WO2018055799A1 - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
WO2018055799A1
WO2018055799A1 PCT/JP2017/009906 JP2017009906W WO2018055799A1 WO 2018055799 A1 WO2018055799 A1 WO 2018055799A1 JP 2017009906 W JP2017009906 W JP 2017009906W WO 2018055799 A1 WO2018055799 A1 WO 2018055799A1
Authority
WO
WIPO (PCT)
Prior art keywords
different heat
slab
metal filling
mold
heat conduction
Prior art date
Application number
PCT/JP2017/009906
Other languages
English (en)
French (fr)
Inventor
則親 荒牧
孝平 古米
三木 祐司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112019004155-9A priority Critical patent/BR112019004155B1/pt
Priority to EP17853092.9A priority patent/EP3488947B1/en
Priority to JP2018540270A priority patent/JP6947737B2/ja
Priority to CN201780053918.4A priority patent/CN109689247B/zh
Priority to KR1020197006411A priority patent/KR102245010B1/ko
Priority to PCT/JP2017/033955 priority patent/WO2018056322A1/ja
Priority to TW106132381A priority patent/TWI655979B/zh
Publication of WO2018055799A1 publication Critical patent/WO2018055799A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/051Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having oscillating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Definitions

  • the present invention relates to a continuous casting technique, and more particularly to a steel continuous casting method suitable for improving surface cracking and center segregation of a slab by suppressing non-uniform solidification of the slab at an initial stage of solidification.
  • solidified shell molten steel injected into a mold is cooled in contact with the mold to form a thin solidified layer (hereinafter referred to as “solidified shell”). In this way, the molten steel is poured into the mold and the solidified shell is pulled downward (hereinafter referred to as “steady casting”) to produce a slab.
  • the thickness of the solidified shell becomes uneven, and as a result, the surface of the solidified shell is not smooth.
  • stress concentration occurs on the surface of the solidified shell, and minute vertical cracks are generated. These minute vertical cracks remain even after the slab is completely solidified, and become vertical cracks on the surface of the slab.
  • care remove the vertical cracks (hereinafter referred to as “care”) prior to feeding the slab to a subsequent process (for example, a rolling process).
  • the mold vibrates in the casting direction (hereinafter also referred to as “oscillation”), and the upper end of the solidified shell is bent toward the molten steel by the vibration of the mold, and the gap between the bent solidified shell and the inner wall surface of the mold is formed.
  • the molten steel overflows, a portion of the solidified shell that protrudes toward the molten steel (hereinafter referred to as “claw”) is formed.
  • the surface of the solidified shell is not smooth, the gap formed between the bent solidified shell and the inner wall surface of the mold becomes large, and the claws of the solidified shell become large.
  • Non-Patent Document 1 describes that in continuous casting of a billet of 280 ⁇ 280 mm, it is effective to provide irregularities on the inner surface of the mold in order to improve the surface properties of the slab. .
  • Patent Document 1 describes that a recess having a diameter or width of 3 to 80 mm and a depth of 0.1 to 1.0 mm is provided on the inner surface of the mold.
  • Patent Document 2 describes that a groove having a width of 0.2 to 2 mm and a depth of 6 mm or less is provided on the inner surface of the mold.
  • the mold of the slab continuous casting machine that can change the width is a long side and short side mold, so if the concave part provided on the inner surface of the mold coincides with the corner of the mold when continuous casting starts, casting is performed. There is a problem that the splash of the molten steel when starting the process is inserted into the concave portion of the corner portion.
  • the molten steel surface in the mold is lower than the state of steady casting.
  • the molten steel or the splash of molten steel is inserted into the concave portion of the corner portion.
  • Such a phenomenon that the molten steel is inserted into the concave portion causes a constraining breakout of the solidified shell.
  • the generation mechanism of the center segregation of the slab is considered as follows. As solidification progresses, segregation components are concentrated between dendritic trees that are solidified structures. The molten steel enriched with segregation components flows out from the dendrite trees due to shrinkage of the slab during solidification or blistering of the slab called bulging. The molten steel in which the segregation component that has flowed out flows toward the solidification completion point, which is the final solidification portion, and solidifies as it is to form a concentrated zone of the segregation component. This concentrated zone is central segregation. As measures to prevent the center segregation of slabs, it is effective to prevent the movement of molten steel enriched with segregation components between dendrites and to prevent local accumulation of molten steel enriched with segregation components. There are several methods using these principles.
  • Patent Document 5 after bulging 3% or more and 25% or less of the thickness of the slab at the start of bulging, the position of the slab whose solid fraction in the center is 0.2 or more and 0.7 or less. There has been proposed a continuous casting method of steel that is reduced by a thickness corresponding to 30% or more and 70% or less.
  • the gist of the present invention for solving the above problems is as follows.
  • a continuous casting method for steel in which molten steel is poured into a continuous casting mold and the molten steel is pulled out while vibrating the continuous casting mold in a casting direction to produce a slab.
  • the mold has a plurality of concave grooves provided on the inner wall surface of the mold copper plate from a position at least 20 mm above the meniscus in a steady casting state to a position at least 50 mm or more and at most 200 mm below the meniscus,
  • a plurality of different heat conductive metal filling portions filled with a metal or metal alloy having a thermal conductivity difference ratio of 20% or more with respect to the heat conductivity of the mold copper plate is provided inside the plurality of concave grooves.
  • the area ratio which is the ratio of the sum of the areas of all the different heat conduction metal filling portions to the area of the inner wall surface provided with the plurality of different heat conduction metal filling portions, is 10% or more and 80% or less.
  • the oscillation mark pitch (F) and distance (D1) derived from the vibration frequency (f) and casting speed (Vc) satisfy the following formula (1), and the distance (D2) satisfies the following formula (2).
  • D1 ⁇ F Vc ⁇ 1000 / f (1) D2 ⁇ 4r (2)
  • Vc is a casting speed (m / min)
  • f is an oscillation frequency (cpm)
  • F is an oscillation mark pitch (mm)
  • D1 is A different heat conduction metal filling portion provided at the same position in the width direction of the mold copper plate and the center of gravity of one of the plurality of different heat conduction metal filling portions, The distance (mm) from the boundary line between the other heat conductive metal filling portion adjacent to the casting direction and the mold copper plate to the boundary line between the first heat conduction metal filling portion and the mold copper plate
  • r is a radius (mm) of a circle having the same area as the area of the different heat conductive metal filling portion around the center of gravity of the different heat conductive metal filling portion
  • D2 is Other heat conduction conducted at the same position in the casting direction and the center of gravity of the different heat conduction metal filling part A distance from the center of gravity of another different heat con
  • the center of gravity of the different heat conduction metal filling portion refers to the center of gravity of the cross-sectional shape of the different heat conduction metal filling portion in the molten steel side plane of the mold copper plate.
  • the plurality of different heat conduction metal filling portions are installed in the width direction and the casting direction of the continuous casting mold near the meniscus including the meniscus position, so that the continuous in the mold width direction and the casting direction near the meniscus.
  • the thermal resistance of the casting mold increases and decreases periodically.
  • the heat flux from the solidified shell in the vicinity of the meniscus, that is, in the initial stage of solidification, to the continuous casting mold is periodically increased or decreased.
  • the non-uniform heat flux distribution resulting from the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strain. As a result, cracking of the solidified shell surface can be prevented.
  • the depth of the oscillation mark can be reduced and the surface of the solidified shell can be made uniform.
  • the inner surface of the solidified shell that grows with the surface is also made uniform, the solidified interface at the final solidified portion becomes smooth, the number of spots forming segregation is reduced, and the internal quality of the slab slab can be improved.
  • FIG. 1 is a schematic side view of a vertical bending slab continuous casting machine to which a steel continuous casting method according to this embodiment can be applied. It is a figure which shows an example of the profile of a roll opening degree. It is a schematic side view of the mold long side copper plate which comprises some molds installed in the slab continuous casting machine. Corresponding to the position of the different heat conduction metal filling portion, the thermal resistance at three positions of the long side copper plate of the mold having the different heat conduction metal filling portion formed by filling the metal having lower thermal conductivity than the mold copper plate.
  • FIG. It is a figure which shows the example of the shape of a ditch
  • FIG. 1 is a schematic side view of a vertical bending type slab continuous casting machine to which the continuous casting method of steel according to this embodiment can be applied.
  • the slab continuous casting machine 1 is provided with a mold 5 that injects and solidifies molten steel 11 to form an outer shell shape of the slab 12 and vibrates in the casting direction of the slab 12.
  • a tundish 2 for relaying and supplying molten steel 11 supplied from a ladle (not shown) to the mold 5 is installed at a predetermined position above the mold 5.
  • a plurality of pairs of slab support rolls including a support roll 6, a guide roll 7 and a pinch roll 8 are installed below the mold 5.
  • the pinch roll 8 is also a driving roll for drawing the slab 12 at the same time as supporting the slab 12.
  • a secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged in the gap between the slab support rolls adjacent in the casting direction is configured.
  • the slab 12 is cooled while being drawn out by cooling water sprayed from (hereinafter also referred to as “secondary cooling water”), the unsolidified portion 14 in the interior is reduced, and the solidified shell 13 grows so that the casting is performed.
  • second cooling water cooling water sprayed from
  • a plurality of transport rolls 9 for transporting the cast slab 12 are installed on the downstream side of the slab support roll.
  • a predetermined slab 12 is cast from the slab 12 to be cast.
  • a slab cutting machine 10 for cutting a slab slab 12a having a length is disposed.
  • the roll interval of the opposing guide rolls 7 is set to be narrowed stepwise toward the downstream in the casting direction, that is, a roll gradient is applied.
  • a light pressure lower belt 17 composed of a plurality of pairs of guide rolls is installed.
  • the slab 12 can be lightly reduced in the entire region or a partially selected region.
  • the light pressure lower belt is such that the slab 12 until the solid phase ratio at the thickness center portion of the slab 12 is at least 0.2 to 0.9 falls within the installation range of the light pressure lower belt 17. 17 is installed.
  • the rolling gradient in the light pressure lower belt 17 is indicated by the amount of narrowing of the roll opening per 1 m in the casting direction, that is, “mm / m”, and the rolling speed (mm / min) of the slab 12 in the light pressure lower belt 17 is It is determined by the product of this rolling gradient (mm / m) and casting speed (m / min).
  • a spray nozzle for cooling the slab 12 is also arranged between the slab support rolls constituting the light pressure lower belt 17.
  • FIG. 1 shows an example in which only the guide roll 7 is disposed in the light pressure lower belt 17, the pinch roll 8 may be disposed in the light pressure lower belt 17.
  • the slab support roll disposed in the light reduction belt 17 is also referred to as a “reduction roll”.
  • the opening degree of the guide roll 7 arranged between the lower end of the mold 5 and the liquidus crater end position of the slab 12 is increased until the enlargement amount of the roll opening degree reaches a predetermined value toward the downstream side in the casting direction.
  • the roll opening gradually increases for every roll or every several rolls.
  • These guide rolls 7 constitute a forced bulging band 16 for forcibly bulging the long side surface of the slab 12 having the unsolidified portion 14 therein.
  • the slab support roll on the downstream side of the forced bulging band 16 is narrowed so that the roll opening degree corresponds to a constant value or the amount of shrinkage accompanying the temperature drop of the slab 12, and then connected to the light pressure lower band 17.
  • FIG. 2 is a view showing an example of a roll opening profile.
  • the forced bulging band 16 forcibly bulges the long side surface of the slab by molten steel static pressure to increase the thickness of the central part of the long side surface of the slab (region b), and passes through the forced bulging band 16.
  • the roll opening is narrowed to a certain value or the amount of shrinkage accompanying the temperature drop of the slab 12 (region c), and then the long side surface of the slab is rolled down by the light reduction belt 17 (region).
  • a and e are regions where the roll opening is narrowed to an extent corresponding to the amount of shrinkage accompanying the temperature drop of the slab 12.
  • a ′ is an example of the roll opening degree in a casting method (conventional method) in which the roll opening degree is narrowed to an extent corresponding to the shrinkage amount associated with the temperature drop of the slab 12 and light reduction is not performed.
  • the roll opening of the guide roll 7 is gradually increased toward the downstream side in the casting direction, so that the long side surface excluding the vicinity of the short side of the slab 12 is caused by the molten steel static pressure by the unsolidified portion 14.
  • the bulging is forcibly performed following the roll opening of the guide roll 7. Since the vicinity of the short side of the long side of the slab is held by the short side of the slab after solidification, the thickness at the time when forced bulging is started is maintained. Only the bulged portion of the long side surface of the slab comes into contact with the guide roll 7 by the typical bulging.
  • FIG. 3 is a schematic side view of a mold long side copper plate constituting a part of a mold installed in a slab continuous casting machine.
  • a mold 5 shown in FIG. 3 is an example of a continuous casting mold for casting a slab slab.
  • the mold 5 is configured by combining a pair of mold long-side copper plates 5a (hereinafter also referred to as “template copper plate”) and a pair of mold short-side copper plates.
  • FIG. 3 shows the long side copper plate 5a of the mold.
  • the short-side copper plate is provided with the different heat conduction metal filling portion 19 on the inner wall surface side, and the description of the short-side copper plate is omitted here.
  • the different heat conductive metal filling part 19 does not need to be provided in the mold short side copper plate of the mold 5 for the slab slab.
  • a metal or metal alloy (hereinafter referred to as “different heat conductive metal”) having a thermal conductivity difference ratio of 20% or more with respect to the thermal conductivity of the long copper plate 5a is used.
  • the filled circular different heat conduction metal filling portions 19 are provided in a staggered manner in the range of the length W in the mold width direction.
  • “Menniscus” means “molten steel surface in mold”.
  • the different heat conductive metal filling part 19 has different heat conductivity different from the heat conductivity of the copper alloy constituting the mold copper plate inside the circular concave groove processed independently on the inner wall surface side of the mold copper plate. It is formed by filling a conductive metal.
  • the means for filling the circular concave groove with a different heat conductive metal different from the heat conductivity of the copper alloy constituting the mold copper plate it is preferable to apply a plating process or a thermal spray process.
  • Different heat conduction metal processed to match the shape of the circular groove may be filled by inserting into the circular groove, but in that case, a gap or crack between the different heat conduction metal and the mold copper plate May occur. If gaps or cracks occur between the different heat conductive metal and the mold copper plate, cracks or delamination of the different heat conductive metal will occur, leading to a reduction in mold life, cracking of the slab, or even a restrictive breakout. Therefore, it is not preferable. Such a problem can be prevented beforehand by filling the different heat conductive metal by plating or spraying.
  • a copper alloy used as a mold copper plate a copper alloy to which chromium (Cr) or zirconium (Zr) or the like generally used as a mold for continuous casting is added may be used.
  • an electromagnetic stirrer for stirring the molten steel in the mold is generally installed in order to make the solidification in the mold uniform or prevent the inclusions in the molten steel from being trapped in the solidified shell.
  • a copper alloy with reduced conductivity may be used.
  • the thermal conductivity of the mold copper plate is about 1 ⁇ 2 of pure copper (thermal conductivity; about 400 W / (m ⁇ K)).
  • a copper alloy used as a mold copper plate generally has a lower thermal conductivity than pure copper.
  • FIG. 4 shows the thermal resistance at three positions of the long side copper plate of the mold having the different heat conduction metal filling portion formed by filling the metal having a lower thermal conductivity than that of the mold copper plate. It is a figure shown notionally corresponding to a position. As shown in FIG. 4, the thermal resistance is relatively high at the installation position of the different heat conducting metal filling portion 19.
  • the mold width direction and casting near the meniscus By providing the plurality of different heat conduction metal filling portions 19 in the width direction and casting direction of the continuous casting mold near the meniscus including the meniscus position 18, as shown in FIG. 4, the mold width direction and casting near the meniscus.
  • a distribution is formed in which the thermal resistance of the continuous casting mold in the direction increases and decreases periodically. This forms a distribution in which the heat flux from the solidified shell in the vicinity of the meniscus, that is, in the initial stage of solidification, to the continuous casting mold periodically increases and decreases.
  • the different heat conductive metal filling portion 19 When the different heat conductive metal filling portion 19 is formed by filling a metal having a higher thermal conductivity than the mold copper plate, the thermal resistance is relatively different at the installation position of the different heat conduction metal filling portion 19 unlike FIG. In this case as well, a distribution in which the thermal resistance of the continuous casting mold in the mold width direction and the casting direction in the vicinity of the meniscus periodically increases and decreases is formed in this case as well. In order to form the periodic distribution of the thermal resistance as described above, it is preferable that the different heat conductive metal filling portions 19 are independent from each other.
  • the thickness of the solidified shell 13 in the mold is made uniform not only in the width direction of the slab but also in the casting direction. Since the thickness of the solidified shell 13 in the mold is made uniform, the solidification interface of the solidified shell 13 of the slab 12 after being drawn out from the mold 5 is the width direction and the casting direction of the slab also in the final solidified portion of the slab. Becomes smooth.
  • the periodic increase / decrease in the heat flux due to the installation of the different heat conductive metal filling portion 19 must be appropriate. That is, if the difference in periodic increase / decrease in heat flux is too small, the effect of installing the different heat conduction metal filling part 19 cannot be obtained, and conversely, if the difference in periodic increase / decrease in heat flux is too large, The stress generated due to this increases, and surface cracks occur due to this stress.
  • the difference in increase / decrease in the heat flux due to the installation of the different heat conductive metal filling portion 19 is the difference in thermal conductivity between the mold copper plate and the different heat conductive metal, and the mold copper plate in the region where the different heat conductive metal filling portion 19 is disposed.
  • the area ratio which is the ratio of the sum of the areas of all the different heat conducting metal filling portions 19 to the area of the inner wall surface.
  • the difference with respect to the thermal conductivity ( ⁇ c ) of the mold copper plate is different.
  • / ⁇ c ) ⁇ 100) of the thermal conductivity ( ⁇ m ) of the heat conductive metal is 20% or more.
  • the heat conductivity of the mold copper plate and the heat conductivity of the different heat conductive metal are those at normal temperature (about 20 ° C.).
  • the thermal conductivity becomes smaller as the temperature becomes higher, but if the ratio of the difference in the thermal conductivity of the different heat conductive metal to the thermal conductivity of the mold copper plate at room temperature is 20% or more, the continuous casting mold can be obtained. Even in the use temperature (about 200 to 350 ° C.), the thermal resistance of the part where the different heat conductive metal filling part 19 is installed and the thermal resistance of the part where the different heat conductive metal filling part 19 is not installed A difference can be made.
  • a different heat conduction metal filling portion 19 is provided.
  • the area ratio ⁇ By setting the area ratio ⁇ to 10% or more, the area occupied by the different heat conductive metal filling portion 19 having different heat fluxes is secured, and a heat flux difference is obtained between the different heat conductive metal filling portion 19 and the mold copper plate. The effect of suppressing the surface cracking of the slab can be obtained.
  • the area ratio ⁇ exceeds 80%, there are too many portions of the different heat conducting metal filling portion 19 and the period of fluctuation of the heat flux becomes long, so that it is difficult to obtain the effect of suppressing the surface crack of the slab. .
  • the different heat conductive metal filling portion 19 so that the area ratio ⁇ is 30% or more and 60% or less, and the different heat conduction metal filling is performed so that the area ratio ⁇ is 40% or more and 50% or less. More preferably, the portion 19 is provided.
  • metals that can be used as filling metals include pure nickel (Ni, thermal conductivity: 90 W / (m ⁇ K)), pure chromium (Cr, thermal conductivity: 67 W / (m ⁇ K)), Pure cobalt (Co, thermal conductivity: 70 W / (mxK)) and alloys containing these metals are suitable. These pure metals and alloys have lower thermal conductivity than copper alloys, and can be easily filled into circular grooves by plating or thermal spraying.
  • the portion where the different heat conductive metal filling portion 19 is installed has a lower thermal resistance than the portion of the mold copper plate.
  • FIG. 5 is a diagram showing an example of the shape of the groove. 3 and 4 show an example in which the shape of the concave groove is circular as shown in FIG. 5A, the concave groove may not be circular.
  • the concave groove may be an ellipse as shown in FIG. 5 (b), a square or a rectangle with round corners as shown in FIG. 5 (c), and FIG.
  • the donut shape as shown in FIG. It may be a triangle as shown in FIG. 5 (e), a trapezoid as shown in FIG. 5 (f), or a pentagon as shown in FIG. 5 (g). It may be a confetti form as shown in 5 (h).
  • different heat conduction metal filling portions having a shape corresponding to the shape of the concave grooves are installed.
  • the shape of the groove is preferably a circular shape as shown in FIG. 5A or a shape having no “corner” as shown in FIGS. 5B to 5D.
  • a shape having “corners” as shown in FIG. By making the shape of the ditch into a shape that does not have “corners”, the boundary surface between the different heat conduction metal and the mold copper plate becomes a curved surface, and it is difficult for stress to concentrate on the boundary surface, and the mold copper plate surface is cracked. Less likely to occur.
  • a non-circular shape shown in FIGS. 5B to 5H is a pseudo-circular shape.
  • the shape of the groove is a pseudo circle
  • the groove processed on the inner wall surface of the mold copper plate is referred to as a “pseudo circular groove”.
  • the radius in the pseudo circle is evaluated by a circle equivalent radius r which is a radius of a circle having the same area as the area of the pseudo circle.
  • the pseudo-circle equivalent radius r is calculated by the following equation (4).
  • Circle equivalent radius r (S ma / ⁇ ) 1/2 (4)
  • Sma is the area (mm 2 ) of the pseudo circular groove.
  • FIG. 6 is a partially enlarged view of a region where the different heat conduction metal filling portion is provided.
  • the circular different heat conductive metal filling part 19 is provided in zigzag form.
  • providing in a zigzag manner means providing the different heat conduction metal filling portions 19 alternately at half-pitch positions of the different heat conduction metal filling portions 19.
  • 19a is one different heat conduction metal filling portion
  • 19b is another different heat conduction metal filling portion.
  • the different heat conductive metal filling part 19a and the different heat conductive metal filling part 19b are provided at the same position in the width direction of the mold copper plate and adjacent to each other in the casting direction.
  • the center of gravity of the different heat conduction metal filling portion 19 is the center of gravity of the cross-sectional shape of the different heat conduction metal filling portion 19 in the molten steel side plane of the mold copper plate.
  • the different heat conductive metal filling part 19 Is provided on the inner wall surface of the mold copper plate so that the distance D1 satisfies the following expression (1).
  • Vc is a casting speed (m / min)
  • f is an oscillation frequency (cpm)
  • F is an oscillation mark pitch (mm).
  • the distance between the boundary lines of the different heat conduction metal filling portions 19 with the mold copper plate in the casting direction is smaller than the pitch of the oscillation marks.
  • the different heat conductive metal filling portion 19 is provided on the mold copper plate.
  • the collapse of the nail is suppressed, the depth of the oscillation mark can be reduced, and the thickness of the solidified shell 13 in the casting direction can be made uniform.
  • the thickness of the initial solidified shell 13 uniform, the solidified interface at the final solidified portion where the center segregation is formed is smoothed, thereby reducing the number of spots forming segregation and improving the internal quality.
  • lateral cracks starting from the oscillation mark can be suppressed.
  • the different heat conductive metal filling part 19 is provided on the inner wall surface of the long copper plate 5a so that the distance D1 satisfies the following expression (3).
  • r is a radius (mm) or a circle equivalent radius (mm) of the different heat conductive metal filling part 19.
  • the different heat conductive metal filling portion 19 is formed on the mold copper plate so that the distance between the different heat conduction metal filling portions 19 in the casting direction is not more than twice the radius of the different heat conduction metal filling portion 19 or the equivalent circle radius.
  • a heat flow rate difference can be given evenly in the casting direction, the heat flux from the solidified shell to the continuous casting mold in the initial stage of solidification can be periodically increased and decreased, and the amount of individual strain can be reduced.
  • 19a is one different heat conduction metal filling portion
  • 19c is another different heat conduction metal filling portion.
  • the different heat conduction metal filling portion 19a and the different heat conduction metal filling portion 19c are provided at the same center of gravity with respect to the casting direction and at positions adjacent to each other in the width direction of the mold copper plate.
  • D2 the distance from the center of gravity of the different heat conductive metal filling part 19a to the center of gravity of the different heat conductive metal filling part 19c
  • the different heat conductive metal filling part 19 has a distance D2 of the following (2). It is provided on the inner wall surface of the long mold copper plate 5a so as to satisfy the equation.
  • r is a radius (mm) or a circle-equivalent radius (mm) of the different heat conducting metal filling portion 19.
  • the different heat conduction metal filling is performed so that the distance from the center of gravity of the different heat conduction metal filling portion 19a to the center of gravity of the different heat conduction metal filling portion 19c is not more than four times the radius of the different heat conduction metal filling portion 19.
  • the part 19 is provided on the mold copper plate.
  • FIG. 7 is a diagram showing another example of the arrangement of the different heat conductive metal filling portion.
  • circular different heat conducting metal filling portions 20 are provided on the inner wall surface of the mold copper plate in a lattice shape.
  • the provision of the different heat conductive metal filling portion 20 in a lattice shape means that the width in the casting direction is constant and parallel lines parallel to the mold width direction, and the width in the mold width direction is constant and the casting direction. It means that the different heat conductive metal filling portion 20 is provided at a position which is an intersection of parallel lines parallel to the line.
  • 20a is one different heat conduction metal filling portion
  • 20b and 20c are other different heat conduction metal filling portions.
  • the different heat conduction metal filling portion 20a and the different heat conduction metal filling portion 20b are provided at the same position in the width direction of the mold copper plate and adjacent to each other in the casting direction.
  • the different heat conduction metal filling portion 20a and the different heat conduction metal filling portion 20c are provided at the same center of gravity with respect to the casting direction and adjacent to each other in the width direction of the casting copper plate.
  • a distance D1 is a distance along the casting direction, from the boundary line between the different heat conductive metal filling portion 20a and the mold copper plate to the boundary line between the different heat conductive metal filling portion 20b and the mold copper plate.
  • the distance D2 is a distance from the center of gravity of the different heat conduction metal filling portion 20a to the center of gravity of the different heat conduction metal filling portion 20c.
  • the different heat conductive metal filling portion 20 is provided on the inner wall surface of the long copper plate 5a so as to satisfy the above formulas (1), (2) and (3).
  • the different heat conduction metal filling portion may be provided in a lattice shape on the mold copper plate, and even when the different heat conduction metal filling portion is provided in the lattice shape, The oscillation mark can be suppressed, the depth of the oscillation mark can be reduced, and the same effect as when the different heat conductive metal filling portions are provided in a staggered manner can be obtained.
  • the shape of the concave grooves provided in the mold copper plate is the same circular shape, but the present invention is not limited to this. As long as the above-mentioned area ratio is at least 10% and not more than 80% and the expressions (1) and (2) are satisfied, the shape of the grooves may not be the same.
  • the mold provided with the different heat conducting metal filling part 19 and the slab intentionally bulging the slab over 0 mm and 20 mm or less, and the slab with a solid fraction in the center of 0.2 to 0.9 (Mm / min) and casting speed (m / min) product (m ⁇ mm / min 2 ) with a rolling force corresponding to 0.30 or more and 1.00 or less.
  • Mm / min 0.2 to 0.9
  • m / min casting speed
  • the total amount of forced bulging of the forced bulging strip 16 exceeds 0 mm and 20 mm with respect to the slab thickness at the mold outlet (thickness between the long side surfaces of the slab).
  • the range is as follows.
  • the initial solidification in the mold is controlled, and the solidification interface can be smoothed in the width direction and the casting direction of the slab also in the final solidification portion of the slab 12, so that the reduction force due to light reduction is equal to the solidification interface.
  • the total bulging amount is more than 0 mm and less than 20 mm, the center segregation can be reduced.
  • the slab 12 is squeezed at least from the time when the solid phase ratio at the thickness center of the slab becomes 0.2 to 0.9.
  • the thickness of the unsolidified portion of the slab at the reduction position immediately after the reduction is thick, so that the center segregation occurs again with the progress of the subsequent solidification.
  • the solid phase ratio in the central portion is reduced to a time exceeding 0.9, the molten steel enriched with the segregation component is hardly discharged, and the effect of improving the central segregation is reduced. This is because the thickness of the solidified shell 13 of the slab at the time of rolling is so thick that the rolling force does not reach the thickness center.
  • the position of the slab whose center part solid phase ratio is 0.2 or more and 0.9 or less is reduced.
  • the slab is formed in the light pressure lower belt 17 before the solid phase ratio at the center portion of the slab thickness becomes 0.2 and after the solid phase ratio at the center portion of the slab thickness exceeds 0.9. 12 may be reduced.
  • the solid phase ratio at the center of the slab thickness can be obtained by two-dimensional heat transfer solidification calculation.
  • the solid phase ratio is defined as a solid phase ratio of 0 above the liquidus temperature of steel and a solid phase ratio of 1.0 below the solidus temperature of steel.
  • the position at which the solid phase ratio of the part becomes 1.0 is the solidification completion position 15, and the solidification completion position 15 is the most where the solid phase ratio of the center part of the slab thickness becomes 1 while the slab moves downstream. Corresponds to the downstream position.
  • the total amount of reduction of the slab 12 in the light reduction zone 17 (hereinafter referred to as “total reduction amount”) is equal to or less than the total bulging amount.
  • total reduction amount is equal to or less than the total bulging amount.
  • the product of the rolling speed and the casting speed (mm ⁇ m / min 2 ) at the time of light rolling in the light rolling belt 17 is a rolling force equivalent to 0.30 or more and 1.00 or less. It is given to the side.
  • the reduction with a reduction amount smaller than 0.30 the thickness of the unsolidified portion of the slab at the reduction position after reduction is thick, and the molten steel concentrated in the segregation component is not sufficiently discharged from between the dendritic trees. Center segregation occurs.
  • the reduction amount exceeding 1.00 is reduced, almost all of the molten steel enriched with segregation components existing between dendritic trees is squeezed out and discharged to the upstream side in the casting direction. Since the thickness of the slab is thin, it is trapped by the solidified shells on both sides of the slab in the thickness direction of the slab slightly upstream in the casting direction from the reduction position.
  • the effect of light pressure on the center segregation at the center of the slab and the prevention of positive segregation near the center is also affected by the solidification structure of the slab, and the solidification structure of the part in contact with the unsolidified part is equiaxed.
  • the solidification structure is not an equiaxed crystal but a columnar crystal structure.
  • the thickness of the solidified shell 11 and the solid phase ratio at the center portion of the slab thickness are obtained in advance using two-dimensional heat transfer solidification calculation or the like, and at least the center of the slab thickness is obtained.
  • the amount of secondary cooling water, the width of the secondary cooling, and the casting speed so that the slab 10 can be reduced by the light reduction zone 14 from the time when the solid phase ratio of the portion becomes 0.2 to 0.9 Any 1 type or 2 types or more of is adjusted.
  • “secondary cooling width cutting” is to stop the injection of cooling water to both ends of the long side surface of the slab. By performing the width cutting of the secondary cooling, the secondary cooling is weakened, and generally, the solidification completion position 13 is extended downstream in the casting direction.
  • the steel continuous casting method according to the present embodiment it is possible to prevent surface cracks of the slab due to uneven cooling of the solidified shell at the initial stage of solidification, and at the same time, the oscillation pitch The depth can also be reduced.
  • the solidification interface in the final solidification part is smoothed by making the surface of the initial solidification shell 13 uniform by making the oscillation pitch shallow, and by further intentional bulging and light reduction, the reduction force is applied to the solidification interface.
  • the center segregation generated at the thickness center of the slab can be suppressed. As a result, it is possible to stably manufacture a high quality slab.
  • the product of the rolling speed and the casting speed in the light pressure zone is 0.28 to 0.90 mm ⁇ m / min 2 and in each test, in the light pressure zone, the solid phase ratio at the thickness center of the slab is at least The slab was squeezed from 0.2 to 0.9.
  • the total reduction amount was equal to or smaller than the total bulging amount.
  • the solidification completion position on the short side of the slab was also reduced in the light reduction zone.
  • the used mold is a mold having an inner space size with a long side length of 2.1 m and a short side length of 0.26 m.
  • a mold having the following conditions was prepared and a comparative test was performed.
  • a metal having a lower thermal conductivity than that of the mold copper plate was used as the different heat conductive metal.
  • the shape of the different heat conductive metal filling part 19 is a circular shape of ⁇ 6 mm. Under the casting conditions, the oscillation mark pitch was 13 mm.
  • the different heat conduction metal was filled in a zigzag pattern, and the different heat conduction metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • the different heat conduction metal was filled in a zigzag pattern, and the different heat conduction metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 3 Staggered different heat conductive metals in a range from a position 80 mm below the upper end of the mold to a position 300 mm below the upper end of the mold with a ratio of the thermal conductivity difference to 20% of the thermal conductivity of copper.
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 15 mm
  • the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 4 Staggered different heat conductive metals in a range from a position 80 mm below the upper end of the mold to a position 300 mm below the upper end of the mold with a ratio of the thermal conductivity difference to 20% of the thermal conductivity of copper.
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 15 mm.
  • Mold 5 Staggered different heat conductive metals with a ratio of thermal conductivity difference of 15% with respect to the heat conductivity of copper in a range from a position 80 mm below the mold top to a position 300 mm below the mold top
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 6 Staggered different heat conductive metals in a range from a position 80 mm below the upper end of the mold to a position 300 mm below the upper end of the mold with a ratio of the thermal conductivity difference to 20% of the thermal conductivity of copper.
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 5%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 7 Staggered different heat conductive metals in a range from a position 80 mm below the upper edge of the mold to a position 300 mm below the upper edge of the mold, with a ratio of the thermal conductivity difference to 20% of the thermal conductivity of copper.
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was set to 85%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 8 In a range from a position 80 mm below the upper end of the mold to a position 300 mm below the upper end of the mold, a different heat conductive metal having a thermal conductivity difference ratio of 20% with respect to the heat conductivity of copper is in a lattice shape
  • the different heat conductive metal filling part was installed.
  • the area ratio ⁇ of the different heat conductive metal filling portion was 50%.
  • the distance D1 between the different heat conduction metal filling portions 19 in the casting direction was 6 mm, and the distance D2 between the centers of gravity of the different heat conduction metal filling portions 19 in the mold width direction was 12 mm.
  • Mold 9 A mold not provided with the different heat conduction metal filling portion 19.
  • a mold powder As a mold powder, a mold having a basicity ((mass% CaO) / (mass% SiO 2 )) of 1.1, a solidification temperature of 1090 ° C., and a viscosity of 0.15 Pa ⁇ s at 1300 ° C. Powder was used.
  • the solidification temperature is a temperature at which the viscosity of the mold powder rapidly increases during the cooling of the molten mold powder.
  • the meniscus position in the mold at the time of steady casting was set at a position 100 mm below the upper end of the mold, and the meniscus position was controlled so that the meniscus was within the installation range during casting.
  • the casting speed during steady casting is 1.7 to 2.2 m / min, and the slab for investigating surface cracks and internal quality of the slab has a casting speed of 2.0 m / min during steady casting in all tests.
  • the slabs were targeted.
  • the degree of superheated molten steel in the tundish was 25 to 35 ° C.
  • a thermocouple is embedded at a depth of 5 mm from the surface (surface on the molten steel side) at a position 50 mm below the meniscus of the mold, and the mold surface temperature is estimated from the measured value of the copper plate temperature by the thermocouple. did.
  • the surface of the long side of the slab was pickled to remove the scale, and the number of occurrences of surface cracks was measured.
  • the occurrence state of the slab surface crack was evaluated using a value calculated using the casting direction length of the slab to be inspected as the denominator and the casting direction length of the slab where the surface crack occurred as a numerator.
  • slab internal quality center segregation
  • a sample of the cross section of the slab is taken, and the Mn concentration is measured every 100 ⁇ m by EPMA in the range of the slab center part ⁇ 10 mm of the mirror polished surface of the cross section sample. Then, the degree of segregation was evaluated.
  • the ratio (C / C 0 ) between the Mn concentration (C 0 ) at the end portion where segregation would not occur and the average value (C) of the Mn concentration at the center portion ⁇ 10 mm is defined as the Mn segregation degree. Defined and evaluated.
  • the nonuniformity ⁇ (mm) of the solidified shell thickness was measured under the conditions at each test level.
  • the thickness of the solidified shell was measured by introducing FeS (iron sulfide) powder into the molten steel in the mold and taking a sulfur print from the cross section of the obtained slab.
  • the thickness of the solidified shell was measured at 40 points at a pitch of 5 mm from the position of the meniscus to a position 200 mm below at a position 1/4 in the width direction of the mold.
  • was calculated according to the following equation (5).
  • D is an actual measurement value (mm) of the solidified shell thickness
  • Di is a solidified shell thickness measured using an approximate expression that defines the relationship between the solidified shell thickness and the solidification time. It is the calculated value (mm) of the solidified shell thickness calculated using the solidification time corresponding to the distance from the meniscus of the position.
  • N is the number of measurements, and is 40 in this embodiment.
  • Table 1 shows the test conditions of each test of test levels 1 to 14 and the results of the investigation of the surface and internal quality of the slab.
  • Test conditions 1, 8, 9, 10, 11, and 13 are within the scope of the present invention in terms of the installation conditions of the different heat conduction filling portion on the mold surface. In both cases, the surface crack ratio was greatly improved. The non-uniformity of the solidified shell thickness was also 0.30 or less, and the thickness of the solidified shell was made uniform. However, for test level 1, since the product of the rolling speed and the casting speed was not within the range of 0.30 or more and 1.00 or less, the center segregation was confirmed although it was slight. For other levels, central segregation was also improved.
  • test level 2 the range in which the different heat conduction filling portion is installed is shifted downward, and the product of the rolling speed and the casting speed is not in the range of 0.30 to 1.00. For this reason, in the test level 2, a fine surface crack was generated in the slab, and the effect of reducing the surface crack could not be confirmed as compared with the conventional case.
  • the nonuniformity of the solidified shell thickness was as large as 0.38, and no improvement effect could be confirmed for the center segregation.
  • the distance D1 in the casting direction is long, and the product of the rolling speed and the casting speed is not in the range of 0.30 to 1.00.
  • the surface crack of the slab was improved, but the non-uniformity of the solidified shell thickness was as large as 0.37, and the improvement effect on the center segregation could not be confirmed.
  • test level 4 the distance D2 in the mold width direction is long, and the product of the rolling speed and the casting speed is not in the range of 0.30 or more and 1.00 or less.
  • the surface crack of the slab was confirmed, and the effect of improving the surface crack was not confirmed.
  • the non-uniformity of the solidified shell thickness was slightly increased to 0.31, and the center segregation was also confirmed with a slight amount.
  • test level 5 the ratio of the difference in the thermal conductivity of the different heat conducting metal is lower than 20%
  • test level 6 the area ratio of the filled portion of the different heat conducting metal is lower than 10%.
  • the area ratio of the heat conductive metal filling portion is higher than 80%. Therefore, in these test levels 5 to 7, the surface cracks of the slab were confirmed, and the effect of improving the surface cracks was not confirmed.
  • the non-uniformity in the thickness of the solidified shell was slightly increased to 0.31 to 0.33, and the center segregation was confirmed although it was slight.
  • test level 12 the product of the rolling speed and the casting speed is in the range of 0.30 to 1.00, but the distance D1 in the casting direction is long.
  • the surface cracks and center segregation of the slab were improved, but the non-uniformity of the solidified shell thickness was as large as 0.37. Since the test level 14 did not provide the different heat conductive metal filling part, the surface crack of the slab was confirmed. The non-uniformity of the solidified shell thickness was slightly increased to 0.32, and central segregation was also confirmed.

Abstract

連続鋳造用鋳型銅板の内壁面に、該鋳型銅板に対して熱伝導率差の比率が20%以上である金属が充填された異熱伝導金属充填部を設ける技術に関し、該異熱伝導金属充填部の幅方向の間隔及び鋳造方向の間隔を、所定の数式により規定される値以下とすることにより、連続鋳造時の凝固初期の凝固シェルの不均一冷却による表面割れを防止し、鋳片の厚み中心部に発生する中心偏析を抑制する。

Description

鋼の連続鋳造方法
 本発明は、連続鋳造技術に関し、特に凝固の初期段階における鋳片の不均一凝固を抑制することにより、鋳片の表面割れ及び中心偏析の改善に好適な鋼の連続鋳造方法に関する。
 一般に連続鋳造によって鋼鋳片を製造する場合、まず鋳型内に注入された溶鋼が鋳型と接して冷却され、薄い凝固層(以下、「凝固シェル」という)を形成する。こうして溶鋼を鋳型内に注入しながら凝固シェルを下方へ引き抜く(以下、「定常鋳込み」という)ことによって、鋳片を製造する。
 鋳型による冷却が不均一になると、凝固シェルの厚さが不均一になり、その結果、凝固シェルの表面は平滑にならない。特に凝固の初期段階で凝固シェルの厚さが不均一に成長すると、凝固シェルの表面に応力集中を生じて微小な縦割れが発生する。この微小な縦割れは、鋳片が完全に凝固した後も残存し、鋳片表面の縦割れとなる。鋳片の表面に縦割れが発生すると、後工程(たとえば圧延工程等)へ鋳片を送給するに先立って、縦割れの除去(以下、手入れという)が必要となる。
 鋳型は鋳造方向に振動(以下、「オシレーション」ともいう)しており、この鋳型の振動によって凝固シェルの上端部は溶鋼側に曲げられ、曲げられた凝固シェルと鋳型内壁面との空隙に溶鋼が溢流することで、凝固シェルに溶鋼側に張り出した部分(以下、「つめ」という)が形成される。凝固シェルの表面が平滑でない場合は、曲げられた凝固シェルと鋳型内壁面とで形成する空隙が大きくなり、凝固シェルのつめが大きくなる。溶鋼側に張り出したつめが大きくなると、メニスカス(鋳型内溶鋼湯面)において、溶鋼中を浮上する非金属介在物や気泡が当該つめに捕捉され、捕捉された非金属介在物や気泡は、熱間圧延後の鋼板または冷間圧延後の鋼板で表面疵や膨れなどの表面欠陥の原因となる。
 このような縦割れや傷、膨れ等の表面欠陥の発生頻度は、鋳造速度の増加に伴って高まる傾向にある。今日では、一般的なスラブ連続鋳造機の鋳造速度は、10年前と比較して約1.5~2倍に向上しており、それに伴って手入れ作業も増加している。近年、技術的に確立されつつある直送加熱(いわゆるホットチャージ)や直送圧延(いわゆるダイレクトチャージ)においても、鋳片の手入れ作業は操業の安定化を阻害する要因になっている。したがって凝固の初期段階における不均一冷却に起因する凝固シェル厚の不均一な成長およびつめの発生を防止できれば、経済的に極めて有利となる。
 凝固の初期段階における不均一冷却を防止するには、凝固の初期段階で均一かつ緩やかな冷却を行ない、凝固シェルの厚さを均一に成長させることによって、つめの生成を阻止する必要がある。この点に関して、非特許文献1には、280×280mmのビレットの連続鋳造において、鋳片の表面性状を改善するためには、鋳型内面に凹凸を付与することが有効であると記載されている。特許文献1には、直径もしくは幅が3~80mmかつ深さが0.1~1.0mmの凹部を鋳型内面に設けることが記載されている。さらに、特許文献2には、幅が0.2~2mmかつ深さが6mm以下の溝を鋳型内面に設けることが記載されている。
 これらの技術は、いずれもメニスカス部にモールドパウダーを投入して、鋳型と凝固シェルとの隙間に十分な厚さのモールドパウダー層を長時間安定して維持し、鋳型内面に設けられた凹凸部に空気層や溶融パウダー層が形成され、その空気層や溶融パウダー層の断熱性を利用して緩やかな冷却(以下、緩冷却という)を実現しようとするものである。
 しかし、これらの技術を実際に連続鋳造に使用すると種々の問題が生じる。たとえば、幅変更が可能なスラブ連続鋳造機の鋳型は、長辺と短辺の組鋳型であるので、連続鋳造を開始する時に鋳型内面に設けた凹部と鋳型のコーナー部とが一致すると、鋳込みを開始する際の溶鋼のスプラッシュがコーナー部の凹部に差し込むという問題がある。
 浸漬ノズルを交換する時、あるいはタンディッシュを交換する時に、鋳型内の溶鋼の湯面が定常鋳込みの状態より低下するため、鋳型内面に固着したモールドパウダーが剥離、離脱しやすくなり、再度鋳込みを開始する時に溶鋼や溶鋼のスプラッシュがコーナー部の凹部に差し込むという問題がある。このような溶鋼が凹部に差し込む現象は、凝固シェルの拘束性ブレークアウトが発生する原因になる。
 鋳片の中心偏析の生成機構は、次のように考えられている。凝固が進むにつれて、凝固組織であるデンドライト樹間に偏析成分が濃化する。この偏析成分の濃化した溶鋼が、凝固時の鋳片の収縮またはバルジングと呼ばれる鋳片のふくれなどにより、デンドライト樹間より流出する。流出した偏析成分の濃化した溶鋼が最終凝固部である凝固完了点に向かって流動し、そのまま凝固して偏析成分の濃化帯が形成される。この濃化帯が中心偏析である。鋳片の中心偏析の防止対策として、デンドライト樹間に存在する偏析成分が濃化した溶鋼の移動を防止することと、偏析成分の濃化した溶鋼の局所的な集積を防ぐことが効果的であり、これらの原理を利用したいくつかの方法が提案されている。
 その1つに、圧下ロール群による鋳片の軽圧下法があるが、凝固収縮量を若干上回る程度の軽圧下では、中心偏析の改善効果には限界がある。特許文献3では、鋳片の中心部の固相率が0.1以下の位置で鋳片をバルジングさせ、幅方向中央部の鋳片の厚みを鋳型内で生じる短辺部の鋳片の厚みより20~100mm厚くした後、凝固完了点直前に少なくとも1つの圧下ロール対により、1つの圧下ロール対当たりの圧下量を20mm以上とする条件で、バルジング相当量を圧下する方法が提案されている。
 特許文献4では、鋳片の未凝固部の厚みが30mmになるまでの間に、幅方向中央部の鋳片の厚みを短辺部の鋳片の厚みの10~50%相当の厚みだけバルジングさせた後、凝固完了点までに少なくとも1つの圧下ロール対により、バルジング相当量を圧下する方法が提案されている。
 特許文献5では、バルジング開始時の鋳片の厚みの3%以上25%以下バルジングさせた後、中心部の固相率が0.2以上0.7以下の鋳片の位置を、バルジング量の30%以上70%以下に相当する厚みだけ圧下する鋼の連続鋳造方法が提案されている。
特開平9-94634号公報 特開平10-193041号公報 特開平7-210382号公報 特開平9-206903号公報 特開平11-99285号公報
P.Perminov et al、Steel in English、(1968)No.7.p.560~562
 特許文献3および特許文献4で提案された方法では、圧下を行う時期の中心部の固相率が適切でない場合、または、圧下時期の中心部の固相率を適切な条件にしても、圧下量が適切でない場合、鋳片の厚み中心部に中心偏析や、中心部近傍に正偏析などの内部欠陥が発生するという課題がある。特許文献5で提案された方法では、急激にバルジングさせた場合やバルジング量が大きすぎた場合には歪によって内部割れ欠陥の発生や、バルジング開始時期が早すぎた場合にはブレークアウトを発生させたりする可能性がある。圧下前のバルジングしたスラブ形状によっては、鋳片の厚み中心部に適正な圧下が伝わらず中心偏析が改善しないことがある、という課題がある。
 鋼の連続鋳造では、上下方向の振動を鋳型に与え、当該振動により凝固シェルが鋳型に焼き付くことを防止している。鋳型の振動によって、先端部が変形を受けた鋳片の表面には、オシレーションマークと呼ばれる周期的な凹凸が形成される。オシレーションマークの凹凸が大きくなると、凝固シェル表面と鋳型との接触が不均一になり、鋳型からの抜熱量も不均一になるので、凝固シェル内面の凹凸も大きくなる。初期の凝固シェル内面の凹凸が大きくなると、最終凝固部における凝固界面が平滑でなくなり、軽圧下の効果が十分に得られず、鋳片の中心偏析が悪化するという課題もある。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら前記溶鋼を引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、連続鋳造用鋳型は、定常鋳込み状態のメニスカスより上方へ少なくとも20mmの位置から前記メニスカスより下方へ少なくとも50mm以上、多くとも200mm以下の位置までの鋳型銅板の内壁面に設けられた複数の凹溝を有し、前記複数の凹溝の内部には、前記鋳型銅板の熱伝導率に対して熱伝導率差の比率が20%以上である金属もしくは金属合金が充填された複数の異熱伝導金属充填部が設けられ、前記複数の異熱伝導金属充填部が設けられた前記内壁面の面積に対する全ての異熱伝導金属充填部の面積の総和の比である面積率が10%以上80%以下であり、オシレーション振動数(f)と鋳造速度(Vc)とで導かれるオシレーションマークピッチ(F)及び距離(D1)が下記(1)式を満足し、距離(D2)が下記(2)式を満足する、鋼の連続鋳造方法。
 D1≦F=Vc×1000/f・・・(1)
 D2≦4r         ・・・(2)
 但し、(1)式において、Vcは、鋳造速度(m/min)であり、fは、オシレーション振動数(cpm)であり、Fは、オシレーションマークピッチ(mm)であり、D1は、複数のうちの1の異熱伝導金属充填部の重心と前記鋳型銅板の幅方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に鋳造方向で隣り合う他の異熱伝導金属充填部と前記鋳型銅板との境界線から、前記1の異熱伝導金属充填部と前記鋳型銅板との境界線までの距離(mm)であり、(2)式において、rは、前記異熱伝導金属充填部の重心を中心とし、前記異熱伝導金属充填部の面積と同一の面積の円の半径(mm)であり、D2は、前記1の異熱伝導金属充填部の重心と鋳造方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に前記幅方向で隣り合う他の異熱伝導金属充填部の重心から、前記1の異熱伝導金属充填部の重心まで、の距離(mm)である。
[2]前記複数の異熱伝導金属充填部は、前記距離(D1)が下記の(3)式を満足するように設けられる、[1]に記載の鋼の連続鋳造方法。
 D1≦2r・・・(3)
[3]前記複数の凹溝の形状は全て同じである、[1]または[2]に記載の鋼の連続鋳造方法。
[4]前記複数の凹溝の形状は円形または角のない擬似円形である、[1]から[3]の何れか1つに記載の鋼の連続鋳造方法。
[5]前記複数の異熱伝導金属充填部は格子状に設けられる、[1]から[4]の何れか1つに記載の鋼の連続鋳造方法。
[6]前記複数の異熱伝導金属充填部は千鳥状に設けられる、[1]から[4]の何れか1つに記載の鋼の連続鋳造方法。
[7]連続鋳造機に設けられた複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることで、内部に未凝固層を有する鋳片の長辺面を鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲の総バルジング量で拡大させ、その後、前記複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させた軽圧下帯で、前記鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで、圧下速度(mm/min)と鋳造速度(m/min)との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を前記鋳片の長辺面に付与し、前記圧下力によって前記総バルジング量と同等の総圧下量または前記総バルジング量よりも小さい総圧下量で前記鋳片の長辺面を圧下する、[1]から[6]の何れか1つに記載の鋼の連続鋳造方法。
 ここで、前記異熱伝導金属充填部の重心とは、鋳型銅板の溶鋼側平面における異熱伝導金属充填部の断面形状の重心をいう。
 本発明によれば、複数の異熱伝導金属充填部を、メニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置するので、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する。この熱流束の周期的な増減により、δ鉄からγ鉄への変態による応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面の割れを防止できる。
 オシレーションマークの1ピッチの間に少なくとも1回は熱流速が増減する部分を存在させることができるので、オシレーションマークの深さを浅くし、凝固シェルの表面を均一化させることができる。これにより、表面とともに成長する凝固シェル内面も均一化されて最終凝固部での凝固界面が平滑になり、偏析を形成するスポットが減少し、スラブ鋳片の内部品質を改善できる。
本実施形態に係る鋼の連続鋳造方法を適用できる垂直曲げ型のスラブ連続鋳造機の側面概要図である。 ロール開度のプロファイルの一例を示す図である。 スラブ連続鋳造用機に設置される鋳型の一部を構成する鋳型長辺銅板の概略側面図である。 鋳型銅板よりも熱伝導率の低い金属が充填されて形成された異熱伝導金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、異熱伝導金属充填部の位置に対応して概念的に示す図である。 凹溝の形状の例を示す図である。 異熱伝導金属充填部が設けられた領域の部分拡大図である。 異熱伝導金属充填部の配置の他の例を示す図である。
 本発明の具体的な実施方法を、図面を参照して説明する。図1は、本実施形態に係る鋼の連続鋳造方法を適用できる垂直曲げ型のスラブ連続鋳造機の側面概要図である。
 スラブ連続鋳造機1には、溶鋼11を注入して凝固させ、鋳片12の外殻形状を形成させ、鋳片12の鋳造方向に振動する鋳型5が設置されている。この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼11を鋳型5に中継供給するためのタンディッシュ2が設置されている。鋳型5の下方には、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールが設置されている。このうち、ピンチロール8は、鋳片12を支持すると同時に鋳片12を引抜くための駆動ロールでもある。鋳造方向に隣り合う鋳片支持ロールの間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(以下、「二次冷却水」ともいう)によって鋳片12は引抜かれながら冷却されて内部の未凝固部14が減少し、凝固シェル13が成長するようにして鋳造を行う。タンディッシュ2の底部には、溶鋼11の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。
 鋳片支持ロールの下流側には、鋳造された鋳片12を搬送するための複数の搬送ロール9が設置されており、この搬送ロール9の上方には、鋳造される鋳片12から所定の長さのスラブ鋳片12aを切断するための鋳片切断機10が配置されている。鋳片12の凝固完了位置15を挟んで鋳造方向の前後には、対向するガイドロール7のロール間隔を鋳造方向下流に向かって段階的に狭くなるように設定された、つまり、ロール勾配が施された、複数対のガイドロール群から構成される軽圧下帯17が設置されている。
 軽圧下帯17では、その全域または一部選択した領域で、鋳片12に軽圧下を行うことができる。本実施形態では、鋳片12の厚み中心部の固相率が少なくとも0.2から0.9になるまでの鋳片12が、軽圧下帯17の設置範囲内に入るように、軽圧下帯17が設置されている。
 軽圧下帯17における圧下勾配は、鋳造方向1mあたりのロール開度絞り込み量、つまり「mm/m」で表示されており、軽圧下帯17における鋳片12の圧下速度(mm/min)は、この圧下勾配(mm/m)と鋳造速度(m/min)との積で求められる。軽圧下帯17を構成する各鋳片支持ロール間にも鋳片12を冷却するためのスプレーノズルが配置されている。図1には、軽圧下帯17にはガイドロール7だけが配置された例を示しているが、軽圧下帯17にピンチロール8を配置しても構わない。軽圧下帯17に配置される鋳片支持ロールは「圧下ロール」ともいう。
 鋳型5の下端から鋳片12の液相線クレータエンド位置との間に配置されるガイドロール7の開度は、鋳造方向下流側に向かってロール開度の拡大量が所定値となるまで、1ロール毎または数ロール毎に順次ロール開度が広くなっている。これらガイドロール7によって、内部に未凝固部14を有する鋳片12の長辺面を強制的にバルジングさせるための強制バルジング帯16が構成される。強制バルジング帯16の下流側の鋳片支持ロールは、ロール開度が一定値または鋳片12の温度降下に伴う収縮量に見合う程度に狭められ、その後、軽圧下帯17につながっている。
 図2は、ロール開度のプロファイルの一例を示す図である。図2に示すように、強制バルジング帯16で鋳片長辺面を溶鋼静圧によって強制的にバルジングさせて鋳片長辺面の中央部の厚みを増大させ(領域b)、強制バルジング帯16を通りすぎた下流側では、ロール開度が一定値または鋳片12の温度降下に伴う収縮量に見合う程度に狭められ(領域c)、その後、軽圧下帯17で鋳片長辺面を圧下する(領域d)というプロファイルにしている。図2中のa及びeは、ロール開度が鋳片12の温度降下に伴う収縮量に見合う程度に狭められる領域である。図2中のa′は、鋳片12の温度降下に伴う収縮量に見合う程度にロール開度を狭くした、軽圧下を実施しない鋳造方法(従来方法)におけるロール開度の例である。
 強制バルジング帯16では、ガイドロール7のロール開度を鋳造方向下流側に向かって順次広くすることにより、鋳片12の短辺近傍を除く長辺面は、未凝固部14による溶鋼静圧によってガイドロール7のロール開度に倣って強制的にバルジングさせられる。鋳片長辺面の短辺近傍は、凝固の完了した鋳片短辺面に固持されることから、強制的なバルジングを開始した時点の厚みを維持しており、したがって、鋳片12は、強制的なバルジングによって鋳片長辺面のバルジングした部分のみがガイドロール7に接触することになる。
 図3は、スラブ連続鋳造用機に設置される鋳型の一部を構成する鋳型長辺銅板の概略側面図である。図3に示す鋳型5は、スラブ鋳片を鋳造するための連続鋳造用鋳型の一例である。鋳型5は、一対の鋳型長辺銅板5a(以後、「鋳型銅板」ともいう)と一対の鋳型短辺銅板とを組み合わせて構成される。図3は、そのうちの鋳型長辺銅板5aを示している。鋳型短辺銅板も鋳型長辺銅板5aと同様に、その内壁面側に異熱伝導金属充填部19が設けられるとして、ここでは、鋳型短辺銅板についての説明は省略する。但し、鋳片12においては、スラブ厚みに対してスラブ幅が極めて大きいという形状に起因して、鋳片長辺面側の凝固シェル13で応力集中が起こりやすく、鋳片長辺面側で表面割れが発生しやすい。したがって、スラブ鋳片用の鋳型5の鋳型短辺銅板には、異熱伝導金属充填部19を設けなくてもよい。
 図3に示すように、鋳型長辺銅板5aの定常鋳込み時のメニスカス位置18より少なくとも20mm離れた上方のQ位置から、メニスカス位置18より少なくとも50mm以上、多くとも200mm以下離れた下方のR位置まで、の内壁面の範囲には、鋳型長辺銅板5aの熱伝導率に対してその熱伝導率差の比率が20%以上である金属もしくは金属合金(以下、「異熱伝導金属」という)が充填された円形の異熱伝導金属充填部19が、鋳型幅方向長さWの範囲に千鳥状に設けられている。「メニスカス」とは「鋳型内溶鋼湯面」を意味する。
 異熱伝導金属充填部19は、鋳型銅板の内壁面側にそれぞれ独立して加工された円形凹溝の内部に、鋳型銅板を構成する銅合金の熱伝導率とは異なる熱伝導率の異熱伝導金属が充填されて形成されたものである。
 円形凹溝の内部に、鋳型銅板を構成する銅合金の熱伝導率とは異なる異熱伝導金属を充填する手段としては、鍍金処理または溶射処理を適用することが好ましい。円形凹溝の形状に合わせて加工した異熱伝導金属を円形凹溝に嵌め込むなどして充填してもよいが、その場合には、異熱伝導金属と鋳型銅板との間に隙間や割れが生じることがある。異熱伝導金属と鋳型銅板との間に隙間や割れが生じた場合には、異熱伝導金属の亀裂や剥離が生じ、鋳型寿命の低下、鋳片の割れ、更には拘束性ブレークアウトの原因となるので好ましくない。異熱伝導金属を鍍金処理または溶射処理で充填することで、このような問題を未然に防止できる。
 本実施形態において、鋳型銅板として使用する銅合金としては、一般的に連続鋳造用鋳型として使用されるクロム(Cr)やジルコニウム(Zr)などを微量添加した銅合金を用いてよい。近年では、鋳型内の凝固の均一化または溶鋼中介在物の凝固シェルへの捕捉を防止するために、鋳型内の溶鋼を攪拌する電磁攪拌装置が設置されていることが一般的であり、電磁コイルから溶鋼への磁場強度の減衰を抑制するために導電率を低減した銅合金を用いてもよい。この場合、導電率の低下に応じて熱伝導率も低減するので、鋳型銅板の熱伝導率は、純銅(熱伝導率;約400W/(m×K))の1/2前後になる。鋳型銅板として使用される銅合金は、一般的に、純銅よりも熱伝導率が低い。
 図4は、鋳型銅板よりも熱伝導率の低い金属が充填されて形成された異熱伝導金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、異熱伝導金属充填部の位置に対応して概念的に示す図である。図4に示すように、異熱伝導金属充填部19の設置位置では熱抵抗が相対的に高くなる。
 複数の異熱伝導金属充填部19を、メニスカス位置18を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設けることで、図4に示すように、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する分布が形成される。
 鋳型銅板よりも熱伝導率の高い金属を充填して異熱伝導金属充填部19を形成した場合には、図4とは異なり、異熱伝導金属充填部19の設置位置で熱抵抗が相対的に低くなるが、この場合も、上記と同様に、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。上述したような熱抵抗の周期的な分布を形成させるには、異熱伝導金属充填部19どうしがそれぞれ独立していることが好ましい。
 この熱流束の周期的な増減により、凝固シェル13の相変態(例えば、δ鉄からγ鉄への変態)による応力や熱応力が低減し、これらの応力によって生じる凝固シェル13の変形が小さくなる。凝固シェル13の変形が小さくなることで、凝固シェル13の変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面における表面割れの発生が抑制される。
 凝固初期の熱流束の周期的な増減により、鋳型内における凝固シェル13の厚みが、鋳片の幅方向のみならず鋳造方向でも均一化される。鋳型内における凝固シェル13厚みが均一化することで、鋳型5から引き抜かれた後の鋳片12の凝固シェル13の凝固界面は、鋳片の最終凝固部においても鋳片の幅方向及び鋳造方向で平滑になる。
 但し、これらの効果を安定して得るためには、異熱伝導金属充填部19を設置したことによる熱流束の周期的な増減が適正でなければならない。つまり、熱流束の周期的な増減の差が小さすぎれば、異熱伝導金属充填部19を設置した効果が得られず、逆に、熱流束の周期的な増減の差が大きすぎれば、これに起因して発生する応力が大きくなり、この応力で表面割れが発生する。
 異熱伝導金属充填部19を設置したことによる熱流束の増減の差は、鋳型銅板と異熱伝導金属との熱伝導率差と、異熱伝導金属充填部19が配置された領域の鋳型銅板の内壁面の面積に対する全ての異熱伝導金属充填部19の面積の総和の比である面積率と、に依存する。
 本実施形態に係る鋼の連続鋳造方法で使用する鋳型銅板では、円形凹溝に充填する異熱伝導金属の熱伝導率をλとしたとき、鋳型銅板の熱伝導率(λ)に対する異熱伝導金属の熱伝導率(λ)の差の比率((|λ-λ|/λ)×100)が20%以上である金属もしくは金属合金を使用する。鋳型銅板を構成する銅合金の熱伝導率(λ)に対する差の比率が20%以上である金属もしくは金属合金を使用することで、異熱伝導金属充填部19による熱流束の周期的な変動の効果が十分となり、鋳片表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時においても、鋳片の表面割れ抑制効果が十分に得られる。鋳型銅板の熱伝導率および異熱伝導金属の熱伝導率は、常温(約20℃)の熱伝導率である。熱伝導率は、一般的に、高温になるほど小さくなるが、常温での鋳型銅板の熱伝導率に対する異熱伝導金属の熱伝導率の差の比率が20%以上であれば、連続鋳造鋳型としての使用温度(200~350℃程度)であっても、異熱伝導金属充填部19を設置した部位の熱抵抗と、異熱伝導金属充填部19を設置していない部位の熱抵抗と、に差を生じさせることができる。
 本実施形態に係る鋼の連続鋳造方法で使用する鋳型銅板では、異熱伝導金属充填部19が形成された範囲内の鋳型銅板内壁面の面積A(A=(Q+R)×W、単位;mm)に対する、全ての異熱伝導金属充填部19の面積の総和B(mm)の比である面積率ε(ε=(B/A)×100)が10%以上80%以下になるように、異熱伝導金属充填部19を設けている。この面積率εを10%以上とすることで、熱流束の異なる異熱伝導金属充填部19の占める面積が確保され、異熱伝導金属充填部19と鋳型銅板とで熱流束差が得られ、鋳片の表面割れ抑制効果を得ることができる。一方、面積率εが80%を超えると、異熱伝導金属充填部19の部位が多くなりすぎて、熱流束の変動の周期が長くなるので、鋳片の表面割れ抑制効果が得られにくくなる。
 このため、面積率εが30%以上60%以下になるように異熱伝導金属充填部19を設けることがより好ましく、面積率εが40%以上50%以下になるように異熱伝導金属充填部19を設けることがさらに好ましい。
 異熱伝導金属は、鋳型銅板の熱伝導率(λ)に対する充填金属の熱伝導率(λ)の差の比率が20%以上であれば、特に、その種類を特定しなくてよい。参考までに充填金属として使用可能な金属を挙げれば、純ニッケル(Ni、熱伝導率;90W/(m×K))、純クロム(Cr、熱伝導率;67W/(m×K))、純コバルト(Co、熱伝導率;70W/(m×K))、及び、これらの金属を含有する合金などが好適である。これらの純金属や合金は、銅合金よりも熱伝導率が低く、鍍金処理や溶射処理によって容易に円形凹溝に充填することができる。銅合金よりも熱伝導率が高い純銅を、円形凹溝に充填使用する金属として使用してもよい。例えば、純銅を充填金属として使用した場合には、異熱伝導金属充填部19を設置した部位の方が鋳型銅板の部位よりも熱抵抗が小さくなる。
 図5は、凹溝の形状の例を示す図である。図3及び図4では、凹溝の形状が図5(a)に示すような円形である例を示したが、凹溝は円形でなくてもよい。例えば、凹溝は、図5(b)に示すような楕円であってもよく、図5(c)に示すような角部を円とした正方形または長方形であってもよく、図5(d)に示すようなドーナツ形であってもよい。図5(e)に示すような三角形であってもよく、図5(f)に示すような台形であってもよく、図5(g)に示すような5角形であってもよく、図5(h)に示すような金平糖形であってもよい。これら凹溝に、凹溝の形状に対応した形状の異熱伝導金属充填部が設置される。
 凹溝の形状は、図5(a)に示すような円形または(b)~(d)に示すような「角」を有していない形状であることが好ましいが、図5(e)~(h)に示すような「角」を有する形状であってもよい。凹溝の形状を「角」を有していない形状にすることで、異熱伝導金属と鋳型銅板との境界面が曲面になり、境界面で応力が集中しにくく、鋳型銅板表面に割れが発生しにくくなる。
 本実施形態においては、これらの凹溝の形状のうち、例えば、図5(b)~(h)に示す円形でない形状を擬似円形とする。凹溝の形状が擬似円形の場合には、鋳型銅板の内壁面に加工される凹溝を、「擬似円形凹溝」という。擬似円形における半径は、擬似円形の面積と同一の面積の円の半径である円相当半径rで評価する。擬似円形の円相当半径rは、下記の(4)式で算出される。
 円相当半径r=(Sma/π)1/2・・・(4)
 但し、(4)式において、Smaは擬似円形凹溝の面積(mm)である。
 図6は、異熱伝導金属充填部が設けられた領域の部分拡大図である。図6に示すように、本実施形態の鋳型銅板においては、円形の異熱伝導金属充填部19が千鳥状に設けられている。ここで、千鳥状に設けるとは、異熱伝導金属充填部19の半ピッチの位置に交互に異熱伝導金属充填部19を設けることを意味する。
 図6において、19aを1の異熱伝導金属充填部とし、19bを他の異熱伝導金属充填部とする。異熱伝導金属充填部19aと異熱伝導金属充填部19bとは、その重心が鋳型銅板の幅方向に同じ位置に設けられ、鋳造方向に互いに隣り合う位置に設けられている。ここで、異熱伝導金属充填部19の重心とは、鋳型銅板の溶鋼側平面における異熱伝導金属充填部19の断面形状の重心である。
 鋳造方向における異熱伝導金属充填部19aの鋳型銅板との境界線から異熱伝導金属充填部19bの鋳型銅板との境界線までの距離をD1(mm)とすると、異熱伝導金属充填部19は、距離D1が下記(1)式を満足するように鋳型銅板の内壁面に設けられている。
 D1≦F=Vc×1000/f・・・(1)
 但し、(1)式において、Vcは、鋳造速度(m/min)、fは、オシレーション振動数(cpm)、Fは、オシレーションマークピッチ(mm)である。
 このように、鋳造方向における異熱伝導金属充填部19の鋳型銅板との境界線の間隔、すなわち、鋳造方向における異熱伝導金属充填部19どうしの間隔がオシレーションマークのピッチよりも小さい間隔になるように、異熱伝導金属充填部19を鋳型銅板に設ける。これにより、オシレーションマークのピッチ1回分の間に少なくとも1回は、熱流速が増減する部分を存在させることができるので、オシレーションマークの形成時に生成する爪を意図的に短いピッチで緩冷却することで爪の変形に起因する不均一な熱流速が均一化され、個々の歪量が小さくなる。この結果、爪の倒れこみが抑制されてオシレーションマークの深さを浅くでき、鋳造方向の凝固シェル13の厚みを均一にできる。初期の凝固シェル13の厚みを均一にすることで、中心偏析を形成する最終凝固部での凝固界面が平滑化し、これにより、偏析を形成するスポットも減少するので内部品質が改善する。オシレーションマークの深さを浅くすることで、オシレーションマークを起点とした横割れも抑制できる。
 異熱伝導金属充填部19は、距離D1が下記(3)式を満足するように鋳型長辺銅板5aの内壁面に設けられている。
 D1≦2r・・・(3)
 但し、(3)式において、rは、異熱伝導金属充填部19の半径(mm)または円相当半径(mm)である。
 このように、鋳造方向における異熱伝導金属充填部19の間隔が異熱伝導金属充填部19の半径または円相当半径の2倍以下になるように、異熱伝導金属充填部19を鋳型銅板に設ける。これにより、鋳造方向に満遍なく熱流速差を与えることができ、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束を周期的に増減させることができ、個々の歪量を小さくできる。
 図6において、19aを1の異熱伝導金属充填部とし、19cを他の異熱伝導金属充填部とする。異熱伝導金属充填部19aと異熱伝導金属充填部19cとは、その重心が鋳造方向に対して同じ位置に設けられ、鋳型銅板の幅方向に互いに隣り合う位置に設けられている。ここで、異熱伝導金属充填部19aの重心から異熱伝導金属充填部19cの重心までの距離をD2(mm)とすると、異熱伝導金属充填部19は、距離D2が、下記(2)式を満足するように、鋳型長辺銅板5aの内壁面に設けられている。
 D2≦4r・・・(2)
 但し、(2)式において、rは、異熱伝導金属充填部19の半径(mm)または円相当半径(mm)である。
 このように、異熱伝導金属充填部19aの重心から異熱伝導金属充填部19cの重心までの距離が、異熱伝導金属充填部19の半径の4倍以下になるように異熱伝導金属充填部19を鋳型銅板に設ける。これにより、異熱伝導金属充填部19によって形成される熱流速が増減する部分を不均一に凝固する凝固シェル先端部の凝固揺らぎの空間周期よりも短いピッチで存在させることができ、凝固初期における凝固シェル13の変形を小さくさせ、個々の歪み量も小さくなり、凝固シェル表面の割れを抑制できる。
 図7は、異熱伝導金属充填部の配置の他の例を示す図である。図7においては、円形の異熱伝導金属充填部20が、格子状に鋳型銅板の内壁面に設けられている。ここで、異熱伝導金属充填部20を格子状に設けるとは、鋳造方向の幅が一定であって鋳型幅方向に平行な平行線群と、鋳型幅方向の幅が一定であって鋳造方向に平行な平行線群の交点となる位置に異熱伝導金属充填部20を設けることを意味する。
 図7において、20aを1の異熱伝導金属充填部とし、20b、20cを他の異熱伝導金属充填部とする。異熱伝導金属充填部20aと異熱伝導金属充填部20bとは、その重心が鋳型銅板の幅方向に対して同じ位置に設けられ、鋳造方向に互いに隣り合った位置に設けられている。異熱伝導金属充填部20aと異熱伝導金属充填部20cとは、その重心が鋳造方向に対して同じ位置に設けられ、鋳型銅板の幅方向に互いに隣り合った位置に設けられている。
 図7において、距離D1は、鋳造方向に沿った距離であって、異熱伝導金属充填部20aと鋳型銅板との境界線から、異熱伝導金属充填部20bと鋳型銅板との境界線までの距離であり、距離D2は、異熱伝導金属充填部20aの重心から異熱伝導金属充填部20cの重心までの距離である。図7において、異熱伝導金属充填部20は、上記(1)式、(2)式および(3)式を満足するように、鋳型長辺銅板5aの内壁面に設けられる。
 このように、異熱伝導金属充填部を鋳型銅板に格子状に設けてもよく、格子状に異熱伝導金属充填部を設けた場合においても、上記(1)式を満足することで、爪の倒れこみが抑制されてオシレーションマークの深さを浅くでき、異熱伝導金属充填部を千鳥状に設けた場合と同様の効果が得られる。
 本実施形態では、鋳型銅板に設けられた凹溝の形状が全て同じ円形である例を示したが、これに限られない。少なくとも上述した面積率が10%以上80%以下であって(1)式、(2)式を満足すれば、凹溝の形状は全て同じでなくてもよい。
 異熱伝導金属充填部19が設けられた鋳型と、意図的に鋳片を0mm超え20mm以下バルジングさせ、さらに中心部の固相率が0.2以上0.9以下の鋳片を、圧下速度(mm/min)と鋳造速度(m/min)の積(m・mm/min)が0.30以上1.00以下に相当する圧下力で、意図的にバルジングさせたときの鋳片の膨らみ量と同等かそれよりも小さい量を軽圧下する方法と、を組み合わせると、さらに鋳片の内部品質を改善することができる。
 本実施形態では、強制バルジング帯16の強制的なバルジングの総量(以後、「総バルジング量」という)を、鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲としている。本実施形態では、鋳型内における初期凝固を制御し、鋳片12の最終凝固部においても凝固界面が鋳片の幅方向及び鋳造方向で平滑にできるので、軽圧下による圧下力が凝固界面に均等に作用し、これにより、総バルジング量が0mm超え20mm以下であっても、中心偏析を軽減できる。
 軽圧下帯17では、少なくとも鋳片の厚み中心部の固相率が0.2の時点から0.9になる時点まで、鋳片12を圧下している。中心部の固相率が0.2未満の時期での圧下では、圧下直後の圧下位置での鋳片の未凝固部の厚みが厚いため、その後の凝固の進行とともに、再び中心偏析が発生する。中心部の固相率が0.9を超える時期に圧下する場合には、偏析成分の濃化した溶鋼が排出されにくく、中心偏析の改善効果が少なくなる。圧下時の鋳片の凝固シェル13の厚みが厚く、圧下力が十分厚み中心部にまで達しないためである。さらに、中心部固相率が0.9を超え、圧下量が大きい場合には、前述するように、厚み中心部近傍に正偏析が発生する。したがって、中心部固相率が0.2以上0.9以下の鋳片の位置を圧下する。当然ではあるが、鋳片厚み中心部の固相率が0.2になる以前、及び、鋳片厚み中心部の固相率が0.9を超えた以降も、軽圧下帯17で鋳片12を圧下してもよい。
 鋳片厚み中心部の固相率は、二次元伝熱凝固計算によって求めることができる。ここで、固相率とは、鋼の液相線温度以上で固相率=0、鋼の固相線温度以下で固相率=1.0と定義されるものであり、鋳片厚み中心部の固相率が1.0となる位置が凝固完了位置15であり、当該凝固完了位置15は、鋳片が下流側へ移動しながら鋳片厚み中心部の固相率が1となる最も下流側の位置に該当する。
 本実施形態において、軽圧下帯17における鋳片12の圧下量の総量(以後、「総圧下量」という)を、総バルジング量と同等または総バルジング量よりも小さくしている。総圧下量を総バルジング量と同等または総バルジング量よりも小さくすることで、鋳片12の短辺側の厚み中心部までの凝固が完了した部分は圧下されず、軽圧下帯17を構成するガイドロール7の負荷荷重が軽減され、ガイドロール7のベアリング破損や折損などの設備トラブルを抑制できる。
 本実施形態では、軽圧下帯17で軽圧下する際の圧下速度と鋳造速度との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を鋳片の長辺面に付与している。0.30よりも小さな圧下量による圧下では、圧下後の圧下位置での鋳片の未凝固部の厚みが厚く、偏析成分の濃化した溶鋼がデンドライト樹間から十分排出されないので、圧下後に再び中心偏析が発生する。1.00を超える圧下量を圧下する場合には、デンドライト樹間に存在する偏析成分の濃化した溶鋼のほとんど全てが、絞り出されて鋳造方向の上流側に排出されるが、未凝固部の厚みが薄いために、圧下位置より鋳造方向のやや上流側の鋳片の厚み方向の両側の凝固殻に捕捉され、これにより、鋳片の厚み中心部近傍に正偏析が発生する。
 鋳片の中心部の中心偏析および中心部近傍の正偏析の発生防止に対する軽圧下の効果には、鋳片の凝固組織の影響もあり、未凝固部に接する部分の凝固組織が等軸晶の場合には、等軸晶間にセミマクロ偏析の原因となる濃化溶鋼が存在し、圧下による効果が少ない。したがって、凝固組織を等軸晶ではなく、柱状晶組織とすることが望ましい。
 本実施形態では、連続鋳造操業の種々の鋳造条件において、予め二次元伝熱凝固計算などを用いて凝固シェル11の厚み及び鋳片厚み中心部の固相率を求め、少なくとも、鋳片厚み中心部の固相率が0.2の時点から0.9になる時点まで、軽圧下帯14で鋳片10を圧下できるように、二次冷却水量、二次冷却の幅切り、鋳造速度のうちのいずれか1種または2種以上を調整する。ここで、「二次冷却の幅切り」とは、鋳片長辺面の両端部への冷却水の噴射を中止することである。二次冷却の幅切りを実施することで、二次冷却は弱冷化され、一般的に、凝固完了位置13は鋳造方向下流側に延長される。
 以上説明したように、本実施形態に係る鋼の連続鋳造方法を実施することで、凝固初期の凝固シェルの不均一冷却による鋳片の表面割れを防止することができると同時に、オシレーションピッチの深さも浅くすることができる。オシレーションピッチを浅くして初期の凝固シェル13の表面を均一にすることで最終凝固部での凝固界面も平滑化され、さらに意図的なバルジング及び軽圧下することで、当該圧下力を凝固界面に均等に作用させることができ、鋳片の厚み中心部に発生する中心偏析を抑制することができる。これにより、高品質の鋳片を安定して製造することが実現される。
 上記説明はスラブ鋳片の連続鋳造に関して行ったが、本実施形態に係る鋼の連続鋳造方法はスラブ鋳片の連続鋳造に限定されるものではなく、ブルーム鋳片やビレット鋳片の連続鋳造においても上記に沿って適用することができる。
 中炭素鋼(化学成分、C:0.08~0.17質量%、Si:0.10~0.30質量%、Mn:0.50~1.20質量%、P:0.010~0.030質量%、S:0.005~0.015質量%、Al:0.020~0.040質量%)を、内壁面に種々の条件で金属を配置した水冷銅鋳型を用い、且つ、強制バルジング帯における総バルジング量及び軽圧下帯における圧下速度と鋳造速度との積を種々変更して鋳造し、鋳造後の鋳片の表面割れおよび内部品質(中心偏析)を調査する試験を行った。
 軽圧下帯における圧下速度と鋳造速度との積は、0.28~0.90mm・m/minとし、いずれの試験も、軽圧下帯では、鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで鋳片を圧下した。鋳片を強制バルジング帯で強制的にバルジングさせた場合の総圧下量は、総バルジング量と同等または総バルジング量よりも小さくした。鋳片を強制バルジング帯でバルジングさせない試験では、軽圧下帯では鋳片短辺側の凝固完了位置も圧下した。
 使用した鋳型は、長辺長さが2.1m、短辺長さが0.26mの内面空間サイズを有する鋳型である。使用した水冷銅鋳型の上端から下端までの長さ(=鋳型長)は950mmであり、定常鋳造時のメニスカス(鋳型内溶鋼湯面)の位置を、鋳型上端から100mm下方位置に設定した。本実施形態に係る鋼の連続鋳造方法の効果を把握するために以下の条件の鋳型を作成し比較試験を行なった。いずれの鋳型も異熱伝導金属として、鋳型銅板の熱伝導率よりも熱伝導率が低い金属を使用した。異熱伝導金属充填部19の形状はφ6mmの円形状である。当該鋳造条件において、オシレーションマークピッチは13mmであった。
 鋳型1:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲(範囲長さ=220mm)に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を12mmとした。
 鋳型2:鋳型上端より190mm下方の位置から鋳型上端より750mm下方の位置までの範囲(範囲長さ=670mm)に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を12mmとした。
 鋳型3:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を15mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を12mmとした。
 鋳型4:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を15mmとした。
 鋳型5:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を15%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を12mmとした。
 鋳型6:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは5%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2を12mmとした。
 鋳型7:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは85%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19どうしの重心間の距離D2を12mmとした。
 鋳型8:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を格子状に充填して、異熱伝導金属充填部を設置した。異熱伝導金属充填部の面積率εは50%とした。鋳造方向における異熱伝導金属充填部19どうしの距離D1を6mmとし、鋳型幅方向における異熱伝導金属充填部19どうしの重心間の距離D2を12mmとした。
 鋳型9:異熱伝導金属充填部19を設けていない鋳型である。
 連続鋳造操業においては、モールドパウダーとして、塩基度((質量%CaO)/(質量%SiO))が1.1、凝固温度が1090℃、1300℃における粘性率が0.15Pa・sのモールドパウダーを使用した。凝固温度とは、溶融モールドパウダーの冷却途上で、モールドパウダーの粘性率が急激な増加を示す温度である。定常鋳造時での鋳型内のメニスカス位置は、鋳型上端から100mm下方位置とし、鋳造中、メニスカスが設置範囲内に存在するようにメニスカス位置を制御した。定常鋳造時の鋳造速度は1.7~2.2m/minとし、鋳片の表面割れ及び内質を調査する鋳片は、全ての試験で、定常鋳造時の鋳造速度が2.0m/minの鋳片を対象とした。タンディッシュ内の溶鋼過熱度は25~35℃とした。鋳型の温度管理として、熱電対を鋳型のメニスカス下50mmの位置に表面(溶鋼側の面)から5mmの深さ位置に背面から埋め込み、熱電対による銅板温度の測定値から鋳型の表面温度を推定した。
 連続鋳造が終了した後、鋳片長辺の表面を酸洗してスケールを除去し、表面割れの発生数を測定した。鋳片表面割れの発生状況は、検査対象の鋳片の鋳造方向長さを分母とし、表面割れが発生した部位の鋳片の鋳造方向長さを分子として算出した値を用いて評価した。鋳片内質(中心偏析)の評価については、鋳片の横断面サンプルを採取し、横断面サンプルの鏡面研磨面の鋳片中心部分±10mmの範囲で、EPMAによりMn濃度を100μm毎に測定し、偏析度を評価した。具体的には、偏析が生じていないであろう端部のMn濃度(C)と中心部分±10mmにおけるMn濃度の平均値(C)との比(C/C)をMn偏析度と定義して評価した。
 これらの検討とは別に、各試験水準での条件で、凝固シェル厚みの不均一度σ(mm)の測定を行なった。凝固シェル厚みの不均一度の測定は、鋳型内溶鋼にFeS(硫化鉄)粉を投入し、得られた鋳片の断面からサルファプリントをとることで凝固シェル厚みを測定した。凝固シェル厚みの測定は、鋳型の幅方向1/4の位置でメニスカスの位置から200mm下方の位置まで、5mmピッチで40点行なった。σの算出は、下記(5)式に従い算出した。
Figure JPOXMLDOC01-appb-M000001
 
 但し、(5)式において、Dは、凝固シェル厚みの実測値(mm)であり、Diは、凝固シェル厚と凝固時間との関係を規定した近似式を用いて、凝固シェル厚みを測定した位置のメニスカスからの距離に対応する凝固時間を用いて算出された凝固シェル厚みの計算値(mm)である。Nは、測定数であり、本実施例においては40になる。
 表1に、試験水準1~14の各試験の試験条件及び鋳片の表面および内部の品質の調査結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 試験水準1、8、9、10、11、13は、鋳型表面の異熱伝導充填部の設置条件が本発明の範囲内である。いずれも、表面割れ比率は大幅に改善された。凝固シェル厚みの不均一度も0.30以下になり、凝固シェルの厚みを均一にできた。しかし、試験水準1については、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内でないので、軽微であるが中心偏析が確認された。その他の水準については、中心偏析も改善される結果となった。
 試験水準2では、異熱伝導充填部を設置した範囲が下方にずれたものであり、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。このため、試験水準2では、鋳片に微細な表面割れが発生し、従来と比較して表面割れの低減効果は確認できなかった。凝固シェル厚みの不均一度も0.38と大きくなり、中心偏析についても改善効果を確認できなかった。
 試験水準3では、鋳造方向における距離D1が長く、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。試験水準3では、鋳片の表面割れは改善したが、凝固シェル厚みの不均一度が0.37と大きくなり、中心偏析についても改善効果を確認できなかった。
 試験水準4では、鋳型幅方向における距離D2が長く、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。試験水準4では、鋳片の表面割れが確認され、表面割れの改善効果は確認されなかった。凝固シェル厚みの不均一度も0.31と若干大きくなり、中心偏析についても軽微ながら確認された。
 試験水準5は、異熱伝導金属の熱伝導率の差の比率が20%より低く、試験水準6は、異熱伝導金属充填部の面積率が10%よりも低く、試験水準7は、異熱伝導金属充填部の面積率が80%よりも高い。このため、これら試験水準5~7では、鋳片の表面割れが確認され、表面割れの改善効果は確認されなかった。凝固シェル厚みの不均一度も0.31~0.33と若干大きくなり、中心偏析についても軽微ながら確認された。
 試験水準12は、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内であるが、鋳造方向における距離D1が長い。試験水準12では、鋳片の表面割れおよび中心偏析は改善したが、凝固シェル厚みの不均一度が0.37と大きくなった。試験水準14は、異熱伝導金属充填部を設けていないので、鋳片の表面割れが確認された。凝固シェル厚みの不均一度も0.32と若干大きくなり、中心偏析も確認された。
 1   スラブ連続鋳造機
 2   タンディッシュ
 3   スライディングノズル
 4   浸漬ノズル
 5   鋳型
 5a  鋳型長辺銅板
 6   サポートロール
 7   ガイドロール
 8   ピンチロール
 9   搬送ロール
 10  鋳片切断機
 11  溶鋼
 12  鋳片
 12a スラブ鋳片
 13  凝固シェル
 14  未凝固部
 15  凝固完了位置
 16  強制バルジング帯
 17  軽圧下帯
 18  メニスカスの位置
 19  異熱伝導金属充填部
 19a 1の異熱伝導金属充填部
 19b 他の異熱伝導金属充填部
 19c 他の異熱伝導金属充填部
 20  異熱伝導金属充填部
 20a 1の異熱伝導金属充填部
 20b 他の異熱伝導金属充填部
 20c 他の異熱伝導金属充填部

Claims (7)

  1.  連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら前記溶鋼を引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、
     連続鋳造用鋳型は、定常鋳込み状態のメニスカスより上方へ少なくとも20mmの位置から前記メニスカスより下方へ少なくとも50mm以上、多くとも200mm以下の位置までの鋳型銅板の内壁面に設けられた複数の凹溝を有し、
     前記複数の凹溝の内部には、前記鋳型銅板の熱伝導率に対して熱伝導率差の比率が20%以上である金属もしくは金属合金が充填された複数の異熱伝導金属充填部が設けられ、前記複数の異熱伝導金属充填部が設けられた前記内壁面の面積に対する全ての異熱伝導金属充填部の面積の総和の比である面積率が10%以上80%以下であり、
     オシレーション振動数(f)と鋳造速度(Vc)とで導かれるオシレーションマークピッチ(F)及び距離(D1)が下記(1)式を満足し、距離(D2)が下記(2)式を満足する、鋼の連続鋳造方法。
     D1≦F=Vc×1000/f・・・(1)
     D2≦4r         ・・・(2)
     但し、(1)式において、
     Vcは、鋳造速度(m/min)であり、
     fは、オシレーション振動数(cpm)であり、
     Fは、オシレーションマークピッチ(mm)であり、
     D1は、複数のうちの1の異熱伝導金属充填部の重心と前記鋳型銅板の幅方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に鋳造方向で隣り合う他の異熱伝導金属充填部と前記鋳型銅板との境界線から、前記1の異熱伝導金属充填部と前記鋳型銅板との境界線までの距離(mm)であり、
     (2)式において、
     rは、前記異熱伝導金属充填部の重心を中心とし、前記異熱伝導金属充填部の面積と同一の面積の円の半径(mm)であり、
     D2は、前記1の異熱伝導金属充填部の重心と鋳造方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に前記幅方向で隣り合う他の異熱伝導金属充填部の重心から、前記1の異熱伝導金属充填部の重心まで、の距離(mm)である。
  2.  前記複数の異熱伝導金属充填部は、前記距離(D1)が下記の(3)式を満足するように設けられる、請求項1に記載の鋼の連続鋳造方法。
     D1≦2r・・・(3)
  3.  前記複数の凹溝の形状は全て同じである、請求項1または請求項2に記載の鋼の連続鋳造方法。
  4.  前記複数の凹溝の形状は円形または角のない擬似円形である、請求項1から請求項3の何れか一項に記載の鋼の連続鋳造方法。
  5.  前記複数の異熱伝導金属充填部は格子状に設けられる、請求項1から請求項4の何れか一項に記載の鋼の連続鋳造方法。
  6.  前記複数の異熱伝導金属充填部は千鳥状に設けられる、請求項1から請求項4の何れか一項に記載の鋼の連続鋳造方法。
  7.  連続鋳造機に設けられた複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることで、内部に未凝固層を有する鋳片の長辺面を鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲の総バルジング量で拡大させ、
     その後、前記複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させた軽圧下帯で、前記鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで、圧下速度(mm/min)と鋳造速度(m/min)との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を前記鋳片の長辺面に付与し、前記圧下力によって前記総バルジング量と同等の総圧下量または前記総バルジング量よりも小さい総圧下量で前記鋳片の長辺面を圧下する、請求項1から請求項6の何れか一項に記載の鋼の連続鋳造方法。
PCT/JP2017/009906 2016-09-21 2017-03-13 鋼の連続鋳造方法 WO2018055799A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019004155-9A BR112019004155B1 (pt) 2016-09-21 2017-09-20 Método de lingotamento contínuo de aço
EP17853092.9A EP3488947B1 (en) 2016-09-21 2017-09-20 Continuous steel casting method
JP2018540270A JP6947737B2 (ja) 2016-09-21 2017-09-20 鋼の連続鋳造方法
CN201780053918.4A CN109689247B (zh) 2016-09-21 2017-09-20 钢的连续铸造方法
KR1020197006411A KR102245010B1 (ko) 2016-09-21 2017-09-20 강의 연속 주조 방법
PCT/JP2017/033955 WO2018056322A1 (ja) 2016-09-21 2017-09-20 鋼の連続鋳造方法
TW106132381A TWI655979B (zh) 2016-09-21 2017-09-21 Steel continuous casting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-183726 2016-09-21
JP2016183726 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018055799A1 true WO2018055799A1 (ja) 2018-03-29

Family

ID=61690210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009906 WO2018055799A1 (ja) 2016-09-21 2017-03-13 鋼の連続鋳造方法

Country Status (6)

Country Link
EP (1) EP3488947B1 (ja)
JP (1) JP6947737B2 (ja)
KR (1) KR102245010B1 (ja)
BR (1) BR112019004155B1 (ja)
TW (2) TWI630961B (ja)
WO (1) WO2018055799A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932586A4 (en) * 2019-04-02 2022-05-04 JFE Steel Corporation PROCESSES FOR CONTINUOUS STEEL CASTING
KR102216880B1 (ko) 2019-04-16 2021-02-18 넷마블 주식회사 커스텀 음성을 제공하는 게임 서버 및 컴퓨터 프로그램
KR20210021501A (ko) 2021-02-10 2021-02-26 넷마블 주식회사 커스텀 음성을 제공하는 게임 서버 및 컴퓨터 프로그램

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002409A1 (ja) * 2012-06-27 2014-01-03 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2014020860A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 鋼の連続鋳造方法
JP2014188521A (ja) * 2013-03-26 2014-10-06 Jfe Steel Corp 連続鋳造用鋳型およびその連続鋳造用鋳型の製造方法
JP2015096277A (ja) * 2013-10-10 2015-05-21 Jfeスチール株式会社 鋼の連続鋳造方法
WO2016067578A1 (ja) * 2014-10-28 2016-05-06 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206555A (en) * 1981-06-16 1982-12-17 Kawasaki Steel Corp Cooling method for water cooled mold for continuous casting of slab
US5176197A (en) * 1990-03-30 1993-01-05 Nippon Steel Corporation Continuous caster mold and continuous casting process
JP2980006B2 (ja) 1995-08-18 1999-11-22 住友金属工業株式会社 連続鋳造方法
JPH0994634A (ja) 1995-09-29 1997-04-08 Kawasaki Steel Corp 連続鋳造用水冷鋳型
JP3055453B2 (ja) 1996-01-29 2000-06-26 住友金属工業株式会社 連続鋳造方法
JPH09276994A (ja) * 1996-04-22 1997-10-28 Nippon Steel Corp 連続鋳造用鋳型
JP3380412B2 (ja) 1997-01-07 2003-02-24 新日本製鐵株式会社 溶鋼の連続鋳造用鋳型
JP3402251B2 (ja) 1999-04-06 2003-05-06 住友金属工業株式会社 連続鋳造方法
JP2001105102A (ja) * 1999-10-14 2001-04-17 Kawasaki Steel Corp 連続鋳造用鋳型および連続鋳造方法
CN1256203C (zh) * 2004-07-19 2006-05-17 钢铁研究总院 一种提高连铸坯质量的方法及震动支撑辊装置
JP6003850B2 (ja) * 2013-09-06 2016-10-05 Jfeスチール株式会社 連続鋳造用鋳型の製造方法及び鋼の連続鋳造方法
EP3488946A4 (en) * 2015-07-22 2019-07-03 JFE Steel Corporation CONTINUOUS CASTING METHOD AND METHOD FOR STEELING STEEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002409A1 (ja) * 2012-06-27 2014-01-03 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2014020860A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 鋼の連続鋳造方法
JP2014188521A (ja) * 2013-03-26 2014-10-06 Jfe Steel Corp 連続鋳造用鋳型およびその連続鋳造用鋳型の製造方法
JP2015096277A (ja) * 2013-10-10 2015-05-21 Jfeスチール株式会社 鋼の連続鋳造方法
WO2016067578A1 (ja) * 2014-10-28 2016-05-06 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法

Also Published As

Publication number Publication date
EP3488947B1 (en) 2020-08-19
BR112019004155B1 (pt) 2023-04-11
TWI630961B (zh) 2018-08-01
TW201813740A (zh) 2018-04-16
TW201813739A (zh) 2018-04-16
EP3488947A4 (en) 2019-08-21
JPWO2018056322A1 (ja) 2019-10-17
EP3488947A1 (en) 2019-05-29
JP6947737B2 (ja) 2021-10-13
BR112019004155A2 (pt) 2019-05-28
KR20190029757A (ko) 2019-03-20
KR102245010B1 (ko) 2021-04-26
TWI655979B (zh) 2019-04-11

Similar Documents

Publication Publication Date Title
JP5692451B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6439762B2 (ja) 鋼の連続鋳造方法
WO2018055799A1 (ja) 鋼の連続鋳造方法
WO2016067578A1 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6365604B2 (ja) 鋼の連続鋳造方法
JP6003851B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2018056322A1 (ja) 鋼の連続鋳造方法
JP5962733B2 (ja) 鋼の連続鋳造方法
JP6787359B2 (ja) 鋼の連続鋳造方法
CN109475930B (zh) 连续铸造用铸模及钢的连续铸造方法
JP6428721B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6402750B2 (ja) 鋼の連続鋳造方法
JP6740924B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP2018149602A (ja) 鋼の連続鋳造方法
JP7004085B2 (ja) 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法
JP7020376B2 (ja) 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法
JP2024047886A (ja) 連続鋳造用鋳型及び連続鋳造用鋳型の製造方法
JP2016168610A (ja) 鋼の連続鋳造方法
JP6146346B2 (ja) 鋼の連続鋳造用鋳型および連続鋳造方法
JP5626438B2 (ja) 連続鋳造方法
JP5423715B2 (ja) 連続鋳造方法
JP2024047887A (ja) 連続鋳造用鋳型、連続鋳造用鋳型の製造方法及び鋼の連続鋳造方法
JP5397213B2 (ja) 連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP