WO2018052077A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2018052077A1
WO2018052077A1 PCT/JP2017/033246 JP2017033246W WO2018052077A1 WO 2018052077 A1 WO2018052077 A1 WO 2018052077A1 JP 2017033246 W JP2017033246 W JP 2017033246W WO 2018052077 A1 WO2018052077 A1 WO 2018052077A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
anhydride
negative electrode
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2017/033246
Other languages
English (en)
French (fr)
Inventor
卓 玉井
登 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018539781A priority Critical patent/JP7059931B2/ja
Priority to CN201780056195.3A priority patent/CN109690861B/zh
Priority to US16/333,512 priority patent/US11817546B2/en
Publication of WO2018052077A1 publication Critical patent/WO2018052077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, a manufacturing method thereof, and a vehicle equipped with the lithium ion secondary battery.
  • Lithium ion secondary batteries are used for various purposes. Accordingly, there is a demand for a lithium ion secondary battery with higher energy density.
  • a Si-based material having a large amount of occlusion / release of lithium ions per unit volume for the negative electrode.
  • the Si-based material has a large expansion / contraction during charging / discharging, the active surface caused by the expansion / contraction decomposes the electrolytic solution and causes a decrease in the capacity retention rate of the battery.
  • Patent Document 1 describes that by using fluoroethylene carbonate and vinylene carbonate as additives, the capacity retention rate of a battery using a Si-based material for the negative electrode can be improved.
  • an embodiment of the present invention aims to provide a lithium ion secondary battery having improved cycle characteristics and containing silicon oxide as a negative electrode.
  • the first lithium ion secondary battery of the present invention includes a negative electrode containing silicon oxide and an electrolytic solution containing a fluorinated acid anhydride.
  • a lithium ion secondary battery having improved cycle characteristics and containing silicon oxide as a negative electrode.
  • the electrolytic solution contains a fluorinated acid anhydride as an additive.
  • the fluorinated acid anhydride in the present embodiment is a compound in which at least one of hydrogen atoms of the acid anhydride is substituted with fluorine.
  • An acid anhydride is a compound having at least one acid anhydride structure in one molecule.
  • the acid anhydride used may be a compound having a plurality of acid anhydride structures in one molecule.
  • the fluorine substitution rate (number of fluorine atoms / sum of the number of hydrogen atoms and fluorine atoms) of the fluorinated acid anhydride is preferably higher.
  • the fluorine substitution rate of the fluorinated acid anhydride is preferably 25% or more, more preferably 50% or more, and most preferably 100%.
  • fluorinated acid anhydride having a ring structure (hereinafter sometimes referred to as “fluorinated cyclic acid anhydride”) is preferable.
  • the fluorinated cyclic acid anhydride in this embodiment is not particularly limited, and examples thereof include carboxylic acid anhydrides, sulfonic acid anhydrides, and carboxylic acid and sulfonic acid anhydrides.
  • fluorinated carboxylic acid anhydride having a ring structure examples include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, phenyl succinic anhydride 2-phenylglutaric anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride Fluorinated compounds such as 5-norbornene-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic anhydride, such as fluorosuccinic anhydride, tetrafluorosuccinic anhydride, difluoroglutaric anhydride, etc. Although it is mentioned, it is not limited to these.
  • fluorinated sulfonic anhydride having a ring structure examples include 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride, 1,4-butanedisulfonic anhydride, 1,2- Fluorinated compounds such as benzenedisulfonic anhydride, such as tetrafluoro-1,2-ethanedisulfonic anhydride, hexafluoro-1,3-propanedisulfonic anhydride, octafluoro-1,4-butanedisulfonic anhydride , 3-fluoro-1,2-benzenedisulfonic anhydride, 4-fluoro-1,2-benzenedisulfonic anhydride, 3,4,5,6-tetrafluoro-1,2-benzenedisulfonic anhydride
  • fluorinated compound of carboxylic acid and sulfonic acid anhydride having a ring structure include 3-sulfopropionic anhydride, 2-methyl-3-sulfopropionic anhydride, 2,2-dimethyl-3- Fluorinated compounds such as sulfopropionic anhydride, 2-ethyl-3-sulfopropionic anhydride, 2,2-diethyl-3-sulfopropionic anhydride, such as 2-fluoro-3-sulfopropionic anhydride Fluorinated compounds such as 2,2-difluoro-3-sulfopropionic anhydride, 2,2,3,3-tetrafluoro-3-sulfopropionic anhydride; 2-sulfobenzoic anhydride, such as 3 -Fluoro-2-sulfobenzoic anhydride, 4-fluoro-2-sulfobenzoic anhydride, 5-fluoro-2-sulfobenzoic
  • the fluorinated cyclic acid anhydride is preferably a fluorinated cyclic carboxylic acid anhydride.
  • the fluorinated cyclic carboxylic acid anhydride is more preferably a fluorinated cyclic carboxylic acid anhydride represented by the following formula (1).
  • R 11 represents a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms, a substituted or unsubstituted carbon group having 5 to 12 carbon atoms.
  • the alkylene group and alkenylene group of R 11 may be linear or branched.
  • the number of carbon atoms in the alkylene group for R 11 is preferably 1, 2, 3 or 4.
  • the carbon number of the alkenylene group of R 11 is preferably 2, 3 or 4.
  • the number of carbon atoms of the cycloalkanediyl group and the cycloalkenediyl group represented by R 11 is preferably 5, 6, 7, 8, 9, or 10.
  • the cycloalkanediyl group and the cycloalkenediyl group may be a divalent group having a plurality of ring structures such as a bicycloalkylene group or a bicycloalkenylene group.
  • a divalent group having 2 to 6 carbon atoms to which an alkylene group is bonded through an ether bond is a divalent group in which two or more alkylene groups are bonded through an ether bond (—O—).
  • the alkylene group may have a branched chain.
  • the total number of carbon atoms of the two or more alkylene groups is preferably 2, 3, 4 or 5, and more preferably 2, 3 or 4.
  • R 11 is more preferably a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms, or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms. It is more preferably a substituted or unsubstituted alkylene group having 2 to 3 carbon atoms, or a substituted or unsubstituted alkenylene group having 2 to 3 carbon atoms.
  • the carbon skeleton (carbon-carbon bond) in R 11 is composed of a single bond. This is presumably because gas generation due to excessive reaction is suppressed as compared with the case where R 11 contains a double bond.
  • R 11 is more preferably an alkylene group.
  • examples of the substituent for R 11 include an alkyl group having 1 to 5 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group), alkenyl group having 2 to 6 carbon atoms.
  • R 11 may have one substituent or may have a plurality of substituents.
  • fluorinated cyclic carboxylic acid anhydride examples include fluorinated compounds of succinic anhydride and glutaric anhydride.
  • a compound in which all hydrogens of the unsubstituted cyclic carboxylic acid anhydride are substituted with fluorine is preferable.
  • Specific examples include perfluoroglutaric anhydride and perfluorosuccinic anhydride.
  • a chain fluorinated acid anhydride may be used.
  • chain fluorinated acid anhydrides include fluorinated compounds of carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, crotonic anhydride or benzoic anhydride, such as monofluoroacetic anhydride, Fluoroacetic acid, pentafluoropropionic anhydride; methanesulfonic anhydride, ethanesulfonic anhydride, propanesulfonic anhydride, butanesulfonic anhydride, pentanesulfonic anhydride, hexanesulfonic anhydride, vinylsulfonic anhydride Fluorinated compounds of sulfonic anhydrides such as benzenesulfonic anhydride, such as trifluoromethanesulfonic anhydride, 2,2,2-trifluoroethanesulfonic anhydride, pentafluoroethanesulfonic anhydride; methane acetate Sul
  • Acid anhydride trifluoroacetic acid ethanesulfonic acid anhydride, trifluoroacetic acid propanesulfonic acid anhydride, acetic acid trifluoromethanesulfonic acid anhydride, acetic acid 2,2,2-trifluoroethanesulfonic acid anhydride, acetic acid pentafluoroethanesulfone Examples include acid anhydride, trifluoroacetic acid trifluoromethanesulfonic acid anhydride, trifluoroacetic acid 2,2,2-trifluoroethanesulfonic acid anhydride, trifluoroacetic acid pentafluoroethanesulfonic acid anhydride, and the like.
  • a fluorinated carboxylic acid anhydride is preferable, and a compound represented by the following formula (2) is more preferable.
  • R 101 and R 102 each independently represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a substituted or unsubstituted group.
  • the number of carbon atoms of the alkyl group is preferably 1, 2, 3, 4 or 5, and more preferably 1, 2, 3 or 4.
  • the aryl group preferably has 6, 7, 8, 9, or 10 carbon atoms. Examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a xylyl group.
  • the number of carbon atoms of the heterocyclic group is preferably 4, 5, 6, 7, 8, 9 or 10, and more preferably 4, 5, 6, 7 or 8.
  • the heterocyclic group contains at least one hetero atom such as oxygen, nitrogen, sulfur and the like, and examples thereof include a pyrrolyl group, a pyridinyl group, a furyl group, a thienyl group, and a morpholino group.
  • the number of carbon atoms in the alkenyl group is preferably 2, 3, 4 or 5, and more preferably 2, 3 or 4.
  • the alkyl group or alkenyl group may be linear or branched.
  • R 101 and R 102 are more preferably each independently an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group may be linear or branched. More preferably, the alkyl group has 1, 2, 3 or 4 carbon atoms.
  • R 101 and R 102 examples include an alkyl group having 1 to 5 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group), and a cycloalkyl group having 3 to 6 carbon atoms ( For example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group), alkynyl group having 2 to 5 carbon atoms (for example, acetylenyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group), 1 to carbon atoms 5 alkoxy groups (for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, tert-butoxy group), alkylcarbonyl group having 2 to 6 carbon atoms, and 7 to 11 carbon atoms
  • Aryl alky
  • the chain fluorinated carboxylic acid anhydride is particularly preferably a fluorinated compound of acetic anhydride, propionic anhydride or butyric anhydride.
  • a compound in which all hydrogens in the unsubstituted chain carboxylic acid anhydride are substituted with fluorine is preferable.
  • Specific examples include trifluoroacetic anhydride, perfluoropropionic anhydride, heptafluorobutyric anhydride, and the like.
  • Fluorinated acid anhydrides can be used alone or in combination of two or more.
  • the concentration of the fluorinated acid anhydride in the electrolytic solution is not particularly limited, but is preferably 0.005 to 10 mol / L.
  • concentration of the fluorinated acid anhydride is 0.005 mol / L or more, a film of the fluorinated acid anhydride can be effectively formed. In addition, moisture in the negative electrode can be captured effectively.
  • concentration of the fluorinated acid anhydride is 10 mol / L or less, it is possible to suppress the formation of a thick film due to decomposition of the fluorinated acid anhydride, and it is possible to suppress an increase in resistance due to the film.
  • the concentration of the fluorinated acid anhydride in the electrolytic solution is more preferably 0.01 mol / L or more, and further preferably 0.05 mol / L or more. Further, the concentration of the fluorinated acid anhydride in the electrolytic solution is more preferably 8 mol / L or less, and further preferably 5 mol / L or less.
  • the electrolyte solution may contain other additives other than the fluorinated acid anhydride, if necessary.
  • additives include an overcharge inhibitor and a surfactant.
  • the electrolytic solution further contains a nonaqueous solvent and a supporting salt.
  • a nonaqueous solvent for example, Cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC); Dimethyl carbonate (DMC), Diethyl carbonate (DEC) ), Chain carbonates such as ethyl methyl carbonate (EMC), dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as propylene carbonate derivatives, methyl formate, methyl acetate, ethyl propionate; diethyl ether, ethyl propyl ether Aprotic organic solvents such as ethers such as trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, and triphenyl phosphate, and the number of hydrogen atoms in these compounds
  • fluorinated aprotic organic solvents such as substituted with
  • cyclics such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), etc.
  • chain carbonates are included.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salt is not particularly limited except that it contains Li.
  • the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 2 , LiN (FSO 2). ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 and the like.
  • Other examples of the supporting salt include lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like.
  • a support salt can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the supporting salt in the electrolytic solution is preferably 0.5 to 1.5 mol / L. By setting the concentration of the supporting salt within this range, it becomes easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
  • the negative electrode includes a current collector and a negative electrode mixture layer that is provided on the current collector and includes a negative electrode active material, a binder, and, if necessary, a conductive auxiliary agent.
  • the negative electrode includes silicon oxide as an active material.
  • silicon oxide is represented by a composition formula SiO x (0 ⁇ x ⁇ 2).
  • Silicon oxide is known as an active material having a large amount of occlusion and release of lithium ions per unit volume. Therefore, a battery with a high silicon oxide content can have a high energy density.
  • the effect of improving the capacity retention rate by the electrolytic solution to which the fluorinated acid anhydride is added becomes large.
  • the amount of silicon oxide is preferably 5% by mass or more, more preferably 30% by mass or more, particularly preferably 70% by mass or more, and 100% by mass of the total amount of the negative electrode active material. %.
  • the negative electrode active material is a material that can occlude and release lithium. In this specification, a material that does not occlude and release lithium, such as a binder, is not included in the negative electrode active material.
  • Silicon oxide can also be used in combination with other negative electrode active materials.
  • silicon oxide is preferably used together with carbon.
  • Use with carbon can alleviate the effects of expansion and contraction and improve the cycle characteristics of the battery.
  • Silicon oxide particles and carbon particles may be mixed and used, or the surface of silicon oxide particles may be coated with carbon.
  • Examples of carbon include graphite, amorphous carbon, graphene, diamond-like carbon, carbon nanotubes, and composites thereof.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the negative electrode binder is not particularly limited, but polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polybutadiene Polyacrylic acid, polyacrylic acid ester, polystyrene, polyacrylonitrile, polyimide, polyamideimide and the like can be used. Moreover, the mixture which consists of said several resin, a copolymer, the styrene butadiene rubber (SBR) which is the crosslinked body, etc. are mentioned. Further, when an aqueous binder such as an SBR emulsion is used, a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • CMC carboxymethyl cellulose
  • polyacrylic acid or polyimide is preferable for improving cycle characteristics, and polyacrylic acid is more preferable.
  • Polyacrylic acid is a polymer containing a monomer unit derived from (meth) acrylic acid represented by the following formula (3) or a metal salt thereof.
  • (meth) acrylic acid means acrylic acid and methacrylic acid.
  • R 1 is a hydrogen atom or a methyl group.
  • the carboxylic acid in the monomer unit represented by the formula (3) may be a carboxylic acid metal salt.
  • the metal is preferably a monovalent metal.
  • the monovalent metal include alkali metals (for example, Na, Li, K, Rb, Cs, Fr, etc.) and noble metals (for example, Ag, Au, Cu, etc.).
  • alkali metals are preferable.
  • Na, Li, and K are preferable, and Na is most preferable.
  • the adhesion with the constituent material of the electrode mixture layer may be further improved.
  • Polyacrylic acid may contain other monomer units.
  • the polyacrylic acid further includes a monomer unit other than (meth) acrylic acid, the peel strength between the electrode mixture layer and the current collector may be improved.
  • monomer units include monocarboxylic acid compounds such as crotonic acid and pentenoic acid, dicarboxylic acid compounds such as itaconic acid and maleic acid, sulfonic acid compounds such as vinyl sulfonic acid, and phosphonic acids such as vinyl phosphonic acid.
  • Acids having an ethylenically unsaturated group such as compounds; aromatic olefins having acidic groups such as styrene sulfonic acid and styrene carboxylic acid; (meth) acrylic acid alkyl esters; acrylonitrile; aliphatic olefins such as ethylene, propylene and butadiene; Examples include monomer units derived from monomers such as aromatic olefins such as styrene.
  • the other monomer unit may be a monomer unit constituting a known polymer used as a binder for a secondary battery. In these monomer units, if present, the acid may be a salt.
  • At least one hydrogen atom in the main chain and the side chain may be substituted with halogen (fluorine, chlorine, boron, iodine, etc.) or the like.
  • the copolymer may be a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer. Any of a polymer etc. and these combinations may be sufficient.
  • Polyimide is a polymer containing a repeating unit represented by the following formula (4).
  • A is a tetravalent group obtained by removing an acid anhydride group from tetracarboxylic dianhydride
  • B is a divalent group obtained by removing an amino group from diamine.
  • Tetracarboxylic dianhydride and diamine are generally used as raw materials for polyimide. Tetracarboxylic dianhydride and diamine condense to form an imide group contained in formula (4).
  • Polyimide is not particularly limited, and commercially available polyimide may be used.
  • examples of the tetracarboxylic dianhydride forming A include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 3,4 ′.
  • -Aromatic tetracarboxylic dianhydrides such as oxydiphthalic anhydride, 4,4'-oxydiphthalic anhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, and cyclobutanetetracarboxylic dianhydride Anhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.1] heptane-2,3 And aliphatic tetracarboxylic dianhydrides such as 5,6-tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride.
  • Examples of the diamine that forms B in the formula (4) include aromatic diamines such as p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, and m-xylylenediamine, and cyclohexanediamine, di (aminomethyl). ) Aliphatic diamines such as cyclohexane, diaminomethylbicycloheptane, and diaminomethyloxybicycloheptane.
  • the polyimide binder may contain an imidization accelerator that accelerates the reaction from the precursor polyamic acid to the polyimide.
  • the amount of the negative electrode binder is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less as the upper limit as a lower limit with respect to 100 parts by mass of the negative electrode active material. is there.
  • the negative electrode may contain a conductive aid such as carbon, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, from the viewpoint of improving conductivity.
  • a conductive aid such as carbon, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, from the viewpoint of improving conductivity.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof can be used because of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the negative electrode according to the present embodiment can be prepared by preparing a slurry containing a negative electrode active material, a binder and a solvent, applying the slurry onto a negative electrode current collector, and forming a negative electrode mixture layer.
  • the positive electrode includes a current collector, and a positive electrode mixture layer that is provided on the current collector and includes a positive electrode active material, a binder, and, if necessary, a conductive auxiliary agent.
  • the positive electrode active material is not particularly limited and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element.
  • the layered structure is represented by the following formula (5) Lithium nickel composite oxide is preferred.
  • Li y Ni (1-x) M x O 2 (5) (However, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
  • the Ni content is high, that is, in the formula (5), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • Ni content does not exceed 0.5, that is, x in Formula (5) is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by formula (5) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 may be used in the range of 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • the material with high Ni content (x is 0.4 or less) and the material with Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition Examples include an excess; a solid solution of Li 2 MnO 3 and LiMO 2 (M is a metal element); and an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the positive electrode binder is not particularly limited, but polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polybutadiene Polyacrylic acid, polyacrylic acid ester, polystyrene, polyacrylonitrile, polyimide, polyamideimide and the like can be used.
  • the positive electrode binder may be a mixture of a plurality of resins, a copolymer, and a crosslinked product thereof, such as styrene butadiene rubber (SBR). Further, when an aqueous binder such as an SBR emulsion is used, a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • SBR styrene butadiene rubber
  • the amount of the positive electrode binder is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less as the upper limit, with respect to 100 parts by mass of the positive electrode active material. is there.
  • the positive electrode current collector is not particularly limited, but aluminum, nickel, silver, or an alloy thereof can be used.
  • Examples of the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • a conductive auxiliary agent may be added for the purpose of reducing the impedance.
  • the conductive auxiliary include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode according to the present embodiment can be produced by preparing a slurry containing a positive electrode active material, a binder and a solvent, and applying the slurry onto a positive electrode current collector to form a positive electrode mixture layer.
  • Any separator may be used as long as it suppresses the conduction between the positive electrode and the negative electrode without impeding the permeation of the charged body and has durability against the electrolytic solution.
  • Specific materials include polyolefins such as polypropylene and polyethylene, polyesters such as cellulose, polyethylene terephthalate and polybutylene terephthalate, polyimide, polyvinylidene fluoride, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide and copolyparaphenylene-3, Aromatic polyamide (aramid) such as 4′-oxydiphenylene terephthalamide can be used. These can be used as porous films, woven fabrics, non-woven fabrics and the like.
  • An insulating layer may be formed on at least one surface of the positive electrode, the negative electrode, and the separator.
  • Examples of the method for forming the insulating layer include a doctor blade method, a dip coating method, a die coater method, a CVD method, and a sputtering method.
  • An insulating layer can be formed simultaneously with the formation of the positive electrode, the negative electrode, and the separator.
  • Examples of the material constituting the insulating layer include a mixture of an insulating filler such as aluminum oxide or barium titanate and a binder such as SBR or PVdF.
  • the lithium ion secondary battery of this embodiment has a structure as shown in FIGS. 1 and 2, for example.
  • the lithium ion secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter, these are also simply referred to as “electrode tabs”). ing.
  • the battery element 20 is formed by alternately stacking a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41. Note that the present embodiment is not necessarily limited to a stacked battery, and can also be applied to a wound battery.
  • the lithium ion secondary battery may have a configuration in which the electrode tab is drawn out on one side of the outer package as shown in FIGS. 1 and 2, but the lithium ion secondary battery has the electrode tab pulled out on both sides of the outer package. It can be a thing. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 2). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 1 and 2 show examples in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in a dry air or an inert atmosphere, an electrode element is formed by arranging a positive electrode and a negative electrode to face each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • mass% of each material means the ratio with respect to the total amount of negative mix.
  • Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 was used as the positive electrode active material.
  • This positive electrode active material, carbon black as a conductive auxiliary agent, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to produce a positive electrode.
  • Electrode laminate Three layers of the positive electrode and four layers of the negative electrode obtained were alternately stacked while sandwiching an aramid porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained.
  • LiPF 6 as a supporting salt and perfluoroglutaric anhydride (FGA) as an additive were added, respectively, to prepare an electrolytic solution.
  • the concentration of LiPF 6 in the electrolytic solution was 1.0 mol / L.
  • the concentration of FGA in the electrolyte was 0.1 mol / L.
  • the electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Then, vacuum impregnation (pressure: 10 kPa (abs)) was performed in the chamber, and the battery was obtained by sealing the outer package.
  • Comparative Example 1 Si metal was used as the negative electrode active material instead of silicon oxide. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 2 Perfluorosuccinic anhydride (FSA) was used as an additive instead of perfluoroglutaric anhydride (FGA).
  • FSA perfluoroglutaric anhydride
  • the concentration of FSA in the electrolyte was 0.1 mol / L. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 3 Perfluoropropionic anhydride (FPA) was used as an additive instead of perfluoroglutaric anhydride (FGA). The concentration of FPA in the electrolyte was 0.1 mol / L. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • FPA Perfluoropropionic anhydride
  • Vinylene carbonate (VC) was used as an additive instead of perfluoroglutaric anhydride (FGA).
  • the concentration of VC in the electrolytic solution was 0.1 mol / L. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 4 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 90/10. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 5 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 80/20. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 6 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 70/30. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 7 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 50/50. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 8 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 30/70. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • Example 9 The mixing mass ratio of silicon oxide and natural graphite in the negative electrode was 10/90. Otherwise, a battery was produced in the same manner as in Example 1, and the battery was evaluated in the same manner.
  • PVdF Polyvinylidene fluoride
  • PVdF Polyvinylidene fluoride
  • the lithium ion secondary battery according to the present embodiment can be used in, for example, all industrial fields that require a power source and industrial fields related to transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric vehicles, trains, satellites, submarines, etc .
  • It can be used for backup power sources such as UPS; power storage facilities for storing power generated by solar power generation, wind power generation, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一実施形態は、サイクル特性が改善された、シリコン酸化物を負極に含むリチウムイオン二次電池を提供することを目的とする。本発明は、シリコン酸化物を含む負極と、フッ素化酸無水物を含む電解液と、を含むリチウムイオン二次電池に関する。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池、その製造方法およびリチウムイオン二次電池を搭載した車両に関する。
 リチウムイオン二次電池は、様々な用途に使用されるようになっている。これに伴って、よりエネルギー密度の高いリチウムイオン二次電池の要求がある。電池の高エネルギー密度化のために、単位体積当たりのリチウムイオンの吸蔵放出量が大きいSi系材料を負極に使用することが検討されている。しかしながら、Si系材料は、充放電時の膨張収縮が大きいため、膨張収縮により生じる活性面が、電解液を分解し、電池の容量維持率の低下を引き起こす。
 容量維持率の低下を改善するには、負極上にSEI皮膜を形成するビニレンカーボネートやフルオロエチレンカーボネートなどの添加剤を電解液に添加することが有効である。特許文献1には、フルオロエチレンカーボネートと、ビニレンカーボネートとを添加剤として使用することにより、Si系材料を負極に使用する電池の容量維持率を改善できることが記載されている。
特開2015-064983号公報
 しかしながら、上述したビニレンカーボネートやフルオロエチレンカーボネートなどの添加剤を含む電解液を用いても、Si系材料を負極に使用する電池では、依然として充放電サイクルを繰り返すことで、容量の低下が大きいことが問題であった。このため、さらなるサイクル特性の改善が要求されている。
 本発明の一実施形態は、上述した課題を鑑み、サイクル特性が改善された、シリコン酸化物を負極に含むリチウムイオン二次電池を提供することを目的にする。
 本発明の第1のリチウムイオン二次電池は、シリコン酸化物を含む負極と、フッ素化酸無水物を含む電解液とを含む。
 本発明の一実施形態によれば、サイクル特性が改善された、シリコン酸化物を負極に含むリチウムイオン二次電池を提供できる。
フィルム外装電池の基本的構造を示す分解斜視図である。 図1の電池の断面を模式的に示す断面図である。
 以下、本実施形態について説明する。
 [電解液]
 電解液は、添加剤としてフッ素化酸無水物を含む。本実施形態におけるフッ素化酸無水物は、酸無水物が有する水素原子の内、少なくとも一つを、フッ素で置換した化合物である。酸無水物とは、酸無水物構造を1分子中に少なくとも1つ有する化合物である。使用する酸無水物は酸無水物構造を1分子中に複数個有する化合物であってもよい。
 酸無水物の少なくとも1つの水素原子をフッ素原子で置換することにより、酸無水物の耐酸化性が向上し、正極における酸化分解を抑制することができるものと推定される。フッ素化酸無水物のフッ素置換率(フッ素原子数/水素原子とフッ素原子の原子数の和)は高い方が好ましい。フッ素化酸無水物のフッ素置換率は、25%以上が好ましく、50%以上がより好ましく、100%が最も好ましい。
 本実施形態において、環構造を有するフッ素化酸無水物(以下、「フッ素化環状酸無水物」と記載することもある)が好ましい。
 本実施形態におけるフッ素化環状酸無水物としては、特に限定されるものではないが、例えば、カルボン酸の無水物、スルホン酸の無水物、カルボン酸とスルホン酸との無水物等が挙げられる。
 環構造を有するフッ素化カルボン酸無水物の具体例としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、フェニルコハク酸無水物、2-フェニルグルタル酸無水物、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水フタル酸、無水ピロメリット酸等のフッ素化化合物、例えば、フルオロコハク酸無水物、テトラフルオロコハク酸無水物、ジフルオログルタル酸無水物等が挙げられるがこれらに限定されない。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。
 環構造を有するフッ素化スルホン酸無水物の具体例としては、1,2-エタンジスルホン酸無水物、1,3-プロパンジスルホン酸無水物、1,4-ブタンジスルホン酸無水物、1,2-ベンゼンジスルホン酸無水物等のフッ素化化合物、例えば、テトラフルオロ-1,2-エタンジスルホン酸無水物、ヘキサフルオロ-1,3-プロパンジスルホン酸無水物、オクタフルオロ-1,4-ブタンジスルホン酸無水物、3-フルオロ-1,2-ベンゼンジスルホン酸無水物、4-フルオロ-1,2-ベンゼンジスルホン酸無水物、3,4,5,6-テトラフルオロ-1,2-ベンゼンジスルホン酸無水物等が挙げられるがこれらに限定されない。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。
 環構造を有するカルボン酸とスルホン酸の無水物のフッ素化化合物の具体例としては、3-スルホプロピオン酸無水物、2-メチル-3-スルホプロピオン酸無水物、2,2-ジメチル-3-スルホプロピオン酸無水物、2-エチル-3-スルホプロピオン酸無水物、2,2-ジエチル-3-スルホプロピオン酸無水物等のフッ素化化合物、例えば、2-フルオロ-3-スルホプロピオン酸無水物、2,2-ジフルオロ-3-スルホプロピオン酸無水物、2,2,3,3-テトラフルオロ-3-スルホプロピオン酸無水物;2-スルホ安息香酸無水物等のフッ素化化合物、例えば、3-フルオロ-2-スルホ安息香酸無水物、4-フルオロ-2-スルホ安息香酸無水物、5-フルオロ-2-スルホ安息香酸無水物、6-フルオロ-2-スルホ安息香酸無水物、3,6-ジフルオロ-2-スルホ安息香酸無水物、3,4,5,6-テトラフルオロ-2-スルホ安息香酸無水物、3-トリフルオロメチル-2-スルホ安息香酸無水物、4-トリフルオロメチル-2-スルホ安息香酸無水物、5-トリフルオロメチル-2-スルホ安息香酸無水物、6-トリフルオロメチル-2-スルホ安息香酸無水物等が挙げられるがこれらに限定されない。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。
 本実施形態において、フッ素化環状酸無水物は、フッ素化環状カルボン酸無水物であることが好ましい。また、フッ素化環状カルボン酸無水物は、下記式(1)で表されるフッ素化環状カルボン酸無水物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
 (式(1)において、R11は、置換若しくは無置換の炭素数1~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基、置換若しくは無置換の炭素数5~12のシクロアルカンジイル基、置換若しくは無置換の炭素数5~12のシクロアルケンジイル基、置換若しくは無置換のベンゼンジイル基、又はエーテル結合を介してアルキレン基が結合した炭素数2~6の2価の基を示し、ただし、R11の水素原子の少なくとも一部がフッ素原子で置換されている。)
 式(1)において、R11のアルキレン基及びアルケニレン基は、直鎖状であっても分岐鎖状であってもよい。
 式(1)において、R11のアルキレン基の炭素数は、1,2,3又は4であることが好ましい。R11のアルケニレン基の炭素数は、2,3又は4であることが好ましい。
 式(1)において、R11のシクロアルカンジイル基及びシクロアルケンジイル基の炭素数は、5,6,7,8,9又は10であることが好ましい。なお、シクロアルカンジイル基及びシクロアルケンジイル基は、ビシクロアルキレン基又はビシクロアルケニレン基のように複数の環構造を有する2価の基であってもよい。
 式(1)において、エーテル結合を介してアルキレン基が結合した炭素数2~6の2価の基は、エーテル結合(-O-)を介して2個以上のアルキレン基が結合した2価の基を表し、2個以上のアルキレン基は、同じであっても異なっていてもよい。アルキレン基は分岐鎖を有していてもよい。2個以上のアルキレン基の炭素数の合計は2,3,4又は5であることが好ましく、2,3又は4であることがより好ましい。
 式(1)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、または、置換若しくは無置換の炭素数2~5のアルケニレン基であることがより好ましい。置換若しくは無置換の炭素数2~3のアルキレン基、または、置換若しくは無置換の炭素数2~3のアルケニレン基であることがさらに好ましい。
 また、式(1)において、R11中の炭素骨格(炭素-炭素間結合)が全て単結合で構成されていることがより好ましい。これは、R11が二重結合を含む場合と比較して、過剰な反応によるガス発生が抑制されるためと考えられる。例えば、R11は、アルキレン基であることがより好ましい。
 式(1)において、R11の置換基としては、例えば、炭素数1~5のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、炭素数2~6のアルケニル基(例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基)、アリール基(例えば、フェニル基、ベンジル基、トリル基及びキシリル基)、炭素数1~5のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基)、アミノ基(ジメチルアミノ基、メチルアミノ基を含む)、カルボキシ基、ヒドロキシ基、ビニル基、シアノ基、又はハロゲン原子(例えば、塩素原子、臭素原子)があげられる。R11は、1つの置換基を有していてもよく、複数の置換基を有していてもよい。
 フッ素化環状カルボン酸無水物の好ましい例としては、無水コハク酸および無水グルタル酸のフッ素化化合物等が挙げられる。特に、無置換の環状カルボン酸無水物の水素が全てフッ素で置換された化合物が好ましい。具体的には、パーフルオログルタル酸無水物、パーフルオロコハク酸無水物などが挙げられる。
 鎖状のフッ素化酸無水物を使用してもよい。
 鎖状のフッ素化酸無水物の例としては、無水酢酸、無水プロピオン酸、無水酪酸、無水クロトン酸または無水安息香酸等のカルボン酸無水物のフッ素化化合物、例えば、無水モノフルオロ酢酸、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸;メタンスルホン酸無水物、エタンスルホン酸無水物、プロパンスルホン酸無水物、ブタンスルホン酸無水物、ペンタンスルホン酸無水物、ヘキサンスルホン酸無水物、ビニルスルホン酸無水物、ベンゼンスルホン酸無水物等のスルホン酸無水物のフッ素化化合物、例えば、トリフルオロメタンスルホン酸無水物、2,2,2-トリフルオロエタンスルホン酸無水物、ペンタフルオロエタンスルホン酸無水物;酢酸メタンスルホン酸無水物、酢酸エタンスルホン酸無水物、酢酸プロパンスルホン酸無水物、プロピオン酸メタンスルホン酸無水物、プロピオン酸エタンスルホン酸無水物、プロピオン酸プロパンスルホン酸無水物等のカルボン酸とスルホン酸の無水物のフッ素化化合物、例えば、トリフルオロ酢酸メタンスルホン酸無水物、トリフルオロ酢酸エタンスルホン酸無水物、トリフルオロ酢酸プロパンスルホン酸無水物、酢酸トリフルオロメタンスルホン酸無水物、酢酸2,2,2-トリフルオロエタンスルホン酸無水物、酢酸ペンタフルオロエタンスルホン酸無水物、トリフルオロ酢酸トリフルオロメタンスルホン酸無水物、トリフルオロ酢酸2,2,2-トリフルオロエタンスルホン酸無水物、トリフルオロ酢酸ペンタフルオロエタンスルホン酸無水物等が挙げられる。
 これらの中でも、フッ素化カルボン酸無水物であることが好ましく、下記式(2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(2)において、R101及びR102は、それぞれ独立に、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数6~12のアリール基、置換若しくは無置換の炭素数4~12の複素環基、又は置換若しくは無置換の炭素数2~6のアルケニル基を示し、ただし、R101及びR102の少なくともひとつの水素原子がフッ素原子で置換されている。)
 式(2)のR101及びR102において、アルキル基の炭素数は、1,2,3,4又は5であることが好ましく、1,2,3又は4であることがより好ましい。アリール基の炭素数は、6,7,8,9又は10であることが好ましい。アリール基の例としては、フェニル基、ベンジル基、トリル基及びキシリル基等が挙げられる。複素環基の炭素数は、4,5,6,7,8,9又は10であることが好ましく、4,5,6,7又は8であることがより好ましい。複素環基は、酸素、窒素、硫黄等の少なくともひとつのヘテロ原子を含み、例えば、ピロリル基、ピリジニル基、フリル基、チエニル基及びモルホリノ基等が挙げられる。アルケニル基の炭素数は、2,3,4又は5であることが好ましく、2,3又は4であることがより好ましい。また、アルキル基又はアルケニル基は、直鎖状であってもよく、分岐鎖状であってもよい。
 式(2)において、R101及びR102は、それぞれ独立に、炭素数1~5のアルキル基であることがより好ましい。アルキル基は、直鎖状であっても分岐鎖状であってもよい。アルキル基の炭素数は、1,2,3又は4であることがさらに好ましい。
 R101及びR102の置換基としては、例えば、炭素数1~5のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、炭素数3~6のシクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基)、炭素数2~5のアルキニル基(例えば、アセチレニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基)、炭素数1~5のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基)、炭素数2~6のアルキルカルボニル基、炭素数7~11のアリールカルボニル基、炭素数2~6のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基)、炭素数7~11のアリールオキシカルボニル基、炭素数2~6のアルキルカルボニルオキシ基、炭素数7~11のアリールカルボニルオキシ基、炭素数6~12のアリール基(例えば、フェニル基、ナフチル基)、炭素数6~10のアリールオキシ基(例えば、フェノキシ基、ナフトキシ基)、炭素数1~5のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、n-ブチルチオ基、tert-ブチルチオ基)、炭素数6~10のアリールチオ基(例えば、フェニルチオ基、ナフチルチオ基)、炭素数2~6のアルキルチオカルボニル基、炭素数7~11のアリールチオカルボニル基、炭素数1~5のアルキルスルフィニル基、炭素数6~10のアリールスルフィニル基、炭素数1~5のアルキルスルホニル基、炭素数6~10のアリールスルホニル基、炭素数4~8のヘテロ原子含有芳香族環基(例えば、フリル基、チエニル基)、アミノ基(ジメチルアミノ基、メチルアミノ基を含む)、カルボキシ基、ヒドロキシ基、シアノ基、又はハロゲン原子(例えば、塩素原子、臭素原子)等が挙げられる。R101及びR102は、それぞれ独立して、1つの置換基を有していてもよく、複数の置換基を有していてもよい。
 鎖状のフッ素化カルボン酸無水物は、無水酢酸、無水プロピオン酸または無水酪酸のフッ素化化合物であることが特に好ましい。特に、無置換の鎖状カルボン酸無水物の水素が全てフッ素で置換された化合物が好ましい。具体的には、トリフルオロ酢酸無水物、パーフルオロプロピオン酸無水物、ヘプタフルオロ酪酸無水物などが挙げられる。
 フッ素化酸無水物は1種を単独で又は2種以上を混合して用いることができる。
 フッ素化酸無水物の電解液中の濃度は、特に制限されるものではないが、0.005~10mol/Lであることが好ましい。フッ素化酸無水物の濃度が0.005mol/L以上の場合、フッ素化酸無水物の皮膜を効果的に形成することができる。また、負極中の水分を効果的に捕捉することができる。フッ素化酸無水物の濃度が10mol/L以下の場合、フッ素化酸無水物の分解による皮膜が厚く形成されることを抑制でき、皮膜による抵抗増加を抑制できる。フッ素化酸無水物の電解液中の濃度は、0.01mol/L以上であることがより好ましく、0.05mol/L以上であることがさらに好ましい。また、フッ素化酸無水物の電解液中の濃度は、8mol/L以下であることがより好ましく、5mol/L以下であることがさらに好ましい。
 また、電解液には、必要に応じて、フッ素化酸無水物以外のその他の添加剤も含ませることができる。その他の添加剤としては、例えば、過充電防止剤、界面活性剤等が挙げられる。
 電解液は、さらに非水溶媒と、支持塩を含む。非水溶媒としては、特に限定されるものではないが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等のリン酸エステル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。一実施形態においては、フッ素化エーテル類が混合されていない非水溶媒が好ましい場合がある。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。
 支持塩は、Liを含有すること以外は特に限定されない。支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiB10Cl10等が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 支持塩の電解液中の濃度は、0.5~1.5mol/Lであることが好ましい。支持塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易くなる。
 [負極]
 負極は、集電体と、集電体上に設けられた、負極活物質、バインダおよび必要に応じ導電補助剤を含む負極合剤層とを備える。
 負極は、活物質としてシリコン酸化物を含む。Si系材料の中でも、シリコン酸化物を負極活物質に使用する場合に、より良好なサイクル特性を示す電池を得ることができる。シリコン酸化物は、組成式SiO(0<x≦2)で表される。シリコン酸化物は、単位体積当たりのリチウムイオンの吸蔵放出量が大きい活物質として知られている。従って、シリコン酸化物の含有量が多い電池は、高エネルギー密度となり得る。加えて、シリコン酸化物の含有量が多い電池では、フッ素化酸無水物を添加した電解液による容量維持率の改善効果が大きくなる。このような観点から、シリコン酸化物の量は、好ましくは負極活物質の総量の5質量%以上であり、より好ましくは30質量%以上であり、特に好ましくは70質量%以上であり、100質量%であってもよい。負極活物質は、リチウムを吸蔵放出し得る物質である。本明細書において、例えばバインダなど、リチウムを吸蔵放出しない物質は、負極活物質には含まれない。
 シリコン酸化物を、その他の負極活物質と組み合わせて使用することもできる。特に、シリコン酸化物は、炭素とともに使用することが好ましい。炭素とともに使用することで膨張収縮の影響を緩和して、電池のサイクル特性を改善することができる。シリコン酸化物粒子と炭素粒子を混合して使用してよく、シリコン酸化物の粒子表面を炭素で被覆して使用してもよい。炭素としては、例えば、黒鉛、非晶質炭素、グラフェン、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 負極バインダとしては、特に制限されるものではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリブタジエン、ポリアクリル酸、ポリアクリル酸エステル、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等を用いることができる。また、前記の複数の樹脂からなる混合物や、共重合体、さらにその架橋体であるスチレンブタジエンゴム(SBR)等が挙げられる。さらに、SBR系エマルジョンのような水系のバインダを用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。
 上記バインダの中でも、サイクル特性の改善には、ポリアクリル酸またはポリイミドが好ましく、ポリアクリル酸がより好ましい。
 ポリアクリル酸は、下記式(3)で表される(メタ)アクリル酸またはその金属塩に由来する単量体単位を含む重合体である。なお、本明細書において、用語「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸を意味する。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子又はメチル基である。)
 式(3)で表される単量体単位におけるカルボン酸は、カルボン酸金属塩であってよい。金属は好ましくは一価金属である。一価金属としては、アルカリ金属(例えば、Na、Li、K、Rb、Cs、Fr等)、及び、貴金属(例えば、Ag、Au、Cu等)等が挙げられる。これらの中でも、アルカリ金属が好ましい。アルカリ金属としては、Na、Li、Kが好ましく、Naが最も好ましい。ポリアクリル酸が、少なくとも一部にカルボン酸塩を含むことにより、電極合剤層の構成材料との密着性をさらに向上させることができる場合がある。
 ポリアクリル酸は、その他の単量体単位を含んでいてもよい。ポリアクリル酸が、(メタ)アクリル酸以外の単量体単位をさらに含むことで、電極合剤層と集電体との剥離強度を改善できる場合がある。その他の単量体単位としては、例えば、クロトン酸、ペンテン酸等のモノカルボン酸化合物、イタコン酸、マレイン酸等のジカルボン酸化合物、ビニルスルホン酸等のスルホン酸化合物、ビニルホスホン酸等のホスホン酸化合物等のエチレン性不飽和基を有する酸;スチレンスルホン酸、スチレンカルボン酸等の酸性基を有する芳香族オレフィン;(メタ)アクリル酸アルキルエステル;アクリロニトリル;エチレン、プロピレン、ブタジエン等の脂肪族オレフィン;スチレン等の芳香族オレフィン等のモノマーに由来する単量体単位が挙げられる。また、その他の単量体単位は、二次電池のバインダとして使用される公知のポリマーを構成する単量体単位であってもよい。これらの単量体単位においても、存在する場合、酸が塩となっていてもよい。
 さらに、本実施形態に係るポリアクリル酸は、主鎖および側鎖の少なくとも1つの水素原子が、ハロゲン(フッ素、塩素、ホウ素、ヨウ素等)等で置換されていてもよい。
 なお、本実施形態に係るポリアクリル酸が2種以上の単量体単位を含む共重合体である場合、共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等、及びこれらの組合せのいずれであってもよい。
 ポリイミドは、以下式(4)で表される繰返し単位を含む重合体である。
Figure JPOXMLDOC01-appb-C000004
(式中、Aはテトラカルボン酸二無水物から酸無水物基を除いた4価の基であり、Bはジアミンからアミノ基を除いた2価の基である。)
 テトラカルボン酸二無水物およびジアミンはポリイミドの原料として一般に使用される。テトラカルボン酸二無水物とジアミンが縮合し、式(4)中に含まれるイミド基を形成する。
 ポリイミドは特に制限されず、市販されているポリイミドを使用してよい。式(4)において、Aを形成するテトラカルボン酸二無水物としては、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物、およびシクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物などが挙げられる。式(4)においてBを形成するジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミンなどの芳香族ジアミン、およびシクロヘキサンジアミン、ジ(アミノメチル)シクロヘキサン、ジアミノメチルビシクロヘプタン、ジアミノメチルオキシビシクロヘプタンなどの脂肪族ジアミンなどが挙げられる。
 ポリイミドバインダは、前駆体であるポリアミック酸からポリイミドへの反応を促進する、イミド化促進剤を含んでもよい。
 負極バインダの量は、負極活物質100質量部に対して、下限として好ましくは1質量部以上、より好ましくは2質量部以上、上限として好ましくは30質量部以下、より好ましくは25質量部以下である。
 負極は、導電性を向上させる観点から、カーボン等、例えばグラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子等の導電補助剤を含んでよい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金を使用できる。その形状としては、箔、平板状、メッシュ状が挙げられる。
 本実施形態に係る負極は、負極活物質、バインダ及び溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、負極合剤層を形成することにより作製できる。
 [正極]
 正極は、集電体と、集電体上に設けられた、正極活物質、バインダおよび必要に応じ導電補助剤を含む正極合剤層とを備える。
 正極活物質としては、特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(5)で表される層状リチウムニッケル複合酸化物が好ましい。
   LiNi(1-x)   (5)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(5)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(5)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(5)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(5)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiMnOとLiMO(Mは金属元素)との固溶体;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極バインダとしては、特に制限されるものではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリブタジエン、ポリアクリル酸、ポリアクリル酸エステル、ポリスチレン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等を用いることができる。また、正極バインダは、前記の複数の樹脂の混合物、共重合体およびその架橋体、例えばスチレンブタジエンゴム(SBR)等であってもよい。さらに、SBR系エマルジョンのような水系のバインダを用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。
 正極バインダの量は、正極活物質100質量部に対して、下限として好ましくは1質量部以上、より好ましくは2質量部以上、上限として好ましくは30質量部以下、より好ましくは25質量部以下である。
 正極集電体としては、特に制限されるものではないが、アルミニウム、ニッケル、銀、またはそれらの合金を使用できる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。
 正極の作製に際して、インピーダンスを低下させる目的で、導電補助剤を添加してもよい。導電補助剤としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 本実施形態に係る正極は、正極活物質、バインダ及び溶媒を含むスラリーを調製し、これを正極集電体上に塗布し、正極合剤層を形成することにより作製できる。
 [セパレータ]
 セパレータは、荷電体の透過を阻害せずに正極および負極の導通を抑制し、電解液に対して耐久性を有するものであれば、いずれであってもよい。具体的な材質としては、ポリプロピレンおよびポリエチレン等のポリオレフィン、セルロース、ポリエチレンテレフタレートおよびポリブチレンテレフタレートなどのポリエステル、ポリイミド、ポリフッ化ビニリデンならびにポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドおよびコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド等の芳香族ポリアミド(アラミド)等が挙げられる。これらは、多孔質フィルム、織物、不織布等として用いることができる。
 [絶縁層]
 正極、負極、およびセパレータの少なくとも1つの表面に絶縁層を形成してもよい。絶縁層の形成方法としては、ドクターブレード法、ディップコーティング法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。正極、負極、セパレータの形成と同時に絶縁層を形成することもできる。絶縁層を構成する物質としては、酸化アルミニウムやチタン酸バリウムなどの絶縁性フィラーとSBRやPVdFなどのバインダとの混合物などが挙げられる。
 [リチウムイオン二次電池の構造]
 本実施形態のリチウムイオン二次電池は、例えば、図1および図2のような構造を有する。このリチウムイオン二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図2に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。なお、本実施形態は、必ずしも積層型の電池に限らず捲回型などの電池にも適用しうる。
 リチウムイオン二次電池は図1および図2のように電極タブが外装体の片側に引き出された構成であってもよいが、リチウムイオン二次電池は電極タブが外装体の両側に引き出されたものであってもいい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図2参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図1では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図1、図2では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。
 [リチウムイオン二次電池の製造方法]
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極を、セパレータを介して対向配置して、電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
 [組電池]
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
 [車両]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
 (実施例1)
 <負極>
 負極活物質として、炭素被覆を有するシリコン酸化物(質量比:シリコン酸化物/炭素=95/5)と天然黒鉛を使用した。この炭素被覆を有するシリコン酸化物は、以降、単にシリコン酸化物またはSiOと略して記載する。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)、導電補助剤としてアセチレンブラック1質量%、バインダとしてアクリル酸ナトリウム塩に由来する単量体単位を含む共重合ポリアクリル酸9質量%とを混合し、次いで純水を加えて負極スラリーを調製した。これを集電体となる厚さ10μmの銅箔の両面に塗布し、80℃で5分間の乾燥を行い、プレス工程を経て負極を作製した。ここで、各材料の質量%は、負極合剤の総量に対する割合を意味する。
 <正極>
 正極活物質として、Li(Ni0.8Co0.15Al0.05)Oを用いた。この正極活物質と、導電補助剤としてのカーボンブラックと、正極バインダとしてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これらをN-メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
 <電極積層体>
 得られた正極の3層と負極の4層を、セパレータとしてアラミド多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極積層体を得た。
 <電解液>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC/DEC=30/70(体積比)の配合比で混合して電解液溶媒を調製した。これに、支持塩としてLiPFと添加剤としてパーフルオログルタル酸無水物(FGA)をそれぞれ添加し、電解液を作製した。電解液中のLiPFの濃度は1.0mol/Lとした。電解液中のFGAの濃度は0.1mol/Lとした。
 <注液>
 電極積層体を外装体としてのアルミニウムラミネートフィルム内に収容し、外装体内部に電解液を注入した。その後、チャンバー内にて真空含浸(圧力:10kPa(abs))を行い、外装体を封止することで電池を得た。
 <電池評価>
 得られた電池のサイクル試験を次のようにして行った。CC-CV充電(上限電圧4.2V、電流1C、CV時間1.5時間)と、CC放電(下限電圧3.0V、電流1C)を、いずれも25℃で100サイクル実施した。100サイクル後の容量維持率として、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を表1に示した。
 (比較例1)
 負極活物質にシリコン酸化物ではなく、Si金属を使用した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例2)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、パーフルオロコハク酸無水物(FSA)を使用した。FSAの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例3)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、パーフルオロプロピオン酸無水物(FPA)を使用した。FPAの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例2)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、グルタル酸無水物(GA)を使用した。GAの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例3)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、プロピオン酸無水物(PA)を使用した。PAの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例4)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、ビニレンカーボネート(VC)を使用した。VCの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例5)
 添加剤に、パーフルオログルタル酸無水物(FGA)ではなく、フルオロエチレンカーボネート(FEC)を使用した。FECの電解液中の濃度は0.1mol/Lとした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例6)
 添加剤を添加していない電解液を使用した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例4)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、90/10とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例7)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、90/10とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例5)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、80/20とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例8)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、80/20とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例6)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、70/30とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例9)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、70/30とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例7)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、50/50とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例10)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、50/50とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例8)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、30/70とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例11)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、30/70とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例9)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、10/90とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例12)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、10/90とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例10)
 負極バインダに、アクリル酸リチウム塩に由来する単量体単位を含む共重合ポリアクリル酸を使用した。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてアクリル酸リチウム塩に由来する単量体単位を含む共重合ポリアクリル酸9質量%とを混合し、次いで純水を加えて負極スラリーを調製した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例11)
 負極バインダに、ポリイミド(PI)を使用した。活物質80質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてポリイミド19質量%とを混合し、次いで純水を加えて負極スラリーを調製した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例12)
 負極バインダに、スチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)を使用した。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてSBR6質量%およびCMC3質量%とを混合し、次いで純水を加えて負極スラリーを調製した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例13)
 負極バインダに、スチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)を使用した。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてSBR6質量%およびCMC3質量%とを混合し、次いで純水を加えて負極スラリーを調製した。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (実施例13)
 負極バインダに、ポリフッ化ビニリデン(PVdF)を使用した。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてPVdF9質量%とを混合し、次いで純水を加えて負極スラリーを調製した。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (比較例14)
 負極バインダに、ポリフッ化ビニリデン(PVdF)を使用した。活物質90質量%(混合質量比:シリコン酸化物/天然黒鉛=100/0)と、導電補助剤としてアセチレンブラック1質量%と、バインダとしてPVdF9質量%とを混合し、次いで純水を加えて負極スラリーを調製した。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (参考例1)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、0/100とした。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
 (参考例2)
 負極におけるシリコン酸化物と天然黒鉛の混合質量比を、0/100とした。また、電解液に添加剤を添加しなかった。その他は、実施例1と同様に電池を作製し、同様に電池評価を実施した。
Figure JPOXMLDOC01-appb-T000005
 各例の結果を表1にまとめた。参考例1および2により示される通り、負極活物質に黒鉛のみを用いた場合には、フッ素化酸無水物の添加による容量維持率の改善効果が、ほとんど見られなかった。これに対して、負極活物質の少なくとも一部にシリコン酸化物を用いた場合には、フッ素化酸無水物の添加による容量維持率の改善効果を確認できた。一般には、黒鉛およびシリコン酸化物を共に負極活物質として使用する電池では、シリコン酸化物の含有比率が低い電池が高い容量維持率を示す。この傾向は、各例においても同様に見られた。一方で、フッ素化酸無水物の添加剤による改善効果は、シリコン酸化物の含有比率が高い電池において、大きいことが分かった。さらには、負極のバインダに、カルボン酸ナトリウム塩を含むポリアクリル酸を使用した場合に、電池の容量維持率をより改善できることが分かった。
 この出願は、2016年9月15日に出願された日本出願特願2016-180715を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態によるリチウムイオン二次電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車等を含む電動車両、電車、衛星、潜水艦等の移動・輸送用媒体の電源;UPS等のバックアップ電源;太陽光発電、風力発電等で発電した電力を貯める蓄電設備;等に、利用することができる。
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極
 
 
 

Claims (10)

  1.  シリコン酸化物を含む負極と、フッ素化酸無水物を含む電解液とを含むリチウムイオン二次電池。
  2.  フッ素化酸無水物が、水素原子がすべてフッ素原子で置換された化合物である、請求項1に記載のリチウムイオン二次電池。
  3.  フッ素化酸無水物が、炭素-炭素結合がすべて単結合の化合物である、請求項1または2に記載のリチウムイオン二次電池。
  4.  フッ素化酸無水物が環構造を有する、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  電解液におけるフッ素化酸無水物の濃度が0.005~10mol/Lである、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  負極が(メタ)アクリル酸またはその金属塩に由来する単量体単位を含む重合体またはポリイミドを含む、請求項1~5のいずれか1項に記載のリチウムイオン二次電池。
  7.  負極が(メタ)アクリル酸ナトリウム塩に由来する単量体単位を含む重合体を含む、請求項1~6のいずれか1項に記載のリチウムイオン二次電池。
  8.  シリコン酸化物の量が負極活物質の総量の70質量%以上である、請求項1~7のいずれか1項に記載のリチウムイオン二次電池。
  9.  請求項1~8のいずれか1項に記載のリチウムイオン二次電池を搭載した車両。
  10.  正極と負極とをセパレータを介して積層して電極素子を製造する工程と、
     電極素子と電解液とを外装体に封入する工程と、
    を含み、
     負極がシリコン酸化物を含み、電解液がフッ素化酸無水物を含むことを特徴とするリチウムイオン二次電池の製造方法。
PCT/JP2017/033246 2016-09-15 2017-09-14 リチウムイオン二次電池 WO2018052077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018539781A JP7059931B2 (ja) 2016-09-15 2017-09-14 リチウムイオン二次電池
CN201780056195.3A CN109690861B (zh) 2016-09-15 2017-09-14 锂离子二次电池
US16/333,512 US11817546B2 (en) 2016-09-15 2017-09-14 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-180715 2016-09-15
JP2016180715 2016-09-15

Publications (1)

Publication Number Publication Date
WO2018052077A1 true WO2018052077A1 (ja) 2018-03-22

Family

ID=61620017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033246 WO2018052077A1 (ja) 2016-09-15 2017-09-14 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US11817546B2 (ja)
JP (1) JP7059931B2 (ja)
CN (1) CN109690861B (ja)
WO (1) WO2018052077A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220048784A (ko) * 2020-10-13 2022-04-20 현대자동차주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176873A1 (ja) * 2011-06-23 2012-12-27 日本電気株式会社 リチウム二次電池
WO2013038842A1 (ja) * 2011-09-12 2013-03-21 日本電気株式会社 二次電池
WO2015199063A1 (ja) * 2014-06-23 2015-12-30 日本電気株式会社 非水電解液および二次電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231251A (ja) 2001-02-06 2002-08-16 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP4415521B2 (ja) 2001-09-12 2010-02-17 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
CN100385727C (zh) * 2002-03-08 2008-04-30 三菱化学株式会社 非水电解液及采用它的锂二次电池
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP3768481B2 (ja) 2003-01-31 2006-04-19 住友金属物流株式会社 フレームボックス
JP2004296115A (ja) 2003-03-25 2004-10-21 Mitsubishi Chemicals Corp 二次電池用非水系電解液及び非水系電解液二次電池
JP4944648B2 (ja) 2006-06-30 2012-06-06 三井金属鉱業株式会社 非水電解液二次電池用負極
JP5192710B2 (ja) 2006-06-30 2013-05-08 三井金属鉱業株式会社 非水電解液二次電池用負極
JP5277043B2 (ja) 2009-03-31 2013-08-28 三和油化工業株式会社 非水電解液
KR101649130B1 (ko) * 2011-10-20 2016-08-19 삼성에스디아이 주식회사 리튬 이차 전지
US10553871B2 (en) * 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
WO2013187487A1 (ja) * 2012-06-15 2013-12-19 三菱化学株式会社 非水系電解液二次電池及びその使用方法
KR20200129176A (ko) * 2012-10-26 2020-11-17 쇼와덴코머티리얼즈가부시끼가이샤 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
CN104995784A (zh) * 2013-02-27 2015-10-21 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
US20140242452A1 (en) * 2013-02-27 2014-08-28 GM Global Technology Operations LLC Lithium ion battery
US10193157B2 (en) 2013-06-12 2019-01-29 Tdk Corporation Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP6258641B2 (ja) 2013-09-06 2018-01-10 マクセルホールディングス株式会社 非水電解液二次電池
JP2015064983A (ja) 2013-09-24 2015-04-09 株式会社東芝 非水電解質二次電池及び電池パック
JP6520151B2 (ja) 2014-01-29 2019-05-29 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
FR3017247A1 (fr) * 2014-02-06 2015-08-07 Renault Electrolytes non aqueux a base de composes sulfones pour batteries au lithium
WO2015140984A1 (ja) 2014-03-20 2015-09-24 株式会社 東芝 非水電解質電池用電極、非水電解質二次電池及び電池パック
WO2016010090A1 (ja) * 2014-07-18 2016-01-21 日本電気株式会社 電解液及びそれを用いた二次電池
JP6407804B2 (ja) * 2015-06-17 2018-10-17 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176873A1 (ja) * 2011-06-23 2012-12-27 日本電気株式会社 リチウム二次電池
WO2013038842A1 (ja) * 2011-09-12 2013-03-21 日本電気株式会社 二次電池
WO2015199063A1 (ja) * 2014-06-23 2015-12-30 日本電気株式会社 非水電解液および二次電池

Also Published As

Publication number Publication date
JP7059931B2 (ja) 2022-04-26
JPWO2018052077A1 (ja) 2019-06-27
US11817546B2 (en) 2023-11-14
CN109690861B (zh) 2023-01-06
US20190252716A1 (en) 2019-08-15
CN109690861A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6900904B2 (ja) リチウムイオン二次電池
JP6939881B2 (ja) リチウムイオン二次電池
JP6819777B2 (ja) リチウムイオン二次電池
CN111295790B (zh) 锂离子二次电池
WO2015199063A1 (ja) 非水電解液および二次電池
WO2016181926A1 (ja) リチウムイオン二次電池
US11404694B2 (en) Resin composition
WO2018212027A1 (ja) リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
CN110546806B (zh) 锂离子二次电池
JP7059931B2 (ja) リチウムイオン二次電池
JP6973621B2 (ja) リチウムイオン二次電池
CN109804488B (zh) 具有耐热绝缘层的电极
US11251424B2 (en) Lithium ion secondary battery
WO2012132154A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850978

Country of ref document: EP

Kind code of ref document: A1