator controller (20) of the present embodiment includes a pressure detection unit (26) instead of the flow rate detection unit (23) of the first embodiment, and pressure control instead of the flow rate control unit (25).
  • a part (27) is provided.
  • the pressure detection unit (26) reads the detection values of the inlet side pressure gauge (50) and outlet side pressure gauge (51), and controls the detection value periodically or as required by the pressure control unit (27). Part (27). Further, the pressure control unit (27) controls the opening of the first motor operated valve (15) and the switching of the AC / DC converter unit (21) in a coordinated manner as will be described later, whereby the supply pressure is set to a desired value. While maintaining, control the power to reverse flow.
  • the power system (5) when the AC voltage value (Vac) of the distribution line of the power system (5) is about to exceed the upper limit value of the voltage regulation range (Vr), the power system (5) The generated power suppression operation is performed to suppress the power supplied to. Specifically, also in this embodiment, when the AC voltage value (Vac) detected by the AC voltage detection unit (32) of the grid interconnection inverter (30) exceeds a predetermined first threshold (Th1), grid interconnection is performed. The inverter (30) suppresses the power supplied to the power system (5). As a result of power suppression in the grid-connected inverter (30), when the DC voltage (Vdc) exceeds a predetermined second threshold (Th2), the generator controller (20) also performs the generated power suppression operation. Is called. In order to determine whether or not the generated power suppression operation is necessary, the detected value of the DC voltage detector (22) is transmitted to the pressure controller (27).
  • FIG. 10 shows a characteristic map (M) for explaining the concept of control in the present embodiment.
  • the hydroelectric power generation system (10) when suppressing the electric power, the sum of the effective head (H) in the water turbine (W) and the effective head (Hv) in the first motor-operated valve (15) becomes a constant value. If it can be controlled, it is possible to control the power to be reversely flowed while maintaining the supply pressure at a desired value. If this is seen in FIG. 10, it will be understood that the operation point of the water turbine (W) may be shifted directly below the current operation point.
  • the system loss curve (S) is a quadratic curve as described above, and the operating point of the water turbine (W) is on the system loss curve (S) in the pipe line (1) of this embodiment.
  • the system loss curve (S) itself is changed as shown in FIG. 10 by further controlling the opening degree of the first motor operated valve (15). That is, in this embodiment, the operating point is shifted from the current operating point directly below by cooperatively controlling the opening of the first motor operated valve (15) and the switching of the AC / DC converter unit (21). .
  • the pressure control unit (27) monitors the detection value of the outlet side pressure gauge (51) (the output of the pressure detection unit (26)), while the detection value is the target pressure (P * ), The output power of the AC / DC converter unit (21) is controlled (coordinated control) while adjusting the opening of the first motor-operated valve (15).
  • the pressure control unit (27) can use feedback control when adjusting the opening degree of the first motor operated valve (15) and controlling the output power of the AC / DC converter unit (21).
  • the effective head (H) in the water turbine (W) can be obtained by using, for example, the characteristic map (M) described above.
  • the effective head (H) of the water wheel (W) and the effective head (Hv) of the first motor operated valve (15) are set to a constant value.
  • the target value of the effective head (Hv) of the first motor operated valve (15) can be determined.
  • the target value of the effective head (Hv) can be determined.
  • the opening degree of the flow control valve (15) can be determined.
  • the voltage rise determination unit (33) monitors the detection value of the AC voltage detection unit (32), and if the AC voltage value (Vac) exceeds the first threshold (Th1), The power generation suppression operation is performed by the grid interconnection inverter (30).
  • the pressure control unit (27) monitors the detection value of the DC voltage detection unit (22). For example, as a result of the generated power suppression operation by the grid interconnection inverter (30), the DC voltage detection unit (22) When the detected value exceeds a predetermined second threshold value (Th2), the generated power suppression operation is performed by the generator controller (20).
  • the pressure control unit (27) decreases the generated power by reducing the effective head (H) of the water turbine (W).
  • the pressure control unit (27) changes the target value of the effective head (Hv) of the first motor operated valve (15). Specifically, while monitoring the detection value of the outlet side pressure gauge (51) (output of the pressure detection unit (26)), the first motor operated valve (15) so that the detection value becomes the target pressure (P *). ) Is adjusted. Thereby, in the pipe line (1), the supply pressure is maintained at a predetermined target pressure (P *).
  • the timing for turning on the switch (SW) connected to the regenerative resistor (40) may be the case where the power suppression by the grid interconnection inverter (30) is performed as in the first embodiment, or the modification of the first embodiment. In this way, power generation by the generator controller (20) can be performed.
  • the generator controller (20) and the grid interconnection inverter (20) are controlled so that the generator controller (20) detects the AC voltage value (Vac) and controls the power. 30).
  • the regenerative resistor (40) can be omitted.
  • the hydroelectric power generation system (10) is not limited to the pipe line (1) which is an example of the closed flow path, but may be an open flow path or a flow path in which a closed flow path (for example, a pipe line) and an open flow path are mixed. Can also be installed. As an example, it is conceivable to install a hydroelectric power generation system (10) in an agricultural waterway.
  • the fluid supplied to the water wheel (W) is not limited to water.
  • a brine used in an air conditioner such as a building as a fluid.
  • the installation location of the hydroelectric power generation system (10) is not limited to the water supply (4).
  • Embodiment 4 the configuration of Embodiment 4 (the configuration of performing a constant control of the supply pressure), and the configuration of any of Embodiments 1 to 3 (the configuration of performing a constant control of the total flow rate) of Embodiments 1 and 3. May be combined.
  • the “desired value” when controlling the physical quantity of fluid (for example, the total flow rate (QT) of the pipe (1)) to a “desired value”, is a single value (one constant value).
  • a value having a width such as a value within a predetermined threshold or less, a predetermined threshold or more, and a predetermined range may be used.
  • the voltage value of the distribution line of the power system (5) AC voltage value (Vac)
  • the voltage frequency of the distribution line of the power system (5) the power system (5)
  • the present invention is useful as a hydroelectric power generation system.
  • Pipeline (flow path) 5
  • Commercial power supply (electric power system) 10
  • Hydroelectric power generation system 13
  • Second branch pipe (bypass) 15
  • First motorized valve (flow control valve) 17
  • 1st flow meter (fluid information acquisition part) 18
  • Second flow meter (fluid information acquisition unit) 20
  • Generator controller (control unit) 30
  • Grid-connected inverter (control unit) 32
  • AC voltage detector power information acquisition unit
  • regenerative resistor power consumption part
  • G generator water wheel (fluid machine)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

電力系統(5)が受け入れ可能な電力又は該電力に相関する情報を含む電力需給情報を取得する電力情報取得部(32)を設ける。流路(1)から流出する流体における物理量に相関する情報を含む流体情報を取得する流体情報取得部(17,18)を設ける。電力需給情報を用いて、電力系統(5)が受け入れ可能な電力以下に、電力系統(5)に供給する電力を制御しつつ、流体情報を用いて、物理量が所望の値となるように前記物理量又は前記流路(1)又は前記発電機(G)の発電電力の少なくともいずれか1つを制御する制御部(20,30)を設ける。

Description

水力発電システム
 本発明は、水力発電システムに関するものである。
 水路(例えば管路)を流れる流体(例えば水)によって発電を行う水力発電システムがある。例えば特許文献1に開示の水力発電システムは、管路に水車(流体機械)が接続される。流体によって水車が回転駆動されると、水車に接続される発電機が駆動される。発電機の出力電力は例えば逆潮流によって電力系統(例えば商用電源)に供給される。
特開2014-214710号公報
 ところで、発電した電力を逆潮流させる場合には、商用電源の電圧を所定の範囲内に収めることが法律等によって求められる場合があり、その場合には、商用電源の電圧がその範囲を超えないように、逆潮流させる電力を制御する必要がある。
 しかしながら、水力発電システムでは、常に流体(例えば水)を流し続けなければならない場合(例えば上水道の管路に水力発電システムを設置する場合など)があり、単に水車を停止させたのでは問題が起こってしまう。
 本発明は前記の問題に着目してなされたものであり、流体の物理量(例えば総流量)を所望の値に維持しつつ、電力を制御できるようにすることを目的としている。
 前記の課題を解決するため、第1の態様は、
 流体が流れる流路(1)に配置される流体機械(W)と、
 前記流体機械(W)によって駆動される発電機(G)と、
 前記発電機(G)の発電電力の制御を行うとともに、該発電機(G)が発電した電力を電力系統(5)に供給する制御部(20,30)と、
 前記電力系統(5)が受け入れ可能な電力又は該電力に相関する情報を含む電力需給情報を取得する電力情報取得部(32)と、
 前記流路(1)から流出する前記流体における物理量に相関する情報を含む流体情報を取得する流体情報取得部(17,18)と、
を備え、
 前記制御部(20,30)は、前記電力需給情報を用いて、前記電力系統(5)が受け入れ可能な電力以下に、前記電力系統(5)に供給する電力を制御しつつ、前記流体情報を用いて、前記物理量が所望の値となるように前記物理量又は前記流路(1)又は前記発電機(G)の発電電力の少なくともいずれか1つを制御することを特徴とする水力発電システムである。
 この構成では、発電機(G)の電力と流体における物理量との双方が考慮されて水力発電システムが制御される。
 また、第2の態様は、第1の態様において、
 前記流路(1)には、前記流体機械(W)の迂回路(13)が設けられ、
 前記物理量には、前記流路(1)における前記流体の総流量(QT)が含まれ、
 前記制御部(20,30)は、前記迂回路(13)における前記流体の流量(Q2)を制御することによって前記総流量(QT)を所定の目標総流量(QT*)に近づけることを特徴とする。
 この構成では、発電電力の制御とともに迂回路(13)の流量制御が行われることによって総流量(QT)が所望の目標総流量(QT*)に制御される。
 また、第3の態様は、第1の態様又は第2の態様において、
 前記制御部(20,30)は、前記発電機(G)に関する検出可能な特性であって、前記流体機械(W)における流量(Q1)と有効落差(H)とに相関する特性に基づいて、前記流体機械(W)における前記流量(Q1)と前記有効落差(H)とを推定するとともに、前記有効落差(H)と前記流路(1)における総流量(QT)との関係を示す流動抵抗特性線(S)と、推定した前記流量(Q1)と前記有効落差(H)とに基づいて、前記総流量(QT)を推定することを特徴とする。
 この構成では、流動抵抗特性線(S)によって流量が推定されるので、流量計を用いない制御が可能になる。
 また、第4の態様は、第1から第3の態様の何れかにおいて、
 前記流路(1)は、管路であり、
 前記流体機械(W)に直列接続されて、該流体機械(W)へ流入する前記流体の流量を制御する流量制御弁(15)を備え、
 前記物理量の値には、前記流路(1)から流出する前記流体の圧力(P2)が含まれ、
 前記制御部(20,30)は、前記流量制御弁(15)の開度を制御することによって、前記圧力(P2)を所定の目標圧力(P*)に近づけることを特徴とする。
 この構成では、発電電力の制御とともに流量制御弁(15)の制御が行われることによって流体の圧力(P2)が所望の目標圧力(P*)に制御される。
 また、第5の態様は、第1から第4の態様の何れかにおいて、
 前記制御部(20,30)は、前記電力系統(5)の配電線の電圧値(Vac)に基づいて前記電力需給情報を取得することを特徴とする。
 この構成では、電圧値(Vac)によって、電力系統(5)が受け入れ可能な電力を検出する。
 また、第6の態様は、第1から第5の態様の何れかにおいて、
 前記発電電力を消費する電力消費部(40)を備え、
 前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記発電電力の一部又は全てを前記電力消費部(40)に供給することを特徴とする水力発電システムである。
 この構成では、電力系統(5)に供給される電力が、電力消費部(40)で調整されることによって、後述の実施形態のように制御部(20,30)を発電機コントローラ(20)と系統連系インバータ(30)とによって構成した場合には、系統連系インバータ(30)による電力抑制と、発電機コントローラ(20)による電力抑制とを容易に連係させることが可能になる。
 また、第7の態様は、第1から第6の態様の何れかにおいて、
 前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記流体機械(W)における流量(Q1)を制御することを特徴とする水力発電システムである。
 この構成では、電力系統(5)に供給される電力が、流体機械(W)における流量(Q1)を制御することによって調整される。
 また、第8の態様は、第4の態様において、
 前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記流量制御弁(15)の開度を制御しつつ、前記発電電力を制御することを特徴とする水力発電システムである。
 この構成では、流量制御弁(15)の開度と、電力系統(5)に供給する電力が協調制御される。
 第1の態様によれば、流体の物理量を所望の値に維持しつつ、供給する電力を制御することが可能になる。
 また、第2の態様によれば、流路における流体の総流量を所望の値に維持しつつ、供給する電力を制御することが可能になる。
 また、第3の態様によれば、水力発電システムのコストダウンが可能になる。
 また、第4の態様によれば、流路から流出する流体の圧力を所望の値に維持しつつ、供給する電力を制御することが可能になる。
 また、第5の態様によれば、容易に電力需給情報を取得することが可能になる。
図1は、実施形態1の水力発電システムを含む管路の全体概略構成を示す。 図2は、水力発電システムの電力系統図である。 図3は、水力発電システムで行われる制御のフローチャートである。 図4は、実施形態1の変形例の水力発電システムで行われる制御のフローチャートである。 図5は、実施形態2における発電機コントローラ及び系統連系インバータのブロック図である。 図6は、実施形態2の水力発電システムで行われる制御のフローチャートである。 図7は、流体システムの特性マップを示す図である。 図8は、実施形態4の水力発電システムを含む管路の全体概略構成を示す。 図9は、実施形態4の水力発電システムの電力系統図である。 図10は、実施形態4における制御の概念を説明するための特性マップである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 図1は、本発明の実施形態1の水力発電システム(10)を含む管路(1)の全体概略構成を示す。この管路(1)は、落差を有して流体が流れるものであり、本発明の流路の一例である。本実施形態では、管路(1)は、上水道(4)の一部である。この上水道(4)には、貯留槽(2)と受水槽(3)とが設けられており、本実施形態の管路(1)は、貯留槽(2)と、該貯留槽(2)の下流に設けられた受水槽(3)とを繋ぐように配置されている。
 〈水力発電システム(10)〉
 図1に示すように、水力発電システム(10)は、水車(W)と発電機(G)とを備えている。また、図2は、水力発電システム(10)の電力系統図であり、水力発電システム(10)は、発電機コントローラ(20)、系統連系インバータ(30)、及び回生抵抗器(40)を備えている。水力発電システム(10)では、発電した電力を電力系統(5)に供給している。この例では、電力系統(5)は、いわゆる商用電源であり、水力発電システム(10)では、商用電源(5)への電力供給(いわゆる逆潮流)によって、いわゆる売電を行っている。
 この売電に際して、水力発電システム(10)では、通常は、発電機(G)が定格出力となるように発電機(G)を制御して、電力系統(5)に電力を供給する(通常運転と呼ぶ)。ここで、定格出力とは、水力発電システム(10)で発揮できる発電機(G)の最大電力の出力である。また、水力発電システム(10)では、後に詳述するように、電力系統(5)の配電線の交流電圧値(Vac)が予め定められた電圧規制範囲(Vr)となるように、発電電力の制御を行う。例えば、電力系統(5)の配電線の交流電圧値(Vac)が、電圧規制範囲(Vr)の上限値を超えそうになったら、電力系統(5)に供給する電力を抑制する運転(後述する発電電力抑制運転)を行う。更に、水力発電システム(10)では、通常運転中、及び発電電力抑制運転中の双方において総流量(QT)は、所定の目標総流量(QT*)に制御する。
 -水車(W)-
 水車(W)は、管路(1)の途中に配置されており、本発明の水力機械の一例である。この例では、水車(W)は、羽根車、及びケーシングを備えている(何れも図示は省略)。羽根車には、渦巻きポンプに備えるインペラが流用されている。この羽根車の中心部には、回転軸(19)が固定されている。そして、水車(W)は、ケーシングに形成された流体流入口(図示を省略)からの水流によりインペラが圧力を受けて回転して、回転軸(19)を回転させるようになっている。なお、水車(W)に流入した流体は、ケーシングに形成された流体排出口(図示を省略)から排出される。
 -発電機(G)-
 発電機(G)は、水車(W)の回転軸(19)に連結されて回転駆動され、発電を行う。この例では、発電機(G)は、永久磁石埋込型のロータと、コイルを有したステータとを備えている(何れも図示は省略)。
 -配管系統-
 この管路(1)には、流入管(11)、流出管(14)、第1分岐管(12)、及び第2分岐管(13)が接続されている。本実施形態の管路(1)は、金属管(例えばダクタイル鋳鉄管)によって構成されている。流入管(11)の流入端には貯留槽(2)が接続されている。流出管(14)の流出端には受水槽(3)が接続されている。流入管(11)と流出管(14)との間には、第1分岐管(12)及び第2分岐管(13)が互いに並列に接続されている。第1分岐管(12)は、水車(W)を駆動する水が流れる水車側の流路を構成する。第2分岐管(13)は、水車(W)をバイパスする迂回路を構成する。
 第1分岐管(12)には、上流から下流に向かって順に、第1流量計(17)、第1電動弁(15)、及び水車(W)(詳しくは水車(W)の流体流入口)が接続されている。水車(W)の流体排出口には、流出管(14)が接続されている。第2分岐管(13)には、上流から下流に向かって順に、第2流量計(18)、第2電動弁(16)が接続されている。
 第1流量計(17)及び第2流量計(18)は、電気によって作動するように構成されている。第1流量計(17)は、水車(W)を流れる水の流量を検出し、検出信号を出力する。第2流量計(18)は、第2分岐管(13)を流れる水の流量を検出し、検出信号を出力する。
 第1電動弁(15)及び第2電動弁(16)は、電動モータによって弁体を駆動することで流体の流量を制御する。第1電動弁(15)は、水車(W)のメンテナンス等において閉状態となり、停止状態の水車(W)での水の通過を禁止する。第1電動弁(15)は、水力発電システム(10)の運転中において、所定開度(例えば固定値)で開放される。第2電動弁(16)は、第2分岐管(13)を流れる水の流量を制御する。
 なお、第1流量計(17)の検出値と、第2流量計(18)の検出値との和が、管路(1)から流出する前記流体の総流量(QT)である。この総流量(QT)は、本発明の「流路から流出する前記流体における物理量に相関する情報を含む流体情報」の一例である。また、第1流量計(17)と第2流量計(18)とによって、本発明の流体情報取得部の一例を構成している。
 -発電機コントローラ(20)-
 発電機コントローラ(20)は、AC/DCコンバータ部(21)、直流電圧検出部(22)、流量検出部(23)、流量指令決定部(24)、及び流量制御部(25)を備えている。この発電機コントローラ(20)は、系統連系インバータ(30)とともに、流体の物理量(ここでは管路(1)の総流量(QT))を所望の値に維持しつつ、電力系統(5)に供給する電力を制御する。
 AC/DCコンバータ部(21)は、複数のスイッチング素子を備え、発電機(G)によって発電された電力(交流電力)をスイッチングして直流電力に変換する。該直流電力は、平滑コンデンサ(図示を省略)によって平滑化され、系統連系インバータ(30)に供給される。
 直流電圧検出部(22)は、AC/DCコンバータ部(21)の出力電圧を検出する。直流電圧検出部(22)による検出値(直流電圧(Vdc))は、流量指令決定部(24)に送信されている。流量検出部(23)は、第1流量計(17)及び第2流量計(18)の検出値を読み取り、周期的、或いは流量制御部(25)の要求に応じて、検出値を流量制御部(25)に送信する。
 流量指令決定部(24)は、マイクロコンピュータと、それを動作させるためのプログラムが格納されたメモリディバイスとを用いて構成されている。流量指令決定部(24)は、電力の目標値と、総流量(QT)の目標値である目標総流量(QT*)とから、水車(W)の流量(Q1)の目標値である流量指令値(Q1*)を決定する。この際、電力の目標値は、通常は、後述の定格出力であるが、水力発電システム(10)では、その目標値は、後に詳述するように、直流電圧検出部(22)の検出値に応じて変更される。流量指令値(Q1*)の生成には、例えば、予め前記プログラム内に定義した、関数、或いは、後述の特性マップ(M)を用いることが考えられる。
 流量制御部(25)は、マイクロコンピュータと、それを動作させるためのプログラムが格納されたメモリディバイスとを用いて構成されている。このマイクロコンピュータやメモリディバイスは、流量指令決定部(24)を構成するものと共用してもよいし、別個に設けてもよい。この流量制御部(25)は、AC/DCコンバータ部(21)におけるスイッチングを制御することによって、発電機(G)の発電電力を制御する。具体的には、流量制御部(25)は、流量指令値(Q1*)と現在の流量(Q1)との差に応じて、フィードバック制御を行うことによって、発電機(G)の発電電力(出力電圧)を制御している。
 また、流量制御部(25)は、管路(1)における総流量(QT)の制御も行う。この例では、流量制御部(25)は、管路(1)の総流量(QT)の目標値(以下、目標総流量(QT*))と、現在の流量(Q1)との差が第2分岐管(13)に流れるように第2電動弁(16)の開度を制御する。
 -系統連系インバータ(30)-
 系統連系インバータ(30)は、インバータ部(31)、交流電圧検出部(32)、及び電圧上昇判定部(33)を備えている。
 インバータ部(31)は、複数のスイッチング素子を備え、発電機コントローラ(20)からの直流電力を受けて、該直流電力をスイッチングすることによって交流電力に変換する。インバータ部(31)が生成した交流電力は、電力系統(5)に供給(逆潮流)される。なお、インバータ部(31)は、前記スイッチングを制御することによって、電力系統(5)に逆潮流させる電力(電圧)を制御する。
 交流電圧検出部(32)は、電力系統(5)が受け入れ可能な電力又は該電力に相関する情報を含む電力需給情報を取得する。すなわち、交流電圧検出部(32)は、本発明の電力情報取得部の一例である。具体的に、交流電圧検出部(32)は、電力需給情報として、電力系統(5)の配電線の電圧値(交流電圧値(Vac))を検出する。この交流電圧値(Vac)は、電圧上昇判定部(33)に送信されている。
 電圧上昇判定部(33)は、交流電圧検出部(32)が検出した交流電圧値(Vac)と、予め定められた第1閾値(Th1)とを比較し、比較結果をインバータ部(31)に出力する。なお、第1閾値(Th1)は、一例として、法規制などを考慮して決めることが考えられる。例えば、100Vの交流を供給する商用電源(5)において、法律によって、配電線における電圧が95Vから107Vの範囲に維持することが規定されるとともに、電圧がその範囲の上限を超えそうな場合には、売電する側における電力供給(逆潮流)の抑制が求められる例がある。このような例では、95Vから107Vが電圧規制範囲(Vr)に相当し、第1閾値(Th1)は、電圧規制範囲(Vr)の上限値である107Vよりもやや低い電圧値に設定すればよい。
 〈電力(交流電圧)及び流量の制御〉
 この水力発電システム(10)では、運転中は、第1電動弁(15)の開度は固定である。一方、第2電動弁(16)は、発電機コントローラ(20)によって開度が可変される。この水力発電システム(10)では、第2電動弁(16)を操作すると水車(W)の運転点が変動し、水車(W)の運転点が変更されると第2分岐管(13)の流量(Q2)が変動することになる。そこで、水力発電システム(10)では、水車(W)と第2電動弁(16)の協調制御、すなわち、発電電力(水車(W)の状態)と、第2電動弁(16)の状態の双方を考慮した制御が必要になる。
 図3に、水力発電システム(10)で行われる電力及び流量制御のフローチャートを示す。フローチャートに示したステップ(S01)では、発電機(G)の発電電力が目標値となるように、流量制御部(25)がAC/DCコンバータ部(21)におけるスイッチングを制御しつつ、管路(1)の総流量(QT)が目標総流量(QT*)となるように、第2電動弁(16)の開度を制御する。詳しくは、本実施形態では、第1電動弁(15)の開度を固定値とした状態において、流量制御部(25)は、例えばフィードバック制御によって、水車(W)の流量(Q1)が流量指令値(Q1*)となるようにAC/DCコンバータ部(21)のスイッチングを制御する。これにより、発電機(G)の出力は、目標の発電電力に収束する。
 そして、その発電状態で、目標総流量(QT*)と、現在の総流量(QT)とに差異がある場合には、流量制御部(25)は、第2電動弁(16)の開度を調整する。このとき、流量制御部(25)は、流量検出部(23)から送信された、第2流量計(18)の検出値と、流量(Q2)の目標値(目標総流量(QT*)と流量(Q1)の差)とを比較しながら、第2電動弁(16)の開度調整を行う。この開度調整には、例えばフィードバック制御を利用することができる。なお、目標総流量(QT*)の設定には、特に限定はない。一例として、目標総流量(QT*)を、上水道(4)の管理者から要求される総流量に設定することが考えられる。この目標総流量(QT*)は、固定値であってもよいし、例えば時間帯によって変更されるものであってもよい。
 ステップ(S02)では、交流電圧検出部(32)が交流電圧値(Vac)を検出する。つまり、本実施形態では、配電線の交流電圧値(Vac)に基づいて電力需給情報を取得している。そして、ステップ(S03)では、電圧上昇判定部(33)が交流電圧値(Vac)と第1閾値(Th1)とを比較する。電圧上昇判定部(33)による比較結果は、インバータ部(31)に出力される。
 ステップ(S03)における比較の結果、交流電圧値(Vac)の方が第1閾値(Th1)よりも大きかった場合には、インバータ部(31)がステップ(S04)の処理を行う。このステップ(S04)では、インバータ部(31)は、スイッチングの制御を行って逆潮流させる電力(電圧)を低下させるとともに、回生抵抗器(40)に繋がるスイッチ(SW)をオンにすることによって、AC/DCコンバータ部(21)が出力する直流電力の一部又は全てを回生抵抗器(40)で消費させる(この運転を発電電力抑制運転と呼ぶ)。すなわち、回生抵抗器(40)は、本発明の電力消費部の一例である。
 一方、ステップ(S05)では、直流電圧検出部(22)がAC/DCコンバータ部(21)の直流電圧(Vdc)を検出する。また、ステップ(S06)では、流量指令決定部(24)が、直流電圧(Vdc)と、所定の第2閾値(Th2)とを比較する。ステップ(S04)において逆潮流させる電力(電圧)が低下させられると直流電圧(Vdc)が上昇する場合がある。流量指令決定部(24)における比較の結果、直流電圧(Vdc)>第2閾値(Th2)であった場合には、ステップ(S07)の処理が行われる。ステップ(S07)では、流量指令決定部(24)が、発電電力の目標値を変更(目標値を低減)するとともに、変更後の発電電力の目標値に基づいて、流量指令値(Q1*)を変更(目標値を低減)することによって、流量制御部(25)に対して、発電電力抑制運転を指示する。
 ステップ(S07)の処理が終わると、発電機コントローラ(20)における処理は、ステップ(S01)に移行する(この場合は、ステップ(S01)も前記発電電力抑制運転の一環と考えてよい)。このステップ(S01)では、既述の通り、流量指令値(Q1*)に基づいてAC/DCコンバータ部(21)におけるスイッチングの制御が行われる。
 ステップ(S07)からステップ(S01)に処理が移った場合には、流量指令値(Q1*)が変更されており、水車(W)の流量(Q1)が低下する。その結果、発電機(G)の発電電力が低下し、配電線の電圧が電圧規制範囲(Vr)内に収められる。その一方で、第2電動弁(16)の開度が流量制御部(25)によって制御されて、管路(1)の総流量(QT)は、目標総流量(QT*)に収束する。つまり、本実施形態では、逆潮流させる電力(配電線の電圧)を所望の値に制御しつつ、総流量(QT)を目標総流量(QT*)に維持することが可能になる。
 このように、AC/DCコンバータ部(21)の出力電力が抑制された後は、スイッチ(SW)をオフにして、回生抵抗器(40)による電力消費を終了させる。なお、回生抵抗器(40)は、インバータ部(31)の電力抑制動作開始から、AC/DCコンバータ部(21)の電力抑制動作が開始されるまでの期間における電力を吸収しており、回生抵抗器(40)の容量は、当該期間の余分な電力を吸収できるように容量を設定する必要がある。
 ステップ(S03)での比較の結果が交流電圧値(Vac)≦第1閾値(Th1)であった場合や、ステップ(S06)での比較の結果が直流電圧(Vdc)≦第2閾値(Th2)であった場合には、ステップ(S08)の処理が行われる。ステップ(S08)では、現在、前記発電電力抑制運転が行われている場合には、スイッチ(SW)をオフにして、回生抵抗器(40)による電力消費を終了させる。また、流量指令決定部(24)は、抑制されている電力を元に戻すように流量指令値(Q1*)を修正する。具体的には、流量指令決定部(24)は、発電機(G)が定格出力となるように、流量指令値(Q1*)を元の値(定格出力時の値)に戻す。流量制御部(25)は、それに応じてAC/DCコンバータ部(21)を制御する(ステップ(S01))。また、インバータ部(31)でも発電機(G)の定格出力に応じたスイッチングが行われて、インバータ部(31)における定格出力が行われる(ステップ(S01))。これにより、通常運転が行われる。
 なお、前記の例では、ステップ(S04)に後続してステップ(S05)以降の処理を行っていたが、ステップ(S02)からステップ(S04)までの処理(主に系統連系インバータ(30)によって行われる処理)と、ステップ(S05)からステップ(S07)までの処理(主に発電機コントローラ(20)によって行われる処理)とは、並行して行うようにしてもよい。
 〈本実施形態における効果〉
 以上のように、本実施形態の水力発電システム(10)によれば、流体の物理量(ここでは総流量(QT))を所望の値に維持しつつ、電力(配電線の電圧)を制御することが可能になる。
 《実施形態1の変形例》
 水力発電システム(10)では、電力(交流電圧)及び流量の制御は、図4に示すフローを採用してもよい。なお、この変形例の水力発電システム(10)でも、運転中は、第1電動弁(15)の開度は固定である。また、第2電動弁(16)は、発電機コントローラ(20)によって開度が可変される。
 図4のフローチャートに示したステップ(S01)では、発電機(G)の発電電力が目標値となるように、流量制御部(25)がAC/DCコンバータ部(21)におけるスイッチングを制御しつつ、管路(1)の総流量(QT)が目標総流量(QT*)となるように、第2電動弁(16)の開度を制御する。詳しくは、本実施形態では、第1電動弁(15)の開度を固定値とした状態において、流量制御部(25)は、例えばフィードバック制御によって、水車(W)の流量(Q1)が流量指令値(Q1*)となるようにAC/DCコンバータ部(21)のスイッチングを制御する。これにより、発電機(G)の出力は、目標の発電電力に収束する。
 そして、その発電状態で、目標総流量(QT*)と、現在の総流量(QT)とに差異がある場合には、流量制御部(25)は、第2電動弁(16)の開度を調整する。このとき、流量制御部(25)は、流量検出部(23)から送信された、第2流量計(18)の検出値と、流量(Q2)の目標値(目標総流量(QT*)と流量(Q1)の差)とを比較しながら、第2電動弁(16)の開度調整を行う。この開度調整には、例えばフィードバック制御を利用することができる。なお、目標総流量(QT*)の設定には、特に限定はない。一例として、目標総流量(QT*)を、上水道(4)の管理者から要求される総流量に設定することが考えられる。この目標総流量(QT*)は、固定値であってもよいし、例えば時間帯によって変更されるものであってもよい。
 ステップ(S02)では、交流電圧検出部(32)が交流電圧値(Vac)を検出する。つまり、本実施形態では、配電線の交流電圧値(Vac)に基づいて電力需給情報を取得している。そして、ステップ(S03)では、電圧上昇判定部(33)が交流電圧値(Vac)と第1閾値(Th1)とを比較する。電圧上昇判定部(33)による比較結果は、インバータ部(31)に出力される。
 ステップ(S03)における比較の結果、交流電圧値(Vac)の方が第1閾値(Th1)よりも大きかった場合には、インバータ部(31)がステップ(S04)の処理を行う。このステップ(S04)では、インバータ部(31)が、スイッチングの制御を行って逆潮流させる電力(電圧)を低下させる(この運転を発電電力抑制運転と呼ぶ)。
 一方、ステップ(S05)では、直流電圧検出部(22)がAC/DCコンバータ部(21)の直流電圧(Vdc)を検出する。また、ステップ(S06)では、流量指令決定部(24)が、直流電圧(Vdc)と、所定の第2閾値(Th2)とを比較する。ステップ(S04)において逆潮流させる電力(電圧)が低下させられると直流電圧(Vdc)が上昇する場合がある。流量指令決定部(24)における比較の結果、直流電圧(Vdc)>第2閾値(Th2)であった場合には、ステップ(S07)の処理が行われる。本変形例のステップ(S07)では、回生抵抗器(40)に繋がるスイッチ(SW)をオンにすることによって、AC/DCコンバータ部(21)が出力する直流電力の一部又は全てを回生抵抗器(40)で消費させる。また、ステップ(S07)では、流量指令決定部(24)が、発電電力の目標値を変更(目標値を低減)するとともに、変更後の発電電力の目標値に基づいて、流量指令値(Q1*)を変更(目標値を低減)することによって、流量制御部(25)に対して、発電電力抑制運転を指示する。
 ステップ(S07)の処理が終わると、発電機コントローラ(20)における処理は、ステップ(S01)に移行する(この場合は、ステップ(S01)も前記発電電力抑制運転の一環と考えてよい)。このステップ(S01)では、既述の通り、流量指令値(Q1*)に基づいてAC/DCコンバータ部(21)におけるスイッチングの制御が行われる。
 ステップ(S07)からステップ(S01)に処理が移った場合には、流量指令値(Q1*)が変更されており、水車(W)の流量(Q1)が低下する。その結果、発電機(G)の発電電力が低下し、配電線の電圧が電圧規制範囲(Vr)内に収められる。その一方で、第2電動弁(16)の開度が流量制御部(25)によって制御されて、管路(1)の総流量(QT)は、目標総流量(QT*)に収束する。つまり、本実施形態では、逆潮流させる電力(配電線の電圧)を所望の値に制御しつつ、総流量(QT)を目標総流量(QT*)に維持することが可能になる。
 ステップ(S06)での比較の結果が直流電圧(Vdc)≦第2閾値(Th2)であった場合には、ステップ(S08)の処理が行われる。ステップ(S08)では、スイッチ(SW)をオフにして、回生抵抗器(40)による電力消費を終了させる。なお、回生抵抗器(40)は、直流電圧(Vdc)>第2閾値(Th2)の期間における電力を吸収しており、回生抵抗器(40)の容量は、当該期間の余分な電力を吸収できるように容量を設定する必要がある。
 また、ステップ(S08)では、現在、前記発電電力抑制運転が行われている場合には、流量指令決定部(24)は、抑制されている電力を元に戻すように流量指令値(Q1*)を修正する。具体的には、流量指令決定部(24)は、発電機(G)が定格出力となるように、流量指令値(Q1*)を元の値(定格出力時の値)に戻す。流量制御部(25)は、それに応じてAC/DCコンバータ部(21)を制御する(ステップ(S01))。また、インバータ部(31)でも発電機(G)の定格出力に応じたスイッチングが行われて、インバータ部(31)における定格出力が行われる(ステップ(S01))。これにより、通常運転が行われる。
 なお、ステップ(S03)での比較の結果が交流電圧値(Vac)≦第1閾値(Th1)であった場合には、ステップ(S09)の処理が行われる。ステップ(S09)では、現在、系統連系インバータ(30)によって発電電力抑制運転が行われている場合には、系統連系インバータ(30)を定格運転に復帰させ、その後ステップ(S05)に移行する。
 〈本変形例における効果〉
 以上のように、本変形例の水力発電システム(10)においても、流体の物理量(ここでは総流量(QT))を所望の値に維持しつつ、電力(配電線の電圧)を制御することが可能になる。
 《発明の実施形態2》
 本発明の実施形態2では、発電電力抑制運転の他の例を説明する。本実施形態では、発電機コントローラ(20)及び系統連系インバータ(30)の構成が実施形態1とは異なっている。また、この例では、回生抵抗器(40)及びスイッチ(SW)が設けられていない。以下では、実施形態1との相異点を中心に本実施形態の説明を行う。
 〈発電機コントローラ(20)〉
 図5に、本発明の実施形態2における発電機コントローラ(20)及び系統連系インバータ(30)のブロック図を示す。発電機コントローラ(20)は、図5に示すように、AC/DCコンバータ部(21)、流量検出部(23)、流量指令決定部(24)、流量制御部(25)、交流電圧検出部(32)、及び電圧上昇判定部(33)を備えている。すなわち、実施形態1では系統連系インバータ(30)に設けられていた交流電圧検出部(32)と電圧上昇判定部(33)とが、本実施形態では発電機コントローラ(20)に設けられている。
 その変更にともなって、本実施形態では、電圧上昇判定部(33)による比較結果の送信先は、流量指令決定部(24)となっている。その流量指令決定部(24)は、電圧上昇判定部(33)から送信された比較結果に応じて、新たな流量指令値(Q1*)を生成する。流量指令値(Q1*)の生成には、例えば、予め前記プログラム内に定義した、関数、或いは、後述の特性マップ(M)を用いることが考えられる。なお、発電機コントローラ(20)を構成するその他の構成要素の機能は、実施形態1のものと同様である。
 〈系統連系インバータ(30)〉
 系統連系インバータ(30)は、図5に示すように、インバータ部(31)を備えている。インバータ部(31)は、実施形態1のものと同様の構成である。
 〈電力(交流電圧)及び流量の制御〉
 図6に、実施形態2の水力発電システム(10)で行われる電力及び流量制御のフローチャートを示す。このフローチャートに示したステップ(S11)では、発電機(G)の発電電力が目標値となるように、流量制御部(25)がAC/DCコンバータ部(21)におけるスイッチングを制御しつつ、管路(1)の総流量(QT)が目標総流量(QT*)となるように、第2電動弁(16)の開度を制御する。すなわち、このステップ(S11)における制御は、実施形態1のステップ(S01)と同様である。
 ステップ(S12)では、交流電圧検出部(32)が交流電圧値(Vac)を検出する。本実施形態では、発電機コントローラ(20)が交流電圧値(Vac)を検出するのである。ステップ(S13)では、電圧上昇判定部(33)が交流電圧値(Vac)と第1閾値(Th1)とを比較する。電圧上昇判定部(33)による比較結果は、流量指令決定部(24)に出力される。
 ステップ(S13)における比較の結果、交流電圧値(Vac)の方が第1閾値(Th1)よりも大きかった場合には、ステップ(S14)の処理が行われる。このステップ(S14)では、流量制御部(25)は、AC/DCコンバータ部(21)におけるスイッチングの制御を行って逆潮流させる電力(電圧)を低下させる(この運転を発電電力抑制運転と呼ぶ)。具体的に、ステップ(S14)では、流量指令決定部(24)が、交流電圧値(Vac)とその目標値との差に応じて、新たな流量指令値(Q1*)を生成し、それを流量制御部(25)に送信する。ここでは、流量指令値(Q1*)は低減することになる。なお、流量指令値(Q1*)の生成は、実施形態1と同様の手法を採用できる。
 ステップ(S14)の処理が終わると、発電機コントローラ(20)における処理は、ステップ(S11)に移行する(この場合は、ステップ(S11)も前記発電電力抑制運転の一環と考えてよい)。ステップ(S11)では、既述の通り、流量指令値(Q1*)に基づいてAC/DCコンバータ部(21)におけるスイッチングの制御が行われる。ステップ(S14)からステップ(S11)に処理が移った場合には、流量指令値(Q1*)が変更されており、水車(W)のトルク値(T)、回転速度(N)が変動して流量(Q1)が低下する。その結果、発電機(G)の発電電力が低下し、配電線の電圧が電圧規制範囲(Vr)内に収められる。その一方で、第2電動弁(16)の開度が流量制御部(25)によって制御されて、管路(1)の総流量(QT)は、目標総流量(QT*)に収束する。つまり、本実施形態では、逆潮流させる電力(配電線の電圧)を所望の値に制御しつつ、総流量(QT)を目標総流量(QT*)に維持することが可能になる。
 なお、ステップ(S13)での比較の結果が交流電圧値(Vac)≦第1閾値(Th1)であった場合には、ステップ(S15)の処理が行われる。ステップ(S15)で行われる処理は、実施形態1のステップ(S08)のものと同様であり、流量指令決定部(24)は、抑制されている電力を元に戻すように流量指令値(Q1*)を修正する。具体的には、流量指令決定部(24)は、発電機(G)が定格出力となるように、流量指令値(Q1*)を元の値(定格出力時の値)に戻す。流量制御部(25)は、それに応じてAC/DCコンバータ部(21)を制御する。また、インバータ部(31)でも発電機(G)の定格出力に応じたスイッチングが行われて、インバータ部(31)における定格出力が行われる。
 〈本実施形態における効果〉
 以上のようにして、本実施形態の水力発電システム(10)においても、流体の物理量(ここでは総流量(QT))を所望の値に維持しつつ、電力(配電線の電圧)を制御することが可能になる。
 しかも、本実施形態では、電力の抑制が必要となった場合に、インバータ部(31)の電力抑制を待たずに、AC/DCコンバータ部(21)の出力が抑制されるので、回生抵抗器(40)を設ける必要がなく、水力発電システム(10)をコンパクトに構成することが可能になる。
 《発明の実施形態3》
 本発明の実施形態3では、第1流量計(17)や第2流量計(18)を用いない制御例を説明する。この制御を行うために、本実施形態では、流量制御部(25)のメモリディバイスには、特性マップ(M)が記憶されている(図7参照)。この特性マップ(M)は、縦軸を管路(1)の有効落差(H)、横軸を管路(1)から流出する流量(すなわち総流量(QT))としたH-Qマップ上に、発電機(G)において検出可能で、且つ水車(W)における流量(Q1)と有効落差(H)とに相関する特性を記録したものである。この例では、流量(Q1)と有効落差(H)とに相関する特性は、発電機(G)のトルク値(T)、回転速度(N)、発電電力(P)がある。より具体的に本実施形態の特性マップ(M)は、複数の等トルク曲線と、複数の等回転速度曲線をH-Qマップ上に記録したものであり、テーブル(数表)や、プログラム内の数式(関数)という形で、流量制御部(25)を構成するメモリディバイスに格納されている。
 この特性マップ(M)において、発電機(G)に負荷をかけずトルク零値(T=0)とした場合の無拘束速度曲線と回転速度零値(N=0)の等回転速度曲線(N=0のときの等回転速度曲線を動作限界曲線と命名する)との間の領域は、水車(W)が水流により回転する水車領域(運転可能領域)であり、発電機(G)は、この水車領域において、水車(W)により回転駆動されて運転されるのを基本とする。前記無拘束速度曲線よりも左側の領域は、水車ブレーキ領域(力行領域)である。
 前記水車領域において、複数の等トルク曲線は前記無拘束速度曲線(T=0)に沿い、マップ上、流量(Q1)の増大に応じてトルク値も増大する。また、複数の等回転速度曲線は回転速度零値(N=0)の等回転速度曲線に沿い、有効落差(H)が大きくなるほど回転速度も上昇する。更に、破線で示した等発電電力曲線は下に凸な曲線であって、有効落差(H)及び流量(Q1)の増大に応じて発電電力も増大する。この複数の等発電電力曲線の頂点を結ぶ曲線(E)は、発電機(G)が、最大発電電力を得る最大発電電力曲線である。このH-Qマップ上に発電機(G)のトルク値(T)、回転速度(N)、発電電力(P)を記録した特性マップ(M)は、水力発電システム(10)が接続される管路(1)とは無関係であり、水力発電システム(10)に固有の特性マップである。
 そして、特性マップ(M)に、実際の運転で測定した管路(1)のシステムロスカーブ(S)を記録する。このシステムロスカーブ(S)もテーブル(数表)や、プログラム内の数式(関数)という形で、流量制御部(25)を構成するメモリディバイスに格納する。
 システムロスカーブ(S)は、図1に示した管路(1)に固有の流動抵抗特性線であって、総流量(QT)=0のときの有効落差(H)が総落差(Ho)であり、総流量(QT)の増大に応じて有効落差(H)が二次曲線的に減少する特性を持ち、その曲率は図1の管路(1)固有の値を持つ。水力発電システム(10)を含む管路(1)における総流量(QT)とその際の有効落差(H)とは、システムロスカーブ(S)上の点に対応する。例えば、第2電動弁(16)を全閉状態にして、水車(W)にのみ水を流したとすると、水車(W)における流量が、水力発電システム(10)を含む管路(1)の総流量(QT)であり、その際の水車(W)の流量(Q1)と有効落差(H)に対応する点がシステムロスカーブ(S)上にある。換言すると、水車(W)の運転点は、システムロスカーブ(S)上にある。
 また、水車(W)と第2分岐管(13)の両方に流体(水)を流したとすれば、水車(W)における流量と第2分岐管(13)における流量との合計値が、水力発電システム(10)を含む管路(1)の総流量(QT)であり、総流量(QT)とその際の有効落差(H)がシステムロスカーブ(S)上の点に対応し、水車(W)の運転点はシステムロスカーブ(S)上にはない。
 例えば、発電機(G)の回転速度(N)と現在のトルク値(T)が分かれば、特性マップ(M)を用いることによって、水車(W)の運転点を知ることができ、それにより、水車(W)における現在の流量(Q1)を知ることができる。そうすると、総流量(QT)や、第2分岐管(13)の流量(Q2)も知ることができる。
 これを具体的に図7で見ると、現在の運転点は、現在の回転速度(N)に対応した等回転速度曲線と、現在のトルク値(T)に対応した等トルク曲線との交点である。その運転点に対応した横軸目盛りの値である流量(Q1a)が水車(W)の流量(Q1)である。また、運転点を通り、横軸に平行な線とシステムロスカーブ(S)との交点を求め、その交点に対応した横軸目盛りの値である流量(QTa)がそのときの総流量(QT)である。そして、QTa-Q1aが、そのときの第2分岐管(13)の流量(Q2)である。
 また、目標の発電電力を決めれば、特性マップ(M)を用いることによって、水車(W)の運転点を決定することができる。そうすると、既述の通り、水車(W)に流すべき流体の流量を決定することができ、その値を流量指令値(Q1*)として用いることができる。例えば、現在の総流量(QT)(流量(QTa)とする)に対応したシステムロスカーブ(S)上の点を通る、横軸に平行な線と、目標の発電電力に対応した等発電電力線との交点が目標の運転点となる(図7参照)。目標の運転点が決まれば、その運転点に対応した横軸目盛りの値である流量(Q1a)が、目標の発電電力を得るための流量指令値(Q1*)となる。
 なお、有効落差(H)と水車(W)前後の圧力差とは比例関係にあるので、縦軸に水車(W)前後の圧力差(有効圧力差)をとったシステムロスカーブは、縦軸に有効落差(H)をとったシステムロスカーブ(S)と等価である。すなわち、縦軸に水車(W)前後の圧力差、横軸に総流量(QT)をとったシステムロスカーブを用いてもよい。
 また、発電機(G)の特性マップ(M)上の運転点の把握は、回転速度(N)と発電電力(P)との組合せや、トルク値(T)と発電電力(P)との組合せであってもよい。つまり、特性マップ(M)に用いる発電機(G)の特性は、水車(W)における流量(Q1)と有効落差(H)とに相関する発電機(G)の特性で、且つそれが検出可能な特性であれば良い。
 また、水車(W)における流量(Q1)と有効落差(H)とに、発電機(G)の特性(検出可能なもの)を対応づけることが可能であれば、水力発電システム(10)を構成する水車(W)や発電機(G)の形式は特には限定されない。例えば、発電機(G)により水車(W)の運転を可変できない場合でも、本実施形態のようにして流量(Q1)と有効落差(H)の推定が可能である。
 〈本実施形態における効果〉
 本実施形態で説明した総流量(QT)等の推定技術を、実施形態1、実施形態1の変形例、或いは実施形態2の水力発電システム(10)に適用すれば、第1流量計(17)や第2流量計(18)を用いずに、水車(W)の流量(Q1)や、第2分岐管(13)の流量(Q1)を把握できる。すなわち、本実施形態では、第1流量計(17)や第2流量計(18)を用いない制御が可能になり、第1流量計(17)や第2流量計(18)を省略できる。すなわち、本実施形態では、水力発電システム(10)のコストダウンが可能になる。
 《発明の実施形態4》
 本発明の実施形態4では、管路(1)によって供給する流体の圧力(すなわち流体の物理量であり、ここでは供給圧力と命名する)を所望の値(目標圧力(P*))に維持しつつ、逆潮流させる電力を制御することが可能な水力発電システム(10)の例を説明する。本実施形態の水力発電システム(10)は、例えば、上水道(4)に設けられている減圧弁の代替装置として配置することで、利用されていなかった、流体のエネルギーを電力として回収することができる。
 図8に、本発明の実施形態4の水力発電システム(10)を含む管路(1)の全体概略構成を示す。本実施形態の管路(1)は、図8に示すように、流入管(11)、流出管(14)が接続されている。流入管(11)の流入端には貯留槽(2)が接続されている。流出管(14)の流出端には受水槽(3)が接続されている。
 流入管(11)には、上流から下流に向かって順に、入口側圧力計(50)、第1電動弁(15)、及び水車(W)(詳しくは水車(W)の流体流入口)が接続されている。つまり、第1電動弁(15)は、水車(W)に直列接続されている。また、水車(W)の流体排出口には、流出管(14)が接続されている。この流出管(14)には、その途中に出口側圧力計(51)が接続されている。入口側圧力計(50)は、水車(W)へ供給される流体の圧力(P1)を検出し、出口側圧力計(51)は、水車(W)から流出する流体の圧力(P2)を検出する。出口側圧力計(51)の検出値は、前記供給圧力に相当する。この出口側圧力計(51)の検出値(供給圧力=圧力(P2))は、本発明の「流路から流出する前記流体における物理量に相関する情報を含む流体情報」の一例である。出口側圧力計(51)は、本発明の流体情報取得部の一例である。
 第1電動弁(15)は、電動モータによって弁体を駆動することで流体の流量を制御する。第1電動弁(15)は、後述の発電機コントローラ(20)によって開度が制御される。これにより、水車(W)へ流入する流体の流量が制御される。すなわち、この第1電動弁(15)は、本発明の流量制御弁の一例である。
 また、図9に、実施形態4の水力発電システム(10)の電力系統図を示す。同図に示すように、この水力発電システム(10)は、発電機コントローラ(20)と系統連系インバータ(30)とを備えている。系統連系インバータ(30)の構成は、実施形態1のものと同様であるが、発電機コントローラ(20)の構成は、実施形態1とは異なっている。具体的に、本実施形態の発電機コントローラ(20)は、実施形態1の流量検出部(23)に代えて圧力検出部(26)が設けられ、流量制御部(25)に代えて圧力制御部(27)が設けられている。
 圧力検出部(26)は、入口側圧力計(50)及び出口側圧力計(51)の検出値を読み取り、周期的、或いは圧力制御部(27)の要求に応じて、検出値を圧力制御部(27)に送信する。また、圧力制御部(27)は、第1電動弁(15)の開度とAC/DCコンバータ部(21)のスイッチングとを後述のように協調制御することによって、供給圧力を所望の値に維持しつつ、逆潮流させる電力を制御する。
 また、本実施形態の水力発電システム(10)でも、電力系統(5)の配電線の交流電圧値(Vac)が電圧規制範囲(Vr)の上限値を超えそうになったら電力系統(5)に供給する電力を抑制する発電電力抑制運転が行われる。具体的には、本実施形態でも、系統連系インバータ(30)の交流電圧検出部(32)が検出した交流電圧値(Vac)が所定の第1閾値(Th1)を超えたら、系統連系インバータ(30)によって、電力系統(5)に供給する電力の抑制が行われる。そして、系統連系インバータ(30)において電力の抑制が行われた結果、直流電圧(Vdc)が所定の第2閾値(Th2)を超えたら、発電機コントローラ(20)でも発電電力抑制運転が行われる。この発電電力抑制運転の要否を判定するため、この圧力制御部(27)には、直流電圧検出部(22)の検出値が送信されている。
 〈電力(交流電圧)及び圧力の制御〉
 -圧力制御の概念-
 図10に本実施形態における制御の概念を説明するための特性マップ(M)を示す。水力発電システム(10)では、電力を抑制する際に、水車(W)における有効落差(H)と、第1電動弁(15)における有効落差(Hv)との和が一定値となるように制御できれば、前記供給圧力を所望の値に維持しつつ、逆潮流させる電力を制御することが可能になる。これを図10で見ると、水車(W)の運転点を、現在の運転点から真下にシフトさせれば良いことが分かる。
 しかしながら、システムロスカーブ(S)は、既述の通り、二次曲線的な曲線であり、本実施形態の管路(1)では水車(W)の運転点はシステムロスカーブ(S)上を移動する。そのため、単にAC/DCコンバータ部(21)のスイッチングを制御するだけでは、水車(W)における有効落差(H)と、第1電動弁(15)における有効落差(Hv)との和を一定値にはできない。そこで、本実施形態では、更に第1電動弁(15)の開度も制御することで、システムロスカーブ(S)自体を、図10に示すように変動させる。つまり、本実施形態では、第1電動弁(15)の開度とAC/DCコンバータ部(21)のスイッチングとを協調制御することによって、運転点を現在の運転点から真下にシフトさせるのである。
 具体的に、本実施形態では、圧力制御部(27)は、出口側圧力計(51)の検出値(圧力検出部(26)の出力)をモニターしながら、検出値が目標圧力(P*)となる(或いは近づく)ように、第1電動弁(15)の開度を調整しつつ、AC/DCコンバータ部(21)の出力電力を制御する(協調制御)。ここで、圧力制御部(27)は、第1電動弁(15)の開度調整やAC/DCコンバータ部(21)の出力電力の制御に際して、フィードバック制御を用いることができる。
 なお、水車(W)における有効落差(H)は、例えば、既述の特性マップ(M)を用いると求めることができる。水車(W)の有効落差(H)と第1電動弁(15)の有効落差(Hv)との和を一定値とする場合には、水車(W)の有効落差(H)が決定されると、第1電動弁(15)の有効落差(Hv)の目標値を決定できる。そして、第1電動弁(15)の有効落差(Hv)と第1電動弁(15)の開度は、1対1の対応関係があるので、有効落差(Hv)の目標値が決定できると、流量制御弁(15)の開度を決定することができる。
 -制御動作-
 この水力発電システム(10)でも電圧上昇判定部(33)は、交流電圧検出部(32)の検出値をモニターしており、交流電圧値(Vac)が第1閾値(Th1)を超えたら、系統連系インバータ(30)による発電電力抑制運転が行われる。一方、圧力制御部(27)は、直流電圧検出部(22)の検出値をモニターしており、例えば、系統連系インバータ(30)による発電電力抑制運転の結果、直流電圧検出部(22)の検出値が所定の第2閾値(Th2)を超えた場合には、発電機コントローラ(20)による発電電力抑制運転が行われる。
 発電機コントローラ(20)による発電電力抑制運転では、圧力制御部(27)が、水車(W)の有効落差(H)を低減させることによって、発電電力を低下させる。このように水車(W)の有効落差(H)が変更されると、水車(W)の有効落差(H)と第1電動弁(15)における有効落差(Hv)との和も変わってしまうので、圧力制御部(27)は、第1電動弁(15)の有効落差(Hv)の目標値を変更する。具体的には、出口側圧力計(51)の検出値(圧力検出部(26)の出力)をモニターしながら、検出値が目標圧力(P*)となるように、第1電動弁(15)の開度を調整する。それにより、管路(1)では、供給圧力を所定の目標圧力(P*)に維持されることになる。
 なお、本実施形態でも、発電電力抑制運転を行う場合には、回生抵抗器(40)によって電力を消費させる。回生抵抗器(40)に繋がるスイッチ(SW)をオンにするタイミングは、実施形態1のように、系統連系インバータ(30)による電力抑制を行う場合でもよいし、実施形態1の変形例のように発電機コントローラ(20) による電力抑制を行う場合でもよい。
 〈本実施形態における効果〉
 以上のように、本実施形態の水力発電システム(10)によれば、流体の物理量(ここでは供給圧力)を所望の値(目標圧力(P*))に維持しつつ、電力(配電線の電圧)を制御することが可能になる。
 なお、本実施形態でも、実施形態2のように、発電機コントローラ(20)において交流電圧値(Vac)を検出して電力を制御するように、発電機コントローラ(20)と系統連系インバータ(30)とを構成してもよい。それにより、回生抵抗器(40)を省略することが可能になる。
 《その他の実施形態》
 なお、水力発電システム(10)は、閉流路の一例である管路(1)に限らず、開流路や、閉流路(例えば管路)と開流路とが混在する流路にも設置できる。一例として、農業用水路に水力発電システム(10)を設置することが考えられる。
 また、水車(W)に供給する流体は水には限定されない。例えば、ビルなどの空気調和装置に用いられるブラインを流体として利用することも考えられる。
 また、流体の物理量として説明した流量や圧力は例示である。
 また、水力発電システム(10)の設置場所は上水道(4)には限定されない。
 また、実施形態1、実施形態1の変形例、実施形態2~3の何れかの構成(総流量の一定制御を行う構成)に、実施形態4の構成(供給圧力の一定制御を行う構成)を組み合わせてもよい。
 また、電力系統(5)に供給する電力(売電する電力)の大きさは、種々の観点から決めることができる。例えば、「発電電力」の全量を売電する場合(発電電力を全て電力系統に供給する場合)には、「電力系統(5)に供給する電力」=「発電電力」<「電力系統(5)が受け入れ可能な電力」となるように「発電電力」を制御する。
 一方、発電電力を自家消費し(以下、自家消費した電力を「自家消費電力」という)、余った電力(以下、「余剰電力」という)を電力系統(5)に供給する場合には、「余剰電力」=「発電電力」-「自家消費電力」であり、「電力系統に供給する電力」=「余剰電力」<「電力系統(5)が受け入れ可能な電力」となるように「発電電力」を制御する。その際、「自家消費電力」を特定するための情報は、例えば、実際に測定する、過去の需要データから推測する、あらかじめ見積もった最大の自家消費電力で代替する、といった方法で入手すればよい。なお、「発電電力」を自家消費する場合には、「電力消費部」として、回生抵抗器(40)の他に、要求に応じて消費電力を増やす電気機器を利用することができる。
 また、流体の物理量(例えば管路(1)の総流量(QT))を「所望の値」に制御するに際し、当該「所望の値」は、単一の値(ひとつの定数値)であってもよいし、例えば、所定の閾値以下、所定の閾値以上、所定の範囲の値のように、幅を持った値でもよい。
 また、「電力需給情報」としては、電力系統(5)の配電線の電圧値(交流電圧値(Vac))の他に、電力系統(5)の配電線の電圧周波数、電力系統(5)の配電線の電圧位相、電力系統(5)の配電線の力率、電力、電力会社からの逆潮流電力の抑制要求、電力会社との契約で定めた発電電力上限値等を利用することができる。
 本発明は、水力発電システムとして有用である。
 1   管路(流路)
 5   商用電源(電力系統)
 10  水力発電システム
 13  第2分岐管(迂回路)
 15  第1電動弁(流量制御弁)
 17  第1流量計(流体情報取得部)
 18  第2流量計(流体情報取得部)
 20  発電機コントローラ(制御部)
 30  系統連系インバータ(制御部)
 32  交流電圧検出部(電力情報取得部)
 40  回生抵抗器(電力消費部)
 G   発電機
 W   水車(流体機械)

Claims (8)

  1.  流体が流れる流路(1)に配置される流体機械(W)と、
     前記流体機械(W)によって駆動される発電機(G)と、
     前記発電機(G)の発電電力の制御を行うとともに、該発電機(G)が発電した電力を電力系統(5)に供給する制御部(20,30)と、
     前記電力系統(5)が受け入れ可能な電力又は該電力に相関する情報を含む電力需給情報を取得する電力情報取得部(32)と、
     前記流路(1)から流出する前記流体における物理量に相関する情報を含む流体情報を取得する流体情報取得部(17,18)と、
    を備え、
     前記制御部(20,30)は、前記電力需給情報を用いて、前記電力系統(5)が受け入れ可能な電力以下に、前記電力系統(5)に供給する電力を制御しつつ、前記流体情報を用いて、前記物理量が所望の値となるように前記物理量又は前記流路(1)又は前記発電機(G)の発電電力の少なくともいずれか1つを制御することを特徴とする水力発電システム。
  2.  請求項1において、
     前記流路(1)には、前記流体機械(W)の迂回路(13)が設けられ、
     前記物理量には、前記流路(1)における前記流体の総流量(QT)が含まれ、
     前記制御部(20,30)は、前記迂回路(13)における前記流体の流量(Q2)を制御することによって前記総流量(QT)を所定の目標総流量(QT*)に近づけることを特徴とする水力発電システム。
  3.  請求項1又は請求項2において、
     前記制御部(20,30)は、前記発電機(G)に関する検出可能な特性であって、前記流体機械(W)における流量(Q1)と有効落差(H)とに相関する特性に基づいて、前記流体機械(W)における前記流量(Q1)と前記有効落差(H)とを推定するとともに、前記有効落差(H)と前記流路(1)における総流量(QT)との関係を示す流動抵抗特性線(S)と、推定した前記流量(Q1)と前記有効落差(H)とに基づいて、前記総流量(QT)を推定することを特徴とする水力発電システム。
  4.  請求項1から請求項3の何れかにおいて、
     前記流路(1)は、管路であり、
     前記流体機械(W)に直列接続されて、該流体機械(W)へ流入する前記流体の流量を制御する流量制御弁(15)を備え、
     前記物理量の値には、前記流路(1)から流出する前記流体の圧力(P2)が含まれ、
     前記制御部(20,30)は、前記流量制御弁(15)の開度を制御することによって、前記圧力(P2)を所定の目標圧力(P*)に近づけることを特徴とする水力発電システム。
  5.  請求項1から請求項4の何れかにおいて、
     前記制御部(20,30)は、前記電力系統(5)の配電線の電圧値(Vac)に基づいて前記電力需給情報を取得することを特徴とする水力発電システム。
  6.  請求項1から請求項5の何れかにおいて、
     前記発電電力を消費する電力消費部(40)を備え、
     前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記発電電力の一部又は全てを前記電力消費部(40)に供給することを特徴とする水力発電システム。
  7.  請求項1から請求項6の何れかにおいて、
     前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記流体機械(W)における流量(Q1)を制御することを特徴とする水力発電システム。
  8.  請求項4において、
     前記制御部(20,30)は、前記電力系統(5)に供給する電力が所望の値となるように、前記流量制御弁(15)の開度を制御しつつ、前記発電電力を制御することを特徴とする水力発電システム。
PCT/JP2017/032620 2016-09-20 2017-09-11 水力発電システム WO2018056088A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17852865.9A EP3496263B1 (en) 2016-09-20 2017-09-11 Hydroelectric power generation system
CN201780057649.9A CN109716642A (zh) 2016-09-20 2017-09-11 水力发电系统
BR112019005236-4A BR112019005236B1 (pt) 2016-09-20 2017-09-11 Sistema de geração de potência hidroelétrica
CA3036637A CA3036637C (en) 2016-09-20 2017-09-11 Hydroelectric power generation system
ES17852865T ES2927707T3 (es) 2016-09-20 2017-09-11 Sistema de generación de energía hidroeléctrica
US16/332,430 US11041476B2 (en) 2016-09-20 2017-09-11 Hydroelectric power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-182609 2016-09-20
JP2016182609 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056088A1 true WO2018056088A1 (ja) 2018-03-29

Family

ID=61689966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032620 WO2018056088A1 (ja) 2016-09-20 2017-09-11 水力発電システム

Country Status (7)

Country Link
US (1) US11041476B2 (ja)
EP (1) EP3496263B1 (ja)
JP (1) JP6304440B2 (ja)
CN (2) CN109716642A (ja)
CA (1) CA3036637C (ja)
ES (1) ES2927707T3 (ja)
WO (1) WO2018056088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060553A1 (ja) * 2019-09-26 2021-04-01 ダイキン工業株式会社 水力発電システム及び発電機制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593429B2 (ja) * 2017-12-20 2019-10-23 ダイキン工業株式会社 流体装置
JP6733767B1 (ja) * 2019-03-28 2020-08-05 ダイキン工業株式会社 水力発電システム
JP6993588B2 (ja) * 2019-10-17 2022-01-13 ダイキン工業株式会社 水力発電システム
CN111953248B (zh) * 2020-08-20 2022-04-08 镇江锐翼自动化科技有限公司 一种管道发电机的整流稳压装置及控制方法
DE102020131298A1 (de) 2020-11-26 2022-06-02 PYDRO GmbH Verfahren zur Durchfluss- und/oder Mengenmessung in einer fluidführenden Rohrleitung mit stark schwankenden Durchflussmengen sowie eine Anordnung zur Durchführung des Verfahrens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535561A (ja) * 2000-05-11 2003-11-25 アロイス・ヴォベン 風力装置の操作方法及び風力装置
CN103646294A (zh) * 2013-11-12 2014-03-19 国网电力科学研究院 一种考虑闸门操作规则的水电站洪水优化调度方法
CN103850299A (zh) * 2012-11-29 2014-06-11 上海市民办尚德实验学校 一种大楼排水系统
US20150260151A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. System for controlling water turbine generator for waterworks
JP2016118207A (ja) * 2014-10-23 2016-06-30 ダイキン工業株式会社 流体システム
JP2016158335A (ja) * 2015-02-23 2016-09-01 株式会社東芝 可変速運転制御装置および水力発電システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220009A (en) * 1977-01-20 1980-09-02 Wenzel Joachim O M Power station
US4496845A (en) 1982-12-27 1985-01-29 Cla-Val Co. Method and apparatus for control of a turbine generator
CN85101368B (zh) * 1985-04-01 1988-03-30 株式会社日立制作所 控制可调速水力发电系统的方法及装置
CN2133097Y (zh) * 1992-09-08 1993-05-12 河北机电学院 水轮发电机自动调压器
US7357599B2 (en) * 2005-08-10 2008-04-15 Criptonic Energy Solutions, Inc. Waste water electrical power generating system
US7632040B2 (en) * 2007-10-30 2009-12-15 Criptonic Energy Solutions, Inc. Waste water electrical power generating system with storage system and methods for use therewith
ZA200901070B (en) * 2008-02-25 2009-06-24 Van Blerk Coenraad Frederik Electricity generating arrangement
US7768146B2 (en) * 2008-03-21 2010-08-03 Alfiero Balzano Flow generator for use in connection with a utility conduit
CA2780451A1 (en) * 2011-06-21 2012-12-21 Genalta Power, Inc. Variable speed power generation from industrial fluid energy sources
CN202261153U (zh) * 2011-10-13 2012-05-30 湘潭电机股份有限公司 一种用于水力发电的变速恒频发电机的控制装置
BR112014031196A2 (pt) * 2012-06-19 2017-06-27 Sensus Spectrum Llc processo e dispositivo para abastecimento de uma eletrônica de medição com energia elétrica
JP5945782B2 (ja) * 2012-06-28 2016-07-05 パナソニックIpマネジメント株式会社 流体計測装置
JP6127693B2 (ja) 2013-04-26 2017-05-17 ダイキン工業株式会社 流体装置
JP6114680B2 (ja) * 2013-11-15 2017-04-12 アズビル株式会社 タービン式流量制御装置
CN104113246A (zh) * 2014-06-04 2014-10-22 无锡贝佳斯特自动化科技有限公司 一种水力发电机的自动控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535561A (ja) * 2000-05-11 2003-11-25 アロイス・ヴォベン 風力装置の操作方法及び風力装置
CN103850299A (zh) * 2012-11-29 2014-06-11 上海市民办尚德实验学校 一种大楼排水系统
CN103646294A (zh) * 2013-11-12 2014-03-19 国网电力科学研究院 一种考虑闸门操作规则的水电站洪水优化调度方法
US20150260151A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. System for controlling water turbine generator for waterworks
JP2016118207A (ja) * 2014-10-23 2016-06-30 ダイキン工業株式会社 流体システム
JP2016158335A (ja) * 2015-02-23 2016-09-01 株式会社東芝 可変速運転制御装置および水力発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496263A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060553A1 (ja) * 2019-09-26 2021-04-01 ダイキン工業株式会社 水力発電システム及び発電機制御方法
US20220213864A1 (en) * 2019-09-26 2022-07-07 Daikin Industries, Ltd. Hydropower generation system and power generator control method
US11898532B2 (en) * 2019-09-26 2024-02-13 Daikin Industries, Ltd. Hydropower generation system and power generator control method

Also Published As

Publication number Publication date
CA3036637C (en) 2022-05-24
EP3496263A4 (en) 2020-02-19
JP6304440B2 (ja) 2018-04-04
CA3036637A1 (en) 2018-03-29
EP3496263B1 (en) 2022-08-10
BR112019005236A2 (pt) 2019-06-04
CN113381561A (zh) 2021-09-10
ES2927707T3 (es) 2022-11-10
EP3496263A1 (en) 2019-06-12
CN109716642A (zh) 2019-05-03
JP2018048629A (ja) 2018-03-29
US11041476B2 (en) 2021-06-22
US20200386202A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP6304440B2 (ja) 水力発電システム
JP6849034B1 (ja) 水力発電システム及び発電機制御方法
AU2015334312A1 (en) Fluid system
JP5041889B2 (ja) エネルギー回収システム
US11920553B2 (en) Hydroelectric power generation system
JP6421850B2 (ja) 水力発電システム
JP6569713B2 (ja) 水力発電システム
JP2018050357A (ja) 水力発電システム
JP6805671B2 (ja) 水力発電システム
JP6733767B1 (ja) 水力発電システム
JP6835570B2 (ja) 水車発電システム及び水車発電システムの制御方法
JP6414239B2 (ja) 水力発電システム
JP7356073B1 (ja) 水力発電システム
JP7022275B2 (ja) 水力発電システム
BR112019005236B1 (pt) Sistema de geração de potência hidroelétrica
JP2018050360A (ja) 水力発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3036637

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017852865

Country of ref document: EP

Effective date: 20190307

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005236

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019005236

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190318