CN85101368B - 控制可调速水力发电系统的方法及装置 - Google Patents

控制可调速水力发电系统的方法及装置 Download PDF

Info

Publication number
CN85101368B
CN85101368B CN85101368A CN85101368A CN85101368B CN 85101368 B CN85101368 B CN 85101368B CN 85101368 A CN85101368 A CN 85101368A CN 85101368 A CN85101368 A CN 85101368A CN 85101368 B CN85101368 B CN 85101368B
Authority
CN
China
Prior art keywords
power system
mentioned
frequency
electric power
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN85101368A
Other languages
English (en)
Other versions
CN85101368A (zh
Inventor
桑原尚夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to CN85101368A priority Critical patent/CN85101368B/zh
Publication of CN85101368A publication Critical patent/CN85101368A/zh
Publication of CN85101368B publication Critical patent/CN85101368B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/10Special adaptation of control arrangements for generators for water-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)

Abstract

本发明揭示了一种采用转子绕线式感应发电机来控制可调速水力发电系统的方法和装置,其中,测得与水力发电系统相联的电力系统频率变化,或负载对电力系统的要求量的变化,并将检测值送到一个控制装置来控制驱动发电机的水力机械导叶的开度,从而限制系统频率或系统功率平衡发生变化。

Description

控制可调速水力发电系统的方法及装置
本发明是关于一种控制可调速水力发电系统的方法及装置,这个发电系统对与其联接的电力系统的频率或功率的变化,具有快速响应能力。
一种通常采用的常规可调速水力发电系统是以这样方式运行的,即根据发电机或发电机-电动机的转速,来提供一个理想频率下的交流电流给发电机二次绕组以维持发电机的输出频率为一常量。具体地说,一种结构如图4所示的水力发电系统,其运行方式如下所述。一种转子绕线式感应发电机1、其转子与水轮机2相联,二次绕组1A由一个频率变换器(cyclo-converter)3励磁,从而,达到变速运行的效果。在这种变速运行中,函数发生器4将产生最佳旋转速度的指令值Nx和最佳导叶开度指令值yx。该函数发生器4根据检速装置6,水头检测装置7和输出给定装置8的输出,来决定最佳励磁电流和最佳转速的大小。从而满足电力系统5所需的有功功率和无功功率的要求。因此,一方面要通过放大器9控制频率变换器3,另一方面要通过放大器10和一个未在图中示出的伺服电机控制导叶11。
在本系统中,如果水轮机能以如下方式控制,即水经过导叶11所产生的机械输入转矩与电负荷对发电机所要求的转矩一致,两者平衡,则感应发电机1将以与最佳转速指令值Nx相一致的速度连续运转。因此,在该系统中,控制电负载转矩使之符合机械输入转矩的要求。那么,这个系统的一个非常重要的任务是怎样控制机械输入转矩,或者怎样控制对应最佳导叶开度的指令值yx。由于在通常情况下,水位或水头在短时间内不会有很大变化。因此,在该系统中,函数发生器4产生的指令值,主要由输出给定装置8的输出信号决定。该输出给定装置可以是就地的给定装置,也可以是在本电力系统中一个中心控制站内的遥控给定装置。根据常规的技术,只要使输出给定装置8的给定值保持常量,指令值yz即保持常量,则机械转矩也保持不变。相应地,电负载转矩也保持不变。但图4所示的系统有很大缺点,现通过与图5中所示的带有同步发电机或其旋转速度保持不变的发电机-电动机的系统比较便可以说明。在图5中,标号21表示一个与水轮机22机械连接的同步发电机。标号23是水轮机22的导叶,标号24是检测水轮机22速度的检速装置。标号25是检测导叶23开度的检测装置。标号26是控制调节装置,它是根据检速装置24所检测的旋转速度N和输出给定装置27产生的输出信号P来产生控制导叶开度的指令值yx。标号28表示一比较器,用于比较导叶开度指令值yx与由导叶开度检测装置25检测出的实际开度值yz,并产生两者间误差值。标号29表示一个放大器,用于进行积分及放大运算。因此,检测装置25,比较器28,放大器29和导叶23,其中,导叶还包括一个与其机械连接的伺服电机(未示),此伺服电机在放大器29的作用下,用于调节导叶23,这些构成一闭环系统,从而使误差值减为零。
参考图5,由于发电机21是同步机,水轮机22的转速N0与电力系统5的频率f成比例,并由等式给出:
Nc=120f/Pτpm(P极数)。因此,可见,在发电运行时,检速装置24可以认为是检测电力系统5本身的频率。具体地说,在图5所示的系统中,对于电力系统5的频率,哪怕有微小的降低,指令值yx即被增加来加大导叶23的开度,从而水轮机22的输出增加。另一方面,当电力系统频率升高时,指令值yx被减小来关小导叶23的开度,从而水轮机22输出减小。这种调节功能是很重要的,而且势必会改善电力系统5的动态稳定性。而在图4所示的系统中,则缺乏水轮机的功率随着电力系统5的负荷要求及供电平衡状况的变化自动调节的功能。
这里所关心的是电力系统所具有补偿多余或补缺的功率的自动自抑制能力,该电力系统本身带有可调速水力发电系统。
诚然,本发明即使对于图4所示的传统可调速发电系统,也能很容易地被应用。只需提供一个电力系统频率检测装置,或一个功率检测装置和一个与其连接的用于处理检测信号的运算放大器,并将此运算放大器输出的信号送到输出给定装置8。
本发明的目的是要克服上述先有技术中的缺点,并提供一种控制可调速水力发电系统的方法和装置。在该系统中,当电力系统频率上升或电力系统发电功率减负载功率之差变为正值时,通过减小导叶开度来减小水力机械输出。当电力系统频率下降或电力系统发电功率减负载功率之差变为负值时,通过增大导叶开度来加大水力机械输出。因此,限制了电力系统频率的变化及发电功率减负载功率差值的变化。从而,改善了与使用感应发电机的可调速水力发电系统相联的电力系统动态稳定性。
根据本发明,可提供一种控制可调速水力发电系统的方法及装置。此发电系统中包括一个和水力机械如水轮机或可逆式水泵水轮机相联的转子绕线式感应发电机。此系统中,电力系统频率的变化或电力系统功率需要量的变化被测出,且将该测量值作为控制信号提供给一个控制装置,来控制导叶开度,也就控制了水轮机的输出,从而限制其变化。
本发明涉及一种控制可调速水力发电系统的方法,该系统包括一个调速发电机,一个与上述发电机相连,并驱动它的水力机械,用于控制上述水力机械供水量的导叶,一个连接于发电机和电力系统之间的频率变换器,用于使发电机频率与电力系统频率相配合以及一个调速装置,它一方面通过控制导叶来改变供水量,另一方面控制上述频率变换器,其特征在于:检测下述任一变化;即检测与上述发电系统有电联系的电力系统的频率变化或检测上述电力系统对上述发电系统的需要量变化,通过输入检测变化量到上述调速装置来调节水力机械的供水量和频率变换器,从而抑制电力系统频率的变化并满足电力系统有功和无功的要求。
本发明涉及一种用于控制可调速水力发电系统的装置包括:一个与电力系统相连的可调速发电机,一个与上述发电机相连并驱动它的水力机械,用于控制上述水力机械供水量的导叶,一个连接于上述发电机和电力系统之间的频率变换器,用来使发电频率与电力系统频率相配合以及一个调速装置,它一方面通过控制导叶来改变供水量,另一方面控制上述频率变换器,其特征在于:在调速装置中,一个检测装置,用于检测下述任一变化;即与上述发电系统有电联系的电力系统频率变化或电力系统对上述发电系统的需要量的变化以及用于处理所述检测装置的输出并将其送到所述调速装置的装置,一个由变化率运算放大器和死区元件构成的电路。
本发明通过结合下图的详细说明将会更清楚。其中:
图1是一个方框图,它表示根据本发明的一个带有感应发电机的可调速水力发电系统的实施例。
图2是图1系统中,一个缓冲转换装置(gradual changer)详图。
图3是一个可调速水力发电系统的方框图,它对应本发明的另一实施例。
图4是一方框图,它表示一个使用感应发电机的常规可调速水力发电系统。
图5是一方框图,它表示一个使用同步发电机的常规恒速水力发电系统。
参考图1,详细说明本发明的一个实施例如下,在图1和图4中,具有相似功能的装置将用相同标号表示,不再赘述。标号12表示一个缓冲转换装置,它用来限制由函数发生器4产生的最佳旋转速度指令值Nx。致使在指令信号Nx大幅度或突然变化时,缓冲转换装置的输出信号仍然控制在允许范围之内,来防止信号突变。具体地说,缓冲转换装置12包括一个限幅单元12B和积分单元12C,如图2所示。即使,由于指令值Nx突变而使加法器12A的输出出现很大变化,假设其数值大于正s1y或小于负s2y,那么,限幅单元12B会将它限制在正s1y和负s2y的值上。然后,通过积分单元12C积分。因此,缓冲转换装置可用来防止其输出超出一个预定的允许变化范围。符号K12表示放大倍数,S是拉普拉斯算子。标号13表示转速比较器,用它来将由缓冲转换装置12产生的指令信号和由转速检测装置6检测的实际转速进行比较,将转速比较器13产生的转速误差信号送入放大器9,再将放大器9产生的信号作为校正转速指令信号送入频率变换器3。标号14表示一个比较器,用来比较最佳导叶开度指令值yx与实际开度yz。标号15表示一个具有理想功能的控制装置,如PID功能(P:比例元件,I:积分元件,D:微分元件)。标号16是一个检测负载功率的功率检测装置,即电力系统5对感应发电机1的功率需要量。标号17表示一个变化率运算放大器,它用来产生一个输出量作为功率检测装置16所检测功率的变化函数,其中K17表示放大倍数,T17表示时间常数,S表示拉普拉斯算子,标号18表示死区元件(dead zone),它在输入r大于r1时,产生输出r-r1;在输入r小于r2时,产生输出r2-r。而当输入r在r1,r2之间时,输出为零。其中r是由变化率运算放大器17传来的输入信号,r1,r2是对输入r的预置门槛电压。死区元件(dead zone)18用于灵敏度的调节,它使输出给定信号Px增加一个由变化率运算放大器17产生的,并与功率变化率有关的信号。这就避免了对输出给定信号Pr太大的影响,标号19表示一个加法器,它将从死区元件18输出的信号与输出给定装置8产生的信号相加。这与在先有的发电技术中输出给定信号仅由输出给定装置8给定不同,图1的实施例是如此构成的,它的自动调节是通过包括功率检测装置16、变化率运算放大器17和死区元件18构成的电路来实现的。进一步说,控制装置15有效地保证了这个控制系统的稳定性和响应性。该系统包括:比较器14,控制装置15,放大器10,导叶11,水轮机2,感应发电机1,功率检测装置16,变化率运算放大器17,死区元件18,加法器19和函数发生器4。
在这种构成方式下,当功率检测装置16检测出的电力系统5中发电功率减负载功率差值发生变化时,输出的给定信号Px通过变化率运算放大器17和死区元件18,随时校正,以使由函数发生器4产生的最佳导叶开度的指令值yx自动校正,随时增加或减小。而导叶11可通过控制装置15和放大器10来调节它的开度,增大或减小,致使水轮机2的输出随着功率平衡的变化而变化。同时,输出给定装置8的整定,可以通过位于中心控制站中电力系统自动功率调节装置,比较缓慢的速度得到校正。
图3表示一个与图1不同的实施例,其中控制装置15被省略,变化率运算放大器17和死区元件18由一个PID装置30代替。在这种情况下,组成该控制系统的闭环电路包括:函数发生器4,比较器14,放大器10,导叶11,水轮机2,感应发电机1,功率检测装置16,PID运算器30,加法器19,函数发生器4。
在上述实施例中,功率检测装置16是用来检测电力系统功率的变化情况,但它同样可以用检测电力系统频率变化的频率检测装置来代替,并能获得同样效果。在这种情况下,当频率降低时,说明在电力系统中发电功率减负载功率的差值是负值,电力系统总发电功率不足,因而希望水轮机2的输出增加。另一方面,当频率增加时,表明有必要减小水轮机2的输出。
根据上述对本发明的描述,我们可以了解到通过测量电力系统的频率变化或功率要求的变化,导叶开度会发生变化,致使水力机械的输出发生变化,以这种方式,电力系统频率和供电状况的变化得到补偿,从而,改善了电力系统的动态稳定性,该电力系统是与采用了感应发电机或发电机-电动机的可调速水力发电系统相联的。

Claims (3)

1、一种控制可调速水力发电系统的方法,该系统包括一个调速发电机,一个与上述发电机相连,并驱动它的水力机械,用于控制上述水力机械供水量的导叶,一个连接于发电机和电力系统之间的频率变换器,用于使发电机频率与电力系统频率相配合以及一个调速装置,它一方面通过控制导叶来改变供水量,另一方面控制上述频率变换器,其特征在于:检测下述任一变化;即检测与上述发电系统有电联系的电力系统的频率变化或检测上述电力系统对上述发电系统的需要量变化,通过输入检测变化量到上述调速装置来调节水力机械的供水量和频率变换器,从而抑制电力系统频率的变化并满足电力系统有功和无功的要求。
2、一种用于控制可调速水力发电系统的装置,包括一个与电力系统相连的可调速发电机,一个与上述发电机相连并驱动它的水力机械,用于控制上述水力机械供水量的导叶,一个连接于上述发电机和电力系统之间的频率变换器,用来使发电频率与电力系统频率相配合,以及一个调速装置,它一方面通过控制导叶来改变供水量,另一方面控制上述频率变换器,其特征在于:在调速装置中,有一个检测装置,用于检测下述任一变化,即与上述发电系统有电联系的电力系统频率变化或电力系统对上述发电系统的需要量的变化,以及用于处理所述检测装置的输出并将其送到所述调速装置的装置,即一个由变化率运算放大器和死区元件构成的电路。
3、根据权利要求2的控制可调速水力发电系统的装置,其特征在于:在上述频率变换器和上述调速装置之间插入一个缓冲转换装置,当输出超过预定的上限或下限时,该缓冲转换装置将调速装置的输出限制到上述上限或下限值,再提供给频率变换器。
CN85101368A 1985-04-01 1985-04-01 控制可调速水力发电系统的方法及装置 Expired CN85101368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN85101368A CN85101368B (zh) 1985-04-01 1985-04-01 控制可调速水力发电系统的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN85101368A CN85101368B (zh) 1985-04-01 1985-04-01 控制可调速水力发电系统的方法及装置

Publications (2)

Publication Number Publication Date
CN85101368A CN85101368A (zh) 1987-01-24
CN85101368B true CN85101368B (zh) 1988-03-30

Family

ID=4791800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN85101368A Expired CN85101368B (zh) 1985-04-01 1985-04-01 控制可调速水力发电系统的方法及装置

Country Status (1)

Country Link
CN (1) CN85101368B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260858B (zh) * 2008-04-17 2010-04-21 山东电力研究院 大型水轮机导叶同步性调整与控制方法
CN102053647B (zh) * 2009-11-03 2013-05-08 盛群半导体股份有限公司 调整功率消耗的装置及其方法
CN101798982A (zh) * 2010-03-08 2010-08-11 章利呈 一种利用离网水电直供大型用电设备的装置
CN101924513B (zh) * 2010-08-20 2013-02-27 上海交通大学 泵站水泵反向发电运行功率调节系统
MX2017011967A (es) * 2015-03-19 2018-06-06 Franklin Empire Sistema de control para el control del accionamiento de motor eléctrico sumergible.
JP6304440B2 (ja) * 2016-09-20 2018-04-04 ダイキン工業株式会社 水力発電システム
CN107941203A (zh) * 2017-11-29 2018-04-20 张建洲 一种智能化监测系统及方法
CN109899225A (zh) * 2019-04-02 2019-06-18 三峡大学 一种水轮机调节系统的快速终端滑模控制器及设计方法

Also Published As

Publication number Publication date
CN85101368A (zh) 1987-01-24

Similar Documents

Publication Publication Date Title
EP0141372B1 (en) Method and apparatus for controlling variable-speed hydraulic power generaton system
Brassfield et al. Direct torque control for brushless doubly-fed machines
Dandeno et al. Effect of high-speed rectifier excitation systems on generator stability limits
US4754156A (en) Control apparatus for variable-speed hydraulic power generating system
CN102444541B (zh) 一种补偿风力发电机组转矩调节滞后的控制装置和方法
CN105743107B (zh) 一种电力孤网系统频率调节的控制方法
CN85101368B (zh) 控制可调速水力发电系统的方法及装置
Elder et al. Integral cycle control of stand-alone generators
Berube et al. Practical utility experience with application of power system stabilizers
Matsuo et al. Field oriented control of induction machines employing rotor end ring current detection
US2389367A (en) Control system
JPS573117A (en) Output control system for induction generator
Jones Multivariable control analysis of a hydraulic turbine
Johnson Selsyn design and application
Zhang et al. Control and dynamic behavior of the doublegenerator system for hydraulic power plants
US3055820A (en) Thermal reactors
SU721878A1 (ru) Электроэнергетическа установка
SU1534743A1 (ru) Способ регулировани тока возбуждени синхронной машины
SU954993A1 (ru) Устройство дл регулировани коэффициента мощности нагрузочного узла группой синхронных электродвигателей
Zhang et al. Excitation Regulation Capability Analysis of CSP Generator Based on Linear Optimal Control
US3327145A (en) Damping pulsation in electromagnetic apparatus
JPS63114599A (ja) 可変速発電装置
RU2210854C2 (ru) Ветроэлектрическая установка
Nawaz et al. Performance evaluation of static excitation system of Tarbela Power Station
SU1180721A2 (ru) Стенд дл испытани передач

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term