WO2018051928A1 - 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法 - Google Patents

酸化物触媒の製造方法、及び不飽和ニトリルの製造方法 Download PDF

Info

Publication number
WO2018051928A1
WO2018051928A1 PCT/JP2017/032564 JP2017032564W WO2018051928A1 WO 2018051928 A1 WO2018051928 A1 WO 2018051928A1 JP 2017032564 W JP2017032564 W JP 2017032564W WO 2018051928 A1 WO2018051928 A1 WO 2018051928A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide catalyst
raw material
aqueous
producing
mixed solution
Prior art date
Application number
PCT/JP2017/032564
Other languages
English (en)
French (fr)
Inventor
恵理 舘野
実 門脇
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to RU2019107001A priority Critical patent/RU2720967C1/ru
Priority to US16/332,732 priority patent/US11141722B2/en
Priority to KR1020197000632A priority patent/KR102368345B1/ko
Priority to CN201780054502.4A priority patent/CN109689210B/zh
Priority to KR1020217014971A priority patent/KR102368347B1/ko
Priority to JP2018539693A priority patent/JP6764939B2/ja
Priority to EP17850830.5A priority patent/EP3513876B1/en
Publication of WO2018051928A1 publication Critical patent/WO2018051928A1/ja
Priority to SA519401284A priority patent/SA519401284B1/ar
Priority to US17/373,342 priority patent/US11806702B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3706Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3787Ytterbium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/44Lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/53Antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/55Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/56Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/69Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing an oxide catalyst and a method for producing an unsaturated nitrile.
  • Patent Document 1 discloses production of a catalyst containing at least one element selected from tellurium and antimony, molybdenum, vanadium, and niobium as a catalyst for gas phase catalytic oxidation or gas phase catalytic ammoxidation of propane or isobutane.
  • a method for producing a catalyst using a niobium raw material liquid containing niobium and a dicarboxylic acid is described.
  • Patent Document 2 discloses the production of a catalyst containing at least one element selected from tellurium and antimony, molybdenum, vanadium, and niobium as a catalyst for gas phase catalytic oxidation or gas phase catalytic ammoxidation of propane or isobutane.
  • a method for producing a catalyst that prevents precipitation of a niobium compound in a catalyst production process by adding a complexing agent such as hydrogen peroxide to a niobium raw material liquid is described.
  • Patent Document 3 discloses a method for producing a catalyst containing molybdenum, vanadium, and niobium, and an aqueous mixed solution containing the above elements is aged in an atmosphere having an oxygen concentration of 1 to 25 vol% for 90 minutes to 50 hours. A process for the production of a catalyst is described.
  • the present invention has been made in view of the above-described problems of the prior art, can provide an oxide catalyst having a high unsaturated nitrile yield, and requires introduction of complicated processes and change of equipment.
  • An object of the present invention is to provide a method capable of producing the oxide catalyst in a relatively short time without any problems.
  • an oxide catalyst containing a specific component used for gas phase catalytic oxidation or gas phase catalytic ammoxidation of propane or isobutane An oxide catalyst having a high performance in a relatively short time by having a raw material preparation step, an aging step, a drying step, and a firing step, and promoting precipitation of niobium in the preparation step and / or the aging step.
  • the present inventors have found that it is possible to manufacture the present invention and have completed the present invention.
  • the present invention is as follows.
  • a method for producing an oxide catalyst containing Mo, V, Sb, and Nb A raw material preparation step for obtaining an aqueous mixed solution containing Mo, V, Sb, and Nb; An aging step of aging the aqueous mixture above 30 ° C; Drying the aqueous mixture to obtain a dry powder; and Calcining the dry powder to obtain the oxide catalyst,
  • the raw material preparation step and / or the aging step at least one operation selected from the group consisting of the following (I) to (III) is performed, thereby promoting the precipitation of Nb.
  • the aqueous mixed solution is prepared by mixing an Nb raw material solution containing Nb and a MoVSb raw material solution containing Mo, V, and Sb, where the MoVSb raw material solution and the Nb raw material are prepared. Ammonia is added to at least one of the liquid and the aqueous mixture, and the molar ratio of NH 3 / Nb in the aqueous mixture is adjusted to be 0.7 or more.
  • the aqueous Adjust the temperature of the mixture to above 50 ° C.
  • the temperature of the aqueous mixture is adjusted to more than 65 ° C.
  • the aqueous mixed solution is prepared by mixing the Nb raw material liquid containing Nb and the MoVSb raw material liquid containing Mo, V, and Sb.
  • H 2 in the Nb raw material liquid is prepared.
  • the molar ratio of O 2 / Nb is adjusted to less than 0.2, and the temperature of the aqueous mixed solution is adjusted to more than 50 ° C. in the aging step.
  • Z represents at least one element selected from the group consisting of W, La, Ce, Yb, and Y.
  • a, b, c, and d are each 0.01 ⁇ a ⁇ 0.35, 0.01 ⁇ b ⁇ 0.35, 0.01 ⁇ c ⁇ 0.20, 0.00 ⁇ d ⁇ 0.10, and n represents a balance of valences Represents a value that satisfies [3]
  • the said oxide catalyst is a manufacturing method of the oxide catalyst as described in [1] or [2] which contains a support
  • a method for producing an unsaturated acid comprising: a production step for producing an unsaturated acid.
  • an oxide catalyst having a high unsaturated nitrile yield can be obtained, and the oxide can be obtained without requiring the introduction of complicated processes and the change of equipment.
  • the catalyst can be produced in a relatively short time.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the method for producing an oxide catalyst according to this embodiment is a method for producing an oxide catalyst containing Mo, V, Sb, and Nb, and is an aqueous mixed solution containing Mo, V, Sb, and Nb (hereinafter referred to as “aqueous”).
  • step (d) a firing step for firing the dry powder to obtain the oxide catalyst
  • the precipitation of Nb is promoted by performing at least one operation selected from the group consisting of the following (I) to (III), that is, for the aqueous mixture (N)
  • an operation for promoting the precipitation of Nb is performed.
  • the aqueous mixed solution is prepared by mixing an Nb raw material solution containing Nb and a MoVSb raw material solution containing Mo, V, and Sb, where the MoVSb raw material solution and the Nb raw material are prepared.
  • the temperature of the aqueous mixture is adjusted to more than 65 ° C.
  • the aqueous mixed solution is prepared by mixing the Nb raw material liquid containing Nb and the MoVSb raw material liquid containing Mo, V, and Sb. Here, H 2 in the Nb raw material liquid is prepared.
  • the molar ratio of O 2 / Nb is adjusted to less than 0.2, and the temperature of the aqueous mixed solution is adjusted to more than 50 ° C. in the aging step.
  • an oxide catalyst having a high unsaturated nitrile yield can be obtained, and further, introduction of complicated processes and change of equipment are performed.
  • the oxide catalyst can be produced in a relatively short time without the need for
  • the oxide catalyst obtained by the production method of this embodiment can be suitably used for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane.
  • an operation for promoting precipitation of Nb is performed on the aqueous mixed solution (N).
  • “Promoting the precipitation of Nb” is not particularly limited as long as Nb in the aqueous mixed solution precipitates and becomes a slurry, but for example, embodiments (I) to (III) described later in detail Can be performed.
  • precipitation of Nb can be confirmed by, for example, the oxidation-reduction potential of the aqueous mixed solution, and can be said to be promoted if the reduction of the oxidation-reduction potential is accelerated.
  • a liquid mixture (hereinafter referred to as “measurement liquid mixture”) of an aqueous liquid mixture (A), (A ′) or (A ′′) described later and an aqueous liquid mixture (N 0 ) or (N 1 ).
  • the oxidation-reduction potential of (ii) satisfies at least one of the following a) and b) in a continuous 30-minute period (hereinafter also referred to as “target period”) immediately after mixing and immediately before spray drying. In this case, it can be determined that the precipitation of Nb is promoted.
  • the potential of the measurement mixture at the start of the target period is lower than the potential of the reference liquid at the start of the target period, and the potential of the measurement mixture at the end of the target period is the end of the target period Lower than the potential of the reference solution.
  • the potential decrease amount A calculated as the difference between the value of the potential of the measurement mixture at the start of the target period and the potential of the measurement mixture at the end of the target period is the reference liquid at the start of the target period.
  • the reference solution is prepared so that the content of each metal element in the reference solution can be an oxide catalyst having the same composition as the oxide catalyst to be evaluated.
  • the “reference aging temperature” means 55 ° C., which is the aging temperature carried out in Comparative Example 1.
  • the reference solution is prepared by mixing two kinds of the aqueous mixed solution at the same timing as the measurement mixed solution, and aging is continued under the same temperature conditions as in Comparative Example 1.
  • the potential decrease amount A preferably exceeds 1.5 times the potential decrease amount B, and more preferably exceeds 2 times.
  • the raw material preparation step is a preparation step (hereinafter referred to as “sub-step”) for preparing a MoVSb raw material solution containing Mo, V, and Sb (hereinafter also referred to as “aqueous mixed solution (A)”).
  • Step (a) “).
  • the aqueous mixed liquid (A), an Nb raw material liquid containing Nb, and a carrier raw material as necessary are mixed, and an aqueous mixed liquid containing Mo, V, Sb, and Nb is mixed.
  • aqueous mixed liquid (N) also referred to as “aqueous mixed liquid (N)” and, in the case of further containing a carrier raw material, particularly referred to as “aqueous mixed liquid (B)”), a mixing step (hereinafter referred to as “step (b)”). Can also be included. Step (a) and step (b) will be described in detail later.
  • the method for producing an oxide catalyst of the present embodiment further includes a removal step (hereinafter also referred to as “step (e)”) for removing protrusions present on the surface of the oxide catalyst particles. Also good. Step (e) will be described in detail later.
  • “high unsaturated acrylonitrile yield” means that the yield of unsaturated acrylonitrile obtained is at least when an oxide catalyst having the same composition represented by formula (1) described later is used. It's expensive.
  • an aqueous mixed solution (A) containing Mo, V and Sb is prepared.
  • the preparation method is not limited to the following, but for example, a raw material containing Mo (hereinafter also referred to as “Mo raw material”), a raw material containing V (hereinafter also referred to as “V raw material”), and Sb.
  • Mo raw material a raw material containing Mo
  • V raw material a raw material containing V
  • Sb raw material a method of preparing an aqueous mixed liquid (A) by mixing raw materials.
  • a well-known mixing method can be used.
  • Nb raw material the raw material containing Nb in the present embodiment
  • the aqueous mixed solution (A) does not contain Nb.
  • the Mo raw material but are not limited to, for example, ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ], molybdenum trioxide [MoO 3], phosphomolybdic acid [H 3 PMo 12 O 40 ], silicomolybdic acid [H 4 SiMo 12 O 40 ], and molybdenum pentachloride [MoCl 5 ].
  • ammonium heptamolybdate (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O] is preferable.
  • the Mo raw material may be any of these compounds or may be obtained by dissolving the compound in a solvent.
  • V raw material examples include, but are not limited to, ammonium metavanadate [NH 4 VO 3 ], vanadium pentoxide [V 2 O 5 ], and vanadium chloride [VCl 4 , VCl 3 ]. Among these, ammonium metavanadate [NH 4 VO 3 ] is preferable.
  • the V raw material may be any of these compounds or may be obtained by dissolving the compound in a solvent.
  • the Sb raw material is not limited to the following, but for example, antimony oxide [Sb 2 O 3 , Sb 2 O 5 ], antimony acid [HSbO 2 ], antimonic acid [HSbO 3 ], ammonium antimonate [( NH 4 ) SbO 3 ], antimony chloride [Sb 2 Cl 3 ], organic acid salts such as tartrate of antimony, and metal antimony.
  • antimony trioxide [Sb 2 O 3 ] is preferable.
  • the Sb raw material may be any of these compounds or may be obtained by dissolving the compound in a solvent.
  • the aqueous mixed liquid (N), the Nb raw material, the support raw material and the raw materials of other elements constituting the catalyst are mixed as necessary, and the aqueous mixed liquid (N )
  • a well-known mixing method can be used.
  • the carrier raw material is a raw material that becomes a carrier in the oxide catalyst.
  • the carrier material in this embodiment preferably contains silica sol.
  • the silica sol include an acidic sol and a basic sol. Any silica sol may be used, and a basic sol is more preferable.
  • the carrier raw material preferably contains 30% by mass or more, more preferably 30% by mass or more and 70% by mass or less, more preferably 30% by mass or less, in terms of SiO 2 , based on the total amount (100% by mass) of the carrier raw material. Contains 40 mass% or more and 60 mass% or less.
  • the support material preferably further contains powdered silica.
  • This powder silica becomes a part of the silica raw material together with the silica sol.
  • the carrier raw material examples include silica such as silica sol and powdered silica, as well as aluminum oxide, titanium oxide, zirconium oxide, and the like.
  • the carrier raw materials may be used alone or in combination of two or more.
  • silica is preferred.
  • the silica sol is preferably 30% by mass or more and 70% by mass or less, more preferably 70% by mass or less in terms of SiO 2 with respect to the total amount (100% by mass) of the silica sol and the powder silica. It is 40 mass% or more and 60 mass% or less, More preferably, it is 45 mass% or more and 55 mass% or less.
  • the silica sol is 30% by mass or more, the wear resistance of the oxide catalyst tends to be suppressed, and when the silica sol is 70% by mass or less, the performance of the oxide catalyst is deteriorated. It tends to be suppressed.
  • Nb raw material examples include, but are not limited to, niobic acid, an inorganic acid salt of niobium, and an organic acid salt of niobium. Of these, niobic acid is preferred. Niobic acid is represented by the formula Nb 2 O 5 .nH 2 O and is also referred to as a niobium hydroxide or a niobium oxide compound.
  • the Nb raw material preferably contains water.
  • the Nb raw material containing water is also referred to as an Nb raw material liquid.
  • the ratio of water and Nb contained is more preferably 0.1 or more and 10 or less from the viewpoint of stabilizing the Nb raw material liquid, More preferably, it is 0.3 or more and 5.0 or less.
  • the Nb raw material liquid may contain an organic acid salt or a free organic acid.
  • the organic acid is not particularly limited, but oxalic acid is preferable.
  • the molar ratio of organic acid to niobium in the Nb raw material is preferably 1.0 or more and 4.0 or less.
  • the method for adding water and organic acid to the Nb raw material is not particularly limited, and water and organic acid may be mixed in any order. Further, the above-described mixing may be performed at any temperature as long as it is not lower than the temperature at which the Nb raw material liquid containing water is not solidified and not higher than the boiling temperature. However, it is preferable to mix at room temperature from the viewpoint of mixing operability.
  • the Nb raw material liquid may further contain a hydrogen peroxide solution.
  • an operation for promoting the precipitation of Nb is performed.
  • Nb aqueous mixed liquid
  • the precipitation of Nb is performed as slowly as possible, and fine dispersion in the aqueous mixed liquid (N) results in a uniform aqueous mixed liquid, and the resulting catalyst has good performance.
  • N aqueous mixed liquid
  • the mode (I) for promoting the precipitation of Nb is the following operation.
  • the aqueous mixed solution is prepared by mixing the Nb raw material liquid containing Nb and the MoVSb raw material liquid containing Mo, V, and Sb, where the MoVSb raw material liquid, the Nb raw material liquid, and the Ammonia is added to at least one of the aqueous mixtures, and the NH 3 / Nb molar ratio in the aqueous mixture is adjusted to 0.7 or more.
  • the aqueous mixture Adjust the temperature to above 50 ° C. As said molar ratio, More preferably, it is 0.8-7, More preferably, it is 0.9-6.
  • NH 3 at a molar ratio calculation of the NH 3 / Nb is, Mo raw material, such as added ammonia means, the descriptor of ammonium molybdate and ammonium metavanadate and ammonium metatungstate above, V raw material, Sb raw material, The ammonium salt in the Nb raw material or the Z raw material is not included.
  • ammonia may be added at any stage after the aqueous mixed liquid (A) is prepared, and the order of addition of ammonia and addition of the Nb raw material liquid, silica sol, powdered silica raw material and the like is not limited.
  • ammonia may be added, or after mixing Nb with the aqueous mixture (A), after adding silica sol to the aqueous mixture (A), immediately before reaching the drying step.
  • ammonia may be added to the Nb raw material liquid or silica sol.
  • ammonia to be added is not particularly limited, but it is preferable to use ammonia water that is easy to handle.
  • concentration of the ammonia water can be appropriately selected from general concentrations.
  • the mode (II) for promoting the precipitation of Nb is the following operation.
  • the temperature of the aqueous mixture is adjusted to more than 65 ° C.
  • Nb forms a complex with dicarboxylic acid and hydrogen peroxide and is stabilized in a dissolved state.
  • the temperature after adding Nb is higher than 65 ° C.
  • the decomposition of the complex tends to proceed, and the precipitation of Nb can be effectively promoted.
  • the temperature after adding Nb is preferably higher than 65 ° C.
  • the above-described operation is particularly preferably performed as an aging step of the aqueous mixed liquid (N) described later.
  • the temperature is set to 100 ° C. or lower. It is preferably 90 ° C. or lower, more preferably 80 ° C. or lower.
  • the time for maintaining above 65 ° C. is preferably from 1 minute to 5 hours.
  • the mode (III) for promoting the precipitation of Nb is the following operation.
  • the aqueous mixed solution is prepared by mixing the Nb raw material liquid containing Nb and the MoVSb raw material liquid containing Mo, V, and Sb, where H 2 O 2 /
  • the molar ratio of Nb is adjusted to less than 0.2, and the temperature of the aqueous mixed solution is adjusted to more than 50 ° C. in the aging step. That is, in this embodiment, a small amount of hydrogen peroxide may be added to the Nb raw material liquid, or hydrogen peroxide may not be added to the Nb raw material liquid.
  • the above-described aspects (I) to (III) may be performed by selecting one or a combination of a plurality of them.
  • a raw material (hereinafter referred to as “component Z”) containing at least one element selected from the group consisting of W, La, Ce, Yb and Y (hereinafter also referred to as “component Z”). , Also referred to as “Z raw material”) may be further mixed.
  • the Z raw material is not limited to the following as long as it is a substance containing component Z, and examples thereof include compounds containing component Z and those obtained by solubilizing the metal of component Z with an appropriate reagent.
  • the compound containing component Z is not limited to the following, but examples include ammonium salts, nitrates, carboxylates, carboxylic acid ammonium salts, peroxocarboxylates, peroxocarboxylic acid ammonium salts, ammonium halide salts, halides. Acetylacetonate and alkoxide. Among these, water-soluble raw materials such as nitrates and carboxylates are preferable.
  • the Z raw material when Z is W in particular is also referred to as a W raw material. The same applies to the La material, Ce material, Yb material, and Y material.
  • the oxide catalyst obtained by the step (d) described later has a composition represented by the following formula (1).
  • the yield of unsaturated nitrile tends to be further improved.
  • MoV a Sb b Nb c Z d O n (1) (In the formula (1), Z represents at least one element selected from the group consisting of W, La, Ce, Yb, and Y.
  • a, b, c, and d are each 0.01 ⁇ a ⁇ 0.35, 0.01 ⁇ b ⁇ 0.35, 0.01 ⁇ c ⁇ 0.20, 0.00 ⁇ d ⁇ 0.10, and n represents a balance of valences
  • the composition of the oxide catalyst obtained after step (d) may be different from the composition of the finally obtained oxide catalyst. That is, the composition of the oxide catalyst protrusion described later is different from the composition of the oxide catalyst main body, and when the protrusion (e) is removed, before and after the step (e), This is because the composition of the oxide catalyst changes.
  • the “projection” refers to a material that oozes and / or adheres to the surface of a fired body obtained by the main firing described later, or a material that protrudes and / or adheres from the surface of the fired body.
  • the step (a) and / or the step (b) is an aqueous mixed solution containing Mo raw material, V raw material, Sb raw material, Nb raw material, carrier raw material, and Z raw material with the solvent and / or dispersion medium as water (
  • the case of preparing B) will be described as an example.
  • the process (a) and / or the process (b) is not limited to this.
  • the Mo raw material, the V raw material, the Sb raw material, and the Z raw material can be added to water and heated to prepare an aqueous mixed liquid (A).
  • the heating temperature is preferably 70 ° C. or more and 100 ° C. or less
  • the heating time is preferably 30 minutes or more and 5 hours or less. At this time, it is preferable that the aqueous mixed liquid (A) is stirred so that the raw material is easily dissolved.
  • the preparation atmosphere of the aqueous mixed liquid (A) may be an air atmosphere, but may be a nitrogen atmosphere from the viewpoint of adjusting the oxidation number of the resulting oxide catalyst.
  • the state after the completion of the heating is also referred to as an aqueous mixed solution (A ′).
  • the temperature of the aqueous mixture (A ′) is preferably maintained at 20 ° C. or higher and 80 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower. When the temperature of the aqueous mixed liquid (A ′) is 20 ° C. or higher, the metal species dissolved in the aqueous mixed liquid (A ′) tend not to precipitate.
  • a carrier raw material containing silica sol can be added to the aqueous mixed solution (A) or the aqueous mixed solution (A ′).
  • silica sol is preferably added to the aqueous mixed solution (A ′).
  • Silica sol functions as a carrier when used as an oxide catalyst.
  • the temperature when adding the silica sol is preferably 80 ° C. or less. When the silica sol is added at 80 ° C. or lower, the stability of the silica sol is relatively high, and the gelation of the aqueous mixed solution (B) tends to be suppressed.
  • the timing for adding the silica sol may be at the start of ripening described later, in the middle of ripening, or just before drying the aqueous mixture (B).
  • an appropriate amount of hydrogen peroxide solution (H 2 O 2 ) is added to the aqueous mixed solution (A) or the aqueous mixed solution (A ′). It is preferable to add them as necessary.
  • the silica sol may be added before or after the silica sol is added.
  • the amount of hydrogen peroxide water added is 0 as the molar ratio of hydrogen peroxide water to Sb (H 2 O 2 / Sb). It is preferably from 0.01 to 5.0, more preferably from 0.5 to 3.0, and still more preferably from 1.0 to 2.5.
  • aqueous mixed solution (A ′′) Treatment that can be performed on the aqueous mixed solution (A ) or the aqueous mixed solution (hereinafter also referred to as “aqueous mixed solution (A ′′)”) after the addition of hydrogen peroxide to the aqueous mixed solution (A ′).
  • the conditions are preferably adjusted so that the liquid phase oxidation reaction with hydrogen peroxide can sufficiently proceed.
  • the heating temperature is preferably 20 ° C. or more and 80 ° C. or less
  • the heating time is preferably 5 minutes or more and 4 hours or less.
  • the number of rotations of stirring during heating can be adjusted to an appropriate number of rotations in which hydrogen peroxide solution is uniformly mixed in the liquid and the liquid-phase oxidation reaction with the hydrogen peroxide solution can sufficiently proceed. From the viewpoint of allowing the liquid phase oxidation reaction with hydrogen peroxide water to proceed uniformly and sufficiently, it is preferable to keep the stirring state during heating.
  • the Nb raw material liquid is preferably prepared as an aqueous mixed liquid (N 0 ) by heating and stirring the Nb raw material and dicarboxylic acid in water.
  • the dicarboxylic acid include, but are not limited to, oxalic acid [(COOH) 2 ].
  • the molar ratio (H 2 O 2 / Nb) of the hydrogen peroxide solution to Nb in the aqueous mixed solution (N 1 ) appropriately promotes the precipitation of Nb and the redox state of the constituent elements of the oxide catalyst. From the standpoints of appropriately adjusting the catalyst performance and making the catalyst performance of the resulting oxide catalyst appropriate, it is preferably less than 0.2.
  • ammonia, W raw material or powdered silica may be further mixed.
  • a silica raw material may be mixed in advance with the aqueous mixed liquid (N 0 ) or the aqueous mixed liquid (N 1 ).
  • the mixing order of the aqueous mixed liquid (N 0 ) or the aqueous mixed liquid (N 1 ) and the silica raw material is not particularly limited.
  • Aqueous mixture (N 0) or an aqueous mixture (N 1) the source of silica may be added to the aqueous mixture to a silica raw material (N 0) or an aqueous mixture (N 1) may be added .
  • silica raw material in an aqueous mixed solution (N 0) or an aqueous mixture (N 1) it is more preferable to do this. Moreover, it may stand still after addition, may be stirred, and also may be ultrasonicated with a homogenizer or the like. At this time, a part of another metal raw material may be added to the aqueous mixed liquid (N 0 ) or the aqueous mixed liquid (N 1 ) in advance, or a part of the other metal raw material may be added to the silica raw material. You may keep it.
  • the addition amount of the other metal raw material at this time is preferably less than 50% by mass, more preferably 0.0% by mass or more and 40% by mass or less with respect to the total amount of the metal raw material to be finally added. More preferably, it is 0.0 mass% or more and 30 mass% or less.
  • the powder silica is preferably added to the “aqueous mixture (A ′′)” or “solution obtained by mixing the W raw material in the aqueous mixture (B)”.
  • Powdered silica can be added as it is, but more preferably, it is preferably added as a liquid in which powdered silica is dispersed in water, that is, a powdered silica-containing suspension.
  • the powder silica concentration in the powder silica-containing suspension at this time is preferably 1.0% by mass or more and 30% by mass or less, and more preferably 3.0% by mass or more and 20% by mass or less.
  • ammonia can be added to the aqueous mixed solution (A) (A ′) (A ′′) or (B).
  • Ammonia is more preferably added to the aqueous mixed solution (B) from the viewpoint of appropriately maintaining the dissolved state of the metal in the aqueous mixed solution (A) and effectively promoting the precipitation of Nb.
  • a part of ammonia may be added simultaneously with the silica sol.
  • the timing which adds to an aqueous liquid mixture (B) can be adjusted suitably.
  • the amount of NH 3 to be added it is preferable to add an amount that the molar ratio of NH 3 / Nb of the aqueous mixed solution (B) is 0.7 to 7. More preferably, they are 0.8 or more and 6 or less, More preferably, they are 0.9 or more and 5.5 or less.
  • Nb precipitation can be promoted within a range that maintains good catalytic performance, and hydrogen peroxide in the aqueous mixed liquid is decomposed to maintain an appropriate redox state of the metal components in the liquid. It can be prevented that the viscosity of the aqueous liquid mixture increases and it is difficult to feed the aqueous liquid mixture in the drying step, and the shape of the catalyst particles can be prevented from being distorted.
  • the obtained aqueous mixture (B) is subjected to aging treatment.
  • the aging of the aqueous mixed liquid (B) means that the aqueous mixed liquid (B) is allowed to stand for a predetermined time or stirred under a temperature condition higher than 30 ° C.
  • the aging time is preferably from 5 minutes to 50 hours, more preferably from 5 minutes to 3 hours. If it is the said range, the aqueous
  • the processing speed of the spray dryer is usually limited, and after all of the aqueous mixture (B) is spray-dried, It tends to take time until the spray drying of the mixed solution is completed. In the meantime, the aging of the aqueous mixture not spray-dried is continued. Therefore, the aging time includes not only the aging time before drying in step (c) described later but also the time from the start to the end of drying.
  • the aging temperature is such that the condensation of Mo components and the precipitation of metal oxides by V and other metal species or a plurality of metals make the oxidation state of Mo, V and other metal species appropriate, the precipitation of Nb From a viewpoint of making it progress moderately, it shall be over 30 degreeC. More preferably, it is more than 50 ° C., more preferably more than 54 ° C. In addition, the aging temperature is higher than 65 ° C. from the viewpoint of forming the aqueous mixture (B) in a preferable form while keeping the precipitation rate of Nb by hydrolysis of the complex containing Nb and hydrogen peroxide within an appropriate range. It is preferable to keep the precipitation at 100 ° C.
  • the adjustment of the temperature of the aqueous mixture in the second preferred embodiment described above is preferably performed in the aging step. By extending the aging time, raising the aging temperature, or a combination thereof, the catalyst can be further reduced during calcination.
  • the reduction rate of the catalyst after calcination and the redox potential of the aqueous mixed solution (B) tend to have a certain correlation.
  • the oxidation-reduction potential of the aqueous mixed liquid (B) is high, the calcined catalyst is inclined in the oxidation direction, and when it is low, it is inclined in the reduction direction.
  • the oxidation-reduction potential of the aqueous mixed liquid (B) is not particularly limited, but can be measured by using a commercially available electrometer. Specifically, it is measured by the method described in the examples described later.
  • the aqueous mixed liquid (N) is dried to obtain a dry powder. Drying can be performed by a known method, for example, spray drying or evaporation to dryness.
  • spray drying from the viewpoint of making the fluidity in the reactor in a preferable state. It is preferable to obtain a fine spherical dry powder. From the viewpoint of obtaining a fine spherical dry powder, spray drying is preferably employed.
  • the atomization in the spray drying method may be any of a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method.
  • the drying heat source air heated by steam, an electric heater or the like can be used.
  • the average particle size of the dry powder is preferably 35 ⁇ m or more and 75 ⁇ m or less, more preferably 40 ⁇ m or more and 70 ⁇ m or less, and further preferably 45 ⁇ m or more and 65 ⁇ m or less. Even after firing, the average particle size does not change significantly. Examples of a method for adjusting the average particle size of the dry powder include a classification method described in Examples.
  • the dry powder is fired to obtain an oxide catalyst.
  • a baking apparatus for baking the dry powder for example, a rotary furnace (rotary kiln) can be used.
  • the shape of the calciner for calcining the dry powder is not particularly limited, but a tubular shape (firing tube) is preferable from the viewpoint of continuous firing, and is cylindrical. More preferred.
  • the heating method is preferably an external heating type from the viewpoint of easy adjustment of the firing temperature so as to have a preferable temperature rising pattern, and an electric furnace can be suitably used as the external heat source.
  • the size, material, etc. of the firing tube can be selected appropriately depending on the firing conditions and the production amount.
  • step (d) it is desirable that the firing is performed in two steps.
  • the first baking is pre-stage baking and the subsequent baking is main baking
  • the pre-baking and the main baking may be performed continuously, or the pre-baking may be once completed and then the main baking may be performed again.
  • each of pre-stage baking and main baking may be divided into several stages.
  • the firing atmosphere may be an air atmosphere or an air flow, but from the viewpoint of adjusting to a preferable redox state, at least a part of the firing is performed while circulating an inert gas substantially free of oxygen such as nitrogen. It is preferable to do.
  • the supply amount of the inert gas is preferably 50 NL / hr or more, more preferably 50 NL / hr or more and 5000 NL / kg per 1 kg of the dry powder. hr or less, more preferably 50 NL / hr3000 NL / hr or less.
  • “NL” means the volume of gas measured at standard temperature and pressure conditions, that is, at 0 ° C. and 1 atm.
  • the reduction rate of the fired body after the pre-stage firing is preferably 7.0% or more and 15% or less, more preferably 8.0% or more and 12% or less, and even more preferably 9.0 or more. 12% or less.
  • the method for controlling the reduction rate to a desired range is not limited to the following, for example, a method of changing the pre-stage firing temperature, a method of adding an oxidizing component such as oxygen to the atmosphere during firing, and firing The method of adding a reducing component in the atmosphere of time is mentioned. Moreover, you may combine these.
  • the protrusions present on the particle surface of the oxide catalyst are removed.
  • Many of the protrusions are protruding oxide crystals or other impurities.
  • an oxide having a composition different from that of a crystal forming most of the fired body may be formed in a shape that exudes from the fired body body.
  • Such protrusions tend to be a factor that reduces fluidity. Therefore, the performance of the oxide catalyst tends to increase by removing it from the surface of the oxide catalyst.
  • the following apparatus can be used.
  • a vertical tube having a perforated plate having one or more holes at the bottom and a paper filter at the top can be used.
  • the oxide catalyst of the present embodiment is obtained by the above-described method for producing an oxide catalyst.
  • the obtained oxide catalyst preferably has a composition represented by the following formula (1).
  • MoV a Sb b Nb c Z d O n (1) (In the formula (1), Z represents at least one element selected from the group consisting of W, La, Ce, Yb, and Y.
  • a, b, c, and d are each 0.01 ⁇ a ⁇ 0.35, 0.01 ⁇ b ⁇ 0.35, 0.01 ⁇ c ⁇ 0.20, 0.00 ⁇ d ⁇ 0.10, and n represents a balance of valences Represents a value that satisfies
  • the composition of the oxide catalyst can be measured by fluorescent X-ray analysis (trade name “RIX1000” manufactured by Rigaku Corporation, Cr tube, tube voltage 50 kV, tube current 50 mA).
  • the oxide catalyst preferably contains 30% by mass or more and 70% by mass or less of the carrier with respect to the total amount (100% by mass) of the complex of the oxide catalyst and the carrier.
  • the total amount of silica sol and powder silica is 30% by mass to 70% by mass in terms of SiO 2 with respect to the total amount of the composite. It is preferable to use 40% by mass or more and 60% by mass or less, more preferably 45% by mass or more and 55% by mass or less.
  • the content of the carrier in the oxide catalyst is determined, for example, by measuring by fluorescent X-ray analysis (trade name “RIX1000” manufactured by Rigaku Corporation, Cr tube, tube voltage 50 kV, tube current 50 mA).
  • the method for producing an unsaturated nitrile according to the present embodiment includes a step of obtaining an oxide catalyst by the method for producing an oxide catalyst according to the present embodiment and a gas phase catalytic ammonia of propane or isobutane in the presence of the produced oxide catalyst. And a production process for producing an unsaturated nitrile by an oxidation reaction.
  • the method for producing an unsaturated acid according to this embodiment includes a step of obtaining an oxide catalyst by the method for producing an oxide catalyst according to this embodiment, and a gas phase of propane or isobutane in the presence of the produced oxide catalyst.
  • the production process is preferably a process for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane.
  • a method for producing acrylonitrile as an unsaturated nitrile using the oxide catalyst of the present embodiment packed in a reactor will be described.
  • gas-phase contact ammoxidation reaction Propane or isobutane and oxygen are used for the gas phase catalytic oxidation reaction, and propane or isobutane, ammonia and oxygen are used for the gas phase catalytic ammoxidation reaction. Of these, propane and ammonia do not necessarily have high purity.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is preferably 0.1 or more and 6.0 or less, and more preferably 0.5 or more and 4.0 or less.
  • the reaction temperature is preferably 300 ° C. or higher and 500 ° C. or lower, more preferably 350 ° C. or higher and 500 ° C. or lower.
  • the reaction pressure is preferably 5.0 ⁇ 10 4 Pa or more and 5.0 ⁇ 10 5 Pa or less, more preferably 1.0 ⁇ 10 5 Pa or more and 3.0 ⁇ 10 5 Pa or less.
  • the contact time is preferably not 0.1sec ⁇ g / cm 3 or more 10sec ⁇ g / cm 3 or less, more preferably 0.5sec ⁇ g / cm 3 or more 5.0sec ⁇ g / cm 3 or less.
  • the contact time is defined by the following formula.
  • Contact time (sec ⁇ g / cm 3 ) (W / F) ⁇ 273 / (273 + T)
  • W, F, and T are defined as follows.
  • W filled catalyst amount (g)
  • F Raw material mixed gas flow rate (Ncm 3 / sec) in standard state (0 ° C., 1.013 ⁇ 10 5 Pa)
  • T reaction temperature (° C.)
  • alkanes such as propane and isobutane and the yield of unsaturated acid or unsaturated nitrile follow the following definitions, respectively.
  • Alkane conversion (%) (number of moles of reacted alkane) / (number of moles of supplied alkane) ⁇ 100
  • Unsaturated acid or unsaturated nitrile yield (%) (number of moles of unsaturated acid or unsaturated nitrile produced) / (number of moles of supplied alkane) ⁇ 100
  • the reaction conditions of a gaseous-phase contact ammoxidation reaction The following conditions are mentioned.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane oxygen / (propane and isobutane)
  • oxygen / (propane and isobutane) is preferably 0.1 or more and 6.0 or less, and more preferably 0.5 or more and 4.0 or less.
  • the molar ratio of ammonia to propane or isobutane supplied to the reaction (ammonia / (propane and isobutane)) is preferably 0.3 or more and 1.5.0 or less, more preferably 0.7 or more and 1.2.0. It is as follows.
  • the reaction temperature is preferably 320 ° C. or higher and 500 ° C.
  • the reaction pressure is preferably 5.0 ⁇ 10 4 Pa or more and 5.0 ⁇ 10 5 Pa or less, more preferably 1.0 ⁇ 10 5 Pa or more and 3.0 ⁇ 10 5 Pa or less.
  • the contact time is preferably not 0.1sec ⁇ g / cm 3 or more 10sec ⁇ g / cm 3 or less, more preferably 0.5sec ⁇ g / cm 3 or more 5.0sec ⁇ g / cm 3 or less.
  • reaction method in the gas phase catalytic oxidation reaction and the gas phase catalytic ammoxidation reaction known methods such as a fixed bed, a fluidized bed, and a moving bed can be adopted. Among these, a fluidized bed reactor that can easily remove reaction heat is preferable.
  • the gas phase ammoxidation reaction may be a single flow type or a recycle type.
  • Aqueous mixture (N 0 ) was prepared by the following method. To 10 kg of water, 1.420 kg of niobic acid containing 79.8% by mass of Nb 2 O 5 and 5.134 kg of oxalic acid dihydrate (H 2 C 2 O 4 .2H 2 O) were mixed. The molar ratio of charged oxalic acid / niobium was 4.8, and the concentration of charged niobium was 0.52 mol / kg. This solution was heated and stirred at 95 ° C. for 2 hours to obtain a mixed solution in which niobium was dissolved.
  • the mixture was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform niobium mixture.
  • the molar ratio of oxalic acid / niobium in this niobium mixture was 2.340 according to the following analysis.
  • the obtained niobium mixed solution was used as an aqueous mixed solution (N 0 ) in the production of the oxide catalysts of Examples 1 to 12 and Comparative Examples 1 to 4 described below.
  • Niobium concentration, oxalic acid concentration 10 g of the aqueous mixture (N 0 ) obtained above was precisely weighed, dried at 95 ° C. overnight, then heat-treated at 600 ° C. for 1 hour, and Nb 2 O 5 0.8125 g was obtained. From this result, the niobium concentration was 0.611 mol (Nb) / kg (aqueous mixed solution (N 0 )). Further, 3 g of this aqueous mixed solution (N 0 ) was precisely weighed into a 300 mL glass beaker, 200 mL of hot water at about 80 ° C. was added, and subsequently 10 mL of 1: 1 sulfuric acid was added.
  • the obtained mixed liquid was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer.
  • the end point was a point where a faint pale pink color by KMnO 4 lasted for about 30 seconds or more.
  • the oxalic acid concentration was calculated from the titration amount according to the following formula, and was 1.430 mol (oxalic acid) / kg (aqueous mixed solution (N 0 )).
  • composition of the oxide catalyst was measured by fluorescent X-ray analysis (trade name “RIX1000” manufactured by Rigaku Corporation, Cr tube, tube voltage 50 kV, tube current 50 mA).
  • the amount of carrier is the amount of carrier (mass%) relative to the total amount of oxide catalyst (100 mass%) obtained in each of Examples and Comparative Examples described later.
  • the amount of carrier was determined by line analysis (trade name “RIX1000” manufactured by Rigaku Corporation, Cr tube, tube voltage 50 kV, tube current 50 mA).
  • Example 1 An oxide catalyst represented by the composition formula Mo 1 V 0.19 Sb 0.229 Nb 0.109 W 0.03 Ce 0.008 was prepared by the following method.
  • Aqueous mixture (A ') To 1669 g of water, 490.8 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 61.4 g of ammonium metavanadate [NH 4 VO 3 ], and antimony trioxide [Sb 2 O 3] and 92.7 g, was added to cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] 9.8 g, was prepared aqueous mixture solution (a ') was heated with stirring for 1 hour at 95 ° C..
  • Dry powder (C) The obtained aqueous mixed liquid (B) is supplied to a centrifugal spray dryer (the drying heat source is air, and the same drying heat source is also used in the following centrifugal spray dryer) and dried. A spherical dry powder (C) was obtained.
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (C) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (D) as a classified product.
  • the average primary particle size was 54 ⁇ m.
  • the average particle size was measured by a trade name “LS230” manufactured by BECKMAN COULTER (the following average particle size was also measured in the same manner).
  • Oxide catalyst (E) The obtained dry powder (D) was supplied at a feed rate of 80 g / hr, and the diameter in the rotary furnace (inner diameter. The same was true for the following diameters) was 3 inches and the length was 89 cm. It was supplied to the firing tube. In the firing tube, 1.5 NL / min of nitrogen gas is opposed to the direction in which the dry powder is supplied (ie, countercurrent, the same is true for the following opposite directions), and the same direction (ie, cocurrent, the following) The same direction is the same), and the total flow rate was 3.0 NL / min.
  • the temperature is raised to 360 ° C., which is the maximum firing temperature, over 4 hours, and the furnace temperature is set so that it can be held at 360 ° C. for 1 hour, and pre-stage firing is performed. It was.
  • a small amount of the pre-stage calcined body recovered at the calcining tube outlet was sampled and heated to 400 ° C. in a nitrogen atmosphere, and the reduction rate was measured to be 10.1%.
  • the recovered pre-stage calcined body was fed at a supply rate of 60 g / hr to a continuous SUS calcining tube having a diameter of 3 inches and a length of 89 cm in a rotary furnace.
  • Example 2 An oxide catalyst was produced in the same manner as in Example 1 except that the amount of ammonia water added in Example 1 was changed to the amount shown in Table 1. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 5 An aqueous mixture (N 1 ), an ammonium metatungstate aqueous solution, and a dispersion in which powdered silica is dispersed in water are sequentially added to the aqueous mixture (A ′), and then the temperature shown in Table 1 is set in Table 1.
  • An oxide catalyst was produced in the same manner as in Example 1 except that the slurry was aged and aged for the stated time to obtain a slurry-like aqueous mixture (B) without adding aqueous ammonia.
  • the potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1.
  • Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • Example 7 The amount of the hydrogen peroxide solution added to the Nb mixture was set to the value shown in Table 1, and the oxide catalyst was prepared in the same manner as in Example 1 except that the aqueous slurry (B) was obtained without adding ammonia. Manufactured. The potential difference from the reference solution and the amount of decrease in potential were measured at a potential from 90 minutes to 120 minutes after the start of aging. Table 2 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 9 An oxide catalyst was produced in the same manner as in Example 1 except that the amount of hydrogen peroxide added to the niobium mixed solution and the aging temperature and time were set to the values shown in Table 1. The potential difference from the reference solution and the amount of decrease in potential were measured at a potential from 90 minutes to 120 minutes after the start of aging. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 12 An oxide catalyst was produced in the same manner as in Example 1 except that the addition of aqueous ammonia was changed 30 minutes after the dispersion in which powdered silica was dispersed in water was added to the aqueous mixed solution (A ′). The potential difference from the reference solution and the amount of decrease in potential were measured for 30 minutes from immediately before the addition of aqueous ammonia to 30 minutes thereafter.
  • Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • Example 13 An oxide catalyst was produced in the same manner as in Example 1 except that the addition of aqueous ammonia was changed 60 minutes after the dispersion in which powdered silica was dispersed in water was added to the aqueous mixed solution (A ′). The potential difference from the reference solution and the amount of decrease in potential were measured for 30 minutes from immediately before the addition of aqueous ammonia to 30 minutes after that, and acrylonitrile was obtained when propane ammoxidation reaction was carried out in the same manner as in Example 1. Table 1 shows the reaction yield of (AN), the potential difference from the reference solution, and the amount of potential decrease.
  • Example 14 An oxide catalyst was produced in the same manner as in Example 1, except that the addition of aqueous ammonia was changed after adding the silica sol to the aqueous mixed solution (A ′).
  • Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • Comparative Example 1 An oxide catalyst was produced in the same manner as in Example 1 except that ammonia water was not added and the aging temperature was 55 ° C. That is, the aqueous mixed solution prepared in Comparative Example 1 corresponds to the reference solution in Examples 1 to 16. The amount of potential decrease was also measured in the same manner as in Example 1. Table 1 shows the reaction yield and potential decrease amount of acrylonitrile (AN) when propane ammoxidation was carried out on this oxide catalyst in the same manner as in Example 1. In the preparation process and the aging process of Comparative Example 1, it was evaluated that the influence of the added hydrogen peroxide was large, and the precipitation of Nb was not promoted.
  • AN acrylonitrile
  • Example 2 In Example 1, an oxide catalyst was produced in the same manner as in Example 1 except that the aging temperature was 30 ° C. The amount of potential decrease was also measured in the same manner as in Example 1. Table 1 shows the reaction yield and potential decrease amount of acrylonitrile (AN) when propane ammoxidation was carried out on this oxide catalyst in the same manner as in Example 1.
  • AN acrylonitrile
  • Example 15 In Example 1, an oxide catalyst was produced in the same manner as in Example 1 except that the amount of ammonia water to be added was changed to the amount shown in Table 1. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 16 In Example 1, an oxide catalyst was produced in the same manner as in Example 1 except that the aging temperature was set to the temperature described in Table 1. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 17 Except that the catalyst was prepared with the following preparation steps and mixing steps so that the composition of Mo 1 V 0.210 Sb 0.259 Nb 0.109 W 0.03 Ce 0.005 was obtained, oxidation was performed in the same manner as in Example 1. A product catalyst was produced.
  • Aqueous mixture (A ') To 1807 g of water, 479.7 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 66.3 g of ammonium metavanadate [NH 4 VO 3 ], and antimony trioxide [Sb 2 O 3 ] 102.4 g and cerium nitrate [Ce (NO 3 ) 3 ⁇ 6H 2 O] 6.0 g were added and heated at 95 ° C. for 1 hour with stirring to prepare an aqueous mixture (A ′).
  • Example 3 an oxide catalyst was produced in the same manner as in Example 1 except that ammonia water was not added and the aging temperature was 55 ° C. That is, the aqueous mixed solution prepared in Comparative Example 3 corresponds to the reference solution in Example 17. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Example 18 Except that the catalyst was prepared with the following preparation and mixing steps as follows to obtain a composition of Mo 1 V 0.190 Sb 0.257 Nb 0.110 W 0.03 Ce 0.005 , oxidation was performed in the same manner as in Example 1. A product catalyst was produced.
  • Aqueous mixture (A ') To 1640 g of water, 482.7 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 60.4 g of ammonium metavanadate [NH 4 VO 3 ], and antimony trioxide [Sb 2 O 3 ] 101.7 g and cerium nitrate [Ce (NO 3 ) 3 ⁇ 6H 2 O] 6.0 g were added and heated at 95 ° C. for 1 hour with stirring to prepare an aqueous mixture (A ′).
  • Example 4 an oxide catalyst was produced in the same manner as in Example 1 except that ammonia water was not added and the aging temperature was 55 ° C. That is, the aqueous mixed solution prepared in Comparative Example 4 corresponds to the reference solution in Example 18. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease.
  • AN acrylonitrile
  • Comparative Example 5 An oxide catalyst was produced in the same manner as in Comparative Example 1 except that the aging time was changed from 2 hours to 4 hours. The potential difference from the reference solution and the amount of potential decrease were also measured in the same manner as in Example 1. That is, the aqueous liquid mixture prepared in Comparative Example 1 corresponds to the reference liquid in Comparative Example 5. Table 1 shows the reaction yield of acrylonitrile (AN) when the propane ammoxidation reaction was carried out on this oxide catalyst in the same manner as in Example 1, the potential difference from the reference solution, and the amount of potential decrease. The potential drop after 4 hours was 15 mV.
  • AN acrylonitrile
  • the method for producing an oxide catalyst of the present invention can be used for producing a catalyst for producing an unsaturated nitrile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、Mo、V、Sb、及びNbを含む酸化物触媒の製造方法であって、Mo、V、Sb、及びNbを含む水性混合液を得る原料調合工程と、前記水性混合液を30℃超で熟成する熟成工程と、前記水性混合液を乾燥し、乾燥粉体を得る乾燥工程と、前記乾燥粉体を焼成し、前記酸化物触媒を得る焼成工程と、を有し、前記原料調合工程及び/又は熟成工程において、(I)~(III)からなる群より選択される少なくとも1つの操作を行うことによって、Nbの析出を促進する。 本発明によれば、不飽和ニトリル収率の高い酸化物触媒を得ることができ、さらに、複雑な工程の導入及び設備の変更を必要とすることなく当該酸化物触媒を比較的短時間で製造することができる。

Description

酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
 本発明は、酸化物触媒の製造方法、及び不飽和ニトリルの製造方法に関する。
 現在、一般に市販されている不飽和ニトリルは、主に、オレフィンと、アンモニアと、酸素との接触的アンモ酸化反応によって、工業的に製造されたものである。一方で、近年では、オレフィンに代わってプロパン、イソブタン等のアルカンを原料として気相接触アンモ酸化反応を用い、それらの原料に対応する不飽和ニトリルを製造する方法が着目されており、その際に用いられる触媒も多数提案されている。
 例えば、特許文献1には、プロパン又はイソブタンの気相接触酸化又は気相接触アンモ酸化の触媒として、テルル及びアンチモンから選ばれる少なくとも1種の元素と、モリブデンとバナジウムとニオブとを含む触媒の製造方法であって、ニオブとジカルボン酸を含むニオブ原料液を使用する、触媒の製造方法が記載されている。
 また、特許文献2には、プロパン若しくはイソブタンの気相接触酸化又は気相接触アンモ酸化の触媒として、テルル及びアンチモンから選ばれる少なくとも1種の元素と、モリブデンとバナジウムとニオブとを含む触媒の製造方法であって、ニオブ原料液中に過酸化水素などの錯形成剤を添加することで、触媒製造工程においてニオブ化合物の析出を防ぐ触媒の製造方法が記載されている。
 さらに、特許文献3には、モリブデン、バナジウム、及びニオブを含む触媒の製造方法であって、上記元素を含む水性の混合液を、酸素濃度1~25vol%雰囲気下で90分以上50時間以下熟成する触媒の製造方法が記載されている。
特許第3938225号明細書 特許第4666334号明細書 特開2009-183897号公報
 しかしながら、特許文献1~3に記載された触媒の製造方法によれば、特定の条件下での使用に耐えうるアンモ酸化反応用の触媒が得られるものの、得られた触媒を用いた場合の不飽和ニトリルの収率は工業的に十分とはいえない。さらに、触媒製造時に溶解しにくい成分であるNbの析出を抑制しつつ触媒原料を含む溶液を全成分が均一に分散した状態を保つ必要があるため、触媒製造に長時間を要するという問題がある。
 本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、不飽和ニトリル収率の高い酸化物触媒を得ることができ、さらに複雑な工程の導入及び設備の変更を必要とすることなく当該酸化物触媒を比較的短時間で製造できる方法を提供することを目的とする。
 本発明者らは、上記従来技術の課題を解決するために鋭意検討した結果、プロパン若しくはイソブタンの気相接触酸化又は気相接触アンモ酸化に用いる、特定成分を含む酸化物触媒の製造方法であって、原料調合工程、熟成工程、乾燥工程、及び焼成工程を有し、当該調合工程及び/又は熟成工程においてニオブの析出を促進することによって、比較的短時間で高い性能を示す酸化物触媒を製造することが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]
 Mo、V、Sb、及びNbを含む酸化物触媒の製造方法であって、
 Mo、V、Sb、及びNbを含む水性混合液を得る原料調合工程と、
 前記水性混合液を30℃超で熟成する熟成工程と、
 前記水性混合液を乾燥し、乾燥粉体を得る乾燥工程と、
 前記乾燥粉体を焼成し、前記酸化物触媒を得る焼成工程と、を有し、
 前記原料調合工程及び/又は熟成工程において、下記(I)~(III)からなる群より選択される少なくとも1つの操作を行うことによって、Nbの析出を促進する、酸化物触媒の製造方法。
 (I)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記MoVSb原料液、前記Nb原料液及び前記水性混合液の少なくとも1つに対してアンモニアを添加し、前記水性混合液中のNH/Nbのモル比が0.7以上となるように調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
 (II)前記熟成工程において、前記水性混合液の温度を65℃超に調整する。
 (III)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記Nb原料液中のH/Nbのモル比を0.2未満に調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
[2]
 前記酸化物触媒が、下記式(1)で表される組成を有する、[1]に記載の酸化物触媒の製造方法。
 MoVSbNb   (1)
(式(1)中、Zは、W、La、Ce、Yb、及びYからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、及びdは、それぞれ、0.01≦a≦0.35、0.01≦b≦0.35、0.01≦c≦0.20、0.00≦d≦0.10の範囲にある値を表し、nは、原子価のバランスを満たす値を表す。)
[3]
 前記酸化物触媒は、該酸化物触媒の総量に対して、担体を30質量%以上70質量%以下含む、[1]又は[2]に記載の酸化物触媒の製造方法。
[4]
 [1]~[3]のいずれかに記載の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在下において、プロパン又はイソブタンの気相接触アンモ酸化反応により、不飽和ニトリルを製造する製造工程と、を有する、不飽和ニトリルの製造方法。
[5]
 [1]~[3]のいずれかに記載の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在下において、プロパン又はイソブタンの気相接触酸化反応により、不飽和酸を製造する製造工程と、を有する、不飽和酸の製造方法。
 本発明に係る酸化物触媒の製造方法によれば、不飽和ニトリル収率の高い酸化物触媒を得ることができ、さらに、複雑な工程の導入及び設備の変更を必要とすることなく当該酸化物触媒を比較的短時間で製造することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
〔酸化物触媒の製造方法〕
 本実施形態の酸化物触媒の製造方法は、Mo、V、Sb、及びNbを含む酸化物触媒の製造方法であって、Mo、V、Sb、及びNbを含む水性混合液(以下、「水性混合液(N)」といもいう。)を得る原料調合工程と、前記水性混合液を30℃超で熟成する熟成工程と、前記水性混合液を乾燥し、乾燥粉体を得る乾燥工程(以下、「工程(c)」ともいう。)と、前記乾燥粉体を焼成し、前記酸化物触媒を得る焼成工程(以下、「工程(d)」ともいう。)と、を有し、前記原料調合工程及び/又は熟成工程において、下記(I)~(III)からなる群より選択される少なくとも1つの操作を行うことによって、Nbの析出を促進する、すなわち、水性混合液(N)に対して、Nbの析出を促進する操作を行う。
 (I)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記MoVSb原料液、前記Nb原料液及び前記水性混合液の少なくとも1つに対してアンモニアを添加し、前記水性混合液中のNH/Nbのモル比が0.7以上となるように調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
 (II)前記熟成工程において、前記水性混合液の温度を65℃超に調整する。
 (III)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記Nb原料液中のH/Nbのモル比を0.2未満に調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
 このように構成されているため、本実施形態の酸化物触媒の製造方法によれば、不飽和ニトリル収率の高い酸化物触媒を得ることができ、さらに、複雑な工程の導入及び設備の変更を必要とすることなく当該酸化物触媒を比較的短時間で製造することができる。本実施形態の製造方法で得られた酸化物触媒は、プロパン若しくはイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に好適に用いることができる。
 本実施形態における原料調合工程及び/又は熟成工程では、上述したとおり、水性混合液(N)に対して、Nbの析出を促進する操作が行われる。「Nbの析出を促進する」とは、水性混合液中のNbが析出し、スラリー状になるのが早まれば特に限定されないが、例えば、後に詳述する(I)~(III)の態様により行うことができる。なお、Nbの析出は、例えば、水性混合液の酸化還元電位により確認することができ、酸化還元電位の低下が速くなれば促進されているということができる。より具体的には、後述する水性混合液(A),(A’)又は(A’’)と水性混合液(N)又は(N)との混合液(以下、「測定混合液」ともいう。)の酸化還元電位が、混合直後から噴霧乾燥直前までの間の連続した30分間の期間(以下、「対象期間」ともいう。)において、下記a)及びb)の少なくとも一方を満たす場合、Nbの析出が促進されたと判定することができる。
a)対象期間の開始時点における該測定混合液の電位が、対象期間の開始時点における基準液の電位より低く、かつ、対象期間の終了時点における該測定混合液の電位が、対象期間の終了時点における該基準液の電位より低い。
b)対象期間の開始時点における該測定混合液の電位の値と対象期間の終了時点における該測定混合液の電位との差として算出される電位低下量Aが、対象期間の開始時点における基準液の電位の値と対象期間の終了時点における基準液の電位との差として算出される電位低下量Bの1.2倍を超える。
 ここで、「基準液」とは、後述する比較例1と同様の調製条件で調製した水性混合液、すなわちNH水の添加をせず、Nb原料液中に過酸化水素水をH/Nb=2.0の量投入したMo、V、Sb、及びNbを含む水性混合液を意味する。ただし、基準液中の各金属元素の含有量が、評価対象とする酸化物触媒と同じ組成の酸化物触媒が得られるように、上記基準液を調製するものとする。また、「基準熟成温度」とは、比較例1で実施の熟成温度である55℃を意味する。なお、該基準液は該測定混合液と同時のタイミングで2種の前記水性混合液を混合して準備し、比較例1と同一の温度条件で熟成を継続するものとする。
 本実施形態では、上記b)において、Nbの析出を適度に促進する観点から、電位低下量Aが電位低下量Bの1.5倍を超えることが好ましく、2倍を超えることがより好ましい。
 本実施形態において、前記原料調合工程は、Mo、V、及びSbを含むMoVSb原料液(以下、「水性混合液(A)」ともいう。)を調製するサブ工程である調製工程(以下、「工程(a)」ともいう。)を含むことができる。また、前記原料調合工程は、前記水性混合液(A)と、Nbを含むNb原料液と、必要に応じて担体原料と、を混合し、Mo、V、Sb、及びNbを含む水性混合液(以下、「水性混合液(N)」ともいう、さらに担体原料を含む場合は特に「水性混合液(B)」ともいう。)を得るサブ工程である混合工程(以下、「工程(b)」ともいう。)を含むことができる。工程(a)及び工程(b)については後に詳述する。
 さらに、本実施形態の酸化物触媒の製造方法は、該酸化物触媒の粒子表面に存在する突起体を除去する、除去工程(以下、「工程(e)」ともいう。)をさらに有してもよい。工程(e)については後に詳述する。
 本実施形態において、「不飽和アクリロニトリル収率の高い」とは、少なくとも後述する式(1)で表される組成が同一の酸化物触媒を用いた場合において、得られる不飽和アクリロニトリルの収率が高いことをいう。
〔工程(a):調製工程〕
 本実施形態における工程(a)においては、Mo、V及びSbを含む水性混合液(A)を調製する。調製方法としては、以下のものに限定されないが、例えば、Moを含む原料(以下、「Mo原料」ともいう。)、Vを含む原料(以下、「V原料」ともいう。)、及びSbを含む原料(以下、「Sb原料」ともいう。)を混合して、水性混合液(A)を調製する方法が挙げられる。なお、上記の混合をする方法としては、特に限定されず、公知の混合方法を用いることができる。工程(a)を行う場合、本実施形態におけるNbを含む原料(以下、「Nb原料」ともいう。)は、水性混合液(A)とは別に調製することが好ましい。すなわち、本実施形態において、水性混合液(A)はNbを含まないことが好ましい。
 Mo原料としては、以下のものに限定されないが、例えば、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕、三酸化モリブデン〔MoO〕、リンモリブデン酸〔HPMo1240〕、ケイモリブデン酸〔HSiMo1240〕、五塩化モリブデン〔MoCl〕が挙げられる。このなかでも、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕が好ましい。Mo原料は、これらの化合物であっても、該化合物を溶媒に溶解させたものでもよい。
 V原料としては、以下のものに限定されないが、例えば、メタバナジン酸アンモニウム〔NHVO〕、五酸化バナジウム〔V〕、塩化バナジウム〔VCl、VCl〕が挙げられる。このなかでも、メタバナジン酸アンモニウム〔NHVO〕が好ましい。V原料は、これらの化合物であっても、該化合物を溶媒に溶解させたものでもよい。
 Sb原料としては、以下のものに限定されないが、例えば、アンチモン酸化物〔Sb、Sb〕、亜アンチモン酸〔HSbO〕、アンチモン酸〔HSbO〕、アンチモン酸アンモニウム〔(NH)SbO〕、塩化アンチモン〔SbCl〕、アンチモンの酒石酸塩等の有機酸塩、金属アンチモンが挙げられる。このなかでも、三酸化二アンチモン〔Sb〕が好ましい。Sb原料は、これらの化合物であっても、該化合物を溶媒に溶解させたものでもよい。
〔工程(b):混合工程〕
 本実施形態における工程(b)においては、水性混合液(A)と、Nb原料と、必要に応じて担体原料と、触媒を構成する他の元素の原料とを混合し、水性混合液(N)を得る。なお、混合方法としては、特に限定されず、公知の混合方法を用いることができる。なお、担体原料とは、酸化物触媒中で担体となる原料である。
 本実施形態における担体原料は、シリカゾルを含むことが好ましい。シリカゾルとしては、例えば、酸性ゾル、塩基性ゾルが挙げられるが、いずれのシリカゾルでもよく、塩基性ゾルがより好ましい。担体原料は、該担体原料の総量(100質量%)に対して、シリカゾルを、SiO換算で、30質量%以上含むことが好ましく、より好ましくは30質量%以上70質量%以下含み、さらに好ましくは40質量%以上60質量%以下含む。
 工程(b)において、担体原料は、さらに粉体シリカを含むことが好ましい。この粉体シリカは、シリカゾルとともに、シリカ原料の一部となる。
 担体原料としては、シリカゾル、粉体シリカ等のシリカの他に、例えば、酸化アルミニウム、酸化チタン、酸化ジルコニウム等も挙げられる。担体原料は、一種単独で用いても、二種以上を併用してもよい。担体原料として、好ましいのはシリカである。
 工程(b)において、シリカゾルと粉体シリカとの合計量(100質量%)に対して、該シリカゾルは、SiO換算で、30質量%以上70質量%以下であることが好ましく、より好ましくは40質量%以上60質量%以下であり、さらに好ましくは45質量%以上55質量%以下である。シリカゾルが30質量%以上であることで、酸化物触媒の耐摩耗性が悪化することを抑制する傾向にあり、シリカゾルが70質量%以下であることで、酸化物触媒の性能が悪化することを抑制する傾向にある。
 Nb原料としては、以下のものに限定されないが、例えば、ニオブ酸、ニオブの無機酸塩、ニオブの有機酸塩が挙げられる。これらの中では、ニオブ酸が好ましい。ニオブ酸はNb・nHOの式で表され、ニオブ水酸化物又は酸化ニオブ化合物とも称される。
 Nb原料は、水を含むことが好ましい。水を含むNb原料をNb原料液ともいう。このとき、含まれる水とNbとの比(Nb(モル)/水(kg))は、Nb原料液を安定化させること等の観点から、0.1以上10以下とすることがより好ましく、0.3以上5.0以下とすることがさらに好ましい。また、Nb原料液は、有機酸塩又は遊離の有機酸を含んでもよい。有機酸としては、特に限定されないが、シュウ酸が好ましい。Nb原料中のニオブに対する有機酸のモル比(有機酸/ニオブ)は、好ましくは1.0以上4.0以下である。
 Nb原料に、水と有機酸とを含ませる方法は、特に限定されず、水と有機酸とをどの順序で混合してもよい。また、水を含むNb原料液が凝固しない温度以上であり、沸騰しない温度以下であれば、どのような温度で上記の混合を行ってもよい。ただし、混合の操作性等の観点から、室温で混合することが好ましい。
 Nb原料液には、過酸化水素水をさらに含んでもよい。
 原料調合工程及び/又は熟成工程において、本実施形態ではNbの析出を促進する操作が行われる。従来、Nbの析出は極力ゆっくり行い、水性混合液(N)中に微分散させた方が均一な水性混合液となり、得られる触媒の性能も良好になると考えられてきた。
 これに対して、本実施形態においては、上記のとおりNbの析出を速めても、性能の高い酸化物触媒が、比較的短時間で得られることがわかった。特に、上記操作における種々の条件を後述するように調整する場合、これらの傾向が顕著となることがわかった。
 Nbの析出を促進するための態様(I)は、次の操作である。
 前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記MoVSb原料液、前記Nb原料液及び前記水性混合液の少なくとも1つに対してアンモニアを添加し、前記水性混合液中のNH/Nbのモル比が0.7以上となるように調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
 上記モル比としては、より好ましくは0.8以上7以下であり、さらに好ましくは0.9以上6以下である。前記水性混合液(N)中にアンモニアをNH/Nbのモル比7以下となるように添加することで、良好な触媒性能を保つ範囲でNbの析出が促進される傾向にあり、水性混合液(N)中に含まれうる過酸化水素を分解して液中の金属成分の適正な酸化還元状態を保てなくなることが防止される傾向にあり、水性混合液の粘度が増して乾燥工程で水性混合液をフィードしにくく触媒粒子の形状が歪になることも防止される傾向にある。なお、NH/Nbのモル比算出時におけるNHは、上記の添加したアンモニアを意味し、へプタモリブデン酸アンモニウムやメタバナジン酸アンモニウムやメタタングステン酸アンモニウムなどのMo原料、V原料、Sb原料、Nb原料、またはZ原料におけるアンモニウム塩は含まない。
 アンモニアは水性混合液(A)を調製した後の各段階で加える、又は水性混合液(N)に加えることが好ましい。すなわち、水性混合液(A)を調製した後のどの段階でアンモニアを添加してもよく、アンモニアの添加と、Nb原料液、シリカゾル、粉体シリカ原料等の添加との順序は問わない。水性混合液(A)を得た直後、添加してもよいし、水性混合液(A)にNbを混合した後、水性混合液(A)にシリカゾルを添加した後、乾燥工程に至る直前でもよい。また、Nb原料液やシリカゾル中にアンモニアを加えてもよい。
 添加するアンモニアの形態としては、特に限定されないが、取扱いが容易なアンモニア水を用いることが好ましい。アンモニア水の濃度は一般的な濃度の中から適宜選択して使用できる。
 Nbの析出を促進するための態様(II)は、次の操作である。
 前記熟成工程において、前記水性混合液の温度を65℃超に調整する。
 後述するように、Nbはジカルボン酸と過酸化水素により、錯体を形成し溶解状態で安定化している。Nbを添加した後の温度を65℃よりも高くすることで錯体の分解が進む傾向にあり、Nbの析出を効果的に促進することができる。Nbの析出を適度に促進する観点から、Nbを添加した後の温度を、65℃よりも高くすることが好ましい。また、上記した操作は、後述する水性混合液(N)の熟成工程として行われることが特に好ましい。さらに、析出を過度に進ませない観点から、また水の蒸発、沸騰により水性混合液中の他の金属成分の濃度が過度に高くなりすぎることを防ぐ観点から、上記温度を100℃以下とすることが好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。また、同様の理由から、65℃超で保つ時間は、1分以上5時間以下が好ましい。
 Nbの析出を促進するための態様(III)は、次の操作である。
 前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記Nb原料液中のH/Nbのモル比を0.2未満に調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
 すなわち、この態様においては、過酸化水素をNb原料液に少量を添加するものであってもよいし、Nb原料液に過酸化水素を添加しないものであってもよい。過酸化水素はNb原料と錯体を形成させて溶解状態で安定化させるため、上記モル比が1.8以上であると、Nbの析出が阻害される傾向にある。一方、上記モル比を0.2未満とするとNbと過酸化水素、ジカルボン酸からなる錯体の安定度が低下する傾向にあり、Nbの析出を効果的に促進することができる。0.15未満とするとより好ましく、0.10未満とするとさらに好ましい。
 本実施形態において、上述した態様(I)~(III)は、1つを選択して実施してもよく、複数を適宜組み合わせて実施してもよい。
 工程(a)及び/又は工程(b)において、W、La、Ce、Yb、及びYからなる群より選ばれる少なくとも1種の元素(以下、「成分Z」ともいう。)を含む原料(以下、「Z原料」ともいう。)をさらに混合してもよい。
 Z原料としては、成分Zを含む物質であれば以下のものに限定されないが、成分Zを含む化合物、及び成分Zの金属を適当な試薬で可溶化したものが挙げられる。成分Zを含む化合物としては、以下のものに限定されないが、例えば、アンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシドが挙げられる。これらのなかでも、硝酸塩、カルボン酸塩等の水溶性原料が好ましい。なお、Zが特にWである時のZ原料をW原料ともいう。La原料、Ce原料、Yb原料、及びY原料についても同様である。
 工程(a)及び/又は工程(b)において、後述する工程(d)により得られる酸化物触媒が下記式(1)で表される組成を有するように、原料比を調節することが好ましい。下記式(1)で表される組成を有する酸化物触媒を用いることにより、不飽和ニトリルの収率がより向上する傾向にある。
 MoVSbNb   (1)
(式(1)中、Zは、W、La、Ce、Yb、及びYからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、及びdは、それぞれ、0.01≦a≦0.35、0.01≦b≦0.35、0.01≦c≦0.20、0.00≦d≦0.10の範囲にある値を表し、nは、原子価のバランスを満たす値を表す。好ましくは、0.05≦a≦0.33、0.05≦b≦0.33、0.02≦c≦0.19、0.001≦d≦0.09、より好ましくは、0.10≦a≦0.30、0.10≦b≦0.30、0.05≦c≦0.18、0.002≦d≦0.08である。)
 工程(d)の後に得られる酸化物触媒の組成は、最終的に得られる酸化物触媒の組成とは異なっていてもよい。つまり、後述する酸化物触媒の突起体の組成と、酸化物触媒の本体の組成は異なっており、この突起体を除去する工程(e)を有する場合は、該工程(e)の前後において、酸化物触媒の組成が変化するからである。工程(a)及び/又は工程(b)においては、その変化も考慮して組成比を設定することが好ましい。
 本明細書において「突起体」とは、後述する本焼成により得られた焼成体の表面に滲出及び/又は付着したもの、或いは、焼成体の表面から突出及び/又は付着したものをいう。
 以下、工程(a)及び/又は工程(b)を、溶媒及び/又は分散媒を水とし、Mo原料、V原料、Sb原料、Nb原料、担体原料、及びZ原料を含有する水性混合液(B)を調製する場合を例にとって説明する。ただし、工程(a)及び/又は工程(b)はこれに限定されない。
 工程(a)において、Mo原料、V原料、Sb原料、及びZ原料を水に添加し、加熱して、水性混合液(A)を調製することができる。水性混合液(A)の調製時には、加熱温度及び加熱時間を、各原料が十分に溶解しうる状態になるよう調整することが好ましい。具体的には、加熱温度は、好ましくは70℃以上100℃以下であり、加熱時間は、好ましくは30分以上5時間以下である。このとき、水性混合液(A)は、原料が溶解しやすいように攪拌されていることが好ましい。このとき、水性混合液(A)の調製雰囲気は、空気雰囲気でもよいが、得られる酸化物触媒の酸化数を調整する観点から、窒素雰囲気にすることもできる。水性混合液(A)は、上記の加熱が終了した後の状態を、水性混合液(A’)ともいう。水性混合液(A’)の温度は、20℃以上80℃以下で保持することが好ましく、より好ましくは40℃以上80℃以下で保持することである。水性混合液(A’)の温度が20℃以上であることで、水性混合液(A’)に溶解している金属種の析出が起こりにくい傾向にある。
 次いで、水性混合液(A)又は水性混合液(A’)に、シリカゾルを含む担体原料を加えることができる。このなかでも、シリカゾルを水性混合液(A’)に対して加えることが好ましい。シリカゾルは、酸化物触媒としたときに担体として機能する。シリカゾルを加えるときの温度は、80℃以下が好ましい。80℃以下でシリカゾルを添加した場合には、シリカゾルの安定性が比較的高く、水性混合液(B)のゲル化が抑制される傾向にある。シリカゾルを添加するタイミングは、後述する熟成開始時でも、熟成途中でも、水性混合液(B)を乾燥する直前でもよい。
 さらに、得られる酸化物触媒中の複合酸化物の酸化数を調整する観点から、適量の過酸化水素水(H)を、水性混合液(A)又は水性混合液(A’)に、必要に応じて添加することが好ましい。過酸化水素水を添加するタイミングとしては、水性混合液(A)又は水性混合液(A’)自体に添加しても、水性混合液(A)又は水性混合液(A’)を調製する途中に添加してもよく、シリカゾル添加前でも添加後でもよい。このとき、得られる酸化物触媒の酸化数を適正な範囲に調整する観点から、過酸化水素水の添加量は、Sbに対する過酸化水素水のモル比(H/Sb)として、0.01以上5.0以下が好ましく、より好ましくは0.5以上3.0以下であり、さらに好ましくは1.0以上2.5以下である。
 水性混合液(A)又は水性混合液(A’)に過酸化水素水を添加した後の水性混合液(以下、「水性混合液(A’’)」ともいう。)に対して行い得る処理条件(加熱温度及び加熱時間)としては、過酸化水素による液相酸化反応が十分に進行しうる状態になるよう調整することが好ましい。具体的には、加熱温度は、好ましくは20℃以上80℃以下であり、加熱時間は、好ましくは5分以上4時間以下である。加熱時の攪拌の回転数は、同様に過酸化水素水が液中に均一に混合され、過酸化水素水による液相酸化反応が十分に進行しやすい適度な回転数に調整することができる。過酸化水素水による液相酸化反応を均一かつ、十分に進行させる観点から、加熱の間、攪拌状態を保つことが好ましい。
 次に、Nb原料液は、Nb原料とジカルボン酸とを水中で加熱撹拌して水性混合液(N)として調製することが好ましい。ジカルボン酸としては、以下のものに限定されないが、例えば、シュウ酸〔(COOH)〕が挙げられる。次いで、水性混合液(N)に、過酸化水素水を添加し、水性混合液(N)として調製することが好ましい。このとき、水性混合液(N)におけるNbに対する過酸化水素水のモル比(H/Nb)は、Nbの析出を適度に促進すること、酸化物触媒の構成元素の酸化還元状態を適正に調節すること、得られる酸化物触媒の触媒性能を適正にすること等の観点から、0.2未満とすることが好ましい。
 次いで、目的とする組成に合わせて、水性混合液(A)、水性混合液(A’)、又は水性混合液(A’’)と、水性混合液(N)又は水性混合液(N)と、を混合して、水性混合液(N)を得ることができる。このとき、アンモニア、W原料又は粉体シリカをさらに混合してもよい。
 また、水性混合液(N)又は水性混合液(N)に、シリカ原料を予め混合しておいてもよい。水性混合液(N)又は水性混合液(N)とシリカ原料との混合順序は、特に限定されない。水性混合液(N)又は水性混合液(N)にシリカ原料を添加してもよいし、シリカ原料に水性混合液(N)又は水性混合液(N)を添加してもよい。このなかでも、水性混合液(N)又は水性混合液(N)中のNbの析出を抑制する観点から、水性混合液(N)又は水性混合液(N)にシリカ原料を添加する方がより好ましい。また、添加後に静置しておいても撹拌してもよく、さらにはホモジナイザー等で超音波処理をしてもよい。このとき、あらかじめ水性混合液(N)又は水性混合液(N)に他の金属原料の一部を添加しておいてもよいし、シリカ原料に他の金属原料の一部を添加しておいてもよい。他の金属原料とは、Mo原料、V原料、Sb原料、W原料、Z原料をいう。また、この際の他の金属原料の添加量は、最終的に添加する金属原料の総量に対して、好ましくは50質量%未満であり、より好ましくは0.0質量%以上40質量%以下であり、さらに好ましくは0.0質量%以上30質量%以下である。
 触媒性能を適正にする観点から、粉体シリカは、「水性混合液(A’’)」又は「水性混合液(B)にW原料を混合して得られた溶液」に添加することが好ましい。また、粉体シリカは、そのまま添加することも可能であるが、より好ましくは粉体シリカを水に分散させた液、すなわち粉体シリカ含有懸濁液として添加することが好ましい。このときの粉体シリカ含有懸濁液中の粉体シリカ濃度は、1.0質量%以上30質量%以下が好ましく、より好ましくは3.0質量%以上20質量%以下である。粉体シリカ濃度が1.0質量%以上であることで、水性混合液(B)の粘度が低いことに起因して、触媒粒子の形状が歪となることを抑制できる傾向にある。また、触媒粒子にくぼみが発生すること等も抑制できる傾向にある。粉体シリカ濃度が30質量%以下であることで、水性混合液(B)の粘性が大きいことに起因する、水性混合液(B)のゲル化及び配管内のつまりを回避できる傾向にあり、乾燥粉末を容易に得ることが可能となる傾向にある。さらに、酸化物触媒の性能もより向上する傾向にある。
 Nbの析出を促進するため、水性混合液(A)(A’)(A’’)又は(B)にアンモニアを添加することができる。水性混合液(A)中の金属の溶解状態を適正に保つ、Nbの析出を効果的に促進するなどの観点から、アンモニアは水性混合液(B)に添加することがより好ましい。アンモニアの一部はシリカゾルと同時に添加してもよい。水性混合液(B)に添加するタイミングは適宜調整できる。
 添加するNHの量としては、前記水性混合液(B)中のNH/Nbのモル比が0.7以上7以下となる量を添加することが好ましい。より好ましくは0.8以上6以下、さらに好ましくは0.9以上5.5以下である。7以下とすることで、Nbの析出を良好な触媒性能を保つ範囲で促進することができ、水性混合液中の過酸化水素を分解して液中の金属成分の適正な酸化還元状態を保てなくなることを防ぎ、水性混合液の粘度が増して乾燥工程で水性混合液をフィードしにくく触媒粒子の形状が歪になることを防ぐことができる。
〔熟成工程〕
 本実施形態において、得られた水性混合液(B)は、熟成処理に供される。水性混合液(B)の熟成とは、30℃超の温度条件下、水性混合液(B)を所定時間静置するか撹拌することをいう。熟成時間は、5分以上50時間以下が好ましく、5分以上3時間以下がより好ましい。上記範囲であれば、好適な酸化還元状態(電位)を有する水性混合液(B)が形成されやすくなり、得られる複合酸化物の触媒性能がより向上する傾向にある。
 ここで、工業的に噴霧乾燥機による乾燥を経て酸化物触媒を製造する場合、通常は噴霧乾燥機の処理スピードが律速となり、一部の水性混合液(B)が噴霧乾燥された後、全ての混合液の噴霧乾燥が終了するまでに時間を要する傾向にある。この間、噴霧乾燥処理されていない水性混合液の熟成は継続される。したがって、熟成時間には、後述する工程(c)における乾燥前の熟成時間だけでなく、乾燥開始後から終了までの時間も含まれる。
 また、熟成温度は、Mo成分の縮合や、V及び他の金属種又は複数の金属による金属酸化物の析出を防ぐ、Mo、V及び他の金属種の酸化状態を適正にする、Nbの析出を適度に進ませる、といった観点から、30℃超とする。より好ましくは50℃超、さらに好ましくは54℃超とする。また、Nbと過酸化水素とを含む錯体の加水分解によるNbの析出速度を適正な範囲にしつつ、好ましい形態の水性混合液(B)を形成する観点から、熟成温度は、65℃よりも高いことが好ましく、析出を過度に進ませないため、また水の蒸発・沸騰により水性混合液中の他の金属成分の濃度が過度に高くなりすぎることを防ぐため、100℃以下とすることが好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。すなわち、前述した第2の好ましい態様における水性混合液の温度の調整は、熟成工程において好ましく行われる。熟成の時間を延ばすこと、また、熟成の温度を上げること等を行う、又はそれらを組み合わせて行うことで、焼成時に触媒をより還元させることが可能になる。
 また、本発明者らが鋭意検討したところ、焼成後の触媒の還元率と水性混合液(B)の酸化還元電位とが一定の相関をもつ傾向にあることがわかった。水性混合液(B)の酸化還元電位が高くなると、焼成後の触媒は酸化方向に傾き、低い場合には還元方向に傾く。水性混合液(B)の酸化還元電位は、特に限定されないが、市販の電位計を使用することにより、測定することができる。具体的には、後述する実施例に記載の方法により測定する。
〔工程(c):乾燥工程〕
 本実施形態の工程(c)においては、水性混合液(N)を乾燥し、乾燥粉体を得る工程である。乾燥は公知の方法で行うことができ、例えば、噴霧乾燥又は蒸発乾固によって行うこともできる。酸化物触媒が用いられる気相接触酸化反応又は気相接触アンモ酸化反応で流動床反応方式を採用する場合、反応器内での流動性を好ましい状態にする等の観点から、工程(c)において、微小球状の乾燥粉体を得ることが好ましい。微小球状の乾燥粉体を得る観点から、噴霧乾燥を採用するのが好ましい。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式又は高圧ノズル方式のいずれであってもよい。乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることができる。
 噴霧速度、水性混合液(B)の送液の速度、遠心方式の場合のアトマイザーの回転数等は、得られる乾燥粉体の大きさが好適になるように調整することが好ましい。乾燥粉体の平均粒子径は、好ましくは35μm以上75μm以下であり、より好ましくは40μm以上70μm以下であり、さらに好ましくは45μm以上65μm以下である。焼成後も平均粒子径は大きく変化することはない。乾燥粉体の平均粒子径を調製する方法として、例えば、実施例に記載の分級する方法が挙げられる。
〔工程(d):焼成工程〕
 本実施形態の工程(d)においては、乾燥粉体を焼成し、酸化物触媒を得る。乾燥粉体を焼成するための焼成装置としては、例えば、回転炉(ロータリーキルン)を用いることができる。また、乾燥粉体をその中で焼成する焼成器の形状は特に限定されないが、管状(焼成管)であると、連続的な焼成を実施することができる観点から好ましく、円筒状であるのがより好ましい。加熱方式は、焼成温度を好ましい昇温パターンになるよう調整しやすい等の観点から、外熱式が好ましく、外熱源として電気炉を好適に使用できる。焼成管の大きさ、材質等は、焼成条件及び製造量に応じて適当なものを選択することができる。
 工程(d)において、焼成は2回に分けて焼成することが望ましい。最初の焼成を前段焼成、後の焼成を本焼成とした場合、前段焼成を250℃以上400℃以下の温度範囲で行い、本焼成を450℃以上700℃以下の温度範囲で行うことが好ましい。前段焼成と本焼成とを連続して実施してもよいし、前段焼成を一旦完了してから、あらためて本焼成を実施してもよい。また、前段焼成及び本焼成のそれぞれが数段に分かれていてもよい。
 焼成雰囲気は、空気雰囲気下でも空気流通下でもよいが、好ましい酸化還元状態に調整する観点から、焼成の少なくとも一部を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら実施することが好ましい。焼成をバッチ式で行う場合は、好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、好ましくは50NL/hr以上であり、より好ましくは50NL/hr以上5000NL/hr以下、さらに好ましくは50NL/hr3000NL/hr以下である。ここで、「NL」は、標準温度と圧力条件、即ち0℃、1気圧で測定した気体の体積を意味する。
 前段焼成後の焼成体(前段焼成体)の還元率は、好ましくは7.0%以上15%以下であり、より好ましくは8.0%以上12%以下であり、さらに好ましくは9.0以上12%以下である。還元率がこの範囲にあることで、酸化物触媒の活性がより向上し、触媒製造効率がより向上する傾向にある。還元率を所望の範囲に制御する方法として、以下のものに限定されないが、例えば、前段焼成温度を変更する方法、焼成時の雰囲気中に酸素等の酸化性成分を添加する方法、及び、焼成時の雰囲気中に還元性成分を添加する方法が挙げられる。また、これらを組み合わせてもよい。
〔工程(e):除去工程〕
 本実施形態において任意に行われる工程(e)においては、酸化物触媒の粒子表面に存在する突起体を除去する。上記突起体の多くは、突出した酸化物の結晶又はその他の不純物である。特に、複数の金属を含む焼成体の場合、焼成体の大部分を形成する結晶とは組成の異なる酸化物が、焼成体本体部から滲出したような形状で形成される場合がある。このような突起体は、流動性を低下させる要因になる傾向にある。そのため、酸化物触媒の表面から除去することにより、酸化物触媒の性能が上昇する傾向にある。突起体の除去をグラムスケールで行う場合には、下記の装置を用いることが可能である。すなわち、底部に1つ以上の穴を有する穴あき板を備え、上部にペーパーフィルターを設けた垂直チューブを用いることができる。この垂直チューブに焼成体を投入し、下部から空気を流通させることで、それぞれの穴から気流が流れて焼成体同士の接触を促し、突起体の除去が行われる。
〔酸化物触媒〕
 本実施形態の酸化物触媒は、上述した酸化物触媒の製造方法により得られる。得られた酸化物触媒は、下記式(1)で表される組成を有していることが好ましい。
 MoVSbNb   (1)
(式(1)中、Zは、W、La、Ce、Yb、及びYからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、及びdは、それぞれ、0.01≦a≦0.35、0.01≦b≦0.35、0.01≦c≦0.20、0.00≦d≦0.10の範囲にある値を表し、nは、原子価のバランスを満たす値を表す。)
 酸化物触媒の組成は、蛍光X線分析(リガク社製の商品名「RIX1000」、Cr管球、管電圧50kV、管電流50mA)により測定することができる。
 酸化物触媒は、該酸化物触媒と担体との複合体の総量(100質量%)に対して、担体を30質量%以上70質量%以下含むことが好ましい。このような範囲にある酸化物触媒を得るためには、該複合体の総量に対して、SiO換算で、シリカゾル及び粉体シリカのシリカを合計量で30質量%以上70質量%以下用いることが好ましく、より好ましくは40質量%以上60質量%以下用い、さらに好ましくは45質量%以上55質量%以下用いるとよい。該複合体の総量に対して担体を30質量%以上含むことで、酸化物触媒を含む複合体の強度がより向上する傾向にあり、70質量%以下含むことで、酸化物触媒がより高い活性を有する傾向にある。
 酸化物触媒中の担体の含有量は、例えば、蛍光X線分析(リガク社製の商品名「RIX1000」、Cr管球、管電圧50kV、管電流50mA)により測定することで求められる。
〔不飽和ニトリル又は不飽和酸の製造方法〕
 本実施形態の不飽和ニトリルの製造方法は、本実施形態の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在化において、プロパン又はイソブタンの気相接触アンモ酸化反応により、不飽和ニトリルを製造する製造工程と、を有する。また、本実施形態の不飽和酸の製造方法は、本実施形態の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在下において、プロパン又はイソブタンの気相接触酸化反応により、不飽和酸を製造する製造工程と、を有する。また、当該製造工程は、プロパン又はイソブタンの気相接触アンモ酸化反応により、不飽和ニトリルを製造する工程であることが好ましい。以下、反応器に充填した本実施形態の酸化物触媒を用いて、不飽和ニトリルとしてアクリロニトリルを製造する方法について説明する。
<気相接触酸化反応、気相接触アンモ酸化反応>
 気相接触酸化反応には、プロパン又はイソブタンと、酸素とが用いられ、気相接触アンモ酸化反応には、プロパン又はイソブタンと、アンモニアと、酸素とが用いられる。そのうち、プロパン及びアンモニアは、必ずしも高純度である必要はなく、エタン、エチレン、n-ブタン、イソブタン等の不純物を3容量%以下含むプロパン、及び、水等の不純物を3容量%以下程度含むアンモニア、のような工業グレードのガスであってもよい。酸素としては、以下のものに限定されないが、例えば、空気、酸素を富化した空気、純酸素、及びこれらをヘリウム、アルゴン、二酸化炭素、窒素等の不活性ガス又は水蒸気で希釈したガスが挙げられる。これらののなかでも、工業スケールで用いる場合には、簡便さから、空気が好ましい。
 気相接触酸化反応の反応条件としては、特に限定されないが、以下の条件が挙げられる。反応に供給する酸素のプロパン又はイソブタンに対するモル比(酸素/(プロパンとイソブタン))は、好ましくは0.1以上6.0以下であり、より好ましくは0.5以上4.0以下である。反応温度は、好ましくは300℃以上500℃以下であり、より好ましくは350℃以上500℃以下である。反応圧力は、好ましくは5.0×10Pa以上5.0×10Pa以下であり、より好ましくは1.0×10Pa以上3.0×10Pa以下である。接触時間は、好ましくは0.1sec・g/cm以上10sec・g/cm以下であり、より好ましくは0.5sec・g/cm以上5.0sec・g/cm以下である。上記範囲とすることにより、副生成物の生成をより抑制し、不飽和ニトリルの収率をより向上できる傾向にある。
 本実施形態において、接触時間は下記式で定義される。
 接触時間(sec・g/cm)=(W/F)×273/(273+T)
 ここで、W、F及びTは次のように定義される。
   W=充填触媒量(g)
   F=標準状態(0℃、1.013×10Pa)での原料混合ガス流量(Ncm/sec)
   T=反応温度(℃)
プロパン、イソブタン等のアルカン転化率及び不飽和酸又は不飽和ニトリル収率は、それぞれ次の定義に従う。
 アルカン転化率(%)=(反応したアルカンのモル数)/(供給したアルカンのモル数)×100
 不飽和酸又は不飽和ニトリル収率(%)=(生成した不飽和酸又は不飽和ニトリルのモル数)/(供給したアルカンのモル数)×100
 気相接触アンモ酸化反応の反応条件としては、特に限定されないが、以下の条件が挙げられる。反応に供給する酸素のプロパン又はイソブタンに対するモル比(酸素/(プロパンとイソブタン))は、好ましくは0.1以上6.0以下であり、より好ましくは0.5以上4.0以下である。反応に供給するアンモニアのプロパン又はイソブタンに対するモル比(アンモニア/(プロパンとイソブタン))は、好ましくは0.3以上1.5.0以下であり、より好ましくは0.7以上1.2.0以下である。反応温度は、好ましくは320℃以上500℃以下であり、より好ましくは370℃以上460℃以下である。反応圧力は、好ましくは5.0×10Pa以上5.0×10Pa以下であり、より好ましくは1.0×10Pa以上3.0×10Pa以下である。接触時間は、好ましくは0.1sec・g/cm以上10sec・g/cm以下であり、より好ましくは0.5sec・g/cm以上5.0sec・g/cm以下である。上記範囲とすることにより、副生成物の生成をより抑制し、不飽和ニトリルの収率をより向上できる傾向にある。
 気相接触酸化反応及び気相接触アンモ酸化反応における反応方式は、固定床、流動床、移動床等の公知の方式を採用できる。このなかでも、反応熱の除去が容易な流動床反応器が好ましい。また、気相接触アンモ酸化反応は、単流式であってもリサイクル式であってもよい。
 以下、具体的な実施例及び比較例を挙げて本実施形態をさらに詳細に説明するが、本実施形態はその要旨を超えない限り、以下の実施例及び比較例によって何ら限定されるものではない。後述する実施例及び比較例において、各種物性の測定及び評価は、以下の方法により行った。
(調製例)水性混合液(N
 次の方法で水性混合液(N)を調製した。水10kgに、Nb79.8質量%を含有するニオブ酸1.420kgと、シュウ酸二水和物(H・2HO)5.134kgと、を混合した。仕込みのシュウ酸/ニオブのモル比は4.8、仕込みのニオブ濃度は0.52mol/kgであった。この液を95℃で2時間加熱撹拌することによって、ニオブが溶解した混合液を得た。この混合液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ混合液を得た。このニオブ混合液のシュウ酸/ニオブのモル比は下記の分析により2.340であった。得られたニオブ混合液は、下記の実施例1~12及び比較例1~4の酸化物触媒の製造における水性混合液(N)として用いた。
(物性1)ニオブ濃度、シュウ酸濃度
 るつぼに、上記で得られた水性混合液(N)10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.8125gを得た。この結果から、ニオブ濃度は0.611mol(Nb)/kg(水性混合液(N))であった。また、300mLのガラスビーカーにこの水性混合液(N)3gを精秤し、約80℃の熱水200mLを加え、続いて1:1硫酸10mLを加えた。得られた混合液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnOによるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸濃度は、その滴定量から、下記式に従って計算して求め、1.430mol(シュウ酸)/kg(水性混合液(N))であった。
 2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
(物性2)水性混合液(B)の酸化還元電位
 水性混合液(B)の酸化還元電位は、市販の電位計(東亜ディーケーケー社製)を使用し、測定した。
(物性3)酸化物触媒の組成
 酸化物触媒の組成は、蛍光X線分析(リガク社製の商品名「RIX1000」、Cr管球、管電圧50kV、管電流50mA)により測定した。
(物性4)担体量
 担体量は、後述する各実施例及び比較例において得られる酸化物触媒の総量(100質量%)に対する担体量(質量%)として、得られた酸化物触媒を、蛍光X線分析(リガク社製の商品名「RIX1000」、Cr管球、管電圧50kV、管電流50mA)により測定し、担体量を求めた。
(評価)アクリロニトリル(不飽和ニトリル)の収率、プロパン転化率
 実施例と比較例において、アクリロニトリルの収率は次のように求めた。生成したアクリロニトリルのモル数を、予め濃度既知のアクリロニトリルのガスをガスクロマトグラフィー(GC:島津製作所社製の製品名「GC2014」)にて分析して検量線を採った後に、アンモ酸化反応によって生成したガスをGCに定量注入し、測定した。測定したアクリロニトリルのモル数から、下記式に従い、アクリロニトリルの収率を求めた。
 アクリロニトリルの収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
 また、プロパンの転化率は、次のように求めた。未反応のプロパンのモル数を、予め濃度既知のプロパンのガスをGCにて分析して検量線を採った後に、アンモ酸化反応によって生成したガスをGCに定量注入し、測定した。測定した未反応のプロパンのモル数から、下記式に従い、プロパンの転化率を求めた。
 プロパン転化率(%)=((供給したプロパンのモル数)-(未反応のプロパンのモル数))/(供給したプロパンのモル数)×100
(実施例1)
 以下の方法により、組成式Mo0.19Sb0.229Nb0.1090.03Ce0.008で表される酸化物触媒を調製した。
(調製工程)水性混合液(A’)
 水1669gに、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕490.8gと、メタバナジン酸アンモニウム〔NHVO〕61.4gと、三酸化二アンチモン〔Sb〕92.7gと、硝酸セリウム〔Ce(NO・6HO〕9.8gとを加え、攪拌しながら95℃で1時間加熱して水性混合液(A’)を調製した。
 シュウ酸/ニオブのモル比が2.340の水性混合液(N)487.9gに、H30質量%を含有する過酸化水素水を67.6g添加し、室温で10分間攪拌混合して、水性混合液(N)を調製した。水性混合液(N)におけるH/Nbのモル比は2であった。結果を表1に示す。
(混合工程)水性混合液(B)
 得られた水性混合液(A’)を70℃に冷却した後に、その水性混合液に対し、SiOとして34.1質量%とNHとして0.3質量%を含有するシリカゾル897.4gを添加し、さらに、Hとして30質量%含有する過酸化水素水108.0gを添加し、60℃で1分間撹拌を続けた。次に、上記水性混合液(N)の全量、メタタングステン酸アンモニウム水溶液を38.2g(純度50%)、粉体シリカ294.0gを水2646.0gに分散させた分散液を、水性混合液(A’)に順次添加した。このとき(対象期間の開始時点)の酸化還元電位をORP電極(HM-31P、東亜ディーケーケー社製)により測定したところ、後述する比較例1記載の基準液の電位と同じ値であった。
(熟成工程)
 上記測定の1分後に、25%アンモニア水を20.3g添加し、60℃で2時間攪拌熟成し、スラリー状の水性混合液(B)を得た。水性混合液(B)におけるNH/Nbのモル比は1.5であった。対象期間の開始時点から30分後(対象期間の終了時点)の酸化還元電位を測定し、前記基準液を比較例1と同じ条件で熟成させたものの同時点での電位から引いた値(基準液との電位差)を算出した。また、対象期間の開始時点の電位から該対象期間の終了時点の電位を引いて、該対象期間における電位低下量を算出した。結果を表1に示す。
(乾燥工程)乾燥粉体(C)
 得られた水性混合液(B)を、遠心式噴霧乾燥器(乾燥熱源は空気であり、以下の遠心式噴霧乾燥器においても同様の乾燥熱源を用いた。)に供給して乾燥し、微小球状の乾燥粉体(C)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
 得られた乾燥粉体(C)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(D)を得た。平均一次粒子径は54μmであった。平均粒子径はBECKMAN COULTER社製の商品名「LS230」により測定した(以下の平均粒子径も同様に測定した。)。
(焼成工程)酸化物触媒(E)
 得られた乾燥粉体(D)を80g/hrの供給量で、回転炉内の直径(内径。以下の直径も同様であった。)3インチ、長さ89cmの連続式のSUS製円筒状焼成管に供給した。その焼成管内に1.5NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向(すなわち向流、以下の対向する方向も同様である。)、及び同じ方向(すなわち並流、以下の同じ方向も同様である。)にそれぞれ流し、合計の流量を3.0NL/minとした。焼成管を4回転/分の速度で回転させながら、最高焼成温度である360℃まで4時間かけて昇温し、360℃で1時間保持できるように炉の温度を設定して前段焼成を行った。焼成管出口で回収した前段焼成体を少量サンプリングし、窒素雰囲気下400℃に加熱した後、還元率を測定したところ、10.1%であった。回収した前段焼成体を60g/hrの供給量で、回転炉内の直径3インチ、長さ89cmの連続式のSUS製焼成管に供給した。その焼成管内に1.1NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向、及び同じ方向にそれぞれ流し、合計の流量を2.2NL/minとした。680℃まで2時間で昇温し、680℃で2時間保持した後、600℃まで8時間かけて降温できるように炉の温度を設定して、本焼成を行って、酸化物触媒(E)を得た。
(除去工程)
 底部に直径1/64インチの3つの穴のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6mm、長さ70cm)に酸化物触媒(E)を50g投入した。次いで、それぞれの穴を経由して、その垂直チューブの下方から上方に向けて、室温にて空気を流通させて、焼成体同士の接触を促した。このときの気流が流れる方向における気流長さは56mm、気流の平均線速は332m/sであった。24時間後に得られた酸化物触媒(E)中には突起体が存在しなかった。
(製造工程)プロパンのアンモ酸化反応
 上記で得られた酸化物触媒(E)を用いて、以下の方法により、プロパンを気相接触アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を38g充填し、反応温度445℃、反応圧力40kPaでプロパン:アンモニア:酸素:ヘリウム=1:1:2.9:18のモル比の混合ガスを接触時間3.0(sec・g/cm)で供給した。この酸化物触媒について10日間連続反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例2~4)
 実施例1において添加するアンモニア水の量を表1に記載の量とする以外は実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例5、6)
 水性混合液(N)、メタタングステン酸アンモニウム水溶液、粉体シリカを水に分散させた分散液を、水性混合液(A’)に順次添加した後に、表1に記載の温度で表1に記載の時間攪拌熟成し、アンモニア水は加えずにスラリー状の水性混合液(B)を得た以外は実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例7、8)
 Nb混合液に添加する過酸化水素水の量を表1の値とし、アンモニア水は加えずにスラリー状の水性混合液(B)を得た以外は、実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位の低下量の測定は、熟成開始90分後から120分後の電位で測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表2に示す。
(実施例9~11)
 ニオブ混合液への過酸化水素の添加量、熟成の温度と時間を表1に示す値とした以外は、実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位の低下量の測定は、熟成開始90分後から120分後の電位で測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例12)
 アンモニア水の添加を、粉体シリカを水に分散させた分散液を水性混合液(A’)に添加した30分後に変更した以外は実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位の低下量はアンモニア水を添加する直前からその30分後までの30分間で測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例13)
 アンモニア水の添加を、粉体シリカを水に分散させた分散液を水性混合液(A’)に添加した60分後に変更した以外は実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位の低下量はアンモニア水を添加する直前からその30分後までの30分間で測定したこの酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例14)
 アンモニア水の添加を、水性混合液(A’)にシリカゾルを添加した後に変更した以外は実施例1と同様に酸化物触媒を製造した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(比較例1)
 実施例1において、アンモニア水を添加せず、熟成の温度を55℃とした以外は、実施例1と同様に酸化物触媒を製造した。すなわち、比較例1において調製される水性混合液が実施例1~16における基準液に対応する。電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、電位低下量を表1に示す。比較例1の調合工程及び熟成工程においては、添加された過酸化水素の影響が大きく、Nbの析出が促進されなかったと評価した。
(比較例2)
 実施例1において、熟成の温度を30℃とした以外は、実施例1と同様に酸化物触媒を製造した。電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、電位低下量を表1に示す。
(実施例15)
 実施例1において、添加するアンモニア水の量を表1に記載の量とする以外は、実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例16)
 実施例1において、熟成温度を表1に記載の温度とする以外は、実施例1と同様に酸化物触媒を製造した。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例17)
 Mo0.210Sb0.259Nb0.1090.03Ce0.005の組成となるよう調製工程及び混合工程を下記の通りとして触媒を調製した以外は、実施例1同様に酸化物触媒を製造した。
(調製工程)水性混合液(A’)
 水1807gに、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕479.7gと、メタバナジン酸アンモニウム〔NHVO〕66.3gと、三酸化二アンチモン〔Sb〕102.4gと、硝酸セリウム〔Ce(NO・6HO〕6.0gとを加え、攪拌しながら95℃で1時間加熱して水性混合液(A’)を調製した。
 シュウ酸/ニオブのモル比が2.340の水性混合液(N)454.8gに、H30質量%を含有する過酸化水素水を67.6g添加し、室温で10分間攪拌混合して、水性混合液(N)を調製した。
(混合工程)水性混合液(B)
 得られた水性混合液(A’)を70℃に冷却した後に、その水性混合液に対し、SiOとして34.1質量%とNHとして0.3質量%を含有するシリカゾル897.4gを添加し、さらに、Hとして30質量%含有する過酸化水素水119.3gを添加し、60℃で1分間撹拌を続けた。次に、上記水性混合液(N)の全量、メタタングステン酸アンモニウム水溶液を37.4g(純度50%)、粉体シリカ294.0gを水2646.0gに分散させた分散液を、水性混合液(A’)に順次添加した。このとき(対象期間の開始時点)の酸化還元電位をORP電極(HM-31P、東亜ディーケーケー社製)により測定した。
(熟成工程)
 上記測定の1分後に、25%アンモニア水を20.3g添加し、60℃で2時間攪拌熟成し、スラリー状の水性混合液(B)を得た。水性混合液(B)におけるNH/Nbのモル比は1であった。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(比較例3)
 実施例17において、アンモニア水を添加せず、熟成の温度を55℃とした以外は、実施例1と同様に酸化物触媒を製造した。すなわち、比較例3において調製される水性混合液が実施例17における基準液に対応する。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(実施例18)
 Mo0.190Sb0.257Nb0.1100.03Ce0.005の組成となるよう調製工程及び混合工程を下記の通りとして触媒を調製した以外は、実施例1同様に酸化物触媒を製造した。
(調製工程)水性混合液(A’)
 水1640gに、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕482.7gと、メタバナジン酸アンモニウム〔NHVO〕60.4gと、三酸化二アンチモン〔Sb〕101.7gと、硝酸セリウム〔Ce(NO・6HO〕6.0gとを加え、攪拌しながら95℃で1時間加熱して水性混合液(A’)を調製した。
 シュウ酸/ニオブのモル比が2.340の水性混合液(N)488.7gに、H30質量%を含有する過酸化水素水を67.7g添加し、室温で10分間攪拌混合して、水性混合液(N)を調製した。
(混合工程)水性混合液(B)
 得られた水性混合液(A’)を70℃に冷却した後に、その水性混合液に対し、SiOとして34.1質量%とNHとして0.3質量%を含有するシリカゾル897.4gを添加し、さらに、Hとして30質量%含有する過酸化水素水118.4gを添加し、60℃で1分間撹拌を続けた。次に、上記水性混合液(N)の全量、メタタングステン酸アンモニウム水溶液を37.4g(純度50%)、粉体シリカ294.0gを水2646.0gに分散させた分散液を、水性混合液(A’)に順次添加した。このとき(対象期間の開始時点)の酸化還元電位をORP電極(HM-31P、東亜ディーケーケー社製)により測定した。
(熟成工程)
 上記測定の1分後に、25%アンモニア水を20.3g添加し、60℃で2時間攪拌熟成し、スラリー状の水性混合液(B)を得た。水性混合液(B)におけるNH/Nbのモル比は1であった。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(比較例4)
 実施例18において、アンモニア水を添加せず、熟成の温度を55℃とした以外は、実施例1と同様に酸化物触媒を製造した。すなわち、比較例4において調製される水性混合液が実施例18における基準液に対応する。基準液との電位差及び電位低下量も実施例1同様に測定した。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。
(比較例5)
 熟成時間を2時間から4時間に変更した以外は、比較例1と同様に酸化物触媒を製造した。基準液との電位差及び電位低下量も実施例1同様に測定した。すなわち、比較例1において調製される水性混合液が比較例5における基準液に対応する。この酸化物触媒について実施例1同様にプロパンのアンモ酸化反応を行ったときのアクリロニトリル(AN)の反応収率、基準液との電位差及び電位低下量を表1に示す。なお、4時間後の電位低下量は15mVであった。
Figure JPOXMLDOC01-appb-T000001
 表1中の「促進の態様」において、各実施例が本実施形態における態様(I)~(III)のどの態様に該当するかを示す。なお、複数を満たす場合は併記することとし、「-」はどの態様にも該当しないことを示す。
 また、表1中の「要件(a),(b)」において、各実施例が本実施形態における要件(a),(b)のどの要件を満たすかを示す。なお、双方を満たす場合は併記することとし、「-」はどの要件も満たさないことを示す。
 本出願は、2016年9月13日出願の日本特許出願(特願2016-178885号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明の酸化物触媒の製造方法は、不飽和ニトリル製造用触媒の製造に用いることができる。

Claims (5)

  1.  Mo、V、Sb、及びNbを含む酸化物触媒の製造方法であって、
     Mo、V、Sb、及びNbを含む水性混合液を得る原料調合工程と、
     前記水性混合液を30℃超で熟成する熟成工程と、
     前記水性混合液を乾燥し、乾燥粉体を得る乾燥工程と、
     前記乾燥粉体を焼成し、前記酸化物触媒を得る焼成工程と、を有し、
     前記原料調合工程及び/又は熟成工程において、下記(I)~(III)からなる群より選択される少なくとも1つの操作を行うことによって、Nbの析出を促進する、酸化物触媒の製造方法。
     (I)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記MoVSb原料液、前記Nb原料液及び前記水性混合液の少なくとも1つに対してアンモニアを添加し、前記水性混合液中のNH/Nbのモル比が0.7以上となるように調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
     (II)前記熟成工程において、前記水性混合液の温度を65℃超に調整する。
     (III)前記原料調合工程において、Nbを含むNb原料液とMo、V、及びSbを含むMoVSb原料液との混合によって前記水性混合液を調製し、ここで、前記Nb原料液中のH/Nbのモル比を0.2未満に調整し、前記熟成工程において、前記水性混合液の温度を50℃超に調整する。
  2.  前記酸化物触媒が、下記式(1)で表される組成を有する、請求項1に記載の酸化物触媒の製造方法。
     MoVSbNb   (1)
    (式(1)中、Zは、W、La、Ce、Yb、及びYからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、及びdは、それぞれ、0.01≦a≦0.35、0.01≦b≦0.35、0.01≦c≦0.20、0.00≦d≦0.10の範囲にある値を表し、nは、原子価のバランスを満たす値を表す。)
  3.  前記酸化物触媒は、該酸化物触媒の総量に対して、担体を30質量%以上70質量%以下含む、請求項1又は2に記載の酸化物触媒の製造方法。
  4.  請求項1~3のいずれか1項に記載の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在下において、プロパン又はイソブタンの気相接触アンモ酸化反応により、不飽和ニトリルを製造する製造工程と、を有する、不飽和ニトリルの製造方法。
  5.  請求項1~3のいずれか1項に記載の酸化物触媒の製造方法により酸化物触媒を得る工程と、製造された酸化物触媒の存在下において、プロパン又はイソブタンの気相接触酸化反応により、不飽和酸を製造する製造工程と、を有する、不飽和酸の製造方法。
PCT/JP2017/032564 2016-09-13 2017-09-08 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法 WO2018051928A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2019107001A RU2720967C1 (ru) 2016-09-13 2017-09-08 Способ получения оксидного катализатора и способ получения ненасыщенного нитрила
US16/332,732 US11141722B2 (en) 2016-09-13 2017-09-08 Method for producing oxide catalyst and method for producing unsaturated nitrile
KR1020197000632A KR102368345B1 (ko) 2016-09-13 2017-09-08 산화물 촉매의 제조 방법, 및 불포화 니트릴의 제조 방법
CN201780054502.4A CN109689210B (zh) 2016-09-13 2017-09-08 氧化物催化剂的制造方法及不饱和腈的制造方法
KR1020217014971A KR102368347B1 (ko) 2016-09-13 2017-09-08 산화물 촉매의 제조 방법, 및 불포화 니트릴의 제조 방법
JP2018539693A JP6764939B2 (ja) 2016-09-13 2017-09-08 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
EP17850830.5A EP3513876B1 (en) 2016-09-13 2017-09-08 Method for producing oxide catalyst and method for producing unsaturated nitrile or unsaturated acid
SA519401284A SA519401284B1 (ar) 2016-09-13 2019-03-11 طريقة لإنتاج حفاز أكسيد، وطريقة لإنتاج نتريل غير مشبع
US17/373,342 US11806702B2 (en) 2016-09-13 2021-07-12 Method for producing oxide catalyst and method for producing unsaturated nitrile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-178885 2016-09-13
JP2016178885 2016-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/332,732 A-371-Of-International US11141722B2 (en) 2016-09-13 2017-09-08 Method for producing oxide catalyst and method for producing unsaturated nitrile
US17/373,342 Continuation US11806702B2 (en) 2016-09-13 2021-07-12 Method for producing oxide catalyst and method for producing unsaturated nitrile

Publications (1)

Publication Number Publication Date
WO2018051928A1 true WO2018051928A1 (ja) 2018-03-22

Family

ID=61620043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032564 WO2018051928A1 (ja) 2016-09-13 2017-09-08 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法

Country Status (9)

Country Link
US (2) US11141722B2 (ja)
EP (1) EP3513876B1 (ja)
JP (1) JP6764939B2 (ja)
KR (2) KR102368347B1 (ja)
CN (1) CN109689210B (ja)
RU (1) RU2720967C1 (ja)
SA (1) SA519401284B1 (ja)
TW (1) TWI649124B (ja)
WO (1) WO2018051928A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA202190812A1 (ru) * 2018-10-18 2021-07-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор окислительного дегидрирования алканов и/или окисления алкенов
EP3981508A4 (en) * 2019-06-06 2022-09-07 Asahi Kasei Kabushiki Kaisha OXIDE CATALYST AND PROCESS FOR PRODUCTION OF UNSATURATED NITRILE
JP7191254B2 (ja) * 2020-01-31 2022-12-16 旭化成株式会社 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313943A (ja) * 1996-05-24 1997-12-09 Mitsubishi Chem Corp 複合酸化物触媒及びメタクリル酸の製造方法
JPH10330343A (ja) * 1997-04-04 1998-12-15 Mitsubishi Chem Corp ニトリルの製造方法
JP2001520976A (ja) * 1997-10-17 2001-11-06 セラニーズ・ケミカルズ・ヨーロッパ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エタンを接触酸化する酢酸の選択的製造方法
JP3938225B2 (ja) * 1997-08-05 2007-06-27 旭化成ケミカルズ株式会社 触媒の調製方法
JP2007301470A (ja) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp 改良触媒
JP2009183897A (ja) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp 複合酸化物の製造方法、及び不飽和酸又は不飽和ニトリルの製造方法
JP2010526649A (ja) * 2007-04-03 2010-08-05 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 混合金属酸化物触媒および低級アルカン系炭化水素の接触転化
JP2013226546A (ja) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp 触媒の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID20720A (id) * 1997-08-05 1999-02-18 Asahi Chemical Ind Larutan berair yang mengandung niobium untuk digunakan dalam pembuatan katalis oksida yang mengandung niobium
AU5445599A (en) * 1998-08-28 2000-03-21 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
US6432870B1 (en) * 1999-05-25 2002-08-13 Toagosei Co., Ltd. Process for preparing metal oxide catalyst for acrylic acid production
KR100407528B1 (ko) * 2000-09-18 2003-11-28 아사히 가세이 가부시키가이샤 산화 또는 가암모니아산화용 산화물 촉매의 제조 방법
JP4666334B2 (ja) 2000-09-18 2011-04-06 旭化成ケミカルズ株式会社 酸化又はアンモ酸化用酸化物触媒の製造方法
EP1704919A1 (en) 2005-03-25 2006-09-27 Arkema France Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
MX2011001164A (es) * 2008-08-01 2011-03-15 Ineos Usa Llc Metodo de elaboracion de catalizadores de oxido metal mezclados para la amoxidacion y/u oxidacion de hidrocarburos de alcanos inferiores.
TR201810575T4 (tr) * 2010-05-13 2018-08-27 Asahi Chemical Ind Karışık katalizör.
US8963384B2 (en) * 2010-06-21 2015-02-24 Nidec Motor Corporation Electric motor assemblies including stator and/or rotor cooling
CN101992093A (zh) 2010-09-28 2011-03-30 上海华谊丙烯酸有限公司 高选择性制备不饱和醛和不饱和酸催化剂的制备方法
WO2012060175A1 (ja) * 2010-11-05 2012-05-10 旭化成ケミカルズ株式会社 酸化物触媒、酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
EP2664612B1 (en) * 2011-01-13 2018-12-26 Asahi Kasei Kabushiki Kaisha Method for producing unsaturated nitrile
US20140047986A1 (en) * 2012-08-15 2014-02-20 Cyclone Medtech, Inc. Systems and methods for blood recovery from absorbent surgical materials
TR201905402T4 (tr) * 2012-09-27 2019-05-21 Asahi Chemical Ind Kompozit oksit katalizör, bunun üretilmesine yönelik yöntem, ve doymamış nitrilin üretilmesine yönelik yöntem.
KR101876656B1 (ko) 2014-03-06 2018-07-09 아사히 가세이 가부시키가이샤 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
JP2015171699A (ja) * 2014-03-12 2015-10-01 旭化成ケミカルズ株式会社 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
MY178728A (en) * 2014-03-31 2020-10-20 Asahi Chemical Ind Method for producing oxide catalyst, and method for producing unsaturated nitrile
CN106783260B (zh) 2016-12-30 2018-08-07 施耐德万高(天津)电气设备有限公司 低压隔离开关的储能弹簧操作机构
CN109920930A (zh) 2019-02-28 2019-06-21 武汉华星光电半导体显示技术有限公司 Oled封装结构、封装方法及电子器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313943A (ja) * 1996-05-24 1997-12-09 Mitsubishi Chem Corp 複合酸化物触媒及びメタクリル酸の製造方法
JPH10330343A (ja) * 1997-04-04 1998-12-15 Mitsubishi Chem Corp ニトリルの製造方法
JP3938225B2 (ja) * 1997-08-05 2007-06-27 旭化成ケミカルズ株式会社 触媒の調製方法
JP2001520976A (ja) * 1997-10-17 2001-11-06 セラニーズ・ケミカルズ・ヨーロッパ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エタンを接触酸化する酢酸の選択的製造方法
JP2007301470A (ja) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp 改良触媒
JP2010526649A (ja) * 2007-04-03 2010-08-05 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 混合金属酸化物触媒および低級アルカン系炭化水素の接触転化
JP2009183897A (ja) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp 複合酸化物の製造方法、及び不飽和酸又は不飽和ニトリルの製造方法
JP2013226546A (ja) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp 触媒の製造方法

Also Published As

Publication number Publication date
US20190232270A1 (en) 2019-08-01
EP3513876A4 (en) 2019-07-31
EP3513876B1 (en) 2021-12-01
TWI649124B (zh) 2019-02-01
TW201811434A (zh) 2018-04-01
US11141722B2 (en) 2021-10-12
SA519401284B1 (ar) 2022-10-02
KR20190017912A (ko) 2019-02-20
JPWO2018051928A1 (ja) 2019-06-24
CN109689210A (zh) 2019-04-26
KR102368347B1 (ko) 2022-03-02
EP3513876A1 (en) 2019-07-24
RU2720967C1 (ru) 2020-05-15
US11806702B2 (en) 2023-11-07
KR20210060656A (ko) 2021-05-26
CN109689210B (zh) 2022-04-15
JP6764939B2 (ja) 2020-10-07
US20210339239A1 (en) 2021-11-04
KR102368345B1 (ko) 2022-03-02

Similar Documents

Publication Publication Date Title
JP6159847B2 (ja) 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
JP6208400B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
US11806702B2 (en) Method for producing oxide catalyst and method for producing unsaturated nitrile
JP6105809B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6087471B2 (ja) 酸化物触媒及びその製造方法、並びに、不飽和ニトリルの製造方法
JP6595716B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000632

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018539693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850830

Country of ref document: EP

Effective date: 20190415