WO2018056059A1 - 圧電発電装置、圧電発電モジュールおよび送信機 - Google Patents

圧電発電装置、圧電発電モジュールおよび送信機 Download PDF

Info

Publication number
WO2018056059A1
WO2018056059A1 PCT/JP2017/032196 JP2017032196W WO2018056059A1 WO 2018056059 A1 WO2018056059 A1 WO 2018056059A1 JP 2017032196 W JP2017032196 W JP 2017032196W WO 2018056059 A1 WO2018056059 A1 WO 2018056059A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
power generation
piezoelectric power
lever
piezoelectric element
Prior art date
Application number
PCT/JP2017/032196
Other languages
English (en)
French (fr)
Inventor
嗣治 上林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018540955A priority Critical patent/JP6673489B2/ja
Publication of WO2018056059A1 publication Critical patent/WO2018056059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the present invention relates to a piezoelectric power generation device that generates power using a piezoelectric element, a piezoelectric power generation module including the piezoelectric power generation device, and a transmitter including the piezoelectric power generation module.
  • Piezo-electric element generates electric power according to the amount of deformation by being deformed by receiving external force. Therefore, conventionally, various piezoelectric power generation devices using piezoelectric elements have been proposed.
  • Patent Document 1 discloses a piezoelectric power generation apparatus incorporated in a portable electronic device having a key.
  • the piezoelectric power generation device includes a piezoelectric element that is supported by a support member so as to be able to bend and deform.
  • the piezoelectric power generation device is arranged behind the key, the piezoelectric element is pushed down by the key to bend and deform. It is configured as follows.
  • the piezoelectric power generation device when the user depresses the key, the user feels the feeling of the key touch (so-called click feeling) so that the user can feel it behind the piezoelectric element.
  • a spring is arranged.
  • the reversing spring is pressed and reversed (so-called buckling) by the flexurally deformed piezoelectric element, so that the impact generated during the reversal is transmitted to the finger, and a click feeling is obtained, improving the operability of the key. Will do.
  • the piezoelectric element is used as a pressing load for generating a pressing stroke necessary for power generation in the piezoelectric element.
  • the pressing load for deforming it is necessary to add a pressing load for deforming the reversing spring. Therefore, as compared with the case where no reversing spring is installed, as a result, an extremely large pressing load is required.
  • the present invention has been made to solve the above-described problems, and a piezoelectric power generation apparatus capable of obtaining a high click feeling while suppressing a pressing load necessary for power generation in a piezoelectric element, and a piezoelectric device including the same.
  • An object is to provide a power generation module and a transmitter.
  • the piezoelectric power generation device includes at least one or more plate-like piezoelectric elements, a support member, a movable portion, and an external force transmission portion.
  • the piezoelectric element has flexibility and generates power by being deformed in the thickness direction.
  • the support member supports the piezoelectric element so that it can be bent and deformed.
  • the movable portion is disposed so as to face the piezoelectric element, and can be displaced in a direction substantially along the thickness direction of the piezoelectric element by receiving an external force.
  • the external force transmission unit transmits an external force received by the movable unit to the piezoelectric element.
  • the external force transmission portion includes a reversing spring, and the reversing spring is disposed between the piezoelectric element and the movable portion.
  • the reversing spring is reversed at a predetermined pressing stroke that is equal to or more than a pressing stroke necessary for power generation in the piezoelectric element.
  • the reversing spring is composed of a single dome-shaped metal member or a laminated structure thereof.
  • the external force transmission unit may further include an auxiliary spring connected in parallel to the reversing spring. It is preferable to arrange between the element and the movable part.
  • the auxiliary spring is preferably composed of a single metal leaf spring or a laminated structure thereof.
  • the piezoelectric element may include a metal plate and a plate-like piezoelectric body provided on one main surface of the metal plate.
  • the piezoelectric power generation device may include a plurality of the piezoelectric elements, and in that case, the plurality of piezoelectric elements are preferably stacked in the thickness direction.
  • the movable portion may be configured by a lever that is rotatably supported by the support member.
  • the support member preferably has a box-like shape including a bottom plate portion and side wall portions erected from four sides of the bottom plate portion.
  • the direction of the force applied to the piezoelectric element and the thickness direction of the piezoelectric element are
  • the pressing angle when the maximum deformation of the piezoelectric element occurs is smaller than the pressing angle when the deformation starts to occur in the piezoelectric element. It is preferable.
  • the pressing angle gradually decreases from the time when the piezoelectric element starts to be deformed to the time when the piezoelectric element is most deformed.
  • the direction of the force applied to the piezoelectric element coincides with the thickness direction of the piezoelectric element when the maximum deformation occurs in the piezoelectric element.
  • the angle is preferably 0 [°].
  • a piezoelectric power generation module includes the piezoelectric power generation apparatus according to the present invention and a power supply circuit for supplying the power generated by the piezoelectric element to a load.
  • the power supply circuit includes a switch that starts supplying the power to the load when the pair of contacts are switched from the non-conductive state to the conductive state.
  • One of the pair of contacts is composed of the reversing spring, and the other of the pair of contacts is the reversing so that the pair of contacts are conductive when the reversing spring is reversed. It is arranged opposite to the spring.
  • a wiring board may be disposed on the surface of the movable portion in a portion facing the piezoelectric element, and in that case, the wiring board in the pair of contacts
  • the other of the pair of contacts is mounted on the wiring board so that the other is provided on the wiring board and the other of the pair of contacts is covered. preferable.
  • the transmitter based on this invention is equipped with the piezoelectric power generation module based on the said invention, and the transmission part which transmits a radio signal using the said electric power supplied from the said piezoelectric power generation module as said load. .
  • a piezoelectric power generation device that can obtain a high click feeling while suppressing a pressing load necessary for power generation in the piezoelectric element, and a piezoelectric power generation module and a transmitter including the piezoelectric power generation device.
  • FIG. 2 is a circuit block diagram schematically showing a configuration of a transmitter in the first embodiment of the present invention. It is a figure which shows the logic circuit of the signal output part shown in FIG.
  • FIG. 3 is a Venn diagram corresponding to the logic circuit shown in FIG. 2.
  • 1 is a perspective view of a piezoelectric power generation device according to a first embodiment of the present invention.
  • FIG. 5 is a sectional view taken along line VV shown in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along the line VI-VI shown in FIG. 4.
  • FIG. 8 is an exploded perspective view of the piezoelectric element shown in FIG. 7.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII shown in FIG.
  • FIG. 17 is a cross-sectional view taken along line XVIII-XVIII shown in FIG.
  • It is a disassembled perspective view of the piezoelectric power generator shown in FIG. It is sectional drawing in the state in which the external force was provided to the piezoelectric power generator shown in FIG.
  • FIG. 1 is a circuit block diagram schematically showing a configuration of a transmitter according to Embodiment 1 of the present invention.
  • 2 is a diagram showing a logic circuit of the signal output unit shown in FIG. 1
  • FIG. 3 is a Venn diagram corresponding to the logic circuit shown in FIG. First, with reference to these FIG. 1 thru
  • the transmitter 1 in the present embodiment is configured as a so-called remote controller, and generates power using an external force that is applied to the operation button when the operation button is pressed down, and uses the generated power.
  • the transmission unit is configured to operate. Therefore, transmitter 1 in the present embodiment does not require replacement of a power source such as a dry battery.
  • the transmitter 1 includes a piezoelectric power generation module 10 and a transmission unit 20.
  • the piezoelectric power generation module 10 includes a piezoelectric power generation apparatus 100A (see FIGS. 4 to 6 and the like) described later, and supplies generated power to the transmission unit 20.
  • the transmission unit 20 corresponds to a load that operates with electric power supplied from the piezoelectric power generation module 10.
  • the transmission unit 20 includes an RF (Radio Frequency) antenna 21 and an RF circuit 22.
  • the transmission unit 20 transmits an RF signal to a receiver (not shown) provided at a position away from the transmitter 1 using the electric power supplied from the piezoelectric power generation module 10.
  • This RF signal may be a signal indicating a control command to the receiver, or a signal for transmitting various types of information to the receiver.
  • the piezoelectric power generation module 10 includes a piezoelectric power generator 120, a full-wave rectifier circuit 11, a capacitor C, a DC / DC converter 12, a signal output unit 13, a control circuit 14, a discharge switch 15, and a first switch 141A. 141B and the second switch 142 are mainly provided.
  • the piezoelectric power generator 120 includes an output terminal T1 and an output terminal T2, and includes a plurality of piezoelectric elements 120a (see FIG. 4 to FIG. 6 and the like) that generate power by being deformed.
  • the potential of the output terminal T1 with respect to the potential of the output terminal T2 is defined as “output voltage V”.
  • the full-wave rectifier circuit 11 is electrically connected between the piezoelectric power generator 120 and the DC / DC converter 12, and performs full-wave rectification on the output voltage V of the piezoelectric power generator 120.
  • the full-wave rectifier circuit 11 for example, a general full-wave rectifier circuit including a diode bridge (not shown) can be used.
  • the full-wave rectifier circuit 11 includes nodes N1 and N2.
  • the node N1 is electrically connected to the DC / DC converter 12 by the power line PL, and outputs a full-wave rectified voltage (rectified voltage) Vc to the DC / DC converter 12.
  • Node N2 is electrically connected to power line GL having reference potential GND.
  • the capacitor C is electrically connected between the power line PL and the power line GL, and smoothes the rectified voltage Vc.
  • the DC / DC converter 12 converts the smoothed rectified voltage Vc into a predetermined voltage, and includes an input terminal Vin, an output terminal Vout, and an enable terminal EN.
  • the input terminal Vin is electrically connected to the node N1 of the full-wave rectifier circuit 11, and the output terminal Vout is electrically connected to the RF circuit 22.
  • the enable terminal EN is electrically connected to the output node OUT of the signal output unit 13.
  • the first switches 141A and 141B are switched from a non-conduction state (off) to a conduction state (on) when a user operation is accepted, and each has a pair of contacts. As will be described later, the first switches 141A and 141B are disposed on the side opposite to the side where the piezoelectric power generation body 120 is located when viewed from the lever 130 of the piezoelectric power generation apparatus 100A (see FIGS. 4 to 7, etc.).
  • the first switches 141A and 141B are configured to be operated independently by the user, and only one of the switches or both switches can be operated simultaneously.
  • the first switches 141A and 141B are both constituted by membrane switches, but other types of switches can also be used.
  • One of the pair of contacts of the first switch 141A is electrically connected to the power line PL, and the other is electrically connected to the input node IN1A of the signal output unit 13. Thereby, the first switch 141A outputs the signal S1A to the signal output unit 13 in the ON state.
  • One of the pair of contacts of the first switch 141B is electrically connected to the power line PL, and the other is electrically connected to the input node IN1B of the signal output unit 13. Thereby, the first switch 141B outputs the signal S1B to the signal output unit 13 in the ON state.
  • the second switch 142 switches from a non-conductive state (off) to a conductive state (on) when a user operation is accepted, and has a pair of contacts.
  • the second switch 142 is disposed on the side where the piezoelectric power generation body 120 is located when viewed from the lever 130 of the piezoelectric power generation apparatus 100A (see FIGS. 5 to 7, etc.).
  • the second switch 142 differs from the above-described first switches 141A and 141B in on / off at different timings in the user's button operation, and details thereof will be described later.
  • one of the pair of contacts of the second switch 142 is constituted by a reversing spring 160, and the other is a wiring board (second flexible wiring board 150 ( 5 to 7 etc.))).
  • One of the pair of contacts of the second switch 142 is electrically connected to the power line PL, and the other is electrically connected to the input node IN2 of the signal output unit 13. Thereby, the second switch 142 outputs the signal S2 to the signal output unit 13 in the ON state.
  • the signal output unit 13 includes switching elements Q including diodes D1 to D4, resistors R1 to R4, and NMOS (n-type Metal Oxide-Semiconductor) transistors in addition to the input nodes IN1A, IN1B, IN2 and the output node OUT. Including.
  • the input node IN1A is electrically connected to the gate of the switching element Q via the diode D1.
  • the anode of the diode D1 is electrically connected to the power line GL via the resistor R1.
  • the input node IN1B is electrically connected to the gate of the switching element Q via the diode D2.
  • the anode of the diode D2 is electrically connected to the power line GL via the resistor R2.
  • the drain of the switching element Q is electrically connected to the power line PL via the resistor R3.
  • the source of the switching element Q is electrically connected to the power line GL.
  • the anode of the diode D3 is electrically connected to a connection node between the resistor R3 and the drain of the switching element Q.
  • the cathode of the diode D3 is electrically connected to the output node OUT. Further, the cathode of the diode D3 is electrically connected to the power line GL via the resistor R4.
  • the input node IN2 is electrically connected to the anode of the diode D4.
  • the cathode of the diode D4 is electrically connected to the cathode of the diode D3.
  • the output node OUT of the signal output unit 13 is electrically connected to the enable terminal EN of the DC / DC converter 12.
  • the enable terminal EN receives the switching signal SW output from the output node OUT as an enable signal for the DC / DC converter 12.
  • the signal output unit 13 includes an input node IN1A that receives the signal S1A, an input node IN1B that receives the signal S1B, an input node IN2 that receives the signal S2, and an output node that outputs the switching signal SW. It includes OUT, a NOR circuit (negative OR circuit) 13a, and an OR circuit (OR circuit) 13b.
  • the NOR circuit 13a outputs to the OR circuit 13b a signal indicating the operation result of the negative logical sum of the signal S1A and the signal S1B.
  • the OR circuit 13b outputs a signal indicating the logical sum of the signal from the NOR circuit 13a and the signal S2 to the output node OUT.
  • the signal output unit 13 configured as described above is H (high) when the first switches 141A, 141B and the second switch 142 are all off, as shown in the region K1.
  • a level switching signal SW is output.
  • the signal output unit 13 Outputs an L (low) level switching signal SW. Further, as shown in the region K4, the signal output unit 13 outputs the L level switching signal SW even when both the first switches 141A and 141B are on and the second switch 142 is off. .
  • the signal output unit 13 outputs an H level switching signal SW.
  • the state in which the second switch 142 is on although the first switches 141A and 141B are both off does not actually occur.
  • the signal output unit 13 sends the H level or L level switching signal SW to the enable terminal EN of the DC / DC converter 12 based on the combination of the on state or the off state of the first switches 141A, 141B and the second switch 142. Output to.
  • the control circuit 14 is connected between the power line PL and the power line GL.
  • the control circuit 14 is a part that controls the operation of the transmission unit 20, and a detailed description thereof is omitted here.
  • the control circuit 14 is configured to receive signals S1A and S1B separately. In response, an operation command is output to the transmitter 20. Further, the control circuit 14 outputs a discharge command to the discharge switch 15.
  • the discharge switch 15 is connected between the output terminal T1 and the output terminal T2 of the piezoelectric power generator 120, and is used to discharge the electric charge stored in the piezoelectric power generator 120. More specifically, the discharge switch 15 is switched from a non-conductive state (off) to a conductive state (on) in response to a discharge command from the control circuit 14.
  • the discharge switch 15 when the discharge switch 15 is turned on, the output terminal T1 and the output terminal T2 are short-circuited, and the electric charge stored in the piezoelectric power generator 120 is discharged.
  • the discharge switch 15 for example, an IC (Integrated Circuit) such as an analog switch or a FET (Field Effect Transistor) can be used.
  • the DC / DC converter 12 switches the H level from the signal output unit 13 to the enable terminal EN based on the on state or the off state of the first switches 141A and 141B and the second switch 142.
  • the power is supplied to the transmitting unit 20, and when receiving the input of the L level switching signal SW from the signal output unit 13 to the enable terminal EN, the power to the transmitting unit 20 is supplied. Will not be supplied.
  • the transmitter 1 in the transmitter 1 according to the present embodiment, electric power is generated by the piezoelectric power generator 120 based on the combination of the on state or the off state of the first switches 141A and 141B and the second switch 142.
  • the transmission unit 20 By supplying power to the transmission unit 20 at a predetermined timing, efficient power generation and necessary transmission operation are realized. Details of the operation of the transmitter 1 will be described later, and The piezoelectric power generation apparatus 100A provided in the above-described piezoelectric power generation module 10 will be described in detail.
  • FIG. 4 is a perspective view of the piezoelectric power generation apparatus according to the present embodiment
  • FIGS. 5 and 6 are cross-sectional views taken along lines VV and VI-VI shown in FIG. 4, respectively.
  • 7 is an exploded perspective view of the piezoelectric power generation device shown in FIG. 4
  • FIG. 8 is an exploded perspective view of the piezoelectric element shown in FIG. First, with reference to these FIG. 4 thru
  • the piezoelectric power generation apparatus 100A includes a case body 110 as a support member, a piezoelectric power generation body 120 in which a plurality of piezoelectric elements 120a are stacked, a lever 130 as a movable portion, A flexible wiring board 140, a second flexible wiring board 150, a reversing spring 160 and an auxiliary spring 170 as external force transmission units, and a screw 180 are provided.
  • the piezoelectric power generation apparatus 100A is disposed behind an operation button (not shown). Specifically, the operation buttons are installed on the main surface of the piezoelectric power generating apparatus 100A on the side where the first flexible wiring board 140 is located. In this embodiment, two operation buttons that can be operated independently are installed at the positions of arrows AR1 and AR2 shown in FIGS. 4 to 6, and the operation buttons are operated by the user. External force is applied to the piezoelectric power generation apparatus 100A in the directions of the arrows AR1 and AR2, respectively.
  • the case body 110 has a box shape including a bottom plate portion 111 having a substantially rectangular shape in plan view and side wall portions 112 to 115 erected from four sides of the bottom plate portion 111.
  • the case body 110 is a member that serves as a base for supporting other parts constituting the piezoelectric power generation apparatus 100A.
  • the other parts constituting the piezoelectric power generation apparatus 100A are surrounded by the bottom plate portion 111 and the side wall portions 112 to 115. Mainly housed in the open space.
  • the side wall portions 112 and 115 are erected from two opposite sides of the bottom plate portion 111 so as to face each other, and the side wall portions 113 and 114 are different from the above-described two sides of the bottom plate portion 111 so as to face each other. It is erected from the other two sides. At the four corners of the bottom plate portion 111, there are formed portions where the side wall portions 112 to 115 are not provided so that the side wall portions 112 to 115 are discontinuous with each other.
  • support portions 111a are provided so as to protrude from the inner bottom surface of the bottom plate portion 111, respectively. These support portions 111a are portions for supporting the piezoelectric power generator 120 so as to be able to bend and deform.
  • the shaft support holes 113a and 114a are provided at predetermined positions near the side wall 112 of the side walls 113 and 114 so as to face each other (see FIGS. 5 and 7).
  • the shaft support holes 113a and 114a are portions for supporting the lever 130 so as to be rotatable.
  • the side wall portion 115 is configured to be slightly lower than the other side wall portions 112 to 114, and has an abutting surface 115a as an abutting portion for restricting the rotation of the lever 130 on its upper surface.
  • the case body 110 having the above-described configuration is preferably formed by pressing a metal plate-like member having a predetermined thickness.
  • the case body 110 is provided with high rigidity. can do.
  • the strength of the case body 110 can be kept high by erecting the side wall portions 112 to 115 from the four sides of the bottom plate portion 111 by bending as shown in the figure.
  • the case body 110 is configured by, for example, a press-formed product of a stainless steel plate member having a thickness of 0.25 [mm].
  • the case body 110 is positioned with respect to the case body 110 only by disposing the piezoelectric power generation body 120 in a space surrounded by the bottom plate portion 111 and the side wall portions 112 to 115. Furthermore, it is preferable that the size is slightly larger than the size of the piezoelectric power generator 120 described later.
  • the piezoelectric power generator 120 is formed by laminating a plurality of plate-like piezoelectric elements 120a having a rectangular shape in plan view, and has a plate-like shape as a whole.
  • the individual piezoelectric elements 120a generate power by being deformed in the thickness direction, and the plurality of piezoelectric elements 120a are stacked so that the thickness directions thereof match each other.
  • the piezoelectric element 120a any of a unimorph type, a bimorph type, and a multimorph type may be used. However, in the present embodiment, a piezoelectric body in which six layers of piezoelectric films described later are laminated is provided. A multimorph type piezoelectric element 120a is used.
  • the piezoelectric element 120 a mainly includes a metal plate 121 and a plate-like piezoelectric body 122 provided on one main surface of the metal plate 121.
  • the metal plate 121 and the piezoelectric body 122 are bonded together by an adhesive layer 124 made of, for example, an epoxy adhesive. In this manner, by sticking the metal plate 121 to one main surface of the piezoelectric body 122, it is possible to obtain a piezoelectric element having excellent durability that is not easily damaged even by repeated bending deformation.
  • the piezoelectric element 120a has a pair of terminals 123 for external connection.
  • the pair of terminals 123 are bonded to a pair of external electrodes provided on the front surface of the piezoelectric body 122 using a conductive adhesive 125.
  • the pair of terminals 123 is made of a sheet-like flexible metal member, and a part of the terminals 123 is drawn toward a region outside the piezoelectric body 122.
  • a through hole 123 a is provided at a predetermined position at the tip of each of the pair of terminals 123.
  • the piezoelectric body 122 is formed by laminating a plurality of piezoelectric films made of, for example, lead zirconate titanate-based ceramics, and has the above-described pair of external electrodes on its front surface.
  • a plurality of internal electrodes are provided inside the piezoelectric body 122, and each of these internal electrodes is connected to one of a pair of external electrodes provided on the front surface of the piezoelectric body 122.
  • lead-free piezoelectric ceramics (potassium sodium niobate ceramics, alkali niobic ceramics, etc.) may be used.
  • a protective film 126 is provided on the front surface of the piezoelectric body 122 so as to cover the entire surface.
  • the protective film 126 protects the piezoelectric body 122, the terminal 123, and the like.
  • a polyimide sheet that can be attached to the piezoelectric body 122 can be used as the protective film 126.
  • the size of the piezoelectric element 120a is not particularly limited, but the piezoelectric element 120a in the present embodiment has a size of 14 [mm] ⁇ 14 [mm] excluding the pair of terminals 123. ⁇ 0.08 [mm] is used.
  • the plurality of piezoelectric elements 120 a are arranged such that the front surface of the piezoelectric body 122 included in each of the piezoelectric elements 120 a faces the bottom plate portion 111 side of the case body 110 (that is, the piezoelectric body 122 is made of metal.
  • the layers are stacked and placed on the case body 110 so as to be positioned closer to the bottom plate portion 111 than the plate 121.
  • the piezoelectric power generating body 120 comes into contact with the support portions 111a provided on the bottom plate portion 111 of the case body 110 at the four corners of the lower surface, and most of the piezoelectric power generation body 120 is located at a distance from the bottom plate portion 111.
  • the body 110 is supported so as to be able to bend and deform.
  • a total of four piezoelectric elements 120a are stacked.
  • the plurality of piezoelectric elements 120a are preferably laminated so that all or part of them are in contact with each other. By configuring in this way, the piezoelectric elements 120a located on the bottom plate portion 111 side are further reached. Deformation due to the application of external force can be generated. In particular, when a part of the plurality of piezoelectric elements 120a is brought into contact with each other, the four corners and the center of each of the plurality of piezoelectric elements 120a can be brought into contact with each other by providing irregularities or the like on the exposed surface side of the metal plate. preferable.
  • the lever 130 includes a base portion 131 having a substantially rectangular shape in plan view and standing wall portions 133 and 134 erected from two opposite sides of the base portion 131 so as to face each other.
  • the base portion 131 is disposed so as to face the piezoelectric power generator 120, and the standing wall portions 133, 134 are disposed so as to face the side wall portions 113, 114 of the case body 110, respectively.
  • a pair of screw holes 131 a are provided at predetermined positions of the base 131.
  • the screw hole 131a is a part for fixing the second flexible wiring board 150 and the auxiliary spring 170 to the lever 130, and a screw 180 is attached to each of the screw holes 131a.
  • Shaft portions 133a and 134a are provided at predetermined positions on the outer surfaces of the standing wall portions 133 and 134 and near the side wall portion 112 of the case body 110 so as to protrude outward (see FIGS. 5 and 7). ).
  • the shaft portions 133a and 134a are pivotally supported by the shaft support holes 113a and 114a by being inserted into the shaft support holes 113a and 114a provided in the case body 110, respectively.
  • the lever 130 is rotatably supported by the case body 110 with the axis connecting the shaft portions 133a and 134a serving as the rotation shaft 1000 (see FIGS. 5 and 6).
  • the lever 130 When the lever 130 is rotatably supported by the case body 110 and an external force is applied to the base 131 of the lever 130, the lever 130 is in a direction substantially along the thickness direction of the piezoelectric power generator 120. It is displaced to. Along with the displacement of the lever 130, the external force received by the lever 130 is transmitted to the piezoelectric power generator 120 via a reversing spring 160 and an auxiliary spring 170 as an external force transmitting portion, which will be described later, and thereby to each piezoelectric element 120a. A bending deformation will occur.
  • the tip portion 135 of the base portion 131 that is the portion farthest from the above-described rotating shaft 1000 in the lever 130 is disposed at a position on the side wall portion 115 side of the case body 110, and the tip portion 135 is a lever.
  • 130 is rotated to the piezoelectric power generation body 120 side, it is comprised so that it may contact
  • the rotating shaft 1000 of the lever 130 has two opposite sides of the piezoelectric power generator 120 when viewed along the thickness direction of the piezoelectric power generator 120 (that is, two sides provided with the side walls 112 and 115).
  • the abutting surface 115a described above is provided along one of the two sides far from the rotation axis 1000 (that is, the side wall 115).
  • the rotation range of the lever 130 toward the piezoelectric power generator 120 is limited. Therefore, an excessive external force can be applied to the piezoelectric power generator 120 by appropriately setting the position where the abutting surface 115a is provided according to the installation position of the piezoelectric power generator 120, the arrangement position and shape of the lever 130, and the like. As a result, it is possible to prevent the piezoelectric power generator 120 from being damaged.
  • the lever 130 having the above-described configuration is preferably formed by pressing a metal plate-like member having a predetermined thickness. With this configuration, the lever 130 is provided with high rigidity. Can do.
  • the standing wall portions 133 and 134 are erected from the two opposite sides of the base portion 131 by bending, and lightly bent to the two opposite sides of the base portion 131 on the side where the standing wall portions 133 and 134 are not located. By applying the processing, the strength of the lever 130 can be kept high, and damage when an excessive external force is applied can be prevented.
  • the lever 130 is configured by a press-formed product of a stainless steel plate-like member having a thickness of 0.6 [mm], for example.
  • the rotating shaft 1000 of the lever 130 is disposed at a position closer to the side wall 112 of the case body 110 than the central portion of the piezoelectric power generator 120.
  • the lever 130 can be configured by a plate-like member having an elongated shape in plan view, and the long side direction of the lever 130 is the rotation axis 1000 of the lever 130.
  • the lever 130 can be arranged so as to be parallel to the extending direction.
  • the term “parallel to the extending direction of the rotating shaft 1000” includes the case of being approximately parallel with a shift of about ⁇ 5 [°].
  • the distance from the rotation shaft 1000 to the side wall 115 provided with the abutting surface 115a can be shortened, and the rotation radius of the tip portion 135 of the lever 130 can be reduced.
  • the bending deformation generated in the lever 130 when the operation button is pressed down can be greatly suppressed, and the piezoelectric power generator 120 can be more reliably prevented from being damaged.
  • the first flexible wiring board 140 is provided on the main surface on the side where the piezoelectric power generator 120 is not located, of the pair of main surfaces of the base 131 of the lever 130.
  • the first flexible wiring board 140 is formed by forming various conductive patterns on the surface of a multi-layer base material, and the two membrane switches constituting the first switches 141A and 141B described above are provided at predetermined positions. Have.
  • the two membrane switches constituting the first switches 141A and 141B are provided so as to be aligned along a direction parallel to the extending direction of the rotating shaft 1000 of the lever 130.
  • the two membrane switches are positioned to face the two operation buttons (not shown) described above.
  • the two membrane switches constituting the first switches 141A and 141B are preferably switched from the off state to the on state with a low load of 2 [N] or less. It is possible to quickly detect that the button is depressed. The two membrane switches do not need to convey a click feeling to the user.
  • the first flexible wiring board 140 has a connection portion 143 at a predetermined position.
  • the connection part 143 is a part that is electrically connected to the second flexible wiring board 150.
  • the first flexible wiring board 140 is preferably fixed to the lever 130 with a double-sided tape or the like (not shown). By configuring as such, the position of the membrane switch relative to the operation button (not shown) or the lever 130 is shifted. Can be prevented.
  • the second flexible wiring board 150 is provided on the main surface of the pair 131 main surfaces of the lever 130 on the side where the piezoelectric power generator 120 is located.
  • the second flexible wiring board 150 is formed by forming various conductive patterns on the surface of a single-layer or multilayer substrate, and has two connection portions 153 and 154.
  • connection part 153 is a part that is electrically connected to the first flexible wiring board 140, and the connection part 154 connects the piezoelectric power generation device 100 ⁇ / b> A to an external power management circuit (that is, the piezoelectric power generation module 10 shown in FIG. 1).
  • a power supply circuit excluding a circuit portion constituted by the piezoelectric power generation apparatus 100A from the circuit block corresponds to this).
  • a reversing spring 160 as an external force transmission unit and an auxiliary force are provided between the piezoelectric power generation body 120 and the second flexible wiring board 150 disposed on one main surface of the lever 130.
  • a spring 170 is arranged.
  • the reversal spring 160 and the auxiliary spring 170 as the external force transmission unit are for transmitting the external force received by the lever 130 to the piezoelectric power generator 120.
  • the reversing spring 160 is mounted on a portion of the second flexible wiring board 150 that is located on the main surface of the base 131 of the lever 130 and that faces the central portion of the piezoelectric power generator 120.
  • the reversing spring 160 is buckled so that its concavo-convex shape is reversed when an external force is applied and a predetermined load is applied.
  • the external force is released, the buckling is eliminated and the original shape is restored.
  • the reversing spring 160 constitutes one of the pair of contacts of the second switch 142 described above, and has a posture that protrudes downward so that a space is formed between the reversing spring 160 and the second flexible wiring board 150. That is, it is fixed to the second flexible wiring board 150 (that is, the top of the dome-shaped reversal spring 160 is positioned on the piezoelectric power generator 120 side).
  • the other of the pair of contacts of the second switch 142 described above is provided as a conductive terminal in a portion of the second flexible wiring board 150 covered with the reversing spring 160 described above.
  • the pair of contacts of the second switch 142 can be turned on when the reversing spring 160 is reversed, and the second switch 142 can be turned on when the reversing spring 160 is not reversed.
  • the pair of contacts can be turned off (off).
  • the reversing spring 160 By using the reversing spring 160, when the user pushes down the operation button, the above-described buckling phenomenon occurs when a predetermined load is applied, and the spring constant of the reversing spring 160 is instantaneous. Will fall. Thereby, the user can get a click feeling by applying the impact, and the operability when operating the operation buttons can be ensured.
  • the auxiliary spring 170 has an elongated plate-like shape that is substantially V-shaped when viewed from the side, and has a posture that protrudes downward to accept the reversing spring 160 (that is, an auxiliary that is substantially V-shaped when viewed from the side.
  • the spring 170 is attached to the second flexible wiring board 150 so that the top of the spring 170 is located on the piezoelectric power generator 120 side.
  • the auxiliary spring 170 is constituted by, for example, a single metal leaf spring or a laminated structure thereof.
  • a through hole 170a (see FIGS. 5 and 7) is provided at both ends of the auxiliary spring 170, and the second flexible wiring board 150 corresponding to the through hole 170a also has a through hole 150a.
  • These through holes 150a and 170a are provided so as to match the screw holes 131a provided in the base 131 of the lever 130 described above, and the screws 180 are inserted into the screw holes 131 so as to be inserted through the through holes 150a and 170a.
  • the second flexible wiring board 150 and the auxiliary spring 170 are fixed to the lever 130 by being screwed to 131a.
  • the reversal spring 160 is sandwiched between the second flexible wiring board 150 and the auxiliary spring 170, thereby fixing the reversal spring 160 to the second flexible wiring board 150.
  • the auxiliary spring 170 adjusts the spring constant of the entire external force transmission unit that transmits the external force received by the lever 130 to the piezoelectric power generator 120.
  • the auxiliary spring 170 By providing the auxiliary spring 170, the click feeling of the reversing spring 160 is reduced. The degree (refer to the click rate described later) can be adjusted and the balance of the force applied to the piezoelectric power generator 120 and the reversing spring 160 can be corrected. The details will be described later.
  • auxiliary spring 170 corresponding to the top of the reversing spring 160 is provided with a protrusion 171 that contacts the top of the reversing spring 160.
  • the reversing spring 160 is constituted by a laminated structure in which four thin metal members having a dome shape are laminated, and the auxiliary spring 170 is made of one metal. It consists of a leaf spring. This is a result of the adjustment of the degree of click feeling described above and the correction of the balance of the force applied to the piezoelectric power generator 120 and the reversing spring 160.
  • the specifications of the piezoelectric power generation apparatus 100A are different, These can be changed as appropriate.
  • the piezoelectric power generating apparatus 100A described above is fixed to a casing or the like of the transmitter 1 (not shown) using press-fit pins 190.
  • the press-fit pin 190 penetrates the through hole 123a provided in the terminal 123 of each piezoelectric element 120a included in the piezoelectric power generator 120 and the second flexible wiring board 150 provided so as to overlap therewith.
  • the tip is inserted into the hole 150b (see FIG. 7) and fixed by being press-fitted into a press-fitting hole provided in the casing of the transmitter 1 or the like.
  • the terminal 123 of the piezoelectric power generation body 120 and the second flexible wiring board 150 are press-contacted by the press-fit pins 190, so that electrical connection between the piezoelectric power generation body 120 and the second flexible wiring board 150 is ensured. It will be. If a metal pin is used as the press-fit pin 190, the electrical connection between the piezoelectric power generator 120 and the second flexible wiring board 150 can be made more reliable.
  • FIG. 9 is a cross-sectional view of the piezoelectric power generation device shown in FIG. 4 with an external force applied thereto. Next, a state where an external force is applied to the piezoelectric power generation apparatus 100A in the present embodiment will be described with reference to FIG.
  • the reversing spring 160 and the auxiliary spring 170 as external force transmitting portions arranged between the piezoelectric power generator 120 and the lever 130 are compressed by these, and receive the reaction force.
  • the individual piezoelectric elements 120a included in the piezoelectric power generator 120 are also deformed by bending.
  • the reversing spring 160 is preferably set so as to be reversed (that is, buckled) at a predetermined pressing stroke that is equal to or greater than the pressing stroke necessary for power generation in the piezoelectric power generator 120.
  • the reversing spring 160 is reversed when the amount of power to be generated is generated in the piezoelectric power generator 120 or thereafter, so that an operation amount (that is, a push amount) for the operation button of the user is ensured. It is possible to complete the power generation operation with certainty.
  • the first switch 141A is switched from the off state to the on state at an initial stage when the user starts to push down the operation button.
  • the second switch 142 configured to include the reversing spring 160 is switched from the off state to the on state at the time when or after the amount of electric power to be generated is accumulated in the piezoelectric power generator 120. For this reason, the second switch 142 is switched to the ON state with a delay from the first switch 141A.
  • the lever 130 is rotated by a predetermined amount so that an excessive external force is not applied to the piezoelectric power generating body 120.
  • the distal end portion 135 of the lever 130 is configured to come into contact with the abutting surface 115 a of the case body 110.
  • the amount of rotation of the lever 130 where the distal end portion 135 of the lever 130 abuts against the abutting surface 115a of the case body 110 is set so that the reversing spring 160 reverses within a range in which excessive external force is not applied to the piezoelectric power generator 120.
  • it is possible to achieve both efficient power generation by the piezoelectric power generator 120 and prevention of breakage thereof.
  • Polarization occurs in the piezoelectric body 122 even in the process in which the piezoelectric element 120a that has undergone bending deformation returns to its original shape. Along with the polarization, one of the pair of external electrodes provided on the piezoelectric element 120a is positively charged and the other is negatively charged. Therefore, electric power having a polarity opposite to that of the deformation process described above is generated in the piezoelectric power generator 120. In the present embodiment, this reverse polarity power is also used, but the details will be described later.
  • the second switch 142 including the reversing spring 160 is switched from the on state to the off state at an initial stage when the user starts to release the depression of the operation button.
  • the first switch 141 ⁇ / b> A is switched from the on state to the off state at the time when or after the amount of electric power to be generated is accumulated in the piezoelectric power generator 120. Therefore, the first switch 141A is switched to the off state with a delay later than the second switch 142.
  • FIG. 10 is a time chart for explaining an example of the operation of the transmitter shown in FIG. Next, with reference to FIG. 10, as an example of the operation of the transmitter 1 described above, a case where the user performs an operation of depressing the operation button corresponding to the first switch 141A will be described.
  • the horizontal axis indicates the elapsed time
  • the vertical axis indicates the load on / off, the output voltage of the piezoelectric power generator, the first switch 141A on / off, and the first switch 141B in order from the top.
  • the first switches 141A and 141B and the second switch 142 are all off, so that the switching signal SW of the signal output unit 13 is at the H level.
  • the piezoelectric power generator 120 since power generation is not yet performed in the piezoelectric power generator 120, power supply from the piezoelectric power generation module 10 to the transmission unit 20 is not performed.
  • the switching signal SW of the signal output unit 13 becomes L level. Accordingly, power supply from the piezoelectric power generation module 10 to the transmission unit 20 is not performed.
  • the piezoelectric generator 120 starts to bend and deform as the load applied to the piezoelectric generator 100A increases. Along with this deformation, the piezoelectric power generator 120 generates power, and the generated power is stored in the piezoelectric power generator 120 without being supplied to the transmitter 20.
  • the reversing spring 160 starts reversing.
  • the second switch 142 is turned on at time t4.
  • the switching signal SW of the signal output unit 13 becomes H level. Accordingly, the electric power stored in the piezoelectric power generator 120 is supplied from the piezoelectric power generation module 10 to the transmission unit 20, and the transmission operation is started in the transmission unit 20.
  • the reset operation of the piezoelectric power generator 120 is started at time t5, whereby the electrodes of the piezoelectric power generator 120 are short-circuited, whereby the output voltage of the piezoelectric power generator 120 is reduced to 0 [V]. Reset. Thereafter, the reset operation of the piezoelectric power generator 120 is stopped at time t6.
  • the reversing spring 160 starts reversing again (reversing to return to the original shape), and the second switch 142 is turned off at the time t7. Thereby, the switching signal SW of the signal output unit 13 becomes L level. Accordingly, power supply from the piezoelectric power generation module 10 to the transmission unit 20 is not performed.
  • the bending deformation of the piezoelectric power generation body 120 starts to be eliminated as the load applied to the piezoelectric power generation apparatus 100A decreases.
  • the piezoelectric power generator 120 generates power, and the generated power is stored in the piezoelectric power generator 120 without being supplied to the transmitter 20.
  • the switching signal SW of the signal output unit 13 becomes H level. Accordingly, the electric power stored in the piezoelectric power generator 120 is supplied from the piezoelectric power generation module 10 to the transmission unit 20, and the transmission operation is started in the transmission unit 20.
  • the reset operation of the piezoelectric power generator 120 is started at time t11, so that the electrodes of the piezoelectric power generator 120 are short-circuited, whereby the output voltage of the piezoelectric power generator 120 is reduced to 0 [V]. Reset. Thereafter, the reset operation of the piezoelectric power generator 120 is stopped at time t12.
  • the transmitter 1 includes the piezoelectric power generation module 10 including the piezoelectric power generation device 100A having the above-described configuration, so that the user can operate the operation buttons once.
  • the transmission operation can be performed twice. Therefore, the time when the operation button is operated can be determined by detecting the time interval between the two receptions on the receiver side.
  • FIGS. 11 and 12 are conceptual diagrams showing a schematic configuration of a piezoelectric power generation device according to the present embodiment and a piezoelectric power generation device according to Comparative Example 1, and a connection structure between a lever and a case body, respectively.
  • FIG. 11 and FIG. 12 the effect obtained by disposing the reversal spring 160 between the lever 130 and the piezoelectric power generator 120 will be described in detail.
  • the piezoelectric power generation apparatus 100A ′ according to the present embodiment is not provided with the auxiliary spring 170 when compared with the piezoelectric power generation apparatus 100A according to the present embodiment described above.
  • the configuration is different only in that the reversing spring 160 and the piezoelectric power generator 120 are in direct contact.
  • the piezoelectric power generating body 120 is supported by the case body 110 with a point P0 shown in the drawing as a fulcrum, and the lever 130 has a point P1 shown in the drawing.
  • the case body 110 is rotatably supported.
  • this piezoelectric power generating apparatus 100A ′ an external force is applied to the lever 130 with the point P2 shown in the figure as a power point, and on the other hand, when the lever 130 rotates, a point P3 shown in the figure is obtained. A force is applied to the reversing spring 160 with the action point as the point of action.
  • the reversing spring 160 and the piezoelectric power generation body 120 are in direct contact, and thus the connection structure between the lever 130 and the case body 110 in the piezoelectric power generation device 100A ′ is conceptual. Is as shown in FIG.
  • the lever 130 and the case body 110 are connected by the reversing spring 160 and the piezoelectric power generation body 120 connected in series therebetween. Will be.
  • the piezoelectric power generation device 100X according to Comparative Example 1 is not provided with the auxiliary spring 170 when compared with the piezoelectric power generation device 100A in the present embodiment described above.
  • the configuration is different in that the reversing spring 160 is disposed between the piezoelectric power generation body 120 and the case body 110.
  • the piezoelectric power generation body 120 is formed by the case body 110 with the point P0 shown in the figure as a fulcrum, similarly to the piezoelectric power generation device 100A ′ according to the above-described embodiment.
  • the lever 130 is supported by the case body 110 so as to be rotatable about a point P1 shown in the drawing.
  • the connection structure between the lever 130 and the case body 110 in the piezoelectric power generation device 100X Is shown conceptually as shown in FIG.
  • the lever 130 and the case body 110 are connected by the reversing spring 160 and the piezoelectric power generation body 120 connected in parallel between them. It will be.
  • the piezoelectric power generator 120 is used as a pressing load for generating a pressing stroke necessary for power generation in the piezoelectric power generator 120.
  • a pressing load for deforming but also a pressing load for deforming the reversing spring 160 is required.
  • the click feeling obtained by providing the reversing spring 160 is extremely reduced according to the spring constant of the piezoelectric power generator 120, and a pressing stroke necessary for power generation in the piezoelectric power generator 120 is generated.
  • the pressing load for making it increase will also increase significantly.
  • the piezoelectric power generator 120 by disposing the reversing spring 160 between the lever 130 and the piezoelectric power generator 120 as in the above-described piezoelectric power generator 100A in the present embodiment or a piezoelectric power generator 100A ′ according to this, the piezoelectric power generator. It becomes possible to obtain a high click feeling while keeping the pressing load necessary for power generation at 120 low.
  • FIG. 13 is a conceptual diagram showing a connection structure between the lever and the case body of the piezoelectric power generation apparatus in the present embodiment described above. Next, with reference to FIG. 13, effects obtained by disposing the auxiliary spring 170 in addition to the reversing spring 160 between the lever 130 and the piezoelectric power generator 120 will be described in detail.
  • FIG. 13 conceptually shows the connection structure between the lever 130 and the case body 110 of the piezoelectric power generation apparatus 100A in the present embodiment described above. That is, as shown in FIG. 13, in the piezoelectric power generating apparatus 100 ⁇ / b> A, the lever 130 and the case body 110 are in series with the reversal spring 160 and auxiliary spring 170 connected in parallel with each other, and with the reversal spring 160 and auxiliary spring 170. And the piezoelectric power generator 120 connected to.
  • auxiliary spring 170 By providing the auxiliary spring 170 so as to be connected in parallel only to the reversing spring 160 in this way, as described above, adjustment of the degree of click feeling by the reversing spring 160 and the force applied to the piezoelectric power generator 120 and the reversing spring 160 are performed. The balance can be corrected.
  • the reversing spring 160 when the reversing spring 160 is reversed with a pressing load smaller than the pressing load necessary for power generation in the piezoelectric power generator 120, the power is supplied to the power management circuit before the necessary power is obtained. It will be supplied and will cause malfunction. Therefore, by connecting the auxiliary spring 170 in parallel with the reversing spring 160, a load that causes the reversing phenomenon of the reversing spring 160 (hereinafter referred to as a reversing load) and a pressing load that is added by providing the auxiliary spring 160 By setting the sum to be approximately equal to the pressing load required for power generation in the piezoelectric power generator 120, the operation amount (ie, the pushing amount) for the operation button of the user can be ensured, and the power generation operation is more reliably performed. It can be completed.
  • a reversing load a load that causes the reversing phenomenon of the reversing spring 160
  • the reversing spring 160 is formed of a laminated structure in which four thin metal members having a dome shape are laminated.
  • the auxiliary spring 170 by configuring the auxiliary spring 170 with a single leaf spring, an appropriate click feeling can be obtained.
  • the power generation amount to be generated using the piezoelectric power generation body 120 is set to approximately 15 [N]. Therefore, it is preferable that a click feeling is obtained when the pressing load is about 15 [N] (more preferably 15 [N] or more).
  • the reversal load per dome-shaped thin metal member is usually about 2 [N] to 3 [N], and a click feeling can be obtained with an appropriate pressing load by using only one of these. I can't.
  • the reversing spring 160 is constituted by a laminated structure in which four thin metal members having a dome shape are laminated, and the auxiliary spring 170 is constituted by one leaf spring, while the auxiliary spring 170 is constituted.
  • the spring constant of the spring 170 By optimizing the spring constant of the spring 170, a click feeling is obtained in about 15 [N].
  • the arrangement of the auxiliary spring 170 may be abolished so that a configuration like the piezoelectric power generation device 100A ′ according to the above-described embodiment may be adopted.
  • FIG. 14 is a graph showing the relationship between the operation amount of the reversing spring and the operation force
  • FIG. 15 is a graph showing the results of the first verification test.
  • the reversing spring momentarily decreases when the predetermined operating amount (displacement) is reached, and then increases again. As a result, the amount of operation continues to increase.
  • the degree of click feeling described above is generally defined as a click rate, and the operation forces Fa and Fb shown in FIG. 14 (where Fa is the operation force at the moment when the operation force starts to decrease instantaneously).
  • Fb is an operation force at the time when the operation force starts to recover thereafter, and is expressed as 100 ⁇ (Fa ⁇ Fb) / Fa [%].
  • a reversing spring is constituted by a laminated structure in which five thin metal members having a dome shape are laminated, and a plurality of samples in which auxiliary springs having different configurations are connected in parallel to the sample.
  • a prototype was manufactured and the click rate and reversal load in each sample were measured.
  • the auxiliary spring a plurality of leaf springs having the same shape and the same spring constant are prepared, and the configuration is changed by changing the number of connections for each sample.
  • the reversal load was 11.0 [N] in the measured value in the sample not connected to the auxiliary spring, but about 12.5 [measured in the sample in which one auxiliary spring was connected in parallel. It is confirmed that by increasing the number of connected auxiliary springs to 1N [N], 14.5 [N], and 16.0 [N] in order by increasing the number of auxiliary springs connected It was done.
  • the piezoelectric power generation device 100A according to the present embodiment described above or the piezoelectric power generation device 100A ′ according to the piezoelectric power generation device 100A has a pressing force necessary for power generation in the piezoelectric power generation body 120. It can be said that it was confirmed experimentally that a high click feeling can be obtained while keeping the load low.
  • FIG. 16 is a perspective view of the piezoelectric power generation apparatus according to Embodiment 2 of the present invention
  • FIGS. 17 and 18 are cross-sectional views taken along lines XVII-XVII and XVIII-XVIII shown in FIG. 16, respectively.
  • FIG. 19 is an exploded perspective view of the piezoelectric power generation device shown in FIG. 16, and
  • FIG. 20 is a cross-sectional view of the piezoelectric power generation device shown in FIG.
  • the piezoelectric power generation device 100B is demonstrated. Note that the piezoelectric power generation device 100B is included in the transmitter 1 in the above-described first embodiment and the piezoelectric power generation module 10 included therein instead of the piezoelectric power generation device 100A in the above-described first embodiment. .
  • the piezoelectric power generation device 100B has a configuration similar to that of the piezoelectric power generation device 100A in the first embodiment described above.
  • the movable portion The structure of the lever 130 is different mainly in that the posture of the lever 130 is different, and accordingly, the structure of the details is slightly different in that the shape of the lever 130 is different and the shape of the auxiliary spring 170 is different. It is different.
  • the piezoelectric power generation device 100B in the present embodiment is improved in power generation efficiency than the piezoelectric power generation device 100A in the first embodiment described above. Yes.
  • the auxiliary spring 170 is substantially T-shaped in plan view and has a shape bent in a substantially C-shape when viewed from the side, and a part of the auxiliary spring 170 is a reversing spring 160. (That is, located between the reversing spring 160 and the piezoelectric power generator 120) and the remaining portion is pulled out from the position below the reversing spring 160 to the second flexible wiring board 150. Installed.
  • the auxiliary spring 170 is constituted by, for example, a single metal leaf spring or a laminated structure thereof.
  • Through holes 170a are provided at both ends of the auxiliary springs 170 that are drawn outward from the position below the reversing spring 160, and the second flexible wiring in the part corresponding to the through holes 170a.
  • the substrate 150 is also provided with a through hole 150a (see FIG. 19). These through holes 150a and 170a are provided so as to match the screw holes 131a provided in the base 131 of the lever 130, and the screws 180 are inserted into the screw holes 131a so as to be inserted through the through holes 150a and 170a. By screwing, the second flexible wiring board 150 and the auxiliary spring 170 are fixed to the lever 130.
  • a protrusion 171 that abuts on the top of the reversing spring 160 is provided on a portion of the auxiliary spring 170 located below the reversing spring 160 (that is, a portion corresponding to the top of the reversing spring 160).
  • the lever 130 has a plate-like base portion 131 having a substantially rectangular shape in plan view and a standing wall portion 133 erected from two opposite sides of the base portion 131 so as to face each other, as in the first embodiment. , 134.
  • the pair of standing wall portions 133 and 134 are provided with shaft portions 133a and 134 that are pivotally supported by the shaft support holes 113a and 114a by being inserted into the shaft support holes 113a and 114a provided in the case body 110, respectively.
  • the lever 130 is rotatably assembled to the case body 110.
  • the distal end portion 135 of the base portion 131 which is the portion farthest from the rotation shaft 1000 of the lever 130 is disposed at a position on the side wall portion 115 side of the case body 110, and the distal end portion 135 moves the lever 130.
  • the lever 130 is different in shape from the above-described first embodiment in the bending direction of the distal end portion 135 in the base portion 131 described above.
  • the portion excluding the front end portion 135 is inclined so as to intersect with a direction orthogonal to the thickness direction of the piezoelectric power generation body 120 (that is, a direction parallel to the main surface of the piezoelectric power generation body 120). More specifically, the position of the portion of the lever 130 closer to the rotating shaft 1000 is closer to the piezoelectric power generator 120 than the end of the portion of the lever 130 closer to the distal end portion 135.
  • the lever 130 is configured so as to be disposed at the position.
  • the reversing spring 160 and the auxiliary spring 170 as external force transmitting portions arranged between the piezoelectric power generator 120 and the lever 130 are compressed by these, and receive the reaction force.
  • the individual piezoelectric elements 120a included in the piezoelectric power generator 120 are also deformed by bending.
  • the base portion 131 of the lever 130 in a state where the distal end portion 135 of the lever 130 is in contact with the abutting surface 115 a of the case body 110 (that is, the lever 130 can no longer be pushed down), the base portion 131 of the lever 130.
  • a portion excluding the tip portion 135 is disposed in a direction orthogonal to the thickness direction of the piezoelectric power generation body 120 (that is, a direction parallel to the main surface of the piezoelectric power generation body 120 before deformation). More specifically, the end of the portion of the lever 130 that is closer to the rotation shaft 1000 and the end of the portion of the lever 130 that is closer to the tip 135 are the thickness of the piezoelectric power generator 120.
  • the lever 130 is configured to be disposed at the same height along the direction.
  • the portion of the base 131 of the lever 130 excluding the tip 135 is the thickness direction of the piezoelectric generator 120. It will be arranged in the direction orthogonal to.
  • the amount of rotation of the lever 130 in which the distal end portion 135 of the lever 130 abuts against the abutting surface 115a of the case body 110 is set equal to the amount of rotation of the lever 130 that generates a pressing stroke necessary for power generation in the piezoelectric power generator 120. In this case, it is unnecessary to push the lever 130 down more than necessary, and it is possible to prevent unnecessary external force from being applied to the piezoelectric power generator 120.
  • the piezoelectric generator 120, the reversing spring 160, and the auxiliary spring 170 are restored to their original states based on the elastic force, and the lever 130 is also displaced again (that is, shown in FIG. 20). Return to the original position (displaced in the direction opposite to the arrow DR direction). Thereby, the piezoelectric power generating apparatus 100B returns to the state shown in FIG. At this time, the buckling generated in the reversing spring 160 is also eliminated.
  • FIG. 21 is a diagram illustrating a change in the direction of force applied to each part during operation in the piezoelectric power generation device according to the present embodiment.
  • FIG. 22 illustrates each part during operation in the piezoelectric power generation device according to Comparative Example 2. It is a figure which shows the direction change of the force provided to.
  • FIGS. 21A and 21B show a point in time when the piezoelectric power generator starts to deform
  • FIGS. 21B and 22B show the maximum deformation of the piezoelectric power generator. Indicates the point of occurrence of.
  • FIGS. 21A and 21B show a point in time when the piezoelectric power generator starts to deform
  • FIGS. 21B and 22B show the maximum deformation of the piezoelectric power generator. Indicates the point of occurrence of.
  • FIGS. 21A and 21B show a point in time when the piezoelectric power generator starts to deform
  • FIGS. 21B and 22B show the maximum deformation of the piezoelectric power
  • 21 (C) and 22 (C) are conceptual diagrams showing changes in the pressing angle, which will be described later, in the process in which the piezoelectric generator is pressed and deformed by the displacement of the lever.
  • FIG. 21 and FIG. 22 a mechanism that can achieve high power generation efficiency by using the piezoelectric power generation device 100B in the present embodiment will be described in detail.
  • FIG. 21 and FIG. 22 only the main part is extracted and shown for easy understanding.
  • piezoelectric power generating apparatus 100 ⁇ / b> B in the state where external force is not applied and piezoelectric power generating body 120 is not deformed, base 131 of lever 130 is not deformed.
  • the portion excluding the front end portion 135 is arranged to be inclined so as to intersect the direction perpendicular to the thickness direction of the piezoelectric power generator 120, and an external force is applied to cause the piezoelectric power generator 120 to be maximally deformed.
  • the portion of the lever 130 is configured to be arranged in a direction orthogonal to the thickness direction of the piezoelectric power generator 120.
  • the direction in which the operation button (not shown) pushes the lever 130 is parallel to the thickness direction of the piezoelectric power generation body 120.
  • the direction in which the lever 130 is pressed is a direction that intersects the thickness direction of the piezoelectric power generator 120. Accordingly, the direction in which the lever 130 pushes the piezoelectric power generation body 120 is a direction intersecting the thickness direction of the piezoelectric power generation body 120, while the direction in which the piezoelectric power generation body 120 is pressed is the thickness direction of the piezoelectric power generation body 120. It becomes the direction parallel to.
  • the direction in which the operation button (not shown) pushes the lever 130 is parallel to the thickness direction of the piezoelectric power generator 120.
  • the direction in which the lever 130 is pushed is parallel to the thickness direction of the piezoelectric power generator 120. Accordingly, the direction in which the lever 130 pushes the piezoelectric power generation body 120 is parallel to the thickness direction of the piezoelectric power generation body 120, and the direction in which the piezoelectric power generation body 120 is pressed is also the thickness direction of the piezoelectric power generation body 120. Parallel direction.
  • the smaller angle (angle ⁇ shown in the figure) of the angles formed by the direction of the force applied to the piezoelectric power generation body 120 and the thickness direction of the piezoelectric power generation body 120 is set.
  • the pressing angle is defined, the pressing angle at the time when the maximum deformation occurs in the piezoelectric power generator 120 in the process in which the piezoelectric power generator 120 is pressed and deformed by the displacement of the lever 130 is the deformation of the piezoelectric power generator 120. It becomes smaller than the pressing angle at the time of starting to occur.
  • the direction in which the piezoelectric power generation body 120 is pressed coincides with the thickness direction of the piezoelectric power generation body 120 (that is, the piezoelectric power generation body).
  • the direction in which the body 120 is pressed and the thickness direction of the piezoelectric power generation body 120 are parallel to each other), and the pressing angle at that time is 0 [°].
  • the lever 130 is configured to rotate about the rotation shaft 1000, in the process in which the piezoelectric generator 120 is pressed and deformed by the displacement of the lever 130, The pressing angle gradually decreases from the time when the piezoelectric power generator 120 starts to be deformed to the time when the piezoelectric power generator 120 is most deformed (see the arrow shown in FIG. 21C). .
  • the piezoelectric power generating apparatus 100X ′ according to the comparative example 2 the external power is not applied and the piezoelectric power generating body 120 is not deformed.
  • the remaining configuration of the piezoelectric power generation device 100X ′ according to Comparative Example 2 is the same as that of the piezoelectric power generation device 100B in the present embodiment.
  • the direction in which the operation button (not shown) pushes the lever 130 is parallel to the thickness direction of the piezoelectric power generator 120.
  • the direction in which the lever 130 is pressed is also parallel to the thickness direction of the piezoelectric power generator 120. Accordingly, the direction in which the lever 130 pushes the piezoelectric power generation body 120 is parallel to the thickness direction of the piezoelectric power generation body 120, and the direction in which the piezoelectric power generation body 120 is pressed is also the thickness direction of the piezoelectric power generation body 120. It becomes the direction parallel to.
  • the operation button pushes the lever 130 in a direction parallel to the thickness direction of the piezoelectric generator 120.
  • the direction in which the lever 130 is pushed is a direction that intersects the thickness direction of the piezoelectric power generator 120. Accordingly, the direction in which the lever 130 pushes the piezoelectric power generation body 120 is a direction intersecting the thickness direction of the piezoelectric power generation body 120, while the direction in which the piezoelectric power generation body 120 is pressed is the thickness direction of the piezoelectric power generation body 120. It becomes the direction parallel to.
  • the pressing angle at which the maximum deformation occurs in the piezoelectric power generator 120 is piezoelectric. This is larger than the pressing angle at the time when the power generation body 120 starts to deform.
  • the direction in which the piezoelectric power generator 120 is pushed coincides with the thickness direction of the piezoelectric power generator 120 at the time when the piezoelectric power generator 120 starts to deform (that is, the piezoelectric power generator 120).
  • the direction of pressing 120 and the thickness direction of the piezoelectric power generator 120 are parallel to each other), and the pressing angle at that time is 0 [°].
  • the lever 130 is configured to rotate about the rotation shaft 1000, in the process in which the piezoelectric power generator 120 is pressed and deformed by the displacement of the lever 130, The pressing angle gradually increases from the time when the piezoelectric power generator 120 starts to be deformed to the time when the piezoelectric power generator 120 is most deformed (see the arrow shown in FIG. 22C). .
  • the angle is smaller than the pressing angle at the time when the piezoelectric power generation body 120 starts to be deformed. In the process of being deformed, the pressing angle when the maximum deformation of the piezoelectric power generator 120 occurs becomes larger than the pressing angle when the piezoelectric power generator 120 starts to deform.
  • FIG. 23 is a graph showing the results of the second verification test.
  • the spring constant of the piezoelectric generator 120 is set to 10 [N / mm] in both the piezoelectric generator 100B according to the present embodiment and the piezoelectric generator 100X ′ according to the comparative example 2.
  • the rotation angle of the lever 130 required from the time when the piezoelectric power generator 120 starts to be deformed until the time when the piezoelectric power generator 120 is most deformed is set to 20 [°].
  • both the piezoelectric power generation device 100B according to the present embodiment and the piezoelectric power generation device 100X ′ according to the comparative example 2 are required to push the lever 130 as the rotation angle of the lever 130 increases. Power will increase.
  • the rotation angle of the lever 130 is in the range from 0 ° to approximately 10 °
  • the piezoelectric generator 100B according to the present embodiment and the piezoelectric generator 100X ′ according to the comparative example 2 both require the same force. It turns out that it is.
  • the rotation angle of the lever 130 when the rotation angle of the lever 130 is in the range of approximately 10 ° to 20 °, a large difference occurs in the force required to push the lever 130, and the piezoelectric power generation device 100B in the present embodiment is obtained.
  • the lever 130 can be pressed with a smaller force than in the case of the piezoelectric power generation device 100X ′ according to the comparative example 2.
  • the force required to push the lever 130 when the rotation angle of the lever 130 is 20 °, the force required to push the lever 130 is 5.99 [N].
  • the force required to push the lever 130 when the rotation angle of the lever 130 is 20 ° is 6.78 [N].
  • the deformation amount of the piezoelectric power generator 120 that deforms with the displacement of the lever 130 is small. It is not yet large, and the reaction force received by the lever 130 due to the deformation of the piezoelectric power generator 120 is sufficiently small.
  • the deformation amount of the piezoelectric power generator 120 that is deformed in accordance with the displacement of the lever 130.
  • the reaction force received by the lever 130 due to the deformation of the piezoelectric power generator 120 becomes significantly larger due to the spring constant of the piezoelectric power generator 120 than when the operation button starts to be depressed.
  • the piezoelectric power generation apparatus 100X ′ according to the comparative example 2 presses the piezoelectric power generation body 120 along the thickness direction of the piezoelectric power generation body 120 as the pressing angle becomes larger. The force acts on the piezoelectric power generator 120 inefficiently.
  • the pressing angle when the maximum deformation occurs in the piezoelectric power generation body 120.
  • the piezoelectric power generation body 120 is in a state where the lever 130 is pushed down to the maximum within the rotation range of the lever 130. However, it is not always necessary to set the power generation in the piezoelectric power generator 120 at any position within the rotation range of the lever 130. If it is set to complete, the intended purpose will be achieved.
  • the reversing spring is used as a switch
  • a switch may be provided, or if a switch is not necessary between the movable part and the piezoelectric element, only a reversing spring may be provided between them.
  • the configuration of the power management circuit of the piezoelectric power generation module shown in the first and second embodiments of the present invention described above is merely an example, and it is naturally possible to adopt a different circuit configuration.
  • the present invention is applied to the transmitter and the piezoelectric power generation module included in the transmitter has been described as an example, but the scope of the present invention is described.
  • the present invention is not limited to this, and it is naturally possible to apply the present invention to other electronic devices and piezoelectric power generation modules included therein.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

圧電発電装置(100A)は、少なくとも1つ以上の圧電素子(120a)と、支持部材(110)と、可動部(130)と、外力伝達部とを備える。圧電素子(120a)は、可撓性を有し、厚み方向に変形することで発電する。支持部材(110)は、圧電素子(120a)を撓み変形可能に支持する。可動部(130)は、圧電素子(120a)に対向するように配置され、外力を受けることにより圧電素子(120a)の厚み方向に実質的に沿った方向に変位可能である。外力伝達部は、反転バネ(160)を含み、可動部(130)で受けた外力を圧電素子(120a)に伝達する。反転バネ(160)は、圧電素子(120a)と可動部(130)との間に配置される。

Description

圧電発電装置、圧電発電モジュールおよび送信機
 本発明は、圧電素子を利用して発電する圧電発電装置および当該圧電発電装置を具備してなる圧電発電モジュールならびに当該圧電発電モジュールを具備してなる送信機に関する。
 圧電素子は、外力を受けて変形することにより、その変形量に応じた電力を発電する。そのため、従来、圧電素子を利用した各種の圧電発電装置が提案されている。
 たとえば、特開2006-262575号公報(特許文献1)には、キーを備えた携帯型の電子機器に組み込まれる圧電発電装置が開示されている。当該圧電発電装置は、支持部材によって撓み変形可能に支持されてなる圧電素子を具備しており、圧電発電装置がキーの背後に配置されることにより、キーによって圧電素子が押し下げられて撓み変形するように構成されている。
 ここで、上記公報に開示された圧電発電装置においては、ユーザがキーを押し下げた際にそのキータッチの感覚(いわゆるクリック感)をユーザが実感できることとなるように、圧電素子のさらに背後に反転バネが配置されている。これにより、撓み変形した圧電素子によって反転バネが押圧されて反転(いわゆる座屈)することにより、その反転の際に生じる衝撃が指に伝わることでクリック感が得られ、キーの操作性が向上することになる。
特開2006-262575号公報
 しかしながら、上記公報に開示の圧電発電装置とした場合には、所定の発電量を得るために必要となる押圧荷重が、反転バネを設置しない場合に比べて大幅に増加してしまう問題がある。
 すなわち、上記公報に開示の圧電発電装置においては、圧電素子と反転バネとが並列に接続された構造であるため、圧電素子における発電に必要な押圧ストロークを発生させるための押圧荷重として、圧電素子を変形させるための押圧荷重のみならず、これに反転バネを変形させるための押圧荷重を加えたものが必要となる。そのため、反転バネを設置しない場合に比べ、結果として極端に大きな押圧荷重が必要になってしまう。
 このことは、換言すれば、反転バネを追加することで同じ押圧荷重でキーを操作した場合にも、得られる発電量に大幅な低下が生じることを意味し、効率的な発電の妨げとなってしまう。
 したがって、本発明は、上述した問題を解決すべくなされたものであり、圧電素子における発電に必要な押圧荷重を低く抑えつつ、高いクリック感を得ることができる圧電発電装置およびこれを備えた圧電発電モジュールならびに送信機を提供することを目的とする。
 本発明に基づく圧電発電装置は、少なくとも1つ以上の板状の圧電素子と、支持部材と、可動部と、外力伝達部とを備えている。上記圧電素子は、可撓性を有しており、厚み方向に変形することで発電するものである。上記支持部材は、上記圧電素子を撓み変形可能に支持するものである。上記可動部は、上記圧電素子に対向するように配置されており、外力を受けることにより上記圧電素子の厚み方向に実質的に沿った方向に変位可能なものである。上記外力伝達部は、上記可動部で受けた外力を上記圧電素子に伝達するものである。上記外力伝達部は、反転バネを含んでおり、上記反転バネは、上記圧電素子と上記可動部との間に配置されている。
 上記本発明に基づく圧電発電装置にあっては、上記反転バネが、上記圧電素子における発電に必要な押圧ストローク以上の所定の押圧ストロークにて反転することが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記反転バネが、単一のドーム状の金属部材またはその積層構造物にて構成されていることが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記外力伝達部が、上記反転バネに並列に接続された補助バネをさらに含んでいてもよく、その場合には、上記補助バネが、上記圧電素子と上記可動部との間に配置されていることが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記補助バネが、単一の金属製の板バネまたはその積層構造物にて構成されていることが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記圧電素子が、金属板と、上記金属板の一方の主面に設けられた板状の圧電体とを含んでいてもよい。
 上記本発明に基づく圧電発電装置は、上記圧電素子を複数備えていてもよく、その場合には、上記複数の圧電素子が、各々の厚み方向に積層されていることが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記可動部が、上記支持部材によって回動可能に支持されたレバーにて構成されていてもよい。
 上記本発明に基づく圧電発電装置にあっては、上記支持部材が、底板部と、当該底板部の四辺から立設された側壁部とを含む箱状の形状を有していることが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記可動部が変位することで上記圧電素子が押圧されて変形する過程において、上記圧電素子に印加する力の方向と上記圧電素子の厚み方向とが成す角度のうちの小さい方の角度を押圧角とした場合に、上記圧電素子に最大の変形が生じる時点での押圧角が、上記圧電素子に変形が生じ始める時点での押圧角よりも小さいことが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記押圧角が、上記圧電素子に変形が生じ始める時点から上記圧電素子に最大の変形が生じる時点までの間で徐々に減少することが好ましい。
 上記本発明に基づく圧電発電装置にあっては、上記圧電素子に最大の変形が生じる時点において、上記圧電素子に印加する力の方向と上記圧電素子の厚み方向とが一致することにより、上記押圧角が、0[°]となることが好ましい。
 本発明に基づく圧電発電モジュールは、上記本発明に基づく圧電発電装置と、上記圧電素子にて発電された電力を負荷に対して供給するための電力供給回路とを備えている。上記電力供給回路は、一対の接点が非導通状態から導通状態に切り替わることで負荷に対する上記電力の供給を開始するスイッチを含んでいる。上記一対の接点のうちの一方は、上記反転バネにて構成されており、上記反転バネが反転した状態において上記一対の接点が導通するように、上記一対の接点のうちの他方が、上記反転バネに対向して配置されている。
 上記本発明に基づく圧電発電モジュールにあっては、上記圧電素子に対向する部分の上記可動部の表面に配線基板が配置されていてもよく、その場合には、上記一対の接点のうちの上記他方が上記配線基板に設けられるとともに、上記一対の接点のうちの上記他方を覆うように、上記一対の接点のうちの上記一方である上記反転バネが、上記配線基板に実装されていることが好ましい。
 本発明に基づく送信機は、上記本発明に基づく圧電発電モジュールと、上記負荷として、上記圧電発電モジュールから供給された上記電力を用いて無線信号を送信する送信部とを備えてなるものである。
 本発明によれば、圧電素子における発電に必要な押圧荷重を低く抑えつつ、高いクリック感を得ることができる圧電発電装置およびこれを備えた圧電発電モジュールならびに送信機とすることができる。
本発明の実施の形態1における送信機の構成を概略的に示す回路ブロック図である。 図1に示す信号出力部の論理回路を示す図である。 図2に示す論理回路に対応したベン図である。 本発明の実施の形態1における圧電発電装置の斜視図である。 図4中に示すV-V線に沿った断面図である。 図4中に示すVI-VI線に沿った断面図である。 図4に示す圧電発電装置の分解斜視図である。 図7に示す圧電素子の分解斜視図である。 図4に示す圧電発電装置に外力が付与された状態における断面図である。 図1に示す送信機の動作の一例を説明するためのタイムチャートである。 本発明の実施の形態1に準じた圧電発電装置の概略的な構成ならびにレバーとケース体との接続構造を示す概念図である。 比較例1に係る圧電発電装置の概略的な構成ならびにレバーとケース体との接続構造を示す概念図である。 本発明の実施の形態1における圧電発電装置のレバーとケース体との接続構造を示す概念図である。 反転バネの操作量と操作力との関係を示すグラフである。 第1検証試験の結果を示したグラフである。 本発明の実施の形態2における圧電発電装置の斜視図である。 図16中に示すXVII-XVII線に沿った断面図である。 図16中に示すXVIII-XVIII線に沿った断面図である。 図16に示す圧電発電装置の分解斜視図である。 図16に示す圧電発電装置に外力が付与された状態における断面図である。 本発明の実施の形態2における圧電発電装置において、操作時において各部に付与される力の方向変化を示す図である。 比較例2に係る圧電発電装置において、操作時において各部に付与される力の方向変化を示す図である。 第2検証試験の結果を示したグラフである。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態は、本発明を送信機、当該送信機に具備された圧電発電モジュール、および、当該圧電発電モジュールに具備された圧電発電装置に適用した場合を例示するものである。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態1)
 図1は、本発明の実施の形態1における送信機の構成を概略的に示す回路ブロック図である。また、図2は、図1に示す信号出力部の論理回路を示す図であり、図3は、図2に示す論理回路に対応したベン図である。まず、これら図1ないし図3を参照して、本実施の形態における送信機1の構成ならびに信号出力部13の構成および動作について説明する。
 本実施の形態における送信機1は、いわゆるリモートコントローラとして構成されたものであり、操作ボタンを押し下げる際に操作ボタンに付与されることとなる外力を利用して発電を行ない、発電した電力を用いることで送信部が動作するように構成されたものである。したがって、本実施の形態における送信機1は、乾電池等の電源の交換を必要としない。
 図1に示すように、送信機1は、圧電発電モジュール10と、送信部20とを備えている。圧電発電モジュール10は、後述する圧電発電装置100A(図4ないし図6等参照)を具備しており、発電した電力を送信部20に供給するものである。送信部20は、圧電発電モジュール10から供給された電力によって動作する負荷に該当する。
 送信部20は、RF(Radio Frequency)アンテナ21と、RF回路22とを含んでいる。送信部20は、圧電発電モジュール10から供給された電力を用いて、送信機1から離れた位置に設けられた受信器(図示せず)へとRF信号を送信する。このRF信号は、受信器への制御指令を示す信号であってもよいし、各種情報を受信器に伝達するための信号等であってもよい。
 圧電発電モジュール10は、圧電発電体120と、全波整流回路11と、コンデンサCと、DC/DCコンバータ12と、信号出力部13と、制御回路14と、放電スイッチ15と、第1スイッチ141A,141Bと、第2スイッチ142とを主として備えている。
 圧電発電体120は、出力端子T1,出力端子T2を含んでおり、変形することで発電する複数の圧電素子120a(図4ないし図6等参照)を含んでいる。ここで、出力端子T2の電位を基準とした出力端子T1の電位を「出力電圧V」と定義する。
 全波整流回路11は、圧電発電体120とDC/DCコンバータ12との間においてこれらに電気的に接続されており、圧電発電体120の出力電圧Vを全波整流するものである。全波整流回路11としては、たとえばダイオードブリッジ(図示せず)を含む一般的な全波整流回路を用いることができる。
 全波整流回路11は、ノードN1,N2を含んでいる。ノードN1は、電力線PLによってDC/DCコンバータ12に電気的に接続されており、全波整流された電圧(整流電圧)VcをDC/DCコンバータ12に出力する。ノードN2は、基準電位GNDを有する電力線GLに電気的に接続されている。
 コンデンサCは、電力線PLと電力線GLとの間に電気的に接続されており、整流電圧Vcを平滑化するものである。
 DC/DCコンバータ12は、平滑化された整流電圧Vcを所定の電圧に変換するものであり、入力端子Vinと、出力端子Voutと、イネーブル端子ENとを含んでいる。入力端子Vinは、全波整流回路11のノードN1に電気的に接続されており、出力端子Voutは、RF回路22に電気的に接続されている。イネーブル端子ENは、信号出力部13の出力ノードOUTに電気的に接続されている。
 第1スイッチ141A,141Bは、ユーザの操作を受け付けた際に非導通状態(オフ)から導通状態(オン)に切り替わるものであり、各々が一対の接点を有している。第1スイッチ141A,141Bは、後述するように圧電発電装置100Aのレバー130から見て圧電発電体120が位置する側とは反対側に配置されている(図4ないし図7等参照)。
 第1スイッチ141A,141Bは、各々が独立してユーザによって操作されるように構成されており、片方のスイッチのみの操作や両方のスイッチの同時の操作が可能である。なお、本実施の形態においては、後述するようにこれら第1スイッチ141A,141Bがいずれもメンブレンスイッチにて構成されているが、他の種類のスイッチを利用することもできる。
 第1スイッチ141Aの一対の接点の一方は、電力線PLに電気的に接続されており、他方は、信号出力部13の入力ノードIN1Aに電気的に接続されている。これにより、第1スイッチ141Aは、オン状態において信号S1Aを信号出力部13に出力する。
 第1スイッチ141Bの一対の接点の一方は、電力線PLに電気的に接続されており、他方は、信号出力部13の入力ノードIN1Bに電気的に接続されている。これにより、第1スイッチ141Bは、オン状態において信号S1Bを信号出力部13に出力する。
 第2スイッチ142は、ユーザの操作を受け付けた際に非導通状態(オフ)から導通状態(オン)に切り替わるものであり、一対の接点を有している。第2スイッチ142は、後述するように圧電発電装置100Aのレバー130から見て圧電発電体120が位置する側に配置されている(図5ないし図7等参照)。第2スイッチ142は、上述した第1スイッチ141A,141Bとは、ユーザのボタン操作における異なるタイミングにおいてオン/オフが切り替わるものであるが、その詳細については後述することとする。
 後述するように、第2スイッチ142の一対の接点のうちの一方は、反転バネ160にて構成されており、他方は、当該反転バネ160が実装された配線基板(第2フレキシブル配線基板150(図5ないし図7等参照))に設けられた導電端子にて構成されている。
 第2スイッチ142の一対の接点の一方は、電力線PLに電気的に接続されており、他方は、信号出力部13の入力ノードIN2に電気的に接続されている。これにより、第2スイッチ142は、オン状態において信号S2を信号出力部13に出力する。
 信号出力部13は、上述した入力ノードIN1A,IN1B,IN2および出力ノードOUTに加え、ダイオードD1~D4と、抵抗R1~R4と、NMOS(n-type Metal Oxide-Semiconductor)トランジスタからなるスイッチング素子Qとを含んでいる。
 入力ノードIN1Aは、ダイオードD1を介してスイッチング素子Qのゲートに電気的に接続されている。ダイオードD1のアノードは、抵抗R1を介して電力線GLに電気的にされている。同様に、入力ノードIN1Bは、ダイオードD2を介してスイッチング素子Qのゲートに電気的に接続されている。ダイオードD2のアノードは、抵抗R2を介して電力線GLに電気的に接続されている。
 スイッチング素子Qのドレインは、抵抗R3を介して電力線PLに電気的に接続されている。スイッチング素子Qのソースは、電力線GLに電気的に接続されている。
 ダイオードD3のアノードは、抵抗R3とスイッチング素子Qのドレインとの接続ノードに電気的に接続されている。ダイオードD3のカソードは、出力ノードOUTに電気的に接続されている。また、ダイオードD3のカソードは、抵抗R4を介して電力線GLに電気的に接続されている。
 入力ノードIN2は、ダイオードD4のアノードに電気的に接続されている。ダイオードD4のカソードは、ダイオードD3のカソードに電気的に接続されている。
 ここで、信号出力部13の出力ノードOUTは、DC/DCコンバータ12のイネーブル端子ENに電気的に接続されている。これにより、イネーブル端子ENは、出力ノードOUTから出力された切替信号SWをDC/DCコンバータ12のイネーブル信号として受ける。
 以上の回路構成からなる信号出力部13の論理回路は、図2に示す如くとなる。すなわち、図2に示すように、信号出力部13は、信号S1Aを受ける入力ノードIN1Aと、信号S1Bを受ける入力ノードIN1Bと、信号S2を受ける入力ノードIN2と、切替信号SWを出力する出力ノードOUTと、NOR回路(否定論理和回路)13aと、OR回路(論理和回路)13bとを含んでいる。
 NOR回路13aは、信号S1Aと信号S1Bとの否定論理和の演算結果を示す信号をOR回路13bに出力する。OR回路13bは、NOR回路13aからの信号と、信号S2との論理和の演算結果を示す信号を出力ノードOUTに出力する。
 図3に示すように、このように構成された信号出力部13は、領域K1に示すように、第1スイッチ141A,141Bおよび第2スイッチ142がいずれもオフである場合に、H(ハイ)レベルの切替信号SWを出力する。
 また、領域K2,K3に示すように、第1スイッチ141A,141Bのうちの一方がオンであり、他方がオフであり、かつ、第2スイッチ142がオフである場合には、信号出力部13は、L(ロー)レベルの切替信号SWを出力する。また、領域K4に示すように第1スイッチ141A,141Bがいずれもオンであり、かつ、第2スイッチ142がオフである場合にも、信号出力部13は、Lレベルの切替信号SWを出力する。
 一方、領域K5~K8に示すように、第2スイッチ142がオンである場合には、信号出力部13は、Hレベルの切替信号SWを出力する。なお、後述する圧電発電装置100Aの構成から明らかなように、本実施の形態においては、第1スイッチ141A,141Bがいずれもオフであるにもかかわらず、第2スイッチ142がオンである状態(領域K8参照)は、実際には生じない。
 以上により、信号出力部13は、第1スイッチ141A,141Bおよび第2スイッチ142のオン状態またはオフ状態の組み合わせに基づき、HレベルまたはLレベルの切替信号SWをDC/DCコンバータ12のイネーブル端子ENに出力する。
 図1に示すように、制御回路14は、電力線PLと電力線GLとの間に接続されている。制御回路14は、送信部20の動作を制御する部位であり、ここではその詳細な説明は省略するが、信号S1A,S1Bの入力を別途受けられるように構成されており、入力された信号に応じて送信部20に動作指令を出力する。また、制御回路14は、放電スイッチ15に放電指令を出力する。
 放電スイッチ15は、圧電発電体120の出力端子T1と出力端子T2との間に接続されており、圧電発電体120に蓄えられた電荷を放電するために用いられる。より具体的には、放電スイッチ15は、制御回路14からの放電指令に応答して非導通状態(オフ)から導通状態(オン)へと切り替えられる。
 これにより、放電スイッチ15がオンになった場合に、出力端子T1と出力端子T2とが短絡することになり、圧電発電体120に蓄えられた電荷が放電されることになる。なお、放電スイッチ15としては、たとえばアナログスイッチなどのIC(Integrated Circuit)またはFET(Field Effect Transistor)を用いることができる。
 以上において説明した送信機1においては、第1スイッチ141A,141Bおよび第2スイッチ142のオン状態またはオフ状態に基づき、DC/DCコンバータ12が、イネーブル端子ENに信号出力部13からHレベルの切替信号SWの入力を受けた場合に、送信部20への電力の供給を行ない、イネーブル端子ENに信号出力部13からLレベルの切替信号SWの入力を受けた場合に、送信部20への電力の供給を行なわないことになる。
 このように構成することにより、本実施の形態における送信機1においては、第1スイッチ141A,141Bおよび第2スイッチ142のオン状態またはオフ状態の組み合わせに基づき、圧電発電体120にて発電された電力を所定のタイミングで送信部20へと供給することで効率的な発電と必要な送信動作とが実現されることになるが、当該送信機1の動作の詳細については後述することとし、以下においては、上述した圧電発電モジュール10に具備された圧電発電装置100Aについて詳細に説明する。
 図4は、本実施の形態における圧電発電装置の斜視図であり、図5および図6は、それぞれ図4中に示すV-V線およびVI-VI線に沿った断面図である。また、図7は、図4に示す圧電発電装置の分解斜視図であり、図8は、図7に示す圧電素子の分解斜視図である。まず、これら図4ないし図8を参照して、本実施の形態における圧電発電装置100Aの構成について説明する。
 図4ないし図7に示すように、圧電発電装置100Aは、支持部材としてのケース体110と、圧電素子120aが複数積層されてなる圧電発電体120と、可動部としてのレバー130と、第1フレキシブル配線基板140と、第2フレキシブル配線基板150と、外力伝達部としての反転バネ160および補助バネ170と、ビス180とを備えている。
 圧電発電装置100Aは、操作ボタン(不図示)の背後に配置されるものである。具体的には、操作ボタンは、圧電発電装置100Aの第1フレキシブル配線基板140が位置する側の主面上に設置される。なお、本実施の形態においては、独立して操作可能な2つの操作ボタンが、図4ないし図6中に示す矢印AR1,AR2の位置に設置され、当該操作ボタンがユーザによって操作されることにより、圧電発電装置100Aに対して当該矢印AR1,AR2方向にそれぞれ外力が付与されることになる。
 ケース体110は、平面視略矩形状の底板部111と、当該底板部111の四辺から立設された側壁部112~115とを含む箱状の形状を有している。ケース体110は、圧電発電装置100Aを構成する他の部品を支持するベースとなる部材であり、これら圧電発電装置100Aを構成する他の部品は、底板部111および側壁部112~115によって囲まれた空間に主として収容される。
 側壁部112,115は、互いに対向するように底板部111の相対する二辺から立設されており、側壁部113,114は、互いに対向するように底板部111の上述した二辺とは異なる他の二辺から立設されている。底板部111の四隅には、これら側壁部112~115が互いに不連続となるように側壁部が設けられていない部分が形成されている。
 底板部111の四隅には、それぞれ底板部111の内底面から突出するように支持部111aが設けられている。これら支持部111aは、圧電発電体120を撓み変形可能に支持するための部位である。
 側壁部113,114の側壁部112寄りの所定位置には、互いに対向するように軸支孔113a,114aが設けられている(図5および図7参照)。軸支孔113a,114aは、レバー130を回動可能に軸支するための部位である。
 側壁部115は、他の側壁部112~114よりも僅かに低く構成されており、レバー130の回動を制限するための突き当たり部としての突き当たり面115aをその上面に有している。
 上述した構成のケース体110は、所定の厚みを有する金属製の板状部材をプレス加工することによって形成されていることが好ましく、このように構成することにより、ケース体110に高い剛性を付与することができる。特に、図示するように底板部111の四辺から側壁部112~115を曲げ加工によって立設させることにより、ケース体110の強度を高く保つことができる。具体的には、ケース体110は、たとえば厚み0.25[mm]のステンレス製の板状部材のプレス成形品にて構成される。
 なお、ケース体110は、底板部111および側壁部112~115によって囲まれた空間に圧電発電体120を配置することのみによって当該圧電発電体120のケース体110に対する位置決めが行なわれることとなるように、後述する圧電発電体120の大きさよりも僅かに大きい大きさとされることが好ましい。
 圧電発電体120は、可撓性を有する平面視矩形状の板状の圧電素子120aを複数積層してなるものであり、全体として板状の形状を有している。個々の圧電素子120aは、厚み方向に変形することで発電するものであり、これら複数の圧電素子120aは、互いの厚み方向が合致するように積層されている。圧電素子120aとしては、ユニモルフ型、バイモルフ型およびマルチモルフ型のいずれのタイプのものを使用してもよいが、本実施の形態においては、後述する圧電膜が6層積層された圧電体を備えたマルチモルフ型の圧電素子120aを使用している。
 図8に示すように、圧電素子120aは、金属板121と、当該金属板121の一方の主面に設けられた板状の圧電体122とを主として有している。金属板121と圧電体122とは、たとえばエポキシ接着剤等からなる接着剤層124によって貼り合わされている。このように、圧電体122の一方の主面に金属板121を貼り付けることにより、繰り返しの撓み変形によっても破損が生じ難い耐久性に優れた圧電素子とすることができる。
 また、圧電素子120aは、外部接続用の一対の端子123を有している。一対の端子123は、それぞれ圧電体122のおもて面に設けられた一対の外部電極に導電性接着剤125を用いて接着されている。一対の端子123は、シート状のフレキシブルな金属製の部材からなり、その一部が圧電体122の外側の領域に向けて引き出されている。また、一対の端子123の各々の先端部の所定位置には、貫通孔123aが設けられている。
 圧電体122は、たとえばチタン酸ジルコン酸鉛系セラミックスからなる圧電膜を複数積層してなるものであり、そのおもて面に上述した一対の外部電極を有している。圧電体122の内部には複数の内部電極が設けられており、これら内部電極の各々は、圧電体122のおもて面に設けられた一対の外部電極のいずれか一方に接続されている。なお、圧電体122としては、非鉛系圧電体セラミックス(ニオブ酸カリウムナトリウム系セラミックス、アルカリニオブ酸系セラミックス等)を用いてもよい。
 圧電体122のおもて面には、その全面を覆うように保護膜126が設けられている。保護膜126は、圧電体122および端子123等を保護するものである。保護膜126としては、たとえば圧電体122に貼り付けが可能なポリイミドシート等が利用できる。
 ここで、圧電素子120aの大きさは、特に制限されるものではないが、本実施の形態における圧電素子120aは、一対の端子123を除く部分の大きさが14[mm]×14[mm]×0.08[mm]のものを用いている。
 図4ないし図7に示すように、複数の圧電素子120aは、その各々が有する圧電体122のおもて面がケース体110の底板部111側を向くように(すなわち、圧電体122が金属板121よりも底板部111側に位置するように)積層されてケース体110に載置されている。これにより、圧電発電体120は、その下面の四隅がケース体110の底板部111に設けられた支持部111aに当接することになり、その大部分が底板部111から距離をもって位置することでケース体110によって撓み変形可能に支持されることになる。なお、本実施の形態においては、合計で4個の圧電素子120aを積層している。
 ここで、複数の圧電素子120aは、その全体または一部が互いに接触するように積層されていることが好ましく、そのように構成することにより、より底板部111側に位置する圧電素子120aにまで外力の付与による変形を発生させることができる。特に、複数の圧電素子120aの一部を互いに接触させる場合には、金属板の露出面側に凹凸等を設けることにより、複数の圧電素子120aの各々の四隅と中央部とを接触させることが好ましい。
 レバー130は、平面視略矩形状の基部131と、互いに対向するように当該基部131の相対する二辺から立設された立壁部133,134とを有している。基部131は、圧電発電体120に対向するように配置されており、立壁部133,134は、それぞれケース体110の側壁部113,114に対向するように配置されている。
 基部131の所定位置には、一対のビス穴131aが設けられている。当該ビス穴131aは、第2フレキシブル配線基板150および補助バネ170をレバー130に固定するための部位であり、当該ビス穴131aの各々には、ビス180が取付けられる。
 立壁部133,134の外側面であってケース体110の側壁部112寄りの所定位置には、外側に向けて突出するように軸部133a,134aが設けられている(図5および図7参照)。軸部133a,134aは、それぞれケース体110に設けられた軸支孔113a,114aに挿入されることで当該軸支孔113a,114aによって軸支されている。これにより、レバー130は、軸部133a,134aを結ぶ軸線を回転軸1000(図5および図6参照)として、ケース体110によって回動可能に支持されている。
 レバー130がケース体110によって回動可能に支持されることにより、レバー130の基部131に外力が付与された場合には、レバー130が、圧電発電体120の厚み方向に実質的に沿った方向に変位する。このレバー130の変位に伴い、レバー130が受けた外力は、後述する外力伝達部としての反転バネ160および補助バネ170を介して圧電発電体120へと伝達され、これにより個々の圧電素子120aに撓み変形が生じることになる。
 ここで、レバー130のうち、上述した回転軸1000から最も遠い部分である基部131の先端部135は、ケース体110の側壁部115側の位置に配置されており、当該先端部135は、レバー130を圧電発電体120側に回動させた場合に、ケース体110の側壁部115に設けられた突き当たり面115aに当接するように構成されている(図9参照)。
 より詳細には、レバー130の回転軸1000は、圧電発電体120の厚み方向に沿って見た場合に圧電発電体120の相対する二辺(すなわち、側壁部112,115が設けられた二辺)に平行なるように配置されており、上述した突き当たり面115aは、当該二辺のうちの回転軸1000から遠い方の一辺(すなわち、側壁部115)に沿って設けられている。
 このように構成することにより、レバー130の圧電発電体120側に向けての回動範囲が制限されることになる。したがって、突き当たり面115aを設ける位置を圧電発電体120の設置位置やレバー130の配設位置や形状等に応じて適切に設定することにより、圧電発電体120に過度に外力が付与されることが防止できることになり、圧電発電体120の破損を未然に抑制できることになる。
 上述した構成のレバー130は、所定の厚みを有する金属製の板状部材をプレス加工することによって形成されていることが好ましく、このように構成することにより、レバー130に高い剛性を付与することができる。特に図示するように、基部131の相対する二辺から立壁部133,134を曲げ加工によって立設させるとともに、当該立壁部133,134が位置しない側の基部131の相対する二辺に軽度に曲げ加工を施すことにより、レバー130の強度を高く保つことができ、過度の外力が付与された場合の破損を防止することができる。具体的には、レバー130は、たとえば厚み0.6[mm]のステンレス製の板状部材のプレス成形品にて構成される。
 なお、本実施の形態においては、レバー130の回転軸1000が、圧電発電体120の中央部よりもケース体110の側壁部112側の位置に配置されている。このように構成することにより、レバー130としては、平面視細長形状を有する板状の部材にてこれを構成することが可能になり、当該レバー130の長辺方向がレバー130の回転軸1000の延在方向と平行になるように、レバー130を配置することができる。なお、ここで言う回転軸1000の延在方向と平行とは、±5[°]程度ずれた略平行である場合も含んでいる。
 したがって、当該構成を採用することにより、回転軸1000から突き当たり面115aが設けられた側壁部115までの距離を短くすることができてレバー130の先端部135の回転半径を小さくできるため、ユーザが操作ボタンを押し下げた場合にレバー130に生じる撓み変形が大幅に抑制でき、より確実に圧電発電体120の破損を防止できることになる。
 第1フレキシブル配線基板140は、レバー130の基部131の一対の主表面のうちの圧電発電体120が位置しない側の主表面上に設けられている。第1フレキシブル配線基板140は、複層の基材の表面等に各種の導電パターンが形成されてなるものであり、その所定位置に上述した第1スイッチ141A,141Bを構成する2つのメンブレンスイッチを有している。
 第1スイッチ141A,141Bを構成する2つのメンブレンスイッチは、レバー130の回転軸1000の延在方向と平行な方向に沿って並んで位置するように設けられている。これにより、当該2つのメンブレンスイッチは、上述した2つの操作ボタン(不図示)に対向して位置することになる。
 第1スイッチ141A,141Bを構成する2つのメンブレンスイッチは、2[N]以下の低荷重でオフ状態からオン状態に切り替わるものであることが好ましく、このように構成することにより、ユーザが操作ボタンを押し下げたことをいち早く検知することができる。なお、この2つのメンブレンスイッチについては、クリック感をユーザに伝えるものである必要はない。
 第1フレキシブル配線基板140は、その所定位置に接続部143を有している。当該接続部143は、第2フレキシブル配線基板150に電気的に接続される部位である。
 なお、第1フレキシブル配線基板140は、図示しない両面テープ等によってレバー130に固定されていることが好ましく、そのように構成することにより、操作ボタン(不図示)やレバー130に対するメンブレンスイッチの位置ずれを防止することができる。
 第2フレキシブル配線基板150は、レバー130の基部131の一対の主表面のうちの圧電発電体120が位置する側の主表面上に設けられている。第2フレキシブル配線基板150は、単層または複層の基材の表面等に各種の導電パターンが形成されてなるものであり、2つの接続部153,154を有している。
 接続部153は、第1フレキシブル配線基板140に電気的に接続される部位であり、接続部154は、圧電発電装置100Aを外部のパワーマネジメント回路(すなわち、図1に示した圧電発電モジュール10の回路ブロックから圧電発電装置100Aにて構成される回路部分を除いた電力供給回路がこれに該当する)に電気的に接続するための部位である。
 図5ないし図7に示すように、圧電発電体120と、レバー130の一方の主表面上に配置された第2フレキシブル配線基板150との間には、外力伝達部としての反転バネ160および補助バネ170が配置されている。当該外力伝達部としての反転バネ160および補助バネ170は、レバー130で受けた外力を圧電発電体120に伝達するためのものである。
 反転バネ160は、第2フレキシブル配線基板150のうちのレバー130の基部131の主表面上に位置する部分であってかつ圧電発電体120の中央部に対向する部分に実装されている。
 反転バネ160は、外力が付与されて所定の荷重がかかった場合に、その凹凸形状が反転するように座屈し、外力の付与が解除された場合に座屈が解消して元の形状に復帰するバネであり、たとえばドーム状の形状を有する金属部材またはその積層構造物にて構成される。
 反転バネ160は、上述した第2スイッチ142の一対の接点のうちの一方を構成するものであり、第2フレキシブル配線基板150との間に空間が形成されるように下に凸となる姿勢で(すなわち、ドーム状の反転バネ160の頂部が圧電発電体120側に位置することとなるように)第2フレキシブル配線基板150に固定されている。
 一方、上述した第2スイッチ142の一対の接点のうちの他方は、第2フレキシブル配線基板150のうち、上述した反転バネ160によって覆われた部分に導電端子として設けられている。
 このように構成することにより、反転バネ160が反転した状態において第2スイッチ142の一対の接点を導通状態(オン)にすることができ、反転バネ160が反転していない状態において第2スイッチ142の一対の接点を非導通状態(オフ)にすることができる。
 この反転バネ160を用いることにより、ユーザが操作ボタンを押し下げた場合に、所定の大きさの荷重がかかった時点で上述した座屈現象が生じることになり、反転バネ160のバネ定数が瞬間的に下がることになる。これにより、その衝撃が加わることでユーザはクリック感を得ることができ、操作ボタンを操作する際の操作性が確保できることになる。
 一方、補助バネ170は、側面視略V字状の細長い板状の形状を有しており、反転バネ160を受け入れるように下に凸となる姿勢で(すなわち、側面視略V字状の補助バネ170の頂部が圧電発電体120側に位置することとなるように)第2フレキシブル配線基板150に取付けられている。補助バネ170は、たとえば単一の金属製の板バネまたはその積層構造物にて構成される。
 より詳細には、補助バネ170の両端には、貫通孔170a(図5および図7参照)が設けられており、この貫通孔170aに対応する部分の第2フレキシブル配線基板150にも貫通孔150a(図5および図7参照)が設けられている。これら貫通孔150a,170aは、いずれも上述したレバー130の基部131に設けられたビス穴131aに合致するように設けられており、当該貫通孔150a,170aを挿通するようにビス180がビス穴131aに螺合されることにより、レバー130に対して第2フレキシブル配線基板150および補助バネ170が固定されることになる。また、これにより、第2フレキシブル配線基板150と補助バネ170とによって反転バネ160が挟み込まれることにより、反転バネ160の第2フレキシブル配線基板150への固定が補強されることにもなる。
 補助バネ170は、レバー130が受けた外力を圧電発電体120に伝達する外力伝達部全体としてのバネ定数を調整するものであり、当該補助バネ170を設けることにより、反転バネ160によるクリック感の程度(後述するクリック率を参照のこと)の調整や、圧電発電体120および反転バネ160に加わる力のバランスの補正が行なえることになるが、その詳細については後述することとする。
 また、反転バネ160の頂部に対応する部分の補助バネ170には、当該反転バネ160の頂部に当接する突部171が設けられている。これにより、ユーザが操作ボタンを操作した場合に、反転バネ160の座屈現象が確実に生じることになる。
 なお、図示するように、本実施の形態においては、反転バネ160をドーム状の形状を有する薄い金属部材を4個積層した積層構造物にて構成し、補助バネ170を1個の金属製の板バネにて構成している。これは、上述したクリック感の程度の調整と、圧電発電体120および反転バネ160に加わる力のバランスの補正とを行なった結果であり、圧電発電装置100Aの仕様が異なる場合には、当然にこれらを適宜変更することができる。
 図4に示すように、上述した圧電発電装置100Aは、図示しない送信機1の筐体等に圧入ピン190を用いて固定される。具体的には、圧入ピン190は、圧電発電体120に含まれる個々の圧電素子120aの端子123に設けられた貫通孔123aと、これに重なるように設けられた第2フレキシブル配線基板150の貫通孔150b(図7参照)とに挿通され、送信機1の筐体等に設けられた圧入用の穴にその先端が圧入されることで固定される。
 ここで、圧入ピン190によって圧電発電体120の端子123と第2フレキシブル配線基板150とが圧接されることにより、圧電発電体120と第2フレキシブル配線基板150との電気的な接続が確保されることになる。なお、圧入ピン190として金属製のものを用いれば、より圧電発電体120と第2フレキシブル配線基板150との電気的な接続を確実ならしめることができる。
 図9は、図4に示す圧電発電装置に外力が付与された状態における断面図である。次に、この図9を参照して、本実施の形態における圧電発電装置100Aに外力が付与された状態について説明する。
 図4に示す状態において、たとえばユーザが、第1スイッチ141Aに対応した操作ボタン(不図示)を図中に示す矢印AR1方向に向けて押し下げた場合には、操作ボタンが移動することで第1フレキシブル配線基板140を介してレバー130が外力を受ける。これにより、図9に示すように、レバー130が回転軸1000を回転中心として図中矢印DR方向に回動し、結果としてレバー130が圧電発電体120側に向けて傾倒するように変位する。
 レバー130が変位することにより、圧電発電体120とレバー130との間に配置された外力伝達部としての反転バネ160および補助バネ170がこれらによって圧縮されることになり、その反力を受けることで圧電発電体120に含まれる個々の圧電素子120aにも撓み変形が生じる。
 圧電素子120aに撓み変形が生じることにより、その変形過程において圧電体122に分極が生じる。分極に伴い、圧電素子120aに設けられた一対の外部電極の一方が負に帯電し、他方が正に帯電する。そのため、圧電発電体120において電力が発生することになる。
 ここで、反転バネ160は、圧電発電体120における発電に必要な押圧ストローク以上の所定の押圧ストロークにて反転(すなわち座屈)するように設定されていることが好ましい。このように構成すれば、発生させるべき電力量が圧電発電体120において発生した時点またはその後において反転バネ160が反転することになるため、ユーザの操作ボタンに対する操作量(すなわち押し込み量)を確保することができ、発電動作を確実に完了させることができる。
 なお、第1スイッチ141Aは、ユーザが操作ボタンを押し下げ始めた初期の段階においてオフ状態からオン状態に切り替わる。一方、反転バネ160を含んで構成された第2スイッチ142は、圧電発電体120において電荷が蓄えられ、発生させるべき電力量が発生した時点またはその後にオフ状態からオン状態に切り替わる。そのため、第2スイッチ142は、第1スイッチ141Aよりも遅延してオン状態に切り替わることになる。
 また、図9を参照して、本実施の形態における圧電発電装置100Aにおいては、上述したように、過度の外力が圧電発電体120に加えられることがないように、レバー130が所定量だけ回動した時点において、レバー130の先端部135がケース体110の突き当たり面115aに当接するように構成されている。
 ここで、レバー130の先端部135がケース体110の突き当たり面115aに当接するレバー130の回動量を、圧電発電体120に過度の外力が付与されない範囲で反転バネ160が反転するレバー130の回動量よりも大きく設定することにより、圧電発電体120による効率的な発電とその破損防止との両立が図られることになる。
 一方で、図9に示す状態からユーザが第1スイッチ141Aに対応した操作ボタン(不図示)の操作を解除することにより、圧電発電装置100Aに付与されていた外力は、これが取り除かれることになる。これに伴い、圧電発電体120、反転バネ160および補助バネ170の有する弾性力に基づいてこれらが元の状態に復元することになり、レバー130も再度変位して(すなわち、図9中に示す矢印DR方向とは反対方向に向けて変位して)元の位置に復帰する。これにより、圧電発電装置100Aは、図4に示す状態に戻ることになる。なお、その際、反転バネ160に生じていた座屈も解消することになる。
 撓み変形が生じていた圧電素子120aが元の形状に復帰する過程においても、圧電体122に分極が生じる。分極に伴い、圧電素子120aに設けられた一対の外部電極の一方が正に帯電し、他方が負に帯電する。そのため、圧電発電体120において上述した変形過程とは逆極性の電力が発生することになる。本実施の形態においては、この逆極性の電力についても利用することとしているが、その詳細については後述することとする。
 ここで、反転バネ160を含んで構成された第2スイッチ142は、ユーザが操作ボタンの押し下げを解除し始めた初期の段階においてオン状態からオフ状態に切り替わる。一方、第1スイッチ141Aは、圧電発電体120において電荷が蓄えられ、発生させるべき電力量が発生した時点またはその後にオン状態からオフ状態に切り替わる。そのため、第1スイッチ141Aは、第2スイッチ142よりも遅延してオフ状態に切り替わることになる。
 なお、ここではその説明は省略するが、ユーザが第1スイッチ141Bに対応した操作ボタン(不図示)を操作した場合、および、ユーザが第1スイッチ141A,141Bに対応した操作ボタンを同時に操作した場合についても、上記説明に準じた状態となる。
 図10は、図1に示す送信機の動作の一例を説明するためのタイムチャートである。次に、この図10を参照して、上述した送信機1の動作の一例として、ユーザが第1スイッチ141Aに対応した操作ボタンを押し下げる操作を行なった場合について説明する。なお、図10においては、横軸が経過時間を示しており、縦軸が上から順に、荷重のオン/オフ、圧電発電体の出力電圧、第1スイッチ141Aのオン/オフ、第1スイッチ141Bのオン/オフ、第2スイッチ142のオン/オフ、圧電発電体のリセット動作のオン/オフを示している。
 図10に示すように、時刻t1までにおいては、第1スイッチ141A,141Bおよび第2スイッチ142がいずれもオフであるため、信号出力部13の切替信号SWは、Hレベルである。しかしながら、未だ圧電発電体120において発電が行なわれていないため、圧電発電モジュール10から送信部20への電力供給は行なわれていない。
 時刻t1において外力の付与が開始されると、圧電発電装置100Aに加えられる荷重が上昇し始める。
 その後、時刻t2において第1スイッチ141Aがオンになると、信号出力部13の切替信号SWは、Lレベルになる。これに伴い、圧電発電モジュール10から送信部20への電力供給も行なわれなくなる。
 当該時刻t2とほぼ同時に、圧電発電装置100Aに加えられる荷重が増加することによって圧電発電体120に撓み変形が生じ始める。この変形に伴って圧電発電体120にて発電が行なわれ、発電された電力は、送信部20へと供給されることなく圧電発電体120に蓄えられる。
 時刻t3において反転バネ160が反転を始め、時刻t4において反転バネ160の反転が完了すると、当該時刻t4において第2スイッチ142がオンになる。これにより、信号出力部13の切替信号SWは、Hレベルになる。これに伴い、圧電発電体120において蓄えられていた電力が、圧電発電モジュール10から送信部20へと供給され、送信部20において送信動作が開始される。
 ここで、時刻t3から時刻t4においては、クリック動作が生じることになり、ユーザはクリック感を実感する。また、時刻t4以降においては、圧電発電モジュール10から送信部20へと電力供給が行なわれることで圧電発電体120の出力電圧は低下する。
 送信動作が完了すると、時刻t5において圧電発電体120のリセット動作が開始されることにより、圧電発電体120の電極間が短絡させられ、これにより圧電発電体120の出力電圧が0[V]にリセットされる。その後、時刻t6において圧電発電体120のリセット動作が停止される。
 時刻t7において外力の付与が解除され始めると、反転バネ160が再び反転(元の形状に復帰するための反転)を始め、当該時刻t7において第2スイッチ142がオフになる。これにより、信号出力部13の切替信号SWは、Lレベルになる。これに伴い、圧電発電モジュール10から送信部20への電力供給は行なわれなくなる。
 当該時刻t7とほぼ同時に、圧電発電装置100Aに加えられる荷重が減少することによって圧電発電体120の撓み変形が解消し始める。この変形に伴って圧電発電体120にて発電が行なわれ、発電された電力は、送信部20へと供給されることなく圧電発電体120に蓄えられる。
 なお、時刻t7から、時刻t8において反転バネ160の反転が完了するまでにおいては、クリック動作が生じることになり、ユーザはクリック感を実感する。
 時刻t9において第1スイッチ141Aがオフになると、信号出力部13の切替信号SWは、Hレベルになる。これに伴い、圧電発電体120において蓄えられていた電力が、圧電発電モジュール10から送信部20へと供給され、送信部20において送信動作が開始される。
 その後、時刻t10において外力の付与が終了する。また、時刻t9以降においては、圧電発電モジュール10から送信部20へと電力供給が行なわれることで圧電発電体120の出力電圧は低下する。
 送信動作が完了すると、時刻t11において圧電発電体120のリセット動作が開始されることにより、圧電発電体120の電極間が短絡させられ、これにより圧電発電体120の出力電圧が0[V]にリセットされる。その後、時刻t12において圧電発電体120のリセット動作が停止される。
 以上において説明したように、本実施の形態における送信機1は、上述した構成の圧電発電装置100Aを具備した圧電発電モジュール10を備えているため、ユーザの一度の操作ボタンの操作の間に、二度にわたって送信動作を行なうことができる。したがって、受信機側において二度の受信の時間的な間隔を検知することにより、操作ボタンが操作された時間を判別することもできる。
 なお、ここではその説明は省略するが、ユーザが第1スイッチ141Bに対応した操作ボタン(不図示)を操作した場合、および、ユーザが第1スイッチ141A,141Bに対応した操作ボタンを同時に操作した場合についても、上記説明に準じた送信動作が実施されることになる。
 図11および図12は、それぞれ本実施の形態に準じた圧電発電装置および比較例1に係る圧電発電装置の概略的な構成ならびにレバーとケース体との接続構造を示す概念図である。以下、これら図11および図12を参照して、レバー130と圧電発電体120との間に反転バネ160を配置することによって得られる効果について詳説する。
 図11(A)に示すように、本実施の形態に準じた圧電発電装置100A’は、上述した本実施の形態における圧電発電装置100Aと比較した場合に、補助バネ170が設けられておらず、反転バネ160と圧電発電体120とが直接接触している点においてのみ、その構成が相違している。
 このように構成された圧電発電装置100A’においては、圧電発電体120が、図中に示す点P0を支点としてケース体110によって支持されることとなり、レバー130は、図中に示す点P1を支点としてケース体110によって回動自在に支持されることになる。
 また、この圧電発電装置100A’においては、図中に示す点P2を力点としてレバー130に対して外力が付与されることになる一方、レバー130が回動することにより、図中に示す点P3を作用点として反転バネ160に力が加えられることになる。
 上述したように、圧電発電装置100A’においては、反転バネ160と圧電発電体120とが直接接触しているため、当該圧電発電装置100A’におけるレバー130とケース体110との接続構造を概念的に示すと図11(B)の如くとなる。
 すなわち、図11(B)に示すように、圧電発電装置100A’においては、レバー130とケース体110とが、これらの間に直列に接続された反転バネ160と圧電発電体120とによって接続されることになる。
 一方、図12(A)に示すように、比較例1に係る圧電発電装置100Xは、上述した本実施の形態における圧電発電装置100Aと比較した場合に、補助バネ170が設けられていない点と、反転バネ160が圧電発電体120とケース体110との間に配置されている点とにおいて、その構成が相違している。
 このように構成された圧電発電装置100Xにおいては、上述した本実施の形態に準じた圧電発電装置100A’と同様に、圧電発電体120が、図中に示す点P0を支点としてケース体110によって支持されることとなり、レバー130は、図中に示す点P1を支点としてケース体110によって回動自在に支持されることになる。
 その反面、この圧電発電装置100Xにおいては、図中に示す点P2を力点としてレバー130に対して外力が付与されることになる一方、レバー130が回動することにより、図中に示す点P3を作用点として圧電発電体120に力が加えられることになる。
 上述したように、圧電発電装置100Xにおいては、反転バネ160が圧電発電体120とケース体110との間に配置されているため、当該圧電発電装置100Xにおけるレバー130とケース体110との接続構造を概念的に示すと図12(B)の如くとなる。
 すなわち、図12(B)に示すように、圧電発電装置100Xにおいては、レバー130とケース体110とが、これらの間に並列に接続された反転バネ160と圧電発電体120とによって接続されることになる。
 ここで、図12(B)に示す接続構造においてレバー130に外力を作用させた場合には、圧電発電体120における発電に必要な押圧ストロークを発生させるための押圧荷重として、圧電発電体120を変形させるための押圧荷重のみならず、これに反転バネ160を変形させるための押圧荷重を加えたものが必要となる。そのため、反転バネ160を設けることによって得られるクリック感は、圧電発電体120のバネ定数に応じて極端に低下してしまうことになり、また、圧電発電体120における発電に必要な押圧ストロークを発生させるための押圧荷重も大幅に増大してしまうことになる。
 一方、図11(B)に示す接続構造においてレバー130に外力を作用させた場合には、作用反作用の法則に従い、反転バネ160のバネ定数と圧電発電体120のバネ定数との比に応じて押圧荷重がそれぞれ反転バネ160および圧電発電体120に加わることになるため、圧電発電体120における発電に必要な荷重以上の押圧荷重は必要なくなる。そのため、反転バネ160を設けることによって得られるクリック感は、圧電発電体120のバネ定数に依らずそのまま維持され、また、圧電発電体120における発電に必要な押圧ストロークを発生させるための押圧荷重の増大も抑制できることになる。
 したがって、上述した本実施の形態における圧電発電装置100Aまたはこれに準じた圧電発電装置100A’のように、反転バネ160をレバー130と圧電発電体120との間に配置することにより、圧電発電体120における発電に必要な押圧荷重を低く抑えつつ、高いクリック感を得ることが可能になる。
 図13は、上述した本実施の形態における圧電発電装置のレバーとケース体との接続構造を示す概念図である。次に、この図13を参照して、レバー130と圧電発電体120との間に反転バネ160に加えて補助バネ170を配置することによって得られる効果について詳説する。
 上述した本実施の形態における圧電発電装置100Aのレバー130とケース体110との接続構造を概念的に示すと図13の如くとなる。すなわち、図13に示すように、圧電発電装置100Aにおいては、レバー130とケース体110とが、互いに並列に接続された反転バネ160および補助バネ170と、これら反転バネ160および補助バネ170に直列に接続された圧電発電体120とによって接続されることになる。
 このように反転バネ160にのみ並列に接続されるように補助バネ170を設けることにより、上述したように反転バネ160によるクリック感の程度の調整や、圧電発電体120および反転バネ160に加わる力のバランスの補正が行なえることになる。
 具体的には、反転バネ160が圧電発電体120における発電に必要な押圧荷重よりも小さい押圧荷重にて反転してしまった場合には、必要な電力が得られる前に電力がパワーマネジメント回路に供給されてしまうことになり、動作不良を誘発してしまう。そのため、反転バネ160に並列に補助バネ170を接続することにより、反転バネ160が反転現象を起こす荷重(以下、これを反転荷重と称する)と、補助バネを設けることによって加算される押圧荷重の和が、おおよそ圧電発電体120における発電に必要な押圧荷重に等しくなるように設定することにより、ユーザの操作ボタンに対する操作量(すなわち押し込み量)を確保することができ、発電動作をより確実に完了させることが可能になる。
 ここで、上述した本実施の形態における圧電発電装置100Aにおいては、図5および図6等に示すように、ドーム状の形状を有する薄い金属部材を4個積層した積層構造物にて反転バネ160を構成するとともに、1個の板バネにて補助バネ170を構成することにより、適度なクリック感が得られるように構成している。
 すなわち、本実施の形態における圧電発電装置100Aにおいては、圧電発電体120を用いて発電すべき発電量が、おおよそ15[N]に設定されている。そのため、押圧荷重が概ね15[N]程度(より好ましくは15[N]以上)でクリック感が得られることが好ましい。しかしながら、ドーム状の薄い金属部材の1個当たりの反転荷重は、通常2[N]~3[N]程度であり、これを1個利用しただけでは、適切な押圧荷重においてクリック感を得ることができない。
 そこで、上述のようにドーム状の形状を有する薄い金属部材を4個積層した積層構造物にて反転バネ160を構成するとともに、1個の板バネにて補助バネ170を構成しつつ、当該補助バネ170のバネ定数を最適化することにより、概ね15[N]程度でクリック感が得られるように構成している。
 なお、より強いクリック感が必要になる場合には、補助バネ170の配置を廃止することで上述した本実施の形態に準じた圧電発電装置100A’の如くの構成とすればよい。
 以下においては、所定の補助バネを使用しつつ、反転バネの構成を変更した場合におけるクリック率および反転荷重の変化を確認した第1検証試験について説明する。図14は、反転バネの操作量と操作力との関係を示すグラフであり、図15は、第1検証試験の結果を示したグラフである。
 図14に示すように、反転バネは、操作力(荷重)の増加に伴い、所定の操作量(変位量)に達した時点で操作力が瞬間的に低下し、その後、再度操作力が増加することで操作量が引き続き増加する。
 ここで、上述したクリック感の程度は、一般にクリック率として定義され、図14に示す操作力Fa,Fb(ここで、Faは、瞬間的に操作力が低下を開始する時点の操作力であり、Fbは、その後、操作力が回復し始める時点の操作力である)を用いて、100×(Fa-Fb)/Fa[%]で表わされる。
 第1検証試験においては、ドーム状の形状を有する薄い金属部材を5個積層した積層構造物にて反転バネを構成し、これに互いに異なる構成を有する補助バネを並列に接続した複数のサンプルを試作し、それぞれのサンプルにおけるクリック率と反転荷重とを実測した。ここで、補助バネについては、同一形状でかつ同一のバネ定数を有する板バネを複数準備し、サンプルごとにその接続個数を変更することでその構成を変更することとした。
 図14から理解されるように、第1検証試験の結果、補助バネを接続していないサンプルにおいてクリック率が実測値で51[%]であったものが、補助バネを1個並列に接続したサンプルにおいて実測値で38[%]にまで低下し、さらに補助バネの接続個数を増やすことで、順に実測値で25[%]、15[%]、7[%]に低下していくことが確認された。
 一方で、反転荷重については、補助バネを接続していないサンプルにおいて実測値で11.0[N]であったものが、補助バネを1個並列に接続したサンプルにおいて実測値で約12.5[N]に上昇し、さらに補助バネの接続個数を増やすことで、順に実測値で13.5[N]、14.5[N]、16.0[N]に上昇していくことが確認された。
 なお、図14においては、クリック率の実測値に加え、前述の図13において示したモデルに基づいて算出した計算値についてもあわせて表記している。これらクリック率の実測値と計算値とで概ね整合が図れているため、当該モデルに基づいてクリック率を設計することが可能であることも確認された。
 以上の第1検証試験の結果から明らかなように、上述した本実施の形態における圧電発電装置100Aまたはこれに準じた圧電発電装置100A’とすることにより、圧電発電体120における発電に必要な押圧荷重を低く抑えつつ高いクリック感を得ることができることが、実験的にも確認されたと言える。
 (実施の形態2)
 図16は、本発明の実施の形態2における圧電発電装置の斜視図であり、図17および図18は、それぞれ図16中に示すXVII-XVII線およびXVIII-XVIII線に沿った断面図である。また、図19は、図16に示す圧電発電装置の分解斜視図であり、図20は、図16に示す圧電発電装置に外力が付与された状態における断面図である。まず、これら図16ないし図20を参照して、本実施の形態における圧電発電装置100Bの構成について説明する。なお、圧電発電装置100Bは、上述した実施の形態1における圧電発電装置100Aに代えて、上述した実施の形態1における送信機1およびこれに具備される圧電発電モジュール10に具備されるものである。
 図16ないし図20に示すように、圧電発電装置100Bは、上述した実施の形態1における圧電発電装置100Aと近似の構成を有しており、当該圧電発電装置100Aと比較した場合に、可動部としてのレバー130の組付け姿勢が異なる点において主としてその構成が相違しており、これに伴って当該レバー130の形状が異なる点や補助バネ170の形状が異なる点等において、細部の構成が若干相違している。上記のとおり可動部としてのレバー130の組付け姿勢が異なることにより、本実施の形態における圧電発電装置100Bは、上述した実施の形態1における圧電発電装置100Aよりも発電効率の向上が図られている。
 図17ないし図20に示すように、補助バネ170は、平面視略T字状であって側面視した場合に略C字状に屈曲した形状を有しており、その一部が反転バネ160の下方に配置される(すなわち、反転バネ160と圧電発電体120との間に位置する)とともに残る部分が反転バネ160の下方の位置から外側に引き出された姿勢で第2フレキシブル配線基板150に取付けられている。補助バネ170は、たとえば単一の金属製の板バネまたはその積層構造物にて構成される。
 反転バネ160の下方の位置から外側に引き出された部分の補助バネ170の両端には、貫通孔170a(図19参照)が設けられており、この貫通孔170aに対応する部分の第2フレキシブル配線基板150にも貫通孔150a(図19参照)が設けられている。これら貫通孔150a,170aは、いずれもレバー130の基部131に設けられたビス穴131aに合致するように設けられており、当該貫通孔150a,170aを挿通するようにビス180がビス穴131aに螺合されることにより、レバー130に対して第2フレキシブル配線基板150および補助バネ170が固定されることになる。
 また、補助バネ170の反転バネ160の下方に位置する部分(すなわち、反転バネ160の頂部に対応する部分)には、当該反転バネ160の頂部に当接する突部171が設けられている。これにより、ユーザが操作ボタンを操作した場合に、反転バネ160の座屈現象が確実に生じることになる。
 一方、レバー130は、上述した実施の形態1と同様に、平面視略矩形状の板状の基部131と、互いに対向するように当該基部131の相対する二辺から立設された立壁部133,134とを有している。一対の立壁部133,134には、ケース体110に設けられた軸支孔113a,114aに挿入されることで当該軸支孔113a,114aによって軸支される軸部133a,134が設けられており、これによりレバー130は、ケース体110に回動可能に組付けられている。
 また、レバー130のうち、その回転軸1000から最も遠い部分である基部131の先端部135は、ケース体110の側壁部115側の位置に配置されており、当該先端部135は、レバー130を圧電発電体120側に回動させた場合に、ケース体110の側壁部115に設けられた突き当たり面115aに当接するように構成されている(図20参照)。なお、レバー130は、上述した基部131における先端部135の折り曲げ方向において、上述した実施の形態1とその形状が相違している。
 図18に示すように、圧電発電装置100Bにおいては、当該圧電発電装置100Bに外力が付与されていない状態(すなわち圧電発電体120に変形が生じていない状態)において、レバー130の基部131のうちの先端部135を除く部分が、圧電発電体120の厚み方向と直交する方向(すなわち圧電発電体120の主面と平行な方向)に交差するように傾斜して配置されている。より詳細には、レバー130の当該部分のうちの回転軸1000に近い側の端部が、レバー130の当該部分のうちの先端部135に近い側の端部よりも圧電発電体120により近い位置に配置されるように、レバー130が構成されている。
 図18に示す状態において、たとえばユーザが、第1スイッチ141Aに対応した操作ボタン(不図示)を図中に示す矢印AR1方向に向けて押し下げた場合は、操作ボタンが移動することで第1フレキシブル配線基板140を介してレバー130が外力を受ける。これにより、図20に示すように、レバー130が回転軸1000を回転中心として図中矢印DR方向に回動し、結果としてレバー130が圧電発電体120側に向けて変位する。
 レバー130が変位することにより、圧電発電体120とレバー130との間に配置された外力伝達部としての反転バネ160および補助バネ170がこれらによって圧縮されることになり、その反力を受けることで圧電発電体120に含まれる個々の圧電素子120aにも撓み変形が生じる。
 図20に示すように、レバー130の先端部135がケース体110の突き当たり面115aに当接した状態(すなわち、レバー130をそれ以上押し下げることができなくなった状態)においては、レバー130の基部131のうちの先端部135を除く部分が、圧電発電体120の厚み方向と直交する方向(すなわち、変形前の圧電発電体120の主面と平行な方向)に配置される。より詳細には、レバー130の当該部分のうちの回転軸1000に近い側の端部と、レバー130の当該部分のうちの先端部135に近い側の端部とが、圧電発電体120の厚み方向に沿って同じ高さに配置されるように、レバー130が構成されている。
 したがって、圧電発電装置100Bに外力が付与されて圧電発電体120に最大の変形が生じた状態においては、レバー130の基部131のうちの先端部135を除く部分が、圧電発電体120の厚み方向と直交する方向に配置されることになる。
 ここで、レバー130の先端部135がケース体110の突き当たり面115aに当接するレバー130の回動量を、圧電発電体120における発電に必要な押圧ストロークを生じさせるレバー130の回動量と等しく設定すれば、必要以上のレバー130の押し下げ操作が不要になり、圧電発電体120に無駄な外力が付与されることを防止することができる。
 一方で、図20に示す状態からユーザが第1スイッチ141Aに対応した操作ボタン(不図示)の操作を解除することにより、圧電発電装置100Bに付与されていた外力は、これが取り除かれることになる。これに伴い、圧電発電体120、反転バネ160および補助バネ170の有する弾性力に基づいてこれらが元の状態に復元することになり、レバー130も再度変位して(すなわち、図20中に示す矢印DR方向とは反対方向に向けて変位して)元の位置に復帰する。これにより、圧電発電装置100Bは、図18に示す状態に戻ることになる。なお、その際、反転バネ160に生じていた座屈も解消することになる。
 なお、ここではその説明は省略するが、ユーザが第1スイッチ141Bに対応した操作ボタン(不図示)を操作した場合、および、ユーザが第1スイッチ141A,141Bに対応した操作ボタンを同時に操作した場合についても、上記説明に準じた状態となる。
 図21は、本実施の形態における圧電発電装置において、操作時において各部に付与される力の方向変化を示す図であり、図22は、比較例2に係る圧電発電装置において、操作時において各部に付与される力の方向変化を示す図である。ここで、図21(A)および図21(B)は、圧電発電体に変形が生じ始める時点を示しており、図21(B)および図22(B)は、圧電発電体に最大の変形が生じる時点を示している。また、図21(C)および図22(C)は、レバーが変位することで圧電発電体が押圧されて変形する過程における後述する押圧角の変化を示した概念図である。以下、これら図21および図22を参照して、本実施の形態における圧電発電装置100Bとすることにより、高い発電効率が実現できる仕組みについて詳説する。なお、図21および図22においては、理解を容易とするために、要部のみを抜き出して図示している。
 図21を参照して、上述したように、本実施の形態における圧電発電装置100Bにおいては、外力が付与されておらず圧電発電体120に変形が生じていない状態において、レバー130の基部131のうちの先端部135を除く部分が、圧電発電体120の厚み方向と直交する方向に交差するように傾斜して配置されるとともに、外力が付与されて圧電発電体120に最大の変形が生じた状態において、レバー130の当該部分が、圧電発電体120の厚み方向と直交する方向に配置されるように構成されている。
 そのため、図21(A)に示すように、圧電発電体120に変形が生じ始める時点においては、図示しない操作ボタンがレバー130を押す方向は、圧電発電体120の厚み方向と平行な方向になる一方、レバー130が押される方向は、圧電発電体120の厚み方向と交差する方向になる。また、これに伴い、レバー130が圧電発電体120を押す方向は、圧電発電体120の厚み方向と交差する方向になる一方、圧電発電体120が押される方向は、圧電発電体120の厚み方向と平行な方向になる。
 一方、図21(B)に示すように、圧電発電体120に最大の変形が生じる時点においては、図示しない操作ボタンがレバー130を押す方向は、圧電発電体120の厚み方向と平行な方向のままである一方、レバー130が押される方向は、圧電発電体120の厚み方向と平行な方向になる。また、これに伴い、レバー130が圧電発電体120を押す方向は、圧電発電体120の厚み方向と平行な方向になり、圧電発電体120が押される方向も、圧電発電体120の厚み方向と平行な方向になる。
 すなわち、図21(C)に示すように、圧電発電体120に印加する力の方向と圧電発電体120の厚み方向とが成す角度のうちの小さい方の角度(図中に示す角度θ)を押圧角と定義すると、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、圧電発電体120に最大の変形が生じる時点での押圧角が、圧電発電体120に変形が生じ始める時点での押圧角よりも小さくなる。ここで、本実施の形態においては、上述したように圧電発電体120に最大の変形が生じる時点において、圧電発電体120を押す方向が圧電発電体120の厚み方向と一致する(すなわち、圧電発電体120を押す方向と圧電発電体120の厚み方向とが平行になる)こととなるため、その際の押圧角は、0[°]である。
 また、本実施の形態においては、レバー130が回転軸1000を回転中心として回動するように構成されているため、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、上記押圧角は、圧電発電体120に変形が生じ始める時点から圧電発電体120に最大の変形が生じる時点までの間で徐々に減少することになる(図21(C)に示した矢印参照)。
 一方で、図22に示すように、比較例2に係る圧電発電装置100X’においては、外力が付与されておらず圧電発電体120に変形が生じていない状態において、レバー130の基部131のうちの先端部135を除く部分が、圧電発電体120の厚み方向と直交する方向に配置されるとともに、外力が付与されて圧電発電体120に最大の変形が生じた状態において、レバー130の当該部分が、圧電発電体120の厚み方向と直交する方向に交差するように傾斜して配置されるように構成されている。なお、比較例2に係る圧電発電装置100X’のその他の構成は、いずれも本実施の形態における圧電発電装置100Bと同様である。
 そのため、図22(A)に示すように、圧電発電体120に変形が生じ始める時点においては、図示しない操作ボタンがレバー130を押す方向は、圧電発電体120の厚み方向と平行な方向になるとともに、レバー130が押される方向も、圧電発電体120の厚み方向と平行な方向になる。また、これに伴い、レバー130が圧電発電体120を押す方向は、圧電発電体120の厚み方向と平行な方向になるとともに、圧電発電体120が押される方向も、圧電発電体120の厚み方向と平行な方向になる。
 一方、図22(B)に示すように、圧電発電体120に最大の変形が生じる時点においては、図示しない操作ボタンがレバー130を押す方向は、圧電発電体120の厚み方向と平行な方向のままである一方、レバー130が押される方向は、圧電発電体120の厚み方向と交差する方向になる。また、これに伴い、レバー130が圧電発電体120を押す方向は、圧電発電体120の厚み方向と交差する方向になる一方、圧電発電体120が押される方向は、圧電発電体120の厚み方向と平行な方向になる。
 すなわち、図22(C)に示すように、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、圧電発電体120に最大の変形が生じる時点での押圧角が、圧電発電体120に変形が生じ始める時点での押圧角よりも大きくなる。ここで、当該比較例2においては、上述したように圧電発電体120に変形が生じ始める時点において、圧電発電体120を押す方向が圧電発電体120の厚み方向と一致する(すなわち、圧電発電体120を押す方向と圧電発電体120の厚み方向とが平行になる)こととなるため、その際の押圧角は、0[°]である。
 また、当該比較例2においては、レバー130が回転軸1000を回転中心として回動するように構成されているため、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、上記押圧角は、圧電発電体120に変形が生じ始める時点から圧電発電体120に最大の変形が生じる時点までの間で徐々に増加することになる(図22(C)に示した矢印参照)。
 このように、本実施の形態における圧電発電装置100Bにおいては、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、圧電発電体120に最大の変形が生じる時点での押圧角が、圧電発電体120に変形が生じ始める時点での押圧角よりも小さくなる反面、上記比較例2に係る圧電発電装置100X’においては、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、圧電発電体120に最大の変形が生じる時点での押圧角が、圧電発電体120に変形が生じ始める時点での押圧角よりも大きくなる。
 この違いに基づき、発電効率の観点からは大きな相違が生じる。以下、その相違をシミュレーションにより検証した第2検証試験について説明する。図23は、当該第2検証試験の結果を示したグラフである。なお、当該第2検証試験においては、本実施の形態における圧電発電装置100Bおよび比較例2に係る圧電発電装置100X’のいずれにおいても、圧電発電体120のバネ定数を10[N/mm]に設定するとともに、圧電発電体120に変形が生じ始める時点から圧電発電体120に最大の変形が生じる時点までに要するレバー130の回転角度を20[°]に設定している。
 図23に示すように、本実施の形態における圧電発電装置100Bおよび比較例2に係る圧電発電装置100X’のいずれにおいても、レバー130の回転角度が大きくなるにつれてレバー130を押すために必要となる力は増加することになる。ここで、レバー130の回転角度が0°からおおよそ10°までの範囲においては、本実施の形態における圧電発電装置100Bおよび比較例2に係る圧電発電装置100X’のいずれにおいても同等の力が必要であることが分かる。
 これに対し、レバー130の回転角度がおおよそ10°から20°までの範囲においては、レバー130を押すために必要となる力に大きな相違が生じ、本実施の形態における圧電発電装置100Bとすることにより、比較例2に係る圧電発電装置100X’とした場合よりも小さい力でレバー130を押圧することができることが分かる。ここで、本実施の形態における圧電発電装置100Bにおいては、レバー130の回転角度が20°である場合にレバー130を押すために必要となる力は、5.99[N]であるのに対し、比較例2に係る圧電発電装置100X’においては、レバー130の回転角度が20°である場合にレバー130を押すために必要となる力は、6.78[N]である。
 これは、レバー130が変位するにつれて圧電発電体120の変形量が増加することと、上述した押圧角の変化の仕方の違いとに起因している。
 すなわち、ユーザが操作ボタンを押し下げ始めた段階(すなわち、レバー130の回転角度が0°からおおよそ10°までの範囲)においては、レバー130の変位に伴って変形する圧電発電体120の変形量が未だ大きくなく、圧電発電体120が変形することによってレバー130が受ける反力が十分に小さい状態にある。
 そのため、上記操作ボタンを押し下げ始めた段階においては、上述した押圧角の違いによる影響は小さく、本実施の形態における圧電発電装置100Bと比較例2に係る圧電発電装置100X’との間でレバー130を押すために必要となる力に大きな差は生じない。
 その反面、ユーザが操作ボタンを押し下げ続けた段階(すなわち、レバー130の回転角度がおおよそ10°から20°までの範囲)においては、レバー130の変位に伴って変形する圧電発電体120の変形量が大きくなり、圧電発電体120が変形することによってレバー130が受ける反力が、上記操作ボタンを押し下げ始めた段階よりも、圧電発電体120のバネ定数に起因して大幅に大きい状態となる。
 その際、本実施の形態における圧電発電装置100Bにおいては、押圧角がより小さくなることに伴い、圧電発電体120を当該圧電発電体120の厚み方向に沿って押圧する力が効率的に圧電発電体120に作用するのに対し、比較例2に係る圧電発電装置100X’においては、押圧角がより大きくなることに伴い、圧電発電体120を当該圧電発電体120の厚み方向に沿って押圧する力が非効率的に圧電発電体120に作用することとなってしまう。
 そのため、上記操作ボタンを押し下げ続けた段階においては、上述した押圧角の違いによる影響が大きくなり、本実施の形態における圧電発電装置100Bと比較例2に係る圧電発電装置100X’との間でレバー130を押すために必要となる力に大きな差が生じる。その結果、上述したとおり、レバー130を押すために必要となる力が、比較例2に係る圧電発電装置100X’に比べて、本実施の形態における圧電発電装置100Bにおいてより小さくて済むことになる。
 したがって、本実施の形態における圧電発電装置100Bのように、レバー130が変位することで圧電発電体120が押圧されて変形する過程において、圧電発電体120に最大の変形が生じる時点での押圧角が、圧電発電体120に変形が生じ始める時点での押圧角よりも小さくなるように構成することにより、高い発電効率を実現することが可能になる。
 なお、上述したように、圧電発電体120に無駄な外力が付与されることを防止するためには、レバー130の回動範囲内において最大限レバー130が押し下げられた状態において、圧電発電体120において必要な発電が完了するように設定されていることが好ましいが、必ずしもそのように設定する必要はなく、レバー130の回動範囲内のいずれかの位置において、圧電発電体120において必要な発電が完了するように設定すれば、所期の目的は達成されることになる。
 上述した本発明の実施の形態1,2においては、反転バネをスイッチとして利用した場合を例示して説明を行なったが、反転バネを利用してスイッチを構成する必要性は必ずしもなく、別途これに代わるスイッチを設けてもよいし、そもそも可動部と圧電素子との間にスイッチが必要でない場合には、これらの間に反転バネのみを設けることとしてもよい。
 また、上述した本発明の実施の形態1,2においては、可動部としてレバーを採用した場合を例示して説明を行なったが、外力を受けることで圧電素子の厚み方向に実質的に沿った方向に変位可能な可動部であれば、どのようなものを利用することとしてもよい。
 また、上述した本発明の実施の形態1,2において示した圧電発電モジュールのパワーマネジメント回路の構成はあくまでも一例に過ぎず、異なる回路構成を採用することも当然に可能である。
 さらには、上述した本発明の実施の形態1,2においては、送信機およびこれに具備される圧電発電モジュールに本発明を適用した場合を例示して説明を行なったが、本発明の適用範囲はこれに限定されるものではなく、他の電子機器およびこれに具備される圧電発電モジュールに本発明を適用することも当然に可能である。
 このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 1 送信機、10 圧電発電モジュール、11 全波整流回路、12 DC/DCコンバータ、13 信号出力部、13a NOR回路、13b OR回路、14 制御回路、15 放電スイッチ、20 送信部、21 RFアンテナ、22 RF回路、100A,100A’,100B 圧電発電装置、110 ケース体、111 底板部、111a 支持部、112~115 側壁部、113a,114a 軸支孔、115a 突き当たり面、120 圧電発電体、120a 圧電素子、121 金属板、122 圧電体、123 端子、123a 貫通孔、124 接着剤層、125 導電性接着剤、126 保護膜、130 レバー、131 基部、131a ビス穴、133,134 立壁部、133a,134a 軸部、135 先端部、140 第1フレキシブル配線基板、141A,141B 第1スイッチ、142 第2スイッチ、143 接続部、150 第2フレキシブル配線基板、150a,150b 貫通孔、153,154 接続部、160 反転バネ、170 補助バネ、170a 貫通孔、171 突部、180 ビス、190 圧入ピン、1000 回転軸、C コンデンサ、D1~D4 ダイオード、EN イネーブル端子、GL 電力線、IN1A,IN1B,IN2 入力ノード、N1,N2 ノード、OUT 出力ノード、PL 電力線、Q スイッチング素子、R1~R4 抵抗、T1,T2 出力端子、Vin 入力端子、Vout 出力端子。

Claims (15)

  1.  可撓性を有し、厚み方向に変形することで発電する少なくとも1つ以上の板状の圧電素子と、
     前記圧電素子を撓み変形可能に支持する支持部材と、
     前記圧電素子に対向するように配置され、外力を受けることにより前記圧電素子の厚み方向に実質的に沿った方向に変位可能な可動部と、
     前記可動部で受けた外力を前記圧電素子に伝達する外力伝達部とを備え、
     前記外力伝達部が、反転バネを含み、
     前記反転バネが、前記圧電素子と前記可動部との間に配置されている、圧電発電装置。
  2.  前記反転バネが、前記圧電素子における発電に必要な押圧ストローク以上の所定の押圧ストロークにて反転する、請求項1に記載の圧電発電装置。
  3.  前記反転バネが、単一のドーム状の金属部材またはその積層構造物にて構成されている、請求項1または2に記載の圧電発電装置。
  4.  前記外力伝達部が、前記反転バネに並列に接続された補助バネをさらに含み、
     前記補助バネが、前記圧電素子と前記可動部との間に配置されている、請求項1から3のいずれかに記載の圧電発電装置。
  5.  前記補助バネが、単一の金属製の板バネまたはその積層構造物にて構成されている、請求項4に記載の圧電発電装置。
  6.  前記圧電素子が、金属板と、前記金属板の一方の主面に設けられた板状の圧電体とを含んでいる、請求項1から5のいずれかに記載の圧電発電装置。
  7.  前記圧電素子を複数備え、
     前記複数の圧電素子が、各々の厚み方向に積層されている、請求項1から6のいずれかに記載の圧電発電装置。
  8.  前記可動部が、前記支持部材によって回動可能に支持されたレバーからなる、請求項1から7のいずれかに記載の圧電発電装置。
  9.  前記支持部材が、底板部と、当該底板部の四辺から立設された側壁部とを含む箱状の形状を有している、請求項1から8のいずれかに記載の圧電発電装置。
  10.  前記可動部が変位することで前記圧電素子が押圧されて変形する過程において、前記圧電素子に印加する力の方向と前記圧電素子の厚み方向とが成す角度のうちの小さい方の角度を押圧角とした場合に、前記圧電素子に最大の変形が生じる時点での押圧角が、前記圧電素子に変形が生じ始める時点での押圧角よりも小さい、請求項1から9のいずれかに記載の圧電発電装置。
  11.  前記押圧角が、前記圧電素子に変形が生じ始める時点から前記圧電素子に最大の変形が生じる時点までの間で徐々に減少する、請求項10に記載の圧電発電装置。
  12.  前記圧電素子に最大の変形が生じる時点において、前記圧電素子に印加する力の方向と前記圧電素子の厚み方向とが一致することにより、前記押圧角が、0[°]となる、請求項10または11に記載の圧電発電装置。
  13.  請求項1から12のいずれかに記載の圧電発電装置と、
     前記圧電素子にて発電された電力を負荷に対して供給するための電力供給回路とを備え、
     前記電力供給回路は、一対の接点が非導通状態から導通状態に切り替わることで負荷に対する前記電力の供給を開始するスイッチを含み、
     前記一対の接点のうちの一方が、前記反転バネにて構成され、
     前記反転バネが反転した状態において前記一対の接点が導通するように、前記一対の接点のうちの他方が、前記反転バネに対向して配置されている、圧電発電モジュール。
  14.  前記圧電素子に対向する部分の前記可動部の表面に配線基板が配置され、
     前記一対の接点のうちの前記他方が前記配線基板に設けられるとともに、前記一対の接点のうちの前記他方を覆うように、前記一対の接点のうちの前記一方である前記反転バネが、前記配線基板に実装されている、請求項13に記載の圧電発電モジュール。
  15.  請求項13または14に記載の圧電発電モジュールと、
     前記負荷として、前記圧電発電モジュールから供給された前記電力を用いて無線信号を送信する送信部とを備えてなる、送信機。
PCT/JP2017/032196 2016-09-26 2017-09-07 圧電発電装置、圧電発電モジュールおよび送信機 WO2018056059A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540955A JP6673489B2 (ja) 2016-09-26 2017-09-07 圧電発電装置、圧電発電モジュールおよび送信機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-186810 2016-09-26
JP2016186810 2016-09-26
JP2017014440 2017-01-30
JP2017-014440 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018056059A1 true WO2018056059A1 (ja) 2018-03-29

Family

ID=61690433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032196 WO2018056059A1 (ja) 2016-09-26 2017-09-07 圧電発電装置、圧電発電モジュールおよび送信機

Country Status (2)

Country Link
JP (1) JP6673489B2 (ja)
WO (1) WO2018056059A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080957A (zh) * 2019-04-04 2019-08-02 上海工程技术大学 一种地铁站台阶行人踩踏压力发电装置
CN112600460A (zh) * 2020-12-04 2021-04-02 浙江大学 一种基于后屈曲现象的自供能压力传感器
WO2022006692A1 (zh) * 2020-07-06 2022-01-13 武文静 自发电装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826534B2 (ja) * 1978-01-13 1983-06-03 松下電器産業株式会社 ワイヤレスセンサ−
JPH05182559A (ja) * 1992-01-07 1993-07-23 Alps Electric Co Ltd スイッチ装置
JPH11354851A (ja) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd 圧電アクチュエータ
JP2003116285A (ja) * 2001-10-05 2003-04-18 Nec Tokin Ceramics Corp 圧電式発電器
JP2005500790A (ja) * 2001-08-20 2005-01-06 オーシャン パワー テクノロジーズ,インク. 電力変換システムのためのセンサ
JP2005229655A (ja) * 2004-02-10 2005-08-25 Oki Electric Ind Co Ltd 発電装置
JP2006318838A (ja) * 2005-05-16 2006-11-24 Taiheiyo Cement Corp 発光装置及びそれを用いた懐中電灯
JP2007173099A (ja) * 2005-12-22 2007-07-05 Alps Electric Co Ltd スイッチ装置
JP2012043299A (ja) * 2010-08-20 2012-03-01 Buffalo Inc 入力装置
WO2012057246A1 (ja) * 2010-10-29 2012-05-03 オプテックス株式会社 三角測距方式の距離検出回路
JP2013081277A (ja) * 2011-10-03 2013-05-02 Seiko Epson Corp 発電装置、発電装置の制御方法、電子機器、および移動手段
JP2014131409A (ja) * 2012-12-28 2014-07-10 Hayami Kohei 発電装置
WO2015072258A1 (ja) * 2013-11-12 2015-05-21 株式会社村田製作所 発電装置
JP2015170231A (ja) * 2014-03-09 2015-09-28 俊樹 小野 情報入力装置並びに情報入力機器保護装置
JP2016502386A (ja) * 2012-10-22 2016-01-21 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ 発電機
WO2016151985A1 (ja) * 2015-03-26 2016-09-29 ソニー株式会社 入力装置及び情報処理システム
WO2017104530A1 (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 圧電発電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536329A (ja) * 1991-07-29 1993-02-12 Fuji Electric Co Ltd 光スイツチおよび光スイツチシステム
JPH05205187A (ja) * 1991-09-26 1993-08-13 Fuji Electric Co Ltd パルス発信素子
JPH05175563A (ja) * 1991-10-21 1993-07-13 Fuji Electric Co Ltd 圧電アクチュエータ
JP3417300B2 (ja) * 1998-06-30 2003-06-16 ヤマハ株式会社 靴型履物楽音制御装置
WO2012157246A1 (ja) * 2011-05-16 2012-11-22 国立大学法人金沢大学 発電スイッチ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826534B2 (ja) * 1978-01-13 1983-06-03 松下電器産業株式会社 ワイヤレスセンサ−
JPH05182559A (ja) * 1992-01-07 1993-07-23 Alps Electric Co Ltd スイッチ装置
JPH11354851A (ja) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd 圧電アクチュエータ
JP2005500790A (ja) * 2001-08-20 2005-01-06 オーシャン パワー テクノロジーズ,インク. 電力変換システムのためのセンサ
JP2003116285A (ja) * 2001-10-05 2003-04-18 Nec Tokin Ceramics Corp 圧電式発電器
JP2005229655A (ja) * 2004-02-10 2005-08-25 Oki Electric Ind Co Ltd 発電装置
JP2006318838A (ja) * 2005-05-16 2006-11-24 Taiheiyo Cement Corp 発光装置及びそれを用いた懐中電灯
JP2007173099A (ja) * 2005-12-22 2007-07-05 Alps Electric Co Ltd スイッチ装置
JP2012043299A (ja) * 2010-08-20 2012-03-01 Buffalo Inc 入力装置
WO2012057246A1 (ja) * 2010-10-29 2012-05-03 オプテックス株式会社 三角測距方式の距離検出回路
JP2013081277A (ja) * 2011-10-03 2013-05-02 Seiko Epson Corp 発電装置、発電装置の制御方法、電子機器、および移動手段
JP2016502386A (ja) * 2012-10-22 2016-01-21 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ 発電機
JP2014131409A (ja) * 2012-12-28 2014-07-10 Hayami Kohei 発電装置
WO2015072258A1 (ja) * 2013-11-12 2015-05-21 株式会社村田製作所 発電装置
JP2015170231A (ja) * 2014-03-09 2015-09-28 俊樹 小野 情報入力装置並びに情報入力機器保護装置
WO2016151985A1 (ja) * 2015-03-26 2016-09-29 ソニー株式会社 入力装置及び情報処理システム
WO2017104530A1 (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 圧電発電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080957A (zh) * 2019-04-04 2019-08-02 上海工程技术大学 一种地铁站台阶行人踩踏压力发电装置
WO2022006692A1 (zh) * 2020-07-06 2022-01-13 武文静 自发电装置
CN112600460A (zh) * 2020-12-04 2021-04-02 浙江大学 一种基于后屈曲现象的自供能压力传感器
CN112600460B (zh) * 2020-12-04 2022-03-25 浙江大学 一种基于后屈曲现象的自供能压力传感器

Also Published As

Publication number Publication date
JPWO2018056059A1 (ja) 2019-01-24
JP6673489B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2018056059A1 (ja) 圧電発電装置、圧電発電モジュールおよび送信機
US20110109201A1 (en) Manual control device with power generation function and remote control device with power generation function
US20080075516A1 (en) Key structure
JP2003224315A (ja) 起電装置、電源装置、遠隔操作装置、及び電子機器
CN108369462B (zh) 触觉振动提示装置
JP2007202293A (ja) 発電装置
US9058060B2 (en) Keyboard module and method for fabricating the same
JP2006262575A (ja) 発電装置
WO2018055939A1 (ja) 圧電発電装置、圧電発電モジュールおよび送信機
US20190181327A1 (en) Electrostatic transducer
JP4892079B2 (ja) 多段式発電ユニット
US8188388B2 (en) Operation key structure
US20110122586A1 (en) Side key connection device of mobile terminal
JP2018125917A (ja) 圧電発電装置、圧電発電モジュールおよび送信機
US9871600B2 (en) Wireless switch
JP6465259B2 (ja) 圧電発電装置およびそれを備えた送信機
CN101621555A (zh) 按键装置及使用该按键装置的电子设备
WO2017104342A1 (ja) 発電装置およびそれを備えた送信機
US10727764B2 (en) Piezoelectric generator, pushbutton, radio module and method for producing a piezoelectric generator
CN114898660A (zh) 显示装置以及电子设备
WO2017104530A1 (ja) 圧電発電装置
CN115190824A (zh) 振动构造、振动装置以及触觉提示装置
JP2006186545A (ja) リモコン送信装置およびリモコン送信装置の電源供給方法
CN111541397A (zh) 便携终端用发电装置
US20160065097A1 (en) Piezoelectric energy harvester and wireless switch including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018540955

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852836

Country of ref document: EP

Kind code of ref document: A1