WO2018051728A1 - シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法 - Google Patents

シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法 Download PDF

Info

Publication number
WO2018051728A1
WO2018051728A1 PCT/JP2017/029711 JP2017029711W WO2018051728A1 WO 2018051728 A1 WO2018051728 A1 WO 2018051728A1 JP 2017029711 W JP2017029711 W JP 2017029711W WO 2018051728 A1 WO2018051728 A1 WO 2018051728A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
silicon wafer
temperature
bmd
gas
Prior art date
Application number
PCT/JP2017/029711
Other languages
English (en)
French (fr)
Inventor
正郎 玉塚
博康 菊地
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2018051728A1 publication Critical patent/WO2018051728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present invention relates to a silicon wafer heat treatment method, specifically, a silicon wafer heat treatment method in a hydrogen (H 2 ) gas or argon (Ar) gas atmosphere, and a silicon wafer manufacturing method using the same. .
  • the BMD does not grow to a sufficient size immediately after the process, and BMD nucleation requires 800 ° C. for 4 hours + 1000 ° C. for 16 hours. Therefore, high-temperature and long-time heat treatment that cannot be expected with the current device process is required.
  • the temperature inside the furnace is raised to a temperature of 950 ° C. after the silicon wafer is put into the heat treatment furnace.
  • the inside of the furnace is replaced with an argon gas atmosphere to obtain a silicon wafer 900
  • a method of heat treatment for 1 hour or more in a temperature range of from 1 to 1350 ° C. has been reported.
  • Patent Document 1 suppresses the generation of pits and hillock-like defects observed on the surface of the silicon wafer when the silicon wafer is heat-treated in an argon atmosphere.
  • the BMD density directly under the DZ layer cannot be controlled to a high density.
  • the present invention has been made in view of the above circumstances.
  • the BMD density directly under the DZ layer can be reduced without performing high-temperature and long-time heat treatment such as BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process. It aims at providing the heat processing method of the silicon wafer which can be controlled to the high density of 1 * 10 ⁇ 9 > / cm ⁇ 3 > or more.
  • a silicon wafer is placed in a heat treatment furnace, heated to a temperature of 1000 ° C. or higher and 1350 ° C. or lower, and non-oxidizing properties other than nitrogen gas at the raised temperature.
  • the second heat treatment is performed at a temperature before starting the temperature decrease from the temperature at which the first heat treatment was performed or at a temperature during the temperature decrease from the temperature at which the first heat treatment was performed.
  • a heat treatment method for a silicon wafer wherein a part or all of the second heat treatment is performed in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and non-oxidizing gas in the heat treatment furnace.
  • the BMD density immediately below the DZ layer is set to 1 without performing high-temperature and long-time heat treatment, for example, BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process. It can be controlled at a high density of ⁇ 10 9 / cm 3 or more.
  • the second heat treatment is preferably performed at a temperature in a temperature range of 1000 to 1200 ° C.
  • the silicon wafer heat treatment method of the present invention a second heat treatment by performing at a temperature of such a temperature region, the BMD density directly under the DZ layer in the silicon wafer after the heat treatment more certainly 1 ⁇ 10 9 / cm 3 It is possible to control at a high density as described above.
  • the temperature is lowered at a speed range of 1 to 50 ° C./min in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and non-oxidizing gas, and applied to the silicon wafer.
  • the heat treatment time for growing the oxygen precipitates is 12 hours or less in total including the time for performing the first heat treatment and the time for performing the second heat treatment.
  • the heat treatment time for growing the oxygen precipitates applied to the silicon wafer can be made within 12 hours in total.
  • the non-oxidizing gas in the first heat treatment and the second heat treatment is preferably H 2 gas, Ar gas, or a mixed gas thereof.
  • the non-oxidizing gas in the first heat treatment and the second heat treatment can be preferably used.
  • a method for producing a silicon wafer Using a silicon wafer having an oxygen concentration of 16 ppma (JEIDA scale) or less during crystal growth, heat treatment is performed by the above-described heat treatment method of the silicon wafer, and a BMD having a size of 20 nm or more is 1 ⁇ in depth within 10 ⁇ m from the surface.
  • a silicon wafer manufacturing method for manufacturing a silicon wafer is provided.
  • the BMD density immediately below the DZ layer is 1 without performing high-temperature and long-time heat treatment, for example, BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process.
  • a silicon wafer having a high density of ⁇ 10 9 / cm 3 or more can be produced.
  • the BMD density immediately below the DZ layer is set to 1 without performing high-temperature and long-time heat treatment, for example, BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process. It can be controlled at a high density of ⁇ 10 9 / cm 3 or more. Further, according to the method for producing a silicon wafer of the present invention, the BMD density directly under the DZ layer can be obtained without performing high-temperature and long-time heat treatment, for example, BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process. Can produce a silicon wafer having a high density of 1 ⁇ 10 9 / cm 3 or more.
  • 6 is a graph showing heat treatment conditions for silicon wafers in Examples 1 to 6 and Comparative Examples 1 and 4.
  • 6 is a graph showing the BMD density after heat treatment of silicon wafers not doped with nitrogen in Examples 1 to 3 and Comparative Examples 1 to 3.
  • 6 is a graph showing the BMD density after heat treatment of silicon wafers doped with nitrogen in Examples 4 to 6 and Comparative Examples 4 to 6.
  • 6 is a photograph showing a scattered image of defects after heat treatment of silicon wafers not doped with nitrogen in Examples 1 to 3 and Comparative Examples 1 to 3.
  • FIG. 6 is a photograph showing a scattered image of defects after heat treatment of silicon wafers doped with nitrogen in Examples 4 to 6 and Comparative Examples 4 to 6. It is the photograph which expanded the photograph of the scattering image of the defect in the comparative example 3 in FIG. 4, and the comparative example 6 in FIG. It is a graph which shows the heat treatment conditions of the silicon wafer in Comparative Examples 2 and 5.
  • the silicon wafer heat treatment method and the silicon wafer manufacturing method of the present invention will be described in detail, but the present invention is not limited thereto.
  • the silicon wafer heat treatment method of the present invention will be described.
  • the silicon wafer is placed in a heat treatment furnace, heated to a temperature of 1000 ° C. or higher and 1350 ° C. or lower, and a non-oxidizing gas atmosphere other than nitrogen gas at the raised temperature.
  • a heat treatment furnace heated to a temperature of 1000 ° C. or higher and 1350 ° C. or lower, and a non-oxidizing gas atmosphere other than nitrogen gas at the raised temperature.
  • the silicon wafer is put into a heat treatment furnace.
  • a heat treatment furnace it is preferable to use a so-called batch furnace such as a normal horizontal diffusion furnace or a vertical diffusion furnace rather than an RTA furnace.
  • a first heat treatment (high temperature heat treatment) is performed.
  • the first heat treatment is performed by raising the temperature to a temperature of 1000 ° C. or higher and 1350 ° C. or lower and performing the temperature increase in a non-oxidizing gas atmosphere other than nitrogen gas for 30 minutes or more.
  • the first heat treatment is performed not in an oxygen-based gas but in a non-oxidizing gas atmosphere other than nitrogen gas.
  • a non-oxidizing gas H 2 gas (100%) or Ar gas (100%) is generally used. %) Or a mixed gas thereof.
  • the first heat treatment is performed at a temperature of 1000 ° C. or higher and 1350 ° C. or lower for 30 minutes or longer, preferably at a temperature of 1000 ° C. or higher and 1300 ° C. or lower for about 1 to 10 hours.
  • a BMD layer having a high-density oxygen precipitation nucleus forming a gettering region at the center is formed, and a DZ layer is formed on the surface.
  • the second heat treatment is performed at a temperature before starting the temperature decrease from the temperature at which the first heat treatment is performed or at a temperature during the temperature decrease from the temperature at which the first heat treatment is performed.
  • the second heat treatment is preferably performed at a temperature in the temperature range of 1000 to 1200 ° C.
  • part or all of the second heat treatment is performed in a heat treatment furnace in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and non-oxidizing gas.
  • the heat treatment time in the heat treatment furnace in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and non-oxidizing gas is preferably 5 minutes or longer.
  • the non-oxidizing gas in the second heat treatment it is preferable to use H 2 gas, Ar gas, or a mixed gas thereof as in the first heat treatment.
  • oxygen precipitation is controlled by annealing a silicon wafer (Ar annealing) at 1000 to 1300 ° C. for about 1 to 10 hours in a non-oxidizing atmosphere, for example, an Ar gas atmosphere.
  • Ar annealing a silicon wafer
  • a non-oxidizing atmosphere for example, an Ar gas atmosphere.
  • high-temperature BMD nuclei are formed on the silicon wafer by a high-speed temperature rising / lowering process using an RTA apparatus.
  • the DZ layer and the BMD layer are formed by annealing the silicon wafer in a gas atmosphere.
  • the temperature starts from the temperature at which the first heat treatment is performed.
  • the second heat treatment is performed in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and a non-oxidizing gas at a temperature in the middle of lowering the temperature from the previous and first heat treatment temperatures, and then the temperature is lowered.
  • a silicon wafer that has undergone H 2 annealing or Ar annealing does not have a natural oxide film on the surface thereof, so that nitrogen atoms are likely to diffuse from the surface by nitrogen gas in the atmosphere during annealing. Further, the diffused nitrogen atoms promote the growth of BMD nuclei formed immediately below the DZ layer, and the low density BMD layer obtained only by Ar annealing can be improved to the high density BMD layer.
  • nitrogen gas is applied to the first temperature before starting the temperature decrease from the temperature at which the first heat treatment is performed (particularly immediately before the temperature decrease starts) or at the temperature during the temperature decrease from the temperature at which the first heat treatment is performed.
  • oxygen precipitation nuclei having a size of 20 nm or more are formed at a high density of 1 ⁇ 10 9 / cm 3 or more in the BMD layer, and a BMD layer containing oxygen precipitation nuclei at a high density is formed.
  • This BMD density is obtained immediately after the heat treatment by the heat treatment method of the present invention, and is required for the heat treatment by RTA, for example, BMD such as 800 ° C. for 4 hours and 1000 ° C. for 16 hours. No heat treatment is required to make the material appear.
  • the second gas to which nitrogen gas as in the present invention is applied is applied before starting the temperature decrease from the temperature at which the first heat treatment is performed or at a temperature during the temperature decrease from the temperature at which the first heat treatment is performed.
  • the heat treatment of the silicon wafer without performing the heat treatment is performed, in particular, as in Patent Document 1, when the silicon wafer is introduced into the heat treatment furnace and the nitrogen gas is introduced only in the course of raising the temperature to the high temperature heat treatment temperature Cannot obtain a DZ layer and cannot promote the diffusion of nitrogen atoms, and therefore cannot obtain the same effect as the present invention.
  • the temperature is lowered in a nitrogen gas atmosphere or a mixed gas atmosphere of nitrogen gas and non-oxidizing gas at a speed range of 1 to 50 ° C./min, and oxygen precipitation applied to the silicon wafer is performed.
  • the heat treatment (additional heat treatment) time for growth of the object is 30 minutes or more and 12 hours or less in total including the time for performing the first heat treatment and the time for performing the second heat treatment.
  • the heat treatment for growing oxygen precipitates is a heat treatment applied to a silicon wafer manufactured by the CZ process, and is insufficiently large to have a gettering effect immediately after the CZ process.
  • the BMD density immediately below the DZ layer is set to 1 without performing high-temperature and long-time heat treatment, for example, BMD nucleus formation by RTA and subsequent BMD nucleus growth heat treatment process. It can be controlled at a high density of ⁇ 10 9 / cm 3 or more.
  • the manufacturing method of the silicon wafer using the heat processing method of the silicon wafer of this invention can be illustrated as follows as one aspect
  • the method for producing a silicon wafer according to the present invention uses a silicon wafer having an oxygen concentration (initial oxygen concentration) of 16 ppma (JEIDA scale) or less during crystal growth, and performs heat treatment by the silicon wafer heat treatment method of the present invention.
  • BMD having a size of 20 nm or more and 120 nm or less is present at a density of 1 ⁇ 10 9 / cm 3 or more at a depth of 10 ⁇ m or more from the surface, and a defect having a size of (diameter conversion) 50 nm or more and 120 nm or less.
  • DZ layer defect-free layer
  • a silicon wafer having a relatively low oxygen concentration with an oxygen concentration during crystal growth of 16 ppma (JEIDA scale) or less (preferably 16 ppma or less and 10 ppma or more) is used.
  • this silicon wafer for example, a silicon wafer obtained by cutting out from a silicon single crystal ingot pulled at a predetermined oxygen concentration of 16 ppma or less by the CZ method is prepared. Specifically, a peripheral portion is removed by cutting a part of the silicon single crystal ingot pulled up by the CZ method into a cylindrical shape. A large number of silicon wafers are formed by slicing such a cylindrical silicon single crystal ingot to a predetermined thickness.
  • a silicon wafer for heat treatment is prepared by performing a flattening process such as a lapping process (Lapping), a chamfering process (Beveling), and an etching (Etching) on both sides, and a damaged layer removing process on these silicon wafers. To do.
  • a flattening process such as a lapping process (Lapping), a chamfering process (Beveling), and an etching (Etching) on both sides, and a damaged layer removing process on these silicon wafers.
  • heat treatment is performed on the silicon wafer.
  • oxygen precipitation is controlled by performing a heat treatment (annealing) process on the silicon wafer prepared as described above.
  • heat treatment is performed by the above-described silicon wafer heat treatment method of the present invention.
  • a DZ layer is formed on the surface of the silicon wafer.
  • the surface roughness due to the heat treatment can be improved by performing mirror polishing after the heat treatment within a range where the DZ layer is not completely removed.
  • the polishing amount at this time depends on the oxygen concentration of the silicon wafer used, the surface state before heat treatment, the heat treatment temperature, and the thickness of the DZ layer formed depending on the time, but is generally in the range of 0.1 to 10 ⁇ m. is there.
  • BMD having a size of 20 nm or more and 120 nm or less exists at a depth of 10 ⁇ m or less from the surface (that is, a portion immediately below the DZ layer) at a density of 1 ⁇ 10 9 / cm 3 or more
  • a silicon wafer in which a defect-free layer (DZ layer) having defects having a size of 50 nm or more and 120 nm or less and a density of 2 ⁇ 10 2 / cm 3 or less exists in a thickness of 2 ⁇ m or more and less than 10 ⁇ m from the surface can be manufactured.
  • the higher the better is the density of the BMD for example, be a 5 ⁇ 10 10 / cm 3 or less.
  • the fewer defects in the DZ layer the better.
  • a DZ layer is formed on the surface of the manufactured silicon wafer.
  • Such a DZ layer is a layer having very few crystal defects, and a semiconductor device is formed on the surface in a later step.
  • a BMD layer serving as an IG (Intrinsic Gettering) layer provided with oxygen precipitation nuclei at a high density is formed inside the silicon wafer covered with the DZ layer.
  • IG Intrinsic Gettering
  • oxygen precipitation nuclei having a high density of 1 ⁇ 10 9 / cm 3 or more and a size of 20 nm or more are imparted to the BMD layer. At this time, harmful heavy metal impurities can be diffused into the BMD layer by a large number of oxygen precipitation nuclei.
  • Example 1 A silicon single crystal rod having a diameter of 300 mm, P-type, orientation ⁇ 100>, and oxygen concentration of 15 ppma (JEIDA scale) is manufactured without nitrogen doping by the CZ method, and a silicon wafer is cut out from the silicon single crystal rod using a wire saw. Then, chamfering, lapping, etching, and mirror polishing were performed to prepare a silicon single crystal mirror surface wafer (silicon wafer used for heat treatment) having a diameter of 300 mm.
  • the silicon wafer was evaluated after mirror polishing of 0.1 ⁇ m. Specifically, the heat-treated silicon wafer is cleaved in the [110] direction passing through the center, and the center of the silicon wafer (0 mm from the center), 70 mm from the center, and 140 mm from the center is obtained by infrared scattering tomography. BMD density measurement with a size of 20 nm to 120 nm was performed for the three points. The results are shown in FIG. Moreover, the scatterer image image (scattering image of a defect) showing the depth direction distribution of BMD obtained from the infrared scattering tomography apparatus is shown in FIG.
  • Example 4 A silicon single crystal rod having a diameter of 300 mm, a P-type, an orientation ⁇ 100>, and an oxygen concentration of 15 ppma (JEIDA scale) is manufactured by doping nitrogen to 1 ⁇ 10 13 atoms / cm 3 by the CZ method.
  • a silicon wafer having a diameter of 300 mm was cut from a silicon single crystal rod using a wire saw, chamfered, lapped, etched, mirror polished, and subjected to substantially the same conditions as in Example 1 except for the presence or absence of nitrogen doping.
  • a crystal mirror wafer (silicon wafer used for heat treatment) was prepared.
  • Example 1 Using this nitrogen-doped silicon wafer, a silicon wafer was prepared and heat-treated in the same manner as in Example 1. Further, the silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS.
  • Example 1 A silicon wafer was prepared and heat-treated in the same manner as in Example 1. However, the second heat treatment was performed at 1150 ° C. for 10 minutes in an atmosphere of only Ar gas (Ar gas: 20 L / min) (that is, an atmosphere not containing nitrogen gas). The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS.
  • Example 2 A silicon wafer was prepared in the same manner as in Example 1, and according to the description of claim 1 of Patent Document 1, the temperature was increased in a heat treatment condition (mixed gas atmosphere in which 5% of nitrogen gas was mixed) as shown in FIG. (That is, the second heat treatment in the silicon wafer heat treatment method of the present invention is not performed). The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS.
  • Example 3 A silicon wafer was prepared in the same manner as in Example 1, and heat treatment was performed by RTA at 1175 ° C. for 10 seconds in a mixed gas atmosphere in which 3% ammonia gas was mixed in Ar gas. The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS. Moreover, the photograph which expanded the photograph of the scattering image of the defect in the comparative example 3 in FIG. 4 in FIG. 4 was shown.
  • Example 4 A silicon wafer was prepared and heat-treated in the same manner as in Example 4. However, the second heat treatment was performed at 1150 ° C. for 10 minutes in an atmosphere of only Ar gas (Ar gas: 20 L / min) (that is, an atmosphere not containing nitrogen gas). The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS.
  • Example 5 A silicon wafer was prepared in the same manner as in Example 4, and the temperature was raised in a heat treatment condition (mixed gas atmosphere in which 5% of nitrogen gas was mixed) shown in FIG. The heat treatment was performed under the heat treatment conditions in which high-temperature heat treatment was performed. The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS.
  • Example 6 A silicon wafer was prepared in the same manner as in Example 4, and heat treatment was performed by RTA at 1175 ° C. for 10 seconds in a mixed gas atmosphere in which 3% ammonia gas was mixed in Ar gas. The silicon wafer after the heat treatment was evaluated in the same manner as in Example 1, and the obtained results are shown in FIGS. Moreover, the photograph which expanded the photograph of the scattering image of the defect in the comparative example 6 in FIG. 5 was shown in FIG.
  • Comparative Example 1 and Comparative Example 4 in which the second heat treatment was performed only with Ar gas (Ar gas 100%), there was a measurement point at which the BMD density was less than 1 ⁇ 10 9 / cm 3 .
  • Comparative Example 2 and Comparative Example 5 in which the temperature was raised in a mixed gas atmosphere containing 5% nitrogen gas and then replaced with an Ar gas atmosphere and subjected to high-temperature heat treatment, BMD density was measured at all three points where BMD measurement was performed. Was less than 1 ⁇ 10 9 / cm 3 . Furthermore, BMD could not be detected in Comparative Example 3 and Comparative Example 6 in which heat treatment was performed by RTA at 1175 ° C. for 10 seconds.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、シリコンウェーハを熱処理炉内に投入し、1000℃以上1350℃以下の温度まで昇温して、該昇温した温度において、窒素ガス以外の非酸化性ガス雰囲気中で30分以上の第1の熱処理を行った後、該第1の熱処理を行った温度からの降温開始前あるいは前記第1の熱処理を行った温度から降温する途中の温度で第2の熱処理を行い、前記第2の熱処理の一部又は全部を、前記熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして行うシリコンウェーハの熱処理方法である。これにより、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度を1×10/cm以上という高密度にコントロールすることができるシリコンウェーハの熱処理方法が提供される。

Description

シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法
 本発明は、シリコンウェーハの熱処理方法、具体的には水素(H)ガスあるいはアルゴン(Ar)ガス雰囲気下でのシリコンウェーハの熱処理方法、及びこれを用いたシリコンウェーハの製造方法に関するものである。
 DZ(Denuded Zone)層及びその直下のBMD(Balk Micro Defect)層を形成するために、従来は水素、アルゴンによる高温熱処理が行われていた。しかし、酸素の外方拡散より、DZ層直下のBMD密度はバルク中に比較して低密度になっていた。そのため、近年ではRTA(Rapid Thermal Anneal)による、空孔注入及びその降温中の空孔の外方拡散によりDZ層、及びDZ層直下のBMD密度をコントロールする技術が数多く提案されてきた。しかし、RTAによるDZ層及びDZ層直下のBMD核形成プロセスでは、プロセス直後にはBMDが十分なサイズに成長しておらず、BMD核成長には、800℃4時間+1000℃16時間というような、現在のデバイスプロセスでは期待できない高温長時間の熱処理を必要としていた。
 また、従来の水素、アルゴンによる高温熱処理と同じような熱処理方法として、特許文献1の熱処理方法のように、シリコンウェーハを熱処理炉内に投入後、炉内が950℃の温度まで昇温される昇温期間の一部又は全部の期間にわたり、炉内を窒素ガスあるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気で昇温した後、炉内をアルゴンガス雰囲気に置換してシリコンウェーハを900℃~1350℃の温度範囲で1時間以上熱処理する方法が報告されている。しかしながら、特許文献1の熱処理方法は、シリコンウェーハをアルゴン雰囲気下で熱処理した場合に、シリコンウェーハ表面上で観察されるピット及びヒロック状の欠陥の発生を抑制するものであり、この熱処理方法では、DZ層直下のBMD密度を高密度にコントロールすることはできない。
特開2003-77926号公報
 本発明は、上記事情に鑑みなされたもので、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度を1×10/cm以上という高密度にコントロールすることができるシリコンウェーハの熱処理方法を提供することを目的とする。
 上記課題を解決するために、本発明では、シリコンウェーハを熱処理炉内に投入し、1000℃以上1350℃以下の温度まで昇温して、該昇温した温度において、窒素ガス以外の非酸化性ガス雰囲気中で30分以上の第1の熱処理を行った後、該第1の熱処理を行った温度からの降温開始前あるいは前記第1の熱処理を行った温度から降温する途中の温度で第2の熱処理を行い、前記第2の熱処理の一部又は全部を、前記熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして行うシリコンウェーハの熱処理方法を提供する。
 このようなシリコンウェーハの熱処理方法であれば、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度を1×10/cm以上という高密度にコントロールすることができる。
 このとき、前記第2の熱処理を、1000~1200℃の温度領域の温度において行うことが好ましい。
 本発明のシリコンウェーハの熱処理方法では、第2の熱処理をこのような温度領域の温度において行うことで、熱処理後のシリコンウェーハにおけるDZ層直下のBMD密度をより確実に1×10/cm以上という高密度にコントロールすることができる。
 またこのとき、前記第2の熱処理を行った後、窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気で1~50℃/minの速度範囲で降温を行い、前記シリコンウェーハに施される酸素析出物成長のための熱処理時間を、前記第1の熱処理を行った時間及び前記第2の熱処理を行った時間を含め、トータルで12時間以内にすることが好ましい。
 このように、本発明では、シリコンウェーハに施される酸素析出物成長のための熱処理時間をトータルで12時間以内にすることができる。
 またこのとき、前記第1の熱処理及び前記第2の熱処理における非酸化性ガスを、Hガス又はArガスあるいはこれらの混合ガスとすることが好ましい。
 このように、本発明では、第1の熱処理及び第2の熱処理における非酸化性ガスとして、上記のようなものを好適に用いることができる。
 また、本発明では、シリコンウェーハの製造方法であって、
 結晶成長時の酸素濃度が16ppma(JEIDAスケール)以下であるシリコンウェーハを用い、上述のシリコンウェーハの熱処理方法により熱処理を行って、20nm以上のサイズのBMDが表面から10μm以内の深さに1×10/cm以上の密度で存在し、かつ、50nm以上のサイズの欠陥が2×10/cm以下の密度である無欠陥層(DZ層)が表面から2μm以上の厚さで存在するシリコンウェーハを製造するシリコンウェーハの製造方法を提供する。
 このようなシリコンウェーハの製造方法であれば、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度が1×10/cm以上という高密度であるシリコンウェーハを製造することができる。
 本発明のシリコンウェーハの熱処理方法であれば、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度を1×10/cm以上という高密度にコントロールすることができる。また、本発明のシリコンウェーハの製造方法であれば、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度が1×10/cm以上という高密度であるシリコンウェーハを製造することができる。
実施例1~6及び比較例1,4におけるシリコンウェーハの熱処理条件を示すグラフである。 実施例1~3及び比較例1~3における窒素をドープしていないシリコンウェーハの熱処理後のBMD密度を示すグラフである。 実施例4~6及び比較例4~6における窒素をドープしたシリコンウェーハの熱処理後のBMD密度を示すグラフである。 実施例1~3及び比較例1~3における窒素をドープしていないシリコンウェーハの熱処理後の欠陥の散乱像を示す写真である。 実施例4~6及び比較例4~6における窒素をドープしたシリコンウェーハの熱処理後の欠陥の散乱像を示す写真である。 図4中の比較例3及び図5中の比較例6における欠陥の散乱像の写真を拡大した写真である。 比較例2,5におけるシリコンウェーハの熱処理条件を示すグラフである。
 以下、本発明のシリコンウェーハの熱処理方法及びシリコンウェーハの製造方法について詳細に説明するが、本発明はこれらに限定されるものではない。
 まず、本発明のシリコンウェーハの熱処理方法について説明する。
 本発明のシリコンウェーハの熱処理方法は、シリコンウェーハを熱処理炉内に投入し、1000℃以上1350℃以下の温度まで昇温して、該昇温した温度において、窒素ガス以外の非酸化性ガス雰囲気中で30分以上の第1の熱処理を行った後、該第1の熱処理を行った温度からの降温開始前あるいは前記第1の熱処理を行った温度から降温する途中の温度で第2の熱処理を行い、前記第2の熱処理の一部又は全部を、前記熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして行う。以下、本発明のシリコンウェーハの熱処理方法についてより詳細に説明する。
 まず、シリコンウェーハを熱処理炉内に投入する。熱処理炉としては、RTA炉よりも通常の横型拡散炉あるいは縦型拡散炉等のいわゆるバッチ炉を用いることが好ましい。
 次に、第1の熱処理(高温熱処理)を行う。第1の熱処理は、1000℃以上1350℃以下の温度まで昇温して、昇温した温度において、窒素ガス以外の非酸化性ガス雰囲気中で30分以上行う。
 第1の熱処理は、酸素系ガスではなく、窒素ガス以外の非酸化性ガス雰囲気中で行うが、この非酸化性ガスとしては、汎用的に、Hガス(100%)又はArガス(100%)あるいはこれらの混合ガスとすることが好ましい。
 また、第1の熱処理は、1000℃以上1350℃以下の温度において30分以上、好ましくは1000℃以上1300℃以下の温度で1~10時間程度行う。
 このような第1の熱処理を経たシリコンウェーハには、中心部にゲッタリング領域を成す高密度な酸素析出核を有するBMD層が形成されるとともに、表面にはDZ層が形成される。
 この後、第2の熱処理を行う。第2の熱処理は、第1の熱処理を行った温度からの降温開始前あるいは第1の熱処理を行った温度から降温する途中の温度で行う。特に、第2の熱処理は、1000~1200℃の温度領域の温度において行うことが好ましい。
 ここで、第2の熱処理の一部又は全部を、熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして行う。熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして熱処理する時間は、好ましくは5分以上である。また、第2の熱処理における非酸化性ガスとしては、上述の第1の熱処理と同様に、Hガス又はArガスあるいはこれらの混合ガスとすることが好ましい。
 一般的なシリコンウェーハの熱処理(アニール)方法においては、非酸化性雰囲気、例えばArガス雰囲気で1000~1300℃で1~10時間程度シリコンウェーハをアニール(Arアニール)することによって酸素析出の制御を行う。また、別の熱処理方法としては、Arガス雰囲気でシリコンウェーハをアニールする前に、RTA装置による高速昇降温プロセスによって、シリコンウェーハに高密度のBMD核を形成し、それに引き続き、高温長時間でArガス雰囲気でシリコンウェーハをアニールすることにより、DZ層及びBMD層の形成を行っている。
 これに対し、本発明においては、第1の熱処理(例えばArガス雰囲気中、1000~1300℃において1~10時間程度行う熱処理)を行った後、第1の熱処理を行った温度からの降温開始前及び第1の熱処理を行った温度から降温する途中の温度で、窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気で第2の熱処理を行い、その後降温を実施する。
 一般的には、HアニールやArアニールを経たシリコンウェーハには、その表面に自然酸化膜がないため、アニール時の雰囲気中の窒素ガスによる表面からの窒素原子の拡散がおきやすい。また、拡散された窒素原子はDZ層直下に形成されるBMD核の成長を促進し、Arアニールのみで得られる低密度のBMD層を高密度BMD層に改善することが可能となる。
 本発明のように、第1の熱処理を行った温度からの降温開始前(特に降温開始の直前)あるいは第1の熱処理を行った温度から降温する途中の温度において、窒素ガスを付与して第2の熱処理を行うことにより、BMD層に20nm以上のサイズの酸素析出核が1×10/cm以上の高密度で形成され、高密度に酸素析出核を含むBMD層が形成される。なお、このBMD密度は、本発明の熱処理方法による熱処理を行った直後に得られるものであり、RTAによる熱処理の場合に必要とされる、例えば800℃4時間、1000℃16時間というようなBMDを顕在化させる熱処理を必要としない。
 また、本発明のように、第1の熱処理を行った温度からの降温開始前あるいは第1の熱処理を行った温度から降温する途中の温度において、本発明のような窒素ガスを付与した第2の熱処理を行わないシリコンウェーハの熱処理を行った場合、特に、特許文献1のように、熱処理炉にシリコンウェーハを投入し、高温熱処理温度に昇温する途中の過程においてのみ窒素ガスを導入した場合は、DZ層を得ることができず、また、窒素原子の拡散を促進することができないため、本発明と同様の効果を得ることはできない。
 また、第2の熱処理を行った後、窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気で1~50℃/minの速度範囲で降温を行い、シリコンウェーハに施される酸素析出物成長のための熱処理(追加熱処理)時間を、第1の熱処理を行った時間及び第2の熱処理を行った時間を含め、トータルで30分以上、12時間以内にすることが好ましい。ここで、酸素析出物成長のための熱処理とは、CZプロセスにて製造されたシリコンウェーハに付与される熱処理であって、CZプロセス直後においてはゲッタリング効果を持つのに不十分な大きさのBMD核をゲッタリング効果を持つのに十分な大きさ(例えば本発明の実施例であれば直径換算20nm以上)にまで成長させる熱処理を指す。具体的には、図1の第2の熱処理後の降温過程がそれに該当する。
 このようなシリコンウェーハの熱処理方法であれば、例えばRTAによるBMD核形成及びその後に行うBMD核成長熱処理のプロセスのように、高温長時間の熱処理を行うことなく、DZ層直下のBMD密度を1×10/cm以上という高密度にコントロールすることができる。
 また、本発明のシリコンウェーハの熱処理方法を用いたシリコンウェーハの製造方法は、一態様として以下のように例示できる。
 本発明のシリコンウェーハの製造方法は、結晶成長時の酸素濃度(初期酸素濃度)が16ppma(JEIDAスケール)以下であるシリコンウェーハを用い、本発明のシリコンウェーハの熱処理方法により熱処理を行って、(直径換算)20nm以上、120nm以下のサイズのBMDが表面から10μm以内の深さに1×10/cm以上の密度で存在し、かつ、(直径換算)50nm以上、120nm以下のサイズの欠陥が2×10/cm以下の密度である無欠陥層(DZ層)が表面から2μm以上の厚さで存在するシリコンウェーハを製造することができる。
 以下、本発明のシリコンウェーハの製造方法の一例について説明する。
 本発明のシリコンウェーハの製造方法では、結晶成長時の酸素濃度が16ppma(JEIDAスケール)以下(好ましくは16ppma以下10ppma以上)の比較的低酸素濃度であるシリコンウェーハを用いる。このシリコンウェーハとしては、例えば、CZ法によって16ppma以下の所定酸素濃度で引上げられたシリコン単結晶インゴットから切り出して得られたものを用意する。具体的には、CZ法によって引上げられたシリコン単結晶インゴットに対し、その一部を円筒状に切り出すことで、周縁部を除去する。こうした円筒状のシリコン単結晶インゴットを所定の厚みにスライスすることで、多数のシリコンウェーハを形成する。これらのシリコンウェーハに対し、両面のラッピング工程(Lapping)、面取り工程(Beveling)、エッチング(Etching)等の平坦化工程、及びダメージ層除去工程等を行って、熱処理を行うためのシリコンウェーハを用意する。
 次に、シリコンウェーハに対して熱処理を行う。例えば上記のように用意したシリコンウェーハに対し、熱処理(アニール)工程を行うことによって酸素析出の制御が行われる。ここで、本発明のシリコンウェーハの製造方法では、前述した本発明のシリコンウェーハの熱処理方法により熱処理を行う。この熱処理によってシリコンウェーハの表面にDZ層を形成する。
 さらにDZ層を完全に除去しない範囲において、熱処理後鏡面研磨する事により、熱処理による表面粗さを改善することができる。この際の研磨量は、用いたシリコンウェーハの酸素濃度、熱処理前表面状態、熱処理温度、時間により形成されたDZ層の厚さによるが、0.1~10μmの範囲で行うのが一般的である。
 上記のような製造方法により、20nm以上120nm以下のサイズのBMDが表面から10μm以内の深さ(即ち、DZ層直下の部分)に1×10/cm以上の密度で存在し、かつ、50nm以上120nm以下のサイズの欠陥が2×10/cm以下の密度である無欠陥層(DZ層)が表面から2μm以上10μm未満の厚さで存在するシリコンウェーハを製造することができる。なお、BMDの密度は高ければ高いほどよいが、例えば、5×1010/cm以下とすることができる。また、DZ層中の欠陥は少なければ少ないほど良い。
 製造されたシリコンウェーハの表面には、DZ層が形成されている。こうしたDZ層は、結晶欠陥が極めて少ない層とされ、後工程において表面に半導体デバイスが形成される。
 DZ層で覆われたシリコンウェーハの内部には、酸素析出核を高密度に付与したIG(Intrinsic Gettering)層となるBMD層が形成されている。酸素析出核を高密度に付与したBMD層には、20nm以上のサイズの酸素析出核が1×10/cm以上形成されている。
 このようなシリコンウェーハであれば、BMD層に1×10/cm以上といった高密度で20nm以上のサイズの酸素析出核が付与されていることにより、デバイス作製プロセスにおいて、後工程の熱処理の際に、多数の酸素析出核により有害な重金属不純物をBMD層に拡散させることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例・比較例]
(実施例1)
 CZ法にて窒素ドープなしで直径300mm、P型、方位<100>、酸素濃度15ppma(JEIDAスケール)のシリコン単結晶棒を製造し、このシリコン単結晶棒からワイヤーソーを用いてシリコンウェーハを切り出し、面取り、ラッピング、エッチング、鏡面研磨加工を施して、直径300mmのシリコン単結晶鏡面ウェーハ(熱処理に用いるシリコンウェーハ)を用意した。
 このシリコンウェーハを用い、図1に示す熱処理の条件(Arガス雰囲気)にて、1150℃1時間の熱処理(第1の熱処理を50分、第2の熱処理を10分)を行った。なお、第1の熱処理はArガス雰囲気にて1150℃で50分行い、第2の熱処理はArガス95%と窒素(N)ガス5%(Arガス:窒素ガス=19L/min:1L/min)との混合ガス雰囲気にして1150℃で10分間行った。
 次に、熱処理後、ウェーハ表面の粗さを改善するため、0.1μmの鏡面研磨を行ったのち、シリコンウェーハの評価を行った。具体的には、熱処理後のシリコンウェーハを、中心を通る[110]方向に劈開し、赤外散乱トモグラフィー法にて、シリコンウェーハの中心(中心から0mm)、中心から70mm、及び中心から140mmの3点について20nm以上120nm以下のサイズのBMD密度測定を行った。この結果を図2に示した。また、赤外散乱トモグラフィー装置から得られたBMDの深さ方向分布を表す散乱体イメージ像(欠陥の散乱像)を図4に示した。
(実施例2)
 実施例1と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガス90%と窒素ガス10%(Arガス:窒素ガス=18L/min:2L/min)との混合ガス雰囲気にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図2及び図4に示した。
(実施例3)
 実施例1と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガス75%と窒素ガス25%(Arガス:窒素ガス=15L/min:5L/min)との混合ガス雰囲気にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図2及び図4に示した。
(実施例4)
 CZ法にて窒素を1×1013atoms/cm台になるようにドープして直径300mm、P型、方位<100>、酸素濃度15ppma(JEIDAスケール)のシリコン単結晶棒を製造し、このシリコン単結晶棒からワイヤーソーを用いてシリコンウェーハを切り出し、面取り、ラッピング、エッチング、鏡面研磨加工を施して、窒素のドープの有無以外は実施例1とほぼ同一の条件とした直径300mmのシリコン単結晶鏡面ウェーハ(熱処理に用いるシリコンウェーハ)を用意した。
 この窒素をドープしたシリコンウェーハを用い、実施例1と同様にしてシリコンウェーハの用意及び熱処理を行った。また、熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。
(実施例5)
 実施例4と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガス90%と窒素ガス10%(Arガス:窒素ガス=18L/min:2L/min)との混合ガス雰囲気にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。
(実施例6)
 実施例4と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガス75%と窒素ガス25%(Arガス:窒素ガス=15L/min:5L/min)との混合ガス雰囲気にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。
(比較例1)
 実施例1と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガスのみ(Arガス:20L/min)の雰囲気(即ち、窒素ガスを含まない雰囲気)にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図2及び図4に示した。
(比較例2)
 実施例1と同様にしてシリコンウェーハを用意し、特許文献1の請求項1の記載に従って、図7に示す熱処理条件(窒素ガスを5%混合した混合ガス雰囲気で昇温した後、Arガス雰囲気に置換して高温熱処理を行う熱処理条件)にて熱処理を行った(即ち、本発明のシリコンウェーハの熱処理方法における第2の熱処理は行っていない)。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図2及び図4に示した。
(比較例3)
 実施例1と同様にしてシリコンウェーハを用意し、Arガス中にアンモニアガスを3%混合した混合ガス雰囲気で1175℃10秒のRTAによる熱処理を施した。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図2及び図4に示した。また、図6に図4中の比較例3における欠陥の散乱像の写真を拡大した写真を示した。
(比較例4)
 実施例4と同様にしてシリコンウェーハの用意及び熱処理を行った。ただし、第2の熱処理は、Arガスのみ(Arガス:20L/min)の雰囲気(即ち、窒素ガスを含まない雰囲気)にして1150℃で10分間行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。
(比較例5)
 実施例4と同様にしてシリコンウェーハを用意し、特許文献1の請求項1の記載に従って、図7に示す熱処理条件(窒素ガスを5%混合した混合ガス雰囲気で昇温した後、Arガス雰囲気に置換して高温熱処理を行う熱処理条件)にて熱処理を行った。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。
(比較例6)
 実施例4と同様にしてシリコンウェーハを用意し、Arガス中にアンモニアガスを3%混合した混合ガス雰囲気で1175℃10秒のRTAによる熱処理を施した。
 熱処理後のシリコンウェーハについて、実施例1と同様の評価を行い、得られた結果を図3及び図5に示した。また、図6に図5中の比較例6における欠陥の散乱像の写真を拡大した写真を示した。
[評価結果]
 図2,3に示されるように、窒素ドープなしのシリコンウェーハ及び窒素ドープありのシリコンウェーハのどちらのウェーハにおいても、本発明のシリコンウェーハの熱処理方法で熱処理を行った実施例1~6においてのみ、BMD測定を行った3点全てにおいてBMD密度が1×10/cm以上となることが明らかとなった。
 一方、第2の熱処理をArガスのみ(Arガス100%)で行った比較例1及び比較例4では、BMD密度が1×10/cm未満となる測定点があった。また、窒素ガスを5%混合した混合ガス雰囲気で昇温した後、Arガス雰囲気に置換して高温熱処理を行った比較例2及び比較例5では、BMD測定を行った3点全てにおいてBMD密度が1×10/cm未満となった。さらに、1175℃10秒のRTAによる熱処理を施した比較例3及び比較例6では、BMDを検出することができなかった。
 また、図4~6に示した欠陥の散乱像を詳細に検討したところ、比較例1~6ではDZ層直下に1×10/cm以上の高密度のBMDが形成されておらず、本発明のシリコンウェーハの熱処理方法で熱処理を行った実施例1~6においてのみ、DZ層直下に1×10/cm以上の高密度のBMDが形成されていることが確認できた。
 上記の結果より、本発明のシリコンウェーハの熱処理方法であれば、DZ層直下に1×10/cm以上の高密度のBMDを形成できることが確認できた。また、特許文献1の熱処理方法では、本発明の課題であるDZ層直下への1×10/cm以上の高密度のBMD形成を達成することはできないものであることも、本発明者らの実験により確認された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  シリコンウェーハを熱処理炉内に投入し、1000℃以上1350℃以下の温度まで昇温して、該昇温した温度において、窒素ガス以外の非酸化性ガス雰囲気中で30分以上の第1の熱処理を行った後、該第1の熱処理を行った温度からの降温開始前あるいは前記第1の熱処理を行った温度から降温する途中の温度で第2の熱処理を行い、前記第2の熱処理の一部又は全部を、前記熱処理炉内を窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気にして行うことを特徴とするシリコンウェーハの熱処理方法。
  2.  前記第2の熱処理を、1000~1200℃の温度領域の温度において行うことを特徴とする請求項1に記載のシリコンウェーハの熱処理方法。
  3.  前記第2の熱処理を行った後、窒素ガス雰囲気あるいは窒素ガスと非酸化性ガスとの混合ガス雰囲気で1~50℃/minの速度範囲で降温を行い、前記シリコンウェーハに施される酸素析出物成長のための熱処理時間を、前記第1の熱処理を行った時間及び前記第2の熱処理を行った時間を含め、トータルで12時間以内にすることを特徴とする請求項1又は請求項2に記載のシリコンウェーハの熱処理方法。
  4.  前記第1の熱処理及び前記第2の熱処理における非酸化性ガスを、Hガス又はArガスあるいはこれらの混合ガスとすることを特徴とする請求項1から請求項3のいずれか一項に記載のシリコンウェーハの熱処理方法。
  5.  シリコンウェーハの製造方法であって、
     結晶成長時の酸素濃度が16ppma(JEIDAスケール)以下であるシリコンウェーハを用い、請求項1から請求項4のいずれか一項に記載のシリコンウェーハの熱処理方法により熱処理を行って、20nm以上のサイズのBMDが表面から10μm以内の深さに1×10/cm以上の密度で存在し、かつ、50nm以上のサイズの欠陥が2×10/cm以下の密度である無欠陥層(DZ層)が表面から2μm以上の厚さで存在するシリコンウェーハを製造することを特徴とするシリコンウェーハの製造方法。
PCT/JP2017/029711 2016-09-13 2017-08-21 シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法 WO2018051728A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178766A JP6555217B2 (ja) 2016-09-13 2016-09-13 シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法
JP2016-178766 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051728A1 true WO2018051728A1 (ja) 2018-03-22

Family

ID=61619077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029711 WO2018051728A1 (ja) 2016-09-13 2017-08-21 シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP6555217B2 (ja)
TW (1) TW201824393A (ja)
WO (1) WO2018051728A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213403A (ja) * 1995-02-07 1996-08-20 Sumitomo Metal Ind Ltd 半導体基板及びその製造方法
JP2003077925A (ja) * 2001-08-31 2003-03-14 Sumitomo Mitsubishi Silicon Corp シリコンウェーハの製造方法及びシリコンウェーハ
JP2005522879A (ja) * 2002-04-10 2005-07-28 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 理想的酸素析出シリコンウエハにおいてデヌーデッドゾーン深さを制御する方法
JP2006040980A (ja) * 2004-07-22 2006-02-09 Sumco Corp シリコンウェーハおよびその製造方法
JP2007235153A (ja) * 2002-04-26 2007-09-13 Sumco Corp 高抵抗シリコンウエーハ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213403A (ja) * 1995-02-07 1996-08-20 Sumitomo Metal Ind Ltd 半導体基板及びその製造方法
JP2003077925A (ja) * 2001-08-31 2003-03-14 Sumitomo Mitsubishi Silicon Corp シリコンウェーハの製造方法及びシリコンウェーハ
JP2005522879A (ja) * 2002-04-10 2005-07-28 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 理想的酸素析出シリコンウエハにおいてデヌーデッドゾーン深さを制御する方法
JP2007235153A (ja) * 2002-04-26 2007-09-13 Sumco Corp 高抵抗シリコンウエーハ及びその製造方法
JP2006040980A (ja) * 2004-07-22 2006-02-09 Sumco Corp シリコンウェーハおよびその製造方法

Also Published As

Publication number Publication date
JP2018046107A (ja) 2018-03-22
JP6555217B2 (ja) 2019-08-07
TW201824393A (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
JP5256195B2 (ja) シリコンウエハ及びその製造方法
JP5578172B2 (ja) アニールウエーハの製造方法およびデバイスの製造方法
JP5537802B2 (ja) シリコンウエハの製造方法
JP6044660B2 (ja) シリコンウェーハの製造方法
JP4646440B2 (ja) 窒素ドープアニールウエーハの製造方法
JP2006261632A (ja) シリコンウェーハの熱処理方法
JP5217245B2 (ja) シリコン単結晶ウェーハ及びその製造方法
JP5251137B2 (ja) 単結晶シリコンウェーハおよびその製造方法
JP2007235153A (ja) 高抵抗シリコンウエーハ及びその製造方法
JP4615161B2 (ja) エピタキシャルウエーハの製造方法
WO2002049091A1 (fr) Procede de fabrication d'une tranche de recuit et tranche obtenue
WO2023098675A1 (zh) 消除间隙型缺陷B-swirl的方法、硅片及电子器件
JP2007242920A (ja) 窒素ドープアニールウェーハの製造方法及び窒素ドープアニールウェーハ
JP3800960B2 (ja) シリコンウエーハ
JP2006040980A (ja) シリコンウェーハおよびその製造方法
JP5999949B2 (ja) シリコンウェーハの製造方法
JP2013048137A (ja) シリコンウェーハの製造方法
JP6555217B2 (ja) シリコンウェーハの熱処理方法及びシリコンウェーハの製造方法
JP2010003922A (ja) シリコンウェーハの製造方法
JP5965607B2 (ja) シリコンウェーハの製造方法
JP6317700B2 (ja) シリコンウェーハの製造方法
JP2013030723A (ja) シリコンウェーハの製造方法
JP2013201314A (ja) シリコンウェーハの製造方法
JP5906006B2 (ja) シリコンウェーハの製造方法
JP5211550B2 (ja) シリコン単結晶ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850634

Country of ref document: EP

Kind code of ref document: A1