WO2018055682A1 - ロボット、モーターユニット、カップリングユニット - Google Patents

ロボット、モーターユニット、カップリングユニット Download PDF

Info

Publication number
WO2018055682A1
WO2018055682A1 PCT/JP2016/077773 JP2016077773W WO2018055682A1 WO 2018055682 A1 WO2018055682 A1 WO 2018055682A1 JP 2016077773 W JP2016077773 W JP 2016077773W WO 2018055682 A1 WO2018055682 A1 WO 2018055682A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hole
screw
fitted
shape
Prior art date
Application number
PCT/JP2016/077773
Other languages
English (en)
French (fr)
Inventor
晃司 川田
村松 啓且
基範 川内
俊 瀬川
真基 西川
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN201680086999.3A priority Critical patent/CN109312835B/zh
Priority to JP2018540524A priority patent/JP6647414B2/ja
Priority to PCT/JP2016/077773 priority patent/WO2018055682A1/ja
Publication of WO2018055682A1 publication Critical patent/WO2018055682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a technique for connecting a screw shaft of a ball screw and an output shaft of a motor.
  • a linear motion mechanism is generally used in which a moving body screwed into a ball screw is moved by driving the ball screw with a motor.
  • a tubular rotating part is built in a motor, and the shaft end of a screw shaft of a ball screw fitted in a hollow part of the rotating part is fixed to the rotating part. And if a motor rotates the rotation part, the screw shaft of a ball screw will rotate with a rotation part.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique that makes it possible to couple a screw shaft of a ball screw and an output shaft of a motor.
  • a robot includes a ball screw having a rotatable screw shaft, a moving body that is screwed to the screw shaft and moves in accordance with the rotation of the screw shaft, a rotatable output shaft, and the output shaft is rotated.
  • a motor that has a shape corresponding to the shape of the shaft end of the screw shaft, a first hole that opens to one side in the thrust direction, and a shape that corresponds to the shape of the shaft end of the output shaft.
  • a second hole that opens to the other side opposite to the one side is formed in the thrust direction, and the shaft end of the screw shaft that is fitted into the first hole and the shaft end of the output shaft that is fitted into the second hole are arranged in the radial direction.
  • the motor unit according to the present invention has a rotatable output shaft, has a shape corresponding to the shape of the shaft end of the screw shaft of the ball screw and the motor that rotates the output shaft, and opens to one side in the thrust direction.
  • a first hole and a second hole having a shape corresponding to the shape of the shaft end of the output shaft and opening to the other side opposite to the one side in the thrust direction are formed in the thrust direction and are fitted into the first hole.
  • a second fixing portion for fixing the output shaft having the shaft end fitted in the second hole to the shaft.
  • the coupling unit according to the present invention has a shape according to the shape of the shaft end of the screw shaft of the ball screw, and according to the shape of the first hole opened to one side in the thrust direction and the shaft end of the output shaft of the motor.
  • a second hole that opens to the other side opposite to one side in the thrust direction is formed in the thrust direction, and is fitted into the shaft end of the screw shaft that is fitted into the first hole and the second hole.
  • the present invention (robot, motor unit, coupling unit) thus configured has a shaft provided with a first hole opened on one side in the thrust direction and a second hole opened on the other side in the thrust direction.
  • the first hole has a shape corresponding to the shape of the shaft end of the screw shaft of the ball screw
  • the second hole has a shape corresponding to the shape of the shaft end of the output shaft of the motor.
  • Such a shaft positions the shaft end of the screw shaft fitted in the first hole and the shaft end of the output shaft fitted in the second hole in the radial direction.
  • the shaft end of the screw shaft fitted in the first hole is fixed to the shaft by the first fixing portion
  • the shaft end of the output shaft fitted in the second hole is fixed to the shaft by the second fixing portion.
  • the screw shaft of the ball screw and the output shaft of the motor can be coupled with each other positioned in the radial direction. In this way, the screw shaft of the ball screw and the output shaft of the motor can be coupled.
  • the screw shaft of the ball screw and the output shaft of the motor can be coupled.
  • FIG. 2 is a partial cross-sectional view showing an internal configuration of the single-axis robot of FIG. 1.
  • the fragmentary sectional view which expands and shows the periphery of a coupling unit.
  • the fragmentary sectional view which expands and shows the periphery of a coupling unit.
  • FIG. 1 is a perspective view showing an external configuration of an example of a single-axis robot according to the present invention.
  • FIG. 2 is a partial cross-sectional view showing the internal configuration of the single-axis robot of FIG.
  • the single-axis robot 1 includes a rectangular housing 11 that is long in the X direction, and a slider 13 that reciprocates in the X direction along the housing 11. Further, the single-axis robot 1 includes a motor 2 attached to the end of the housing 11 in the X direction, and the motor 2 generates a driving force for moving the slider 13.
  • the single-axis robot 1 includes a ball screw 3 and a coupling unit 4 that couples the ball screw 3 to the motor 2 inside the housing 11.
  • the ball screw 3 includes a screw shaft 31 that is arranged parallel to the X direction and is rotatable, and a nut 32 that is screwed onto the screw shaft 31, and the slider 13 is attached to the nut 32.
  • the motor 2 has a rotatable output shaft 21 disposed in parallel with the X direction.
  • the screw shaft 31 of the ball screw 3 is coupled to the output shaft 21 of the motor 2 by the coupling unit 4. Therefore, when the motor 2 rotates the output shaft 21, the screw shaft 31 of the ball screw 3 rotates with the output shaft 21, and the nut 32 moves in the X direction with the slider 13.
  • FIG. 3 and 4 are partial cross-sectional views showing the periphery of the coupling unit in an enlarged manner.
  • FIG. 5 is a front perspective view of the coupling unit
  • FIG. 6 is a rear perspective view of the coupling unit.
  • 3 shows a state in which the output shaft 21 of the motor 2 and the screw shaft 31 of the ball screw 3 are coupled by the coupling unit 4.
  • the configurations of the motor 2, the ball screw 3, and the coupling unit 4 are shown. Is shown exploded in the X direction, that is, in the thrust direction T of the output shaft 21 and the screw shaft 31. 3 and 4, the internal configuration of the motor 2 is indicated by a broken line, and the housing 11 partially shown in FIG. 3 is omitted in FIG. 4.
  • the motor 2 includes two radial bearings 22 that support the output shaft 21 from the radial direction R, an electric circuit (not shown) for rotating the output shaft 21, and a housing 23 that accommodates these radial bearings 22 and the like.
  • a shaft end 21a (output shaft end 21a) of the output shaft 21 protrudes from the housing 22 to one side Ta (that is, the screw shaft 31 side) in the thrust direction T.
  • the shaft end 21a of the output shaft 21 has a cylindrical shape, and the outer peripheral surface of the shaft end 21a of the output shaft 21 is smoothly formed in parallel to the thrust direction T and has no step.
  • the corner of the shaft end 21a is chamfered.
  • the screw shaft 31 of the ball screw 3 includes a screw portion 31a in which a screw thread 310 is provided and the nut 32 is screwed, and a shaft end 31b (screw shaft end 31b) provided adjacent to the screw portion 31a.
  • a shaft end 31b extends from the screw portion 31a to the other side Tb in the thrust direction T (that is, the output shaft 21 side and the opposite side of the one side Ta).
  • the shaft end 31b has a cylindrical shape, and the outer peripheral surface of the shaft end 31b of the screw shaft 31 is smoothly formed in parallel with the thrust direction T and has no step. The corner of the shaft end 31b is chamfered.
  • the coupling unit 4 couples the shaft end 21a of the output shaft 21 and the shaft end 31b of the screw shaft 31 facing each other side by side in the thrust direction T.
  • the coupling unit 4 has a shaft 41 extending in the thrust direction T.
  • the shaft 41 is a rigid body made of metal or the like, and has a rotationally symmetric shape with respect to an axis of symmetry parallel to the thrust direction T.
  • the shaft 41 has a flange 411 formed at an end portion on one side Ta in the thrust direction T and a screw portion 412 formed at an end portion on the other side Tb in the thrust direction T.
  • the shaft 41 is formed with a hollow portion 42 penetrating in the thrust direction T.
  • the hollow portion 42 includes a first insertion hole 421 that opens to one side Ta in the thrust direction T and the other side in the thrust direction T. And a second insertion hole 422 that opens to Tb.
  • Each of the first insertion hole 421 and the second insertion hole 422 has a concentric cylindrical shape extending in the thrust direction T, and the space between the first insertion hole 421 and the second insertion hole 422 is between the shaft 41 and the shaft 41.
  • An annular protrusion 423 that protrudes inward from the inner wall of the hollow portion 42 is formed.
  • the first insertion hole 421 has a shape corresponding to the shape of the shaft end 31 b (first shaft end) of the screw shaft 31.
  • the first insertion hole 421 is provided on the shaft end 31 b of the screw shaft 31. It has a cylindrical shape with a diameter equal to the diameter of the cylindrical shape. That is, the inner diameter of the first insertion hole 421 is equal to the outer diameter of the shaft end 31 b of the screw shaft 31. Therefore, the shaft end 31 b of the screw shaft 31 can be fitted into the first insertion hole 421 of the shaft 41 from the one side Ta in the thrust direction T without any play, and the shaft 41 is a screw fitted into the first insertion hole 421.
  • the shaft end 31b of the shaft 31 is restrained in the radial direction R.
  • the second insertion hole 422 has a shape corresponding to the shape of the shaft end 21 a (second shaft end) of the output shaft 21, and in this example, the second insertion hole 422 has the shaft end 21 a of the output shaft 21. It has a cylindrical shape with a diameter equal to the diameter of the cylindrical shape. That is, the inner diameter of the second insertion hole 422 is equal to the outer diameter of the shaft end 21 a of the output shaft 21. Therefore, the shaft end 21a of the output shaft 21 can be fitted into the second fitting hole 422 of the shaft 41 from the other side Tb in the thrust direction T without any play, and the shaft 41 is fitted into the second fitting hole 422. The shaft end 21a of the shaft 21 is restrained in the radial direction R.
  • the screw shaft 31 whose shaft end 31 b is fitted in the first insertion hole 421 and the output shaft 21 whose shaft end 21 a is fitted in the second insertion hole 422 are both in the radial direction R by the shaft 41. Be bound.
  • the shaft 41 positions the shaft end 31b of the screw shaft 31 and the shaft end 21a of the output shaft 21 with each other in the radial direction R in a state in which the respective center lines coincide with each other.
  • the hollow portion 42 of the shaft 41 has a tapered hole 424 extending from the first insertion hole 421 to one side Ta in the thrust direction T.
  • the taper hole 424 has a truncated cone shape whose diameter increases toward the one side Ta in the thrust direction T.
  • the taper hole 424 includes a shaft end 31 b of the screw shaft 31 fitted in the first insertion hole 421, and the taper hole 424.
  • a gap 425 is formed between the inner wall of the shaft 41 to be defined.
  • the coupling unit 4 has a sparing 43 inserted into the gap 425.
  • the sparing 43 has a rotationally symmetric shape with respect to an axis of symmetry parallel to the thrust direction T.
  • a hollow portion 431 penetrating in the thrust direction T is formed in the sparing 43.
  • the hollow portion 431 has a cylindrical shape having a diameter equal to the cylindrical shape of the shaft end 31 b of the screw shaft 31, and the shaft end 31 b of the screw shaft 31 is fitted into the hollow portion 431 of the sparing 43.
  • the end of the other side Tb of the sparing 43 has a frustoconical outer shape whose diameter decreases toward the other side Tb in the thrust direction T.
  • the peripheral edge portion of the end portion on the other side Tb of the sparing 43 has a wedge shape, and functions as an insertion portion 432 (wedge) that can be inserted into and removed from the gap 425. Further, the sparing 43 has a flange 433 at the end of one side Ta.
  • the insertion portion 432 of the sparing 43 When the insertion portion 432 of the sparing 43 is inserted into the gap 425 between the screw shaft 31 and the shaft 41, it is pressed against each of the inner wall of the tapered hole 424 of the shaft 41 and the outer periphery of the shaft end 31 b of the screw shaft 31. Is done. As a result, the shaft end 31 b of the screw shaft 31 fitted in the first insertion hole 421 is fastened to the shaft 41. Further, the flange 433 of the sparing 43 is fastened to the flange 411 of the shaft 41 by a screw 434. Thus, the screw shaft 31 can be firmly fixed to the shaft 41 by the sparing 43.
  • an O-ring 44 made of rubber is disposed inside the first insertion hole 421 of the shaft 41, and the shaft end 31 b of the screw shaft 31 is connected to the annular protrusion 423 of the shaft 41 via the O-ring 44. It is hit by. Therefore, the O-ring 44 is elastically deformed as the shaft end 31b of the screw shaft 31 is drawn into the first insertion hole 421 as the sparging 43 is inserted. Thus, the movement of the shaft end 31b of the screw shaft 31 is not hindered by passing through the O-ring 44, and the fastening strength between the shaft end 31b of the screw shaft 31 and the shaft 41 is improved. ing.
  • the coupling unit 4 has a split fastening mechanism 45 provided on the other side Tb of the shaft 41.
  • the cleaving mechanism 45 is formed integrally with the shaft 41 and is provided at the end of the other side Tb of the shaft 41.
  • the cleaving mechanism 45 includes two semicircular members 451, screws 452 that fasten the two semicircular members 451, and pins that attach the two semicircular members 451 to each other. 453. These two semicircular members 451 are arranged so as to form a circle, and a hollow portion 454 is formed between them.
  • the hollow portion 454 of the cleaving mechanism 45 has a substantially cylindrical shape penetrating in the thrust direction T, and is aligned with the second insertion hole 422 of the shaft 41 in the thrust direction T.
  • the coupling unit 4 has two thrust bearings 46 that support the shaft 41 in the thrust direction T, and a base 47 that supports the thrust bearing 46.
  • the thrust bearing 46 has a housing washer 461 fixed to the base 47 and an axial washer 462 that supports the shaft 41.
  • the base 47 is fixed to the housing 11 of the single-axis robot 1 by screws 470 and functions to support the shaft 41 with respect to the housing 11 via the thrust bearing 46.
  • a shaft hole 471 penetrating in the thrust direction T is formed in the base 47.
  • the diameter of the shaft hole 471 is slightly larger than the diameter of the outer periphery 41 a of the shaft 41 (the outer periphery of the cylindrical portion 41 b between the flange 411 and the screw portion 412), and the shaft 41 fits into the shaft hole 471 of the base 47.
  • the outer periphery 41 a of the cylindrical portion 41 b of the shaft 41 has a shape corresponding to the inner periphery of the axial washer 462 of each thrust bearing 46.
  • the outer circumference 41 a of the cylindrical portion 41 b of the sparing 43 is formed to have a diameter equal to the inner circumference of the axial raceway 462 of each thrust bearing 46, and the shaft 41 fits inside each thrust bearing 46.
  • the diameter of the housing washer 461 of each thrust bearing 46 is equal to or slightly larger than the diameter of the outer periphery 41a of the cylindrical portion 41b of the sparing 43.
  • the two thrust bearings 46 are arranged so as to sandwich the peripheral edge portion 472 of the shaft hole 471 of the base 47 from the thrust direction T.
  • a nut 481 is attached to the screw portion 412 of the shaft 41 with a washer 482 (chrysanthemum) sandwiched between the two thrust bearings 46 and the thrust bearing 46 on the other side Tb.
  • the washer 482 aligned in the thrust direction T, the thrust bearing 46 (the other side thrust bearing 46b), the peripheral edge 472 of the base 47, and the thrust bearing 46 (one side thrust bearing 46a) are sandwiched between the flange 411 and the nut 481. It is. Therefore, when the nut 481 is screwed into the screw portion 412 of the shaft 41, the housing washer 461 of each thrust bearing 46 is pressed against the peripheral portion 472 of the base 47, and the shaft washer 462 of the thrust bearing 46 on the one side Ta is The shaft washer 462 of the thrust bearing 46 on the other side Tb is pressed through a washer 482 to a nut 481 that is screwed into the shaft 41. As a result, the housing washer 461 of each thrust bearing 46 is fixed to the base 47, and the axial washer 462 of the thrust bearing 46 is fixed to the shaft 41.
  • the support in the thrust direction T of the screw shaft 31 and the output shaft 21 coupled by the coupling unit 4 is mainly realized by the thrust bearing 46. Further, the support in the radial direction R of the screw shaft 31 and the output shaft 21 is mainly realized by the radial bearing 22 of the motor 2.
  • the shaft 41 provided with the first insertion hole 421 that opens to the one side Ta in the thrust direction T and the second insertion hole 422 that opens to the other side Tb in the thrust direction T is provided.
  • the first insertion hole 421 has a shape corresponding to the shape of the shaft end 31 b of the screw shaft 31 of the ball screw 3
  • the second insertion hole 422 is a shape corresponding to the shape of the shaft end 21 a of the output shaft 21 of the motor 2.
  • Have The shaft 41 positions the shaft end 31 b of the screw shaft 31 fitted in the first insertion hole 421 and the shaft end 21 a of the output shaft 21 fitted in the second insertion hole 422 in the radial direction R.
  • the shaft end 31b of the screw shaft 31 fitted in the first insertion hole 421 is fixed to the shaft 41 by the sparing 43, and the shaft end 21a of the output shaft 21 fitted in the second insertion hole 422 is split and tightened.
  • the screw shaft 31 of the ball screw 3 and the output shaft 21 of the motor 2 can be coupled with each other in the radial direction R by being fixed to the shaft 41. In this way, the screw shaft 31 of the ball screw 3 and the output shaft 21 of the motor 2 can be coupled.
  • the single-axis robot 1 can be shortened in the thrust direction T. ing.
  • a thrust bearing 46 having a housing washer 461 fixed thereto is provided on a base 47 fixed to the housing 11, and an axial washer 462 of the thrust bearing 46 fitted to the outer periphery of the shaft 41 is fixed to the shaft 41. .
  • the outer periphery 41 a of the cylindrical portion 41 b of the shaft 41 that supports the shaft end 31 b of the screw shaft 31 has a shape corresponding to the inner periphery of the axial raceway 462 of each thrust bearing 46, and the thrust bearing is provided on the outer periphery of the shaft 41. 46 axial washer 462 are arranged. Therefore, in order to support the screw shaft 31 by the thrust bearing 46, it is not necessary to perform shaft end processing for matching the shape of the shaft end 31b of the screw shaft 31 with the shape of the inner periphery of the shaft raceway 462 of the thrust bearing 46.
  • the base 47 is provided with a shaft hole 471 penetrating in the thrust direction T. Further, the shaft 41 is fitted into the shaft hole 471, and the two thrust bearings 46 are arranged side by side in the thrust direction T so as to sandwich the peripheral portion 472 of the shaft hole 471 of the base 47. Furthermore, the shaft 41 has a flange 411 provided at the end portion of the one side Ta and a screw portion 412 provided at the end portion of the other side Tb. The two thrust bearings 46 and the peripheral edge portion 472 of the base 47 are sandwiched between the nut 481 and the flange 411 that are fastened to the threaded portion 412, whereby the housing washer 461 of the two thrust bearings 46 is replaced with the base 47.
  • the housing washer 461 can be fixed to the base 47 and the shaft washer 462 can be easily fixed to the shaft 41 by screwing the nut 481 into the screw portion 412 of the shaft 41.
  • the shaft 41 is provided with an annular protrusion 423 adjacent to the first insertion hole 421, and the shaft end 31 b of the screw shaft 31 fitted into the first insertion hole 421 is connected to the annular protrusion 423 via the O-ring 44. It is hit by. In such a configuration, even if the end surface of the shaft end 31 b of the screw shaft 31 is slightly inclined, this can be absorbed by elastic deformation of the O-ring 44, so that the screw shaft 31 in which the shaft end 31 b is fitted in the first insertion hole 421. Can be prevented from tilting.
  • the said embodiment has the diameter same as the diameter of the 1st insertion hole 421 which has the same diameter as the diameter of the shaft end 31b of the screw shaft 31 of the ball screw 3, and the shaft end 21a of the output shaft 21 of the motor 2.
  • a second insertion hole 422 is formed in the shaft 41. Therefore, an operator who performs a coupling operation between the screw shaft 31 of the ball screw 3 and the output shaft 21 of the motor 2 adjusts the diameter of the shaft end 31b of the screw shaft 31 to the diameter of the first insertion hole 421.
  • the shaft end 31b of the screw shaft 31 has a cylindrical shape
  • the first insertion hole 421 of the shaft 41 also has a cylindrical shape having the same diameter.
  • the shaft end 31b of the screw shaft 31 has a shape (cylindrical shape) that can be formed with relatively high accuracy by the manufacturer of the screw shaft 31, and the shaft 41 has the same shape as the shaft end 31b of the screw shaft 31.
  • the first insertion hole 421 is also provided. Therefore, the operator only has to insert the shaft end 31b of the screw shaft 31 having high shape accuracy into the first insertion hole 421 of the shaft 41 without performing the shaft end processing, and the screw fixed to the shaft 41. It is possible to more reliably suppress the inclination of the shaft 31.
  • the shaft end 21a of the output shaft 21 has a cylindrical shape
  • the second insertion hole 422 of the shaft 41 also has a cylindrical shape having the same diameter.
  • the shaft end 21a of the output shaft 21 has a shape (cylindrical shape) that can be formed with relatively high accuracy by the manufacturer of the output shaft 21, and the shaft 41 has the same shape as the shaft end 21a of the output shaft 21.
  • the second insertion hole 422 is also provided. Therefore, the operator only has to insert the shaft end 21a of the output shaft 21 having high shape accuracy into the second insertion hole 422 of the shaft 41 without performing shaft end processing, and the output fixed to the shaft 41 is sufficient. It is possible to more reliably suppress the inclination of the shaft 21.
  • the coupling unit 4 may be configured such that the diameter of the first insertion hole 421 of the shaft 41 is equal to the diameter of the shaft end 31b defined in the standard defining the configuration of the screw shaft 31.
  • the coupling unit 4 may be configured such that the diameter of the second insertion hole 422 of the shaft 41 is equal to the diameter of the shaft end 21 a defined in the standard that defines the configuration of the output shaft 21.
  • the single-axis robot 1 corresponds to an example of the “robot” of the present invention
  • the motor unit MU composed of the coupling unit 4 and the motor 2 is the “motor unit” of the present invention.
  • the coupling unit 4 corresponds to an example of the “coupling unit” of the present invention
  • the ball screw 3 corresponds to the “ball screw” of the present invention
  • the screw shaft 31 is an example of the “screw shaft” of the present invention.
  • the shaft end 31b corresponds to an example of the “screw shaft shaft end” of the present invention
  • the screw portion 31a corresponds to an example of the “screw shaft screw portion” of the present invention
  • the nut 32 and the slider 13 are provided.
  • the motor 2 functions as an example of the “motor” of the present invention
  • the output shaft 21 corresponds to an example of the “output shaft” of the present invention
  • the shaft end 21a
  • the shaft 41 corresponds to an example of the “shaft” of the present invention
  • the first insertion hole 421 corresponds to an example of the “first hole” of the present invention
  • the second insertion hole 422 corresponds to an example of the “end”.
  • the flange 411 corresponds to an example of the “flange” of the present invention
  • the screw portion 412 corresponds to an example of the “screw portion of the shaft” of the present invention
  • the annular protrusion 423
  • the O-ring 44 corresponds to an example of the “elastic member” of the present invention
  • the sparing 43 corresponds to an example of the “first fixing portion” and the “sparing” of the present invention.
  • the split fastening mechanism 45 corresponds to an example of the “second fixing portion” and the “split fastening mechanism” of the present invention
  • the housing 11 corresponds to an example of the “housing” of the present invention
  • the base 47 corresponds to the present invention.
  • the shaft hole 471 corresponds to an example of the “base” of the present invention.
  • the peripheral portion 472 corresponds to an example of the “peripheral portion” of the present invention
  • the thrust bearing 46 corresponds to an example of the “thrust bearing” of the present invention
  • the thrust bearing 46 a corresponds to the present invention
  • the thrust bearing 46b corresponds to an example of the “other side thrust bearing” of the present invention
  • the housing washer 461 corresponds to an example of the “housing washer” of the present invention.
  • the shaft washer 462 corresponds to an example of the “shaft washer” of the present invention
  • the nut 481 corresponds to an example of the “nut” of the present invention
  • the thrust direction T corresponds to an example of the “thrust direction” of the present invention.
  • the one side Ta corresponds to an example of “one side” of the present invention
  • the other side Tb corresponds to an example of “the other side” of the present invention
  • the radial direction R is an example of the “radial direction” of the present invention. It corresponds to.
  • the coupling unit 4 may be used to couple the screw shaft 31 of the ball screw 3 and the output shaft 21 of the motor 2 in a multi-axis robot other than the single-axis robot 1.
  • the thrust bearing 46 may be omitted.
  • the specific mechanism for fixing the screw shaft 31 to the shaft 41 is not limited to the sparing 43, but may be another mechanism such as a split tightening mechanism.
  • the specific mechanism for fixing the output shaft 21 to the shaft 41 is not limited to the cleaving mechanism 45 but may be other mechanisms such as sparing.
  • the elastic member provided between the shaft end 31b of the screw shaft 31 and the annular protrusion 423 is not limited to the O-ring 44, and any member that can be elastically deformed according to the force from the shaft end 31b of the screw shaft 31 may be used. .
  • the O-ring 44 may be omitted.
  • each of the shaft end 31b of the screw shaft 31 and the shaft end 21a of the output shaft 21 has a cylindrical shape with no step on the outer peripheral surface.
  • the shape of the shaft end 31b and the shaft end 21a is not limited to this, and may have, for example, a key groove. At this time, a key may be appropriately provided in the first insertion hole 421 or the second insertion hole 422 of the shaft 41.
  • the housing further includes a housing that accommodates the shaft, a base that is fixed to the housing, a housing washer and a shaft drive plate, and the housing washer that is fixed to the base.
  • the robot may be configured so that the shaft washer having a shape corresponding to the inner periphery of the shaft washer and fitted on the outer periphery of the shaft is fixed to the shaft.
  • a nut is further provided, and a shaft hole penetrating in the thrust direction is provided in the base.
  • the shaft is fitted into the shaft hole.
  • the thrust bearing is composed of one side thrust bearing and the other side thrust bearing. And the other side thrust bearing are arranged so as to sandwich the peripheral part of the shaft hole of the base in the thrust direction, and the shaft has a flange provided at one end and a screw part provided at the other end.
  • the one side thrust bearing, the peripheral edge of the base and the other side thrust bearing are sandwiched between the flange and the nut tightened on the threaded portion, so that the housing washer of the one side thrust bearing and the other side thrust bearing is used as a base.
  • the shaft washer of the thrust bearing so as to fix the shaft may constitute a robot.
  • the fixing of the housing washer to the base and the fixing of the shaft washer to the shaft can be easily realized by screwing the nut into the screw portion of the shaft.
  • the first fixing portion has a spuring that fixes the screw shaft to the shaft by inserting the shaft end into a clearance between the screw shaft fitted in the first hole of the shaft and the shaft. It may be configured. In such a configuration, the screw shaft can be firmly fixed to the shaft by sputtering.
  • the second fixing portion is formed integrally with the shaft, and the robot is configured so as to have a split tightening mechanism that fixes the output shaft having the shaft end fitted in the second hole of the shaft to the shaft by split tightening. You may do it. In such a configuration, the output shaft can be firmly fixed to the shaft by the split tightening mechanism.
  • the robot is configured such that an abutting portion is provided in the first hole of the shaft, and an elastic member is disposed between the shaft end of the screw shaft fitted in the first hole and the abutting portion. May be. In such a configuration, even if the end surface of the shaft end of the screw shaft is slightly inclined, this can be absorbed by the deformation of the elastic member, so that it is possible to suppress the tilt of the screw shaft with the shaft end fitted in the first hole.
  • the 1st hole which has a shape according to the shape of the shaft end of the screw shaft of a ball screw, and the 2nd hole which has the shape according to the shape of the shaft end of the output shaft of a motor are formed in a shaft. ing. Accordingly, an operator who performs a coupling operation between the screw shaft of the ball screw and the output shaft of the motor can perform shaft end processing for matching the shaft end shape of the ball screw screw shaft to the shape of the first hole, or the shaft of the motor output shaft. There is no need to perform shaft end processing for matching the end shape with the shape of the second hole.
  • the shaft end of the screw shaft is provided adjacent to the area where the screw portion of the screw shaft is formed, is formed in a cylindrical shape, and is fitted into the first hole of the shaft. good.
  • the shaft end of the screw shaft has a shape (cylindrical shape) that can be formed with relatively high accuracy by the manufacturer of the screw shaft. Therefore, it is possible to more reliably suppress the inclination of the screw shaft fixed to the shaft by fitting the shaft end of the screw shaft having high shape accuracy into the first hole of the shaft as it is without machining the shaft end. It becomes.
  • the robot may be configured such that the shaft end of the output shaft is formed in a cylindrical shape and is fitted into the second hole of the shaft.
  • the shaft end of the output shaft has a shape (cylindrical shape) that can be formed with relatively high accuracy by the manufacturer of the output shaft. Therefore, it is possible to more reliably suppress the inclination of the output shaft fixed to the shaft by fitting the shaft end of the output shaft having high shape accuracy into the second hole of the shaft as it is without processing the shaft end. It becomes.
  • the present invention can be applied to all technologies for coupling the screw shaft of a ball screw and the output shaft of a motor.
  • annular protrusion (butting portion), 43 ... Sparing (first fixed portion), 44 ... O-ring, 45 ... Split mechanism (second fixed portion), 46 ... Thrust bearing, 46a ... One side thrust bearing, 46b ... Other side thrust bearing, 461 ... Housing track , 462 ... shaft washer, 47 ... base, 471 ... shaft hole, 472 ... circumferential edge portion, 481 ... nut, T ... thrust direction, Ta ... one side, Tb ... other side, R ... radial, MU ... motor unit,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manipulator (AREA)

Abstract

回転可能なネジ軸(31)を有するボールネジ(3)と、ネジ軸(31)に螺合してネジ軸(31)の回転に伴って移動する移動体(32)と、回転可能な出力軸(21)を有して出力軸(21)を回転させるモーター(2)と、ネジ軸(31)の軸端(31b)の形状に応じた形状を有してスラスト方向の一方側へ開口する第1孔(421)と、出力軸(21)の軸端(31b)の形状に応じた形状を有してスラスト方向の一方側と逆の他方側へ開口する第2孔(422)とがスラスト方向に並び、第1孔(421)に嵌め込まれたネジ軸(31)の軸端(31b)と第2孔(422)に嵌め込まれた出力軸(21)の軸端(31b)とをラジアル方向に互いに位置決めするシャフト(41)と、軸端(31b)が第1孔(421)に嵌め込まれたネジ軸(31)をシャフト(41)に固定する第1固定部(43)と、軸端が第2孔(422)に嵌め込まれた出力軸(21)をシャフト(41)に固定する第2固定部(45)とを備える。

Description

ロボット、モーターユニット、カップリングユニット
 本発明は、ボールネジのネジ軸とモーターの出力軸とを結合する技術に関するものである。
 単軸ロボットのような産業用ロボットでは、ボールネジをモーターで駆動することでボールネジに螺合する移動体を移動させる直動機構が一般に用いられる。例えば特許文献1に記載の単軸ロボットでは、管状の回転部がモーターに内蔵されており、回転部の中空部分に嵌め込まれたボールネジのネジ軸の軸端が回転部に固定される。そして、モーターがその回転部を回転させると、ボールネジのネジ軸が回転部に伴って回転する。
特開2001-304370号公報
 ところで、モーターによっては、管状の回転部に代えて軸状の回転部、すなわち出力軸を回転させるものがある。このようなモーターを用いるためには、ボールネジのネジ軸とモーターの出力軸とを結合させる必要があった。
 本発明は上記課題に鑑みてなされたものであり、ボールネジのネジ軸とモーターの出力軸とを結合させることを可能とする技術の提供を目的とする。
 本発明に係るロボットは、回転可能なネジ軸を有するボールネジと、ネジ軸に螺合してネジ軸の回転に伴って移動する移動体と、回転可能な出力軸を有し、出力軸を回転させるモーターと、ネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、出力軸の軸端の形状に応じた形状を有し、スラスト方向の一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、第1孔に嵌め込まれたネジ軸の軸端と第2孔に嵌め込まれた出力軸の軸端とをラジアル方向に位置決めするシャフトと、軸端が第1孔に嵌め込まれたネジ軸をシャフトに固定する第1固定部と、軸端が第2孔に嵌め込まれた出力軸をシャフトに固定する第2固定部とを備える。
 本発明に係るモーターユニットは、回転可能な出力軸を有し、出力軸を回転させるモーターと、ボールネジのネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、出力軸の軸端の形状に応じた形状を有し、スラスト方向の一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、第1孔に嵌め込まれたネジ軸の軸端と第2孔に嵌め込まれた出力軸の軸端とをラジアル方向に位置決めするシャフトと、軸端が第1孔に嵌め込まれたネジ軸をシャフトに固定する第1固定部と、軸端が第2孔に嵌め込まれた出力軸をシャフトに固定する第2固定部とを備える。
 本発明に係るカップリングユニットは、ボールネジのネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、モーターの出力軸の軸端の形状に応じた形状を有し、スラスト方向の一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、第1孔に嵌め込まれたネジ軸の軸端と第2孔に嵌め込まれた出力軸の軸端とをラジアル方向に位置決めするシャフトと、軸端が第1孔に嵌め込まれたネジ軸をシャフトに固定する第1固定部と、軸端が第2孔に嵌め込まれた出力軸をシャフトに固定する第2固定部とを備える。
 このように構成された本発明(ロボット、モーターユニット、カップリングユニット)は、スラスト方向の一方側に開口する第1孔と、スラスト方向の他方側に開口する第2孔とが設けられたシャフトを有する。第1孔は、ボールネジのネジ軸の軸端の形状に応じた形状を有し、第2孔は、モーターの出力軸の軸端の形状に応じた形状を有する。かかるシャフトは、第1孔に嵌め込まれたネジ軸の軸端と、第2孔に嵌め込まれた出力軸の軸端とを、ラジアル方向に位置決めする。そして、第1孔に嵌め込まれたネジ軸の軸端を第1固定部によりシャフトに固定するとともに、第2孔に嵌め込まれた出力軸の軸端を第2固定部によりシャフトに固定することで、ボールネジのネジ軸とモーターの出力軸とをラジアル方向に互いに位置決めした状態で結合できる。こうして、ボールネジのネジ軸とモーターの出力軸とを結合させることが可能となっている。
 本発明では、ボールネジのネジ軸とモーターの出力軸とを結合させることが可能となる。
本発明に係る単軸ロボットの一例の外観構成を示す斜視図。 図1の単軸ロボットの内部構成を示す部分断面図。 カップリングユニットの周辺を拡大して示す部分断面図。 カップリングユニットの周辺を拡大して示す部分断面図。 カップリングユニットの前方斜視図。 カップリングユニットの後方斜視図。
 図1は本発明に係る単軸ロボットの一例の外観構成を示す斜視図である。図2は図1の単軸ロボットの内部構成を示す部分断面図である。単軸ロボット1は、X方向に長尺な矩形状のハウジング11と、ハウジング11に沿ってX方向に往復移動するスライダー13とを備える。さらに、単軸ロボット1は、ハウジング11のX方向の端に取り付けられたモーター2を備え、モーター2がスライダー13を移動させるための駆動力を発生する。
 つまり、図2に示すように、単軸ロボット1は、ボールネジ3と、このボールネジ3をモーター2に結合するカップリングユニット4とをハウジング11の内部に備える。ボールネジ3は、X方向に平行に配置されて回転可能なネジ軸31と、ネジ軸31に螺合するナット32とを有し、スライダー13がナット32に取り付けられている。また、モーター2はX方向に平行に配置された回転可能な出力軸21を有する。そして、ボールネジ3のネジ軸31がモーター2の出力軸21にカップリングユニット4により結合されている。したがって、モーター2がその出力軸21を回転させると、ボールネジ3のネジ軸31が出力軸21に伴って回転し、ナット32がスライダー13を伴ってX方向に移動する。
 図3および図4はカップリングユニットの周辺を拡大して示す部分断面図である。図5はカップリングユニットの前方斜視図であり、図6はカップリングユニットの後方斜視図である。なお、図3では、モーター2の出力軸21とボールネジ3のネジ軸31とがカップリングユニット4により結合された状態が示され、図4では、モーター2、ボールネジ3およびカップリングユニット4の構成をX方向、すなわち出力軸21およびネジ軸31のスラスト方向Tに分解した状態が示されている。また、図3および図4ではモーター2の内部構成が破線で示されるとともに、図3では部分的に示されているハウジング11が図4では省略されている。
 モーター2は、出力軸21をラジアル方向Rから支持する2個のラジアルベアリング22と、出力軸21を回転させるための電気回路(図示省略)やこれらラジアルベアリング22等を収容するハウジング23とを有する。出力軸21の軸端21a(出力軸端21a)は、ハウジング22からスラスト方向Tの一方側Ta(すなわち、ネジ軸31側)へ突出している。この出力軸21の軸端21aは円筒形状を有し、出力軸21の軸端21aの外周面はスラスト方向Tに平行に滑らかに形成されており段差を有さない。なお、軸端21aの角には面取りが施されている。
 ボールネジ3のネジ軸31は、ネジ山310が設けられてナット32が螺合するネジ部31aと、ネジ部31aに隣接して設けられた軸端31b(ネジ軸端31b)とを有し、ネジ部31aからスラスト方向Tの他方側Tb(すなわち、出力軸21側であるとともに一方側Taの逆側)へ軸端31bが延設されている。この軸端31bは円筒形状を有し、ネジ軸31の軸端31bの外周面は、スラスト方向Tに平行に滑らかに形成されており段差を有さない。なお、軸端31bの角には面取りが施されている。
 そして、スラスト方向Tに並んで互いに対向する出力軸21の軸端21aとネジ軸31の軸端31bとを、カップリングユニット4が結合する。このカップリングユニット4は、スラスト方向Tに延設されたシャフト41を有する。シャフト41は、金属等で作成された剛性体であり、スラスト方向Tに平行な対称軸に対して回転対称な形状を有する。このシャフト41は、スラスト方向Tの一方側Taの端部に形成されたフランジ411と、スラスト方向Tの他方側Tbの端部に形成されたネジ部412とを有する。また、シャフト41には、スラスト方向Tに貫通する中空部42が形成されており、中空部42は、スラスト方向Tの一方側Taへ開口する第1嵌入孔421と、スラスト方向Tの他方側Tbへ開口する第2嵌入孔422とを有する。第1嵌入孔421と第2嵌入孔422とは、それぞれスラスト方向Tに延設された同心の円筒形状を有し、第1嵌入孔421と第2嵌入孔422との間は、シャフト41の中空部42の内壁から内側に突出する環状突起423が形成されている。
 第1嵌入孔421はネジ軸31の軸端31b(第1軸端)の形状に応じた形状を有し、ここの例では、第1嵌入孔421は、ネジ軸31の軸端31bが有する円筒形状の径と等しい径の円筒形状を有する。つまり、第1嵌入孔421の内径は、ネジ軸31の軸端31bの外径に等しい。したがって、ネジ軸31の軸端31bはシャフト41の第1嵌入孔421にスラスト方向Tの一方側Taから遊びが無い状態で嵌入可能であり、シャフト41は第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bをラジアル方向Rに拘束する。
 第2嵌入孔422は出力軸21の軸端21a(第2軸端)の形状に応じた形状を有し、ここの例では、第2嵌入孔422は、出力軸21の軸端21aが有する円筒形状の径と等しい径の円筒形状を有する。つまり、第2嵌入孔422の内径は、出力軸21の軸端21aの外径に等しい。したがって、出力軸21の軸端21aはシャフト41の第2嵌入孔422にスラスト方向Tの他方側Tbから遊びが無い状態で嵌入可能であり、シャフト41は第2嵌入孔422に嵌め込まれた出力軸21の軸端21aをラジアル方向Rに拘束する。
 つまり、その軸端31bが第1嵌入孔421に嵌め込まれたネジ軸31と、その軸端21aが第2嵌入孔422に嵌め込まれた出力軸21とは、いずれもシャフト41によってラジアル方向Rへ拘束される。このように、シャフト41は、ネジ軸31の軸端31bと出力軸21の軸端21aとをそれぞれの中心線を一致させた状態でラジアル方向Rに互いに位置決めする。
 また、シャフト41の中空部42は、第1嵌入孔421からスラスト方向Tの一方側Taに延設されたテーパー孔424を有する。テーパー孔424は、スラスト方向Tの一方側Taに向かうに連れて径が増大する円錐台形状を有し、第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bと、テーパー孔424を規定するシャフト41の内壁との間には隙間425が形成される。
 そして、カップリングユニット4は、この隙間425に挿入されるシュパリング43を有する。シュパリング43は、スラスト方向Tに平行な対称軸に対して回転対称な形状を有する。このシュパリング43には、スラスト方向Tに貫通する中空部431が形成されている。中空部431は、ネジ軸31の軸端31bの円筒形状の径と等しい径の円筒形状を有し、シュパリング43の中空部431にネジ軸31の軸端31bが嵌入する。一方、シュパリング43の他方側Tbの端部は、スラスト方向Tの他方側Tbに向かうに連れて径が減少する円錐台形状の外形を有する。つまり、シュパリング43の他方側Tbの端部の周縁部は楔形を有し、隙間425に対して挿脱可能な挿入部432(楔)として機能する。また、シュパリング43は、フランジ433を一方側Taの端部に有する。
 このシュパリング43の挿入部432は、ネジ軸31とシャフト41との間の隙間425に挿入されると、シャフト41のテーパー孔424の内壁とネジ軸31の軸端31bの外周とのそれぞれに押圧される。これによって、第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bがシャフト41に締結される。さらに、シュパリング43のフランジ433がネジ434によってシャフト41のフランジ411に締結される。こうしてシュパリング43によってネジ軸31をシャフト41にしっかりと固定することが可能となっている。
 ちなみに、シャフト41の第1嵌入孔421の内部には、ゴムで形成されたOリング44が配置されており、ネジ軸31の軸端31bは、Oリング44を介してシャフト41の環状突起423に突き当てられる。したがって、シュパリング43の挿入に伴ってネジ軸31の軸端31bが第1嵌入孔421に引き込まれるのに応じて、Oリング44が弾性変形する。このようにOリング44を介することで、ネジ軸31の軸端31bの移動が妨げられないように構成されており、ネジ軸31の軸端31bとシャフト41との締結強度の向上が図られている。
 また、カップリングユニット4は、シャフト41の他方側Tbに設けられた割締め機構45を有する。この割締め機構45は、シャフト41と一体的に形成されることで、シャフト41の他方側Tbの端部に設けられている。割締め機構45は、図5に示すように、2個の半円部材451と、2個の半円部材451を相互に締結するネジ452と、2個の半円部材451を相互に取り付けるピン453とを有する。これら2個の半円部材451は円を構成するように配置され、それらの間に中空部454を形成する。割締め機構45の中空部454は、スラスト方向Tに貫通する略円筒形状を有し、シャフト41の第2嵌入孔422とスラスト方向Tに並ぶ。そして、出力軸21の軸端21aが割締め機構45の中空部454を介して第2嵌入孔422に嵌め込まれた状態でネジ452をねじ込むと、各半円部材451の内周が出力軸21の軸端21aの外周に押圧される(割締め)。こうして2個の半円部材451が出力軸21の軸端21aを挟み込むことで、出力軸21の軸端21aがシャフト41に締結される。これによって、割締め機構45によって出力軸21をシャフト41にしっかりと固定することが可能となっている。
 このように、シャフト41によってラジアル方向Rに位置決めされたボールネジ3のネジ軸31とモーター2の出力軸21とがそれぞれシュパリング43と割締め機構45によりシャフト41に固定される。これによって、ボールネジ3のネジ軸31とモーター2の出力軸21とが結合される。
 さらに、カップリングユニット4は、シャフト41をスラスト方向Tに支持する2個のスラストベアリング46と、スラストベアリング46を支持するベース47を有する。スラストベアリング46は、ベース47に固定されるハウジング軌道盤461と、シャフト41を支持する軸軌道盤462とを有する。また、ベース47は、ネジ470によって単軸ロボット1のハウジング11に固定されており、スラストベアリング46を介してシャフト41をハウジング11に対して支持する機能を果たす。
 具体的には、ベース47には、スラスト方向Tに貫通するシャフト孔471が形成されている。シャフト孔471の径は、シャフト41の外周41a(フランジ411とネジ部412との間の円筒部41bの外周)の径より若干大きく、シャフト41はベース47のシャフト孔471に嵌まる。また、シャフト41の円筒部41bの外周41aは、各スラストベアリング46の軸軌道盤462の内周に応じた形状を有する。すなわち、シュパリング43の円筒部41bの外周41aは、各スラストベアリング46の軸軌道盤462の内周の径と等しい径を有するように形成されており、シャフト41は各スラストベアリング46の内側に嵌る。なお、各スラストベアリング46のハウジング軌道盤461の径は、シュパリング43の円筒部41bの外周41aの径と比較して等しいか若干大きい。2個のスラストベアリング46は、ベース47のシャフト孔471の周縁部472をスラスト方向Tから挟むように配置されている。そして、2個のスラストベアリング46のうち、他方側Tbのスラストベアリング46との間に座金482(菊座)を挟んで、ナット481がシャフト41のネジ部412に取り付けられる。
 このように、スラスト方向Tに並ぶ座金482、スラストベアリング46(他方側スラストベアリング46b)、ベース47の周縁部472およびスラストベアリング46(一方側スラストベアリング46a)が、フランジ411とナット481とにより挟まれる。したがって、ナット481をシャフト41のネジ部412にねじ込むと、各スラストベアリング46のハウジング軌道盤461がベース47の周縁部472に押圧され、一方側Taのスラストベアリング46の軸軌道盤462がシャフト41のフランジ411に押圧され、他方側Tbのスラストベアリング46の軸軌道盤462がシャフト41に螺合するナット481に座金482を介して押圧される。これによって、各スラストベアリング46のハウジング軌道盤461がベース47に固定されるとともに、スラストベアリング46の軸軌道盤462がシャフト41に固定される。
 かかる構成では、カップリングユニット4により結合されたネジ軸31および出力軸21のスラスト方向Tの支持は、主としてスラストベアリング46によって実現される。また、これらネジ軸31および出力軸21のラジアル方向Rの支持は、主としてモーター2のラジアルベアリング22によって実現される。
 以上に説明した実施形態では、スラスト方向Tの一方側Taに開口する第1嵌入孔421と、スラスト方向Tの他方側Tbに開口する第2嵌入孔422とが設けられたシャフト41が具備されている。第1嵌入孔421は、ボールネジ3のネジ軸31の軸端31bの形状に応じた形状を有し、第2嵌入孔422は、モーター2の出力軸21の軸端21aの形状に応じた形状を有する。かかるシャフト41は、第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bと、第2嵌入孔422に嵌め込まれた出力軸21の軸端21aとを、ラジアル方向Rに互いに位置決めする。そして、第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bをシュパリング43によりシャフト41に固定するとともに、第2嵌入孔422に嵌め込まれた出力軸21の軸端21aを割締め機構45によりシャフト41に固定することで、ボールネジ3のネジ軸31とモーター2の出力軸21とをラジアル方向Rに互いに位置決めした状態で結合できる。こうして、ボールネジ3のネジ軸31とモーター2の出力軸21とを結合させることが可能となっている。
 また、板バネカップリング等を介在させずに、カップリングユニット4によってネジ軸31と出力軸21とを直結しているため、単軸ロボット1をスラスト方向Tに短尺化することも可能となっている。
 また、ハウジング11に固定されたベース47にそのハウジング軌道盤461が固定されたスラストベアリング46が設けられ、シャフト41の外周に嵌められたスラストベアリング46の軸軌道盤462がシャフト41に固定される。このようにしてスラストベアリング46によってシャフト41をハウジング11に対して支持することで、シャフト41をスラスト方向Tへしっかりと支持しつつ、シャフト41を円滑に回転させることができる。
 しかも、ネジ軸31の軸端31bを支持するシャフト41の円筒部41bの外周41aが、各スラストベアリング46の軸軌道盤462の内周に応じた形状を有し、シャフト41の外周にスラストベアリング46の軸軌道盤462が配置される。したがって、ネジ軸31をスラストベアリング46により支持するために、ネジ軸31の軸端31bの形状をスラストベアリング46の軸軌道盤462の内周の形状合わせる軸端加工を行う必要が無い。
 具体的には、ベース47にはスラスト方向Tに貫通するシャフト孔471が設けられる。また、シャフト41がシシャフト孔471に嵌められ、2個のスラストベアリング46がベース47のシャフト孔471の周縁部472を挟むようにスラスト方向Tに並んで配置される。さらに、シャフト41は一方側Taの端部に設けられたフランジ411と他方側Tbの端部に設けられたネジ部412とを有する。そして、ネジ部412に締め込まれたナット481とフランジ411とによって2個のスラストベアリング46とベース47の周縁部472とを挟み込むことで、2個のスラストベアリング46のハウジング軌道盤461をベース47に固定するとともに、2個のスラストベアリング46の軸軌道盤462をシャフト41に固定する。かかる構成では、ハウジング軌道盤461のベース47への固定と、軸軌道盤462のシャフト41への固定とを、シャフト41のネジ部412にナット481をねじ込むことで簡単に実現できる。
 また、シャフト41には、第1嵌入孔421に隣接して環状突起423が設けられ、第1嵌入孔421に嵌め込まれたネジ軸31の軸端31bは、Oリング44を介して環状突起423に突き当てられる。かかる構成では、ネジ軸31の軸端31bの端面が若干傾いていても、Oリング44の弾性変形によってこれを吸収できるため、その軸端31bが第1嵌入孔421に嵌め込まれたネジ軸31が傾くのを抑制できる。
 ところで、上記実施形態では、ボールネジ3のネジ軸31の軸端31bの径と同一の径を有する第1嵌入孔421と、モーター2の出力軸21の軸端21aの径と同一の径を有する第2嵌入孔422とがシャフト41に形成されている。したがって、ボールネジ3のネジ軸31とモーター2の出力軸21との結合作業を行う作業者は、ネジ軸31の軸端31bの径を第1嵌入孔421の径に合わせるために軸端31bの外周を削る軸端加工や、出力軸21の軸端21aの径を第2嵌入孔422の径に合わせるために軸端21aの外周を削る軸端加工を特に行う必要が無く、作業者に求められる作業としては、軸端31bや軸端21aの長さを調整するためにこれらをカットする作業程度である。そのため、作業者による軸端加工の精度に起因して、シャフト41に嵌め込まれたボールネジ3のネジ軸31やモーター2の出力軸21が傾くのを抑制できる。その結果、ボールネジ3のネジ軸31とモーター2の出力軸21との芯出しを高精度に行うことも可能となっている。
 つまり、ネジ軸31の軸端31bは円筒形状を有し、シャフト41の第1嵌入孔421もこれと同径の円筒形状を有する。このように、ネジ軸31の軸端31bがネジ軸31のメーカーにおいて比較的高精度に形成できる形状(円筒形状)を有し、ネジ軸31の軸端31bの形状と同一の形状をシャフト41の第1嵌入孔421も有している。したがって、作業者は、高い形状精度を有するネジ軸31の軸端31bを、軸端加工を行うことなくそのままシャフト41の第1嵌入孔421に嵌め込めれば良く、シャフト41に固定されるネジ軸31の傾きをより確実に抑えることが可能となっている。
 同様に、出力軸21の軸端21aは円筒形状を有し、シャフト41の第2嵌入孔422もこれと同径の円筒形状を有する。このように、出力軸21の軸端21aが出力軸21のメーカーにおいて比較的高精度に形成できる形状(円筒形状)を有し、出力軸21の軸端21aの形状と同一の形状をシャフト41の第2嵌入孔422も有している。したがって、作業者は、高い形状精度を有する出力軸21の軸端21aを、軸端加工を行うことなくそのままシャフト41の第2嵌入孔422に嵌め込めれば良く、シャフト41に固定される出力軸21の傾きをより確実に抑えることが可能となっている。
 この際、シャフト41の第1嵌入孔421の径が、ネジ軸31の構成を規定する規格に定められた軸端31bの径に等しくなるように、カップリングユニット4を構成しても良い。あるいは、シャフト41の第2嵌入孔422の径が、出力軸21の構成を規定する規格に定められた軸端21aの径に等しくなるように、カップリングユニット4を構成しても良い。
 このように上記の実施形態では、単軸ロボット1が本発明の「ロボット」の一例に相当し、カップリングユニット4とモーター2とで構成されるモーターユニットMUが本発明の「モーターユニット」の一例に相当し、カップリングユニット4が本発明の「カップリングユニット」の一例に相当し、ボールネジ3が本発明の「ボールネジ」に相当し、ネジ軸31が本発明の「ネジ軸」の一例に相当し、軸端31bが本発明の「ネジ軸の軸端」の一例に相当し、ネジ部31aが本発明の「ネジ軸のネジ部」の一例に相当し、ナット32およびスライダー13が協働して本発明の「移動体」として機能し、モーター2が本発明の「モーター」の一例に相当し、出力軸21が本発明の「出力軸」の一例に相当し、軸端21aが本発明の「出力軸の軸端」の一例に相当し、シャフト41が本発明の「シャフト」の一例に相当し、第1嵌入孔421が本発明の「第1孔」の一例に相当し、第2嵌入孔422が本発明の「第2孔」の一例に相当し、フランジ411が本発明の「フランジ」の一例に相当し、ネジ部412が本発明の「シャフトのネジ部」の一例に相当し、環状突起423が本発明の「突き当て部」の一例に相当し、Oリング44が本発明の「弾性部材」の一例に相当し、シュパリング43が本発明の「第1固定部」および「シュパリング」の一例に相当し、割締め機構45が本発明の「第2固定部」および「割締め機構」の一例に相当し、ハウジング11が本発明の「ハウジング」の一例に相当し、ベース47が本発明の「ベース」の一例に相当し、シャフト孔471が本発明の「シャフト孔」の一例に相当し、周縁部472が本発明の「周縁部」の一例に相当し、スラストベアリング46が本発明の「スラストベアリング」の一例に相当し、スラストベアリング46aが本発明の「一方側スラストベアリング」の一例に相当し、スラストベアリング46bが本発明の「他方側スラストベアリング」の一例に相当し、ハウジング軌道盤461が本発明の「ハウジング軌道盤」の一例に相当し、軸軌道盤462が本発明の「軸軌道盤」の一例に相当し、ナット481が本発明の「ナット」の一例に相当し、スラスト方向Tが本発明の「スラスト方向」の一例に相当し、一方側Taが本発明の「一方側」の一例に相当し、他方側Tbが本発明の「他方側」の一例に相当し、ラジアル方向Rが本発明の「ラジアル方向」の一例に相当する。
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記のカップリングユニット4は、単軸ロボット1以外の多軸のロボットにおいて、ボールネジ3のネジ軸31とモーター2の出力軸21とを結合するのに用いても良い。
 また、モーター2が出力軸21およびネジ軸31をスラスト方向にも支持できる場合には、スラストベアリング46を省略しても良い。
 また、ネジ軸31をシャフト41に固定する具体的機構は、シュパリング43に限られず、割締め機構等の他の機構であっても良い。
 また、出力軸21をシャフト41に固定する具体的機構は、割締め機構45に限られず、シュパリング等の他の機構であっても良い。
 また、ネジ軸31の軸端31bと環状突起423との間に設けられる弾性部材はOリング44に限られず、ネジ軸31の軸端31bからの力に応じて弾性変形できる部材であれば良い。あるいは、Oリング44を省略しても構わない。
 また、ネジ軸31の軸端31bおよび出力軸21の軸端21aのそれぞれは、外周面に段差の無い円筒形状を有する。しかしながら、軸端31bおよび軸端21aの形状はこれに限られず、例えばキー溝を有しても良い。この際、シャフト41の第1嵌入孔421あるいは第2嵌入孔422にキーを適宜設ければ良い。
 具体例を示して上述したように、本発明に対しては例えば下記に示す種々の変形を適宜加えることができる。
 つまり、シャフトを収容するハウジングと、ハウジングに固定されるベースと、ハウジング軌道盤と軸駆動盤とを有し、ハウジング軌道盤がベースに固定されるスラストベアリングとをさらに備え、シャフトの外周は、軸軌道盤の内周に応じた形状を有し、シャフトの外周に嵌められた軸軌道盤がシャフトに固定されるように、ロボットを構成しても良い。このようにスラストベアリングによってシャフトをハウジングに対して支持することで、シャフトをスラスト方向へしっかりと支持しつつ、シャフトを円滑に回転させることができる。
 また、ナットをさらに備え、ベースにはスラスト方向に貫通するシャフト孔が設けられ、シャフトはシャフト孔に嵌められ、スラストベアリングは、一方側スラストベアリングと他方側スラストベアリングとからなり、一方側スラストベアリングと他方側スラストベアリングとがベースのシャフト孔の周縁部をスラスト方向に挟むように配置され、シャフトは一方側の端部に設けられたフランジと他方側の端部に設けられたネジ部とを有し、フランジとネジ部に締め込まれたナットとによって一方側スラストベアリング、ベースの周縁部および他方側スラストベアリングを挟み込むことで、一方側スラストベアリングおよび他方側スラストベアリングのハウジング軌道盤をベースに固定するとともに、一方側スラストベアリングおよび他方側スラストベアリングの軸軌道盤をシャフトに固定するように、ロボットを構成しても良い。かかる構成では、ハウジング軌道盤のベースへの固定と、軸軌道盤のシャフトへの固定とを、シャフトのネジ部にナットをねじ込むことで簡単に実現できる。
 また、第1固定部は、軸端がシャフトの第1孔に嵌め込まれたネジ軸とシャフトとの間の隙間に挿入されることでネジ軸をシャフトに固定するシュパリングを有するように、ロボットを構成しても良い。かかる構成では、シュパリングによってネジ軸をシャフトにしっかりと固定できる。
 また、第2固定部は、シャフトと一体的に形成されて、軸端がシャフトの第2孔に嵌め込まれた出力軸を割締めによりシャフトに固定する割締め機構を有するように、ロボットを構成しても良い。かかる構成では、割締め機構によって出力軸をシャフトにしっかりと固定できる。
 また、シャフトの第1孔には突き当て部が設けられ、第1孔に嵌め込まれたネジ軸の軸端と、突き当て部との間に弾性部材を配設するように、ロボットを構成しても良い。かかる構成では、ネジ軸の軸端の端面が若干傾いていても、弾性部材の変形によってこれを吸収できるため、その軸端が第1孔に嵌め込まれたネジ軸が傾くのを抑制できる。
 ところで、本発明では、ボールネジのネジ軸の軸端の形状に応じた形状を有する第1孔と、モーターの出力軸の軸端の形状に応じた形状を有する第2孔とがシャフトに形成されている。したがって、ボールネジのネジ軸とモーターの出力軸との結合作業を行う作業者は、ボールネジのネジ軸の軸端形状を第1孔の形状に合わせるための軸端加工や、モーターの出力軸の軸端形状を第2孔の形状に合わせるための軸端加工を特に行う必要が無い。そのため、作業者による軸端加工の精度に起因して、シャフトに嵌め込まれたボールネジのネジ軸やモーターの出力軸が傾くのを抑制できる。その結果、ボールネジのネジ軸とモーターの出力軸との芯出しを高精度に行うことも可能となる。
 そこで、ネジ軸の軸端は、ネジ軸のネジ部が形成された範囲に隣接して設けられ、円筒状に形成され、シャフトの第1孔に嵌入されるように、ロボットを構成しても良い。かかる構成では、ネジ軸の軸端がネジ軸のメーカーにおいて比較的高精度に形成できる形状(円筒形状)を有している。したがって、高い形状精度を有するネジ軸の軸端を、軸端加工を行うことなくそのままシャフトの第1孔に嵌め込むことで、シャフトに固定されるネジ軸の傾きをより確実に抑えることが可能となる。
 また、出力軸の軸端は、円筒状に形成され、シャフトの第2孔に嵌入されるように、ロボットを構成しても良い。かかる構成では、出力軸の軸端が出力軸のメーカーにおいて比較的高精度に形成できる形状(円筒形状)を有している。したがって、高い形状精度を有する出力軸の軸端を、軸端加工を行うことなくそのままシャフトの第2孔に嵌め込むことで、シャフトに固定される出力軸の傾きをより確実に抑えることが可能となる。
 この発明は、ボールネジのネジ軸とモーターの出力軸とを結合する技術全般に適用可能である。
 1…単軸ロボット(ロボット)、11…ハウジング、13…スライダー(移動体)、2…モーター、21…出力軸、21a…軸端(出力軸の軸端)、3…ボールネジ、31…ネジ軸、31a…ネジ部、31b…軸端(ネジ軸の軸端)、310…ネジ山、32…ナット32(移動体)、4…カップリングユニット、41…シャフト、41a…(シャフトの)外周、41b…円筒部、411…フランジ、412…ネジ部、421…第1嵌入孔(第1孔)、422…第2嵌入孔(第2孔)、423…環状突起(突き当て部)、43…シュパリング(第1固定部)、44…Oリング、45…割締め機構(第2固定部)、46…スラストベアリング、46a…一方側スラストベアリング、46b…他方側スラストベアリング、461…ハウジング軌道盤、462…軸軌道盤、47…ベース、471…シャフト孔、472…周縁部、481…ナット、T…スラスト方向、Ta…一方側、Tb…他方側、R…ラジアル方向、MU…モーターユニット、

Claims (10)

  1.  回転可能なネジ軸を有するボールネジと、
     前記ネジ軸に螺合して前記ネジ軸の回転に伴って移動する移動体と、
     回転可能な出力軸を有し、前記出力軸を回転させるモーターと、
     前記ネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、前記出力軸の軸端の形状に応じた形状を有し、スラスト方向の前記一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、前記第1孔に嵌め込まれた前記ネジ軸の軸端と前記第2孔に嵌め込まれた前記出力軸の軸端とをラジアル方向に位置決めするシャフトと、
     軸端が前記第1孔に嵌め込まれた前記ネジ軸を前記シャフトに固定する第1固定部と、
     軸端が前記第2孔に嵌め込まれた前記出力軸を前記シャフトに固定する第2固定部と
    を備えるロボット。
  2.  前記シャフトを収容するハウジングと、
     前記ハウジングに固定されるベースと、
     ハウジング軌道盤と軸駆動盤とを有し、前記ハウジング軌道盤が前記ベースに固定されるスラストベアリングと
    をさらに備え、
     前記シャフトの外周は、前記軸軌道盤の内周に応じた形状を有し、
     前記シャフトの外周に嵌められた前記軸軌道盤が前記シャフトに固定される請求項1に記載のロボット。
  3.  ナットをさらに備え、
     前記ベースにはスラスト方向に貫通するシャフト孔が設けられ、
     前記シャフトは前記シャフト孔に嵌められ、
     前記スラストベアリングは、一方側スラストベアリングと他方側スラストベアリングとからなり、前記一方側スラストベアリングと前記他方側スラストベアリングとが前記ベースの前記シャフト孔の周縁部をスラスト方向に挟むように配置され、
     前記シャフトは前記一方側の端部に設けられたフランジと前記他方側の端部に設けられたネジ部とを有し、
     前記フランジと前記ネジ部に締め込まれた前記ナットとによって前記一方側スラストベアリング、前記ベースの周縁部および前記他方側スラストベアリングを挟み込むことで、前記一方側スラストベアリングおよび前記他方側スラストベアリングの前記ハウジング軌道盤を前記ベースに固定するとともに、前記一方側スラストベアリングおよび前記他方側スラストベアリングの前記軸軌道盤を前記シャフトに固定する請求項2に記載のロボット。
  4.  前記第1固定部は、軸端が前記シャフトの前記第1孔に嵌め込まれた前記ネジ軸と前記シャフトとの間の隙間に挿入されることで前記ネジ軸を前記シャフトに固定するシュパリングを有する請求項1ないし3のいずれか一項に記載のロボット。
  5.  前記第2固定部は、前記シャフトと一体的に形成されて、軸端が前記シャフトの前記第2孔に嵌め込まれた前記出力軸を割締めにより前記シャフトに固定する割締め機構を有する請求項1ないし4のいずれか一項に記載のロボット。
  6.  前記シャフトの前記第1孔には突き当て部が設けられ、
     前記第1孔に嵌め込まれた前記ネジ軸の軸端と、前記突き当て部との間に弾性部材を配設した請求項1ないし5のいずれか一項に記載のロボット。
  7.  前記ネジ軸の軸端は、前記ネジ軸のネジ部が形成された範囲に隣接して設けられ、円筒状に形成され、前記シャフトの前記第1孔に嵌入される請求項1ないし6のいずれか一項に記載のロボット。
  8.  前記出力軸の軸端は、円筒状に形成され、前記シャフトの前記第2孔に嵌入される請求項1ないし7のいずれか一項に記載のロボット。
  9.  回転可能な出力軸を有し、前記出力軸を回転させるモーターと、
     ボールネジのネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、前記出力軸の軸端の形状に応じた形状を有し、スラスト方向の前記一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、前記第1孔に嵌め込まれた前記ネジ軸の軸端と前記第2孔に嵌め込まれた前記出力軸の軸端とをラジアル方向に位置決めするシャフトと、
     軸端が前記第1孔に嵌め込まれた前記ネジ軸を前記シャフトに固定する第1固定部と、
     軸端が前記第2孔に嵌め込まれた前記出力軸を前記シャフトに固定する第2固定部と
    を備えるモーターユニット。
  10.  ボールネジのネジ軸の軸端の形状に応じた形状を有し、スラスト方向の一方側へ開口する第1孔と、モーターの出力軸の軸端の形状に応じた形状を有し、スラスト方向の前記一方側と逆の他方側へ開口する第2孔とがスラスト方向に形成され、前記第1孔に嵌め込まれた前記ネジ軸の軸端と前記第2孔に嵌め込まれた前記出力軸の軸端とをラジアル方向に位置決めするシャフトと、
     軸端が前記第1孔に嵌め込まれた前記ネジ軸を前記シャフトに固定する第1固定部と、
     軸端が前記第2孔に嵌め込まれた前記出力軸を前記シャフトに固定する第2固定部と
    を備えるカップリングユニット。
PCT/JP2016/077773 2016-09-21 2016-09-21 ロボット、モーターユニット、カップリングユニット WO2018055682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680086999.3A CN109312835B (zh) 2016-09-21 2016-09-21 机器人、马达单元及联轴器单元
JP2018540524A JP6647414B2 (ja) 2016-09-21 2016-09-21 ロボット、モーターユニット、カップリングユニット
PCT/JP2016/077773 WO2018055682A1 (ja) 2016-09-21 2016-09-21 ロボット、モーターユニット、カップリングユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077773 WO2018055682A1 (ja) 2016-09-21 2016-09-21 ロボット、モーターユニット、カップリングユニット

Publications (1)

Publication Number Publication Date
WO2018055682A1 true WO2018055682A1 (ja) 2018-03-29

Family

ID=61689864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077773 WO2018055682A1 (ja) 2016-09-21 2016-09-21 ロボット、モーターユニット、カップリングユニット

Country Status (3)

Country Link
JP (1) JP6647414B2 (ja)
CN (1) CN109312835B (ja)
WO (1) WO2018055682A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043314B (zh) * 2021-03-30 2022-11-08 滨州学院 一种机械自动化抓取装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924558U (ja) * 1982-08-05 1984-02-15 赤井電機株式会社 ねじ送り式直線移動装置
JPS6139054U (ja) * 1984-08-13 1986-03-12 長年 川井 包丁案内溝付俎板
JPH01193139A (ja) * 1988-01-28 1989-08-03 Nissan Motor Co Ltd 位置決め装置
JPH1078098A (ja) * 1996-09-04 1998-03-24 Yamaha Motor Co Ltd 単軸ロボットにおける軸連結構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049470Y2 (ja) * 1985-08-28 1992-03-10
CN2238937Y (zh) * 1995-08-18 1996-10-30 首钢总公司 轴向位移特殊功能联轴器
DE29700712U1 (de) * 1997-01-16 1997-02-27 RK Rose + Krieger GmbH & Co. KG Verbindungs- und Positioniersysteme, 32423 Minden Spindelantrieb
JP2002054709A (ja) * 2000-08-08 2002-02-20 Makishinkoo:Kk ロッドレス型直線作動機
DE112012007184T5 (de) * 2012-11-30 2015-08-13 Kuroda Precision Industries Ltd. Wellenendadapter und Kugelrollspindelaufbau
CN204035027U (zh) * 2014-08-07 2014-12-24 四川省双源环保设备有限公司 一种砂石分离机提升螺旋机构
CN108971364A (zh) * 2018-08-28 2018-12-11 航珍航空技术(上海)有限公司 无扩口内旋挤压成型机及其扩张器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924558U (ja) * 1982-08-05 1984-02-15 赤井電機株式会社 ねじ送り式直線移動装置
JPS6139054U (ja) * 1984-08-13 1986-03-12 長年 川井 包丁案内溝付俎板
JPH01193139A (ja) * 1988-01-28 1989-08-03 Nissan Motor Co Ltd 位置決め装置
JPH1078098A (ja) * 1996-09-04 1998-03-24 Yamaha Motor Co Ltd 単軸ロボットにおける軸連結構造

Also Published As

Publication number Publication date
JPWO2018055682A1 (ja) 2019-03-07
CN109312835B (zh) 2021-09-07
JP6647414B2 (ja) 2020-02-14
CN109312835A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US5744882A (en) Spindle motor
US10486304B2 (en) Joint structure and robot
KR20070089034A (ko) 디스크 구동 장치
JP2006307899A (ja) 電動アクチュエータ
WO2018055682A1 (ja) ロボット、モーターユニット、カップリングユニット
JP2006177550A (ja) 軸受けユニット及びディスク装置
US10335908B2 (en) Rotary table device
US20110155699A1 (en) Encoder dampening mechanism
JP2019002461A (ja) リニアアクチュエータ
JPS6283246A (ja) テレスコピツクステアリング装置
JP2006046501A (ja) 軸受構造
WO2020075752A1 (ja) 取付け式調心装置、及び電動工具
JP2007154944A (ja) アクチュエータ構造
WO2006126243A1 (ja) モータ軸にボールネジ軸を連結固定する方法
JP2009275837A (ja) ベアリングの固定構造
EP4202247A1 (en) Linear motion device
US20100170371A1 (en) Precision guidance device in a machine for machining cylindrical components
CN110895150A (zh) 编码器及其适用的可转动装置
JP6719568B2 (ja) ロボット
JP2000052104A (ja) 工作機械の主軸装置
KR101989476B1 (ko) 차량용 너클 및 허브베어링의 어셈블리
JP2018096492A (ja) 回転ダンパ
JP2012053445A (ja) レンズ鏡筒およびそれを有する光学機器
JP2007097240A (ja) 回転電機におけるエンコーダの回転ディスクの固定方法および固定構造
JP2008072822A (ja) 減速機構付き電動モータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540524

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916753

Country of ref document: EP

Kind code of ref document: A1