WO2018051658A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2018051658A1
WO2018051658A1 PCT/JP2017/027754 JP2017027754W WO2018051658A1 WO 2018051658 A1 WO2018051658 A1 WO 2018051658A1 JP 2017027754 W JP2017027754 W JP 2017027754W WO 2018051658 A1 WO2018051658 A1 WO 2018051658A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
photoelectric conversion
conversion layer
solar cell
finger electrode
Prior art date
Application number
PCT/JP2017/027754
Other languages
English (en)
French (fr)
Inventor
優也 中村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018539558A priority Critical patent/JP6742000B2/ja
Priority to CN201780056218.0A priority patent/CN109743885A/zh
Publication of WO2018051658A1 publication Critical patent/WO2018051658A1/ja
Priority to US16/299,927 priority patent/US20190207045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module including a plurality of solar cells.
  • the solar cell module includes a plurality of solar cells that are electrically connected to each other by wiring tabs between the front surface protective material and the back surface protective material.
  • the solar battery cell includes a photoelectric conversion unit and a plurality of finger electrodes stacked on the photoelectric conversion unit. Since the linear expansion coefficients of the photoelectric conversion unit, finger electrode, and tab are different, stress changes in the region where the solar cell and the tab intersect due to temperature changes when the tab is soldered to the solar cell, and the finger electrode is disconnected. Can occur. Even if the disconnection of the finger electrode occurs, the finger electrode is branched into a plurality of branches in the intersection region, and the branch point of the branch is separated from the tab (for example, Patent Document 1). reference).
  • a wire film in which two transparent members are connected by a plurality of wires may be used.
  • a wire film for a solar cell module each of two transparent members is affixed on an adjacent solar cell, and a wire is used as a wiring material.
  • the collector electrode on the solar battery cell is formed of silver paste and the surface of the wire is coated with a low melting point solder, the adhesive force between the collector electrode and the wire is lowered. When the adhesive force is low, the wire may be peeled off from the solar battery cell by the temperature cycle test.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for improving the adhesive force between a solar battery cell and a wiring material.
  • a solar battery module includes a plurality of solar battery cells and a plurality of wiring members that electrically connect adjacent solar battery cells.
  • Each of the plurality of solar cells includes a photoelectric conversion layer and a plurality of collector electrodes arranged in the extending direction of the plurality of wiring members on the surface of the photoelectric conversion layer.
  • the height from the photoelectric conversion layer of the portion where the plurality of wiring members are arranged is lower on the end side than the center side of the photoelectric conversion layer.
  • the adhesive force between the solar battery cell and the wiring material can be improved.
  • FIG. 4 (a)-(b) are plan views showing the structure of the solar battery cell of FIG. 4 (a)-(b) are plan views showing the structure of the solar battery cell of FIG. 4 (a)-(b) are plan views showing the structure of the solar battery cell of FIG. 4 (a)-(b) are plan views showing the structure of the solar battery cell of FIG. 4 (a)-(b) are plan views showing the structure of the solar battery cell of FIG.
  • FIGS. 5A to 5F are diagrams showing a partial configuration of the solar battery cell of FIG.
  • FIGS. 6A to 6D are diagrams showing a partial configuration of a solar battery cell according to Example 2 of the present invention.
  • Example 1 of the present invention relates to a solar cell module in which a plurality of solar cells are arranged in a matrix.
  • a sealing member is disposed between the first protective member and the second protective member, and the plurality of solar cells are sealed by the sealing member.
  • two adjacent photovoltaic cells are connected by a wire film.
  • two transparent members are connected by a plurality of wires, and each transparent member is attached to an adjacent solar battery cell.
  • a string is formed by connecting a plurality of solar cells arranged in a direction in which the wire extends with a plurality of wire films.
  • a wire film is used to simplify the production of the solar cell module.
  • the collector electrode on the solar battery cell is formed of silver paste and the surface of the wire is coated with a low melting point solder, the adhesive force between the collector electrode and the wire is lowered.
  • the adhesive force is low, when a temperature cycle test in which the temperature is repeatedly increased and decreased is executed, the wire may be peeled off from the solar battery cell.
  • a portion where a plurality of wires are arranged in a plurality of collector electrodes (hereinafter referred to as “intersection region”). )) Is made lower on the end side than on the center side of the solar battery cell.
  • the collector electrode is formed by screen printing or the like.
  • the amount of silver paste used to form the low part is less than the amount of silver paste used to form the high part. As the amount of silver paste decreases, the surface of the collector electrode becomes smoother, thereby increasing the contact area between the collector electrode and the wire.
  • the contact area between the collector electrode and the wire is increased in the crossing region on the end portion side than the crossing region on the central side of the solar battery cell.
  • an increase in the contact area leads to an increase in adhesive force.
  • parallel and vertical include not only perfect parallel and vertical, but also include cases in which they deviate from parallel and vertical within an error range. Further, “substantially” means that they are the same in an approximate range.
  • FIG. 1 is a plan view showing a structure of a solar cell module 100 according to Example 1 of the present invention.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • FIG. 1 can be said to be a plan view from the light receiving surface side of the solar cell module 100.
  • the solar cell module 100 includes eleventh solar cells 10aa,..., 46th solar cell 10df, first type wiring material 14, second type wiring material 16, third type wiring, which are collectively referred to as the solar cell 10.
  • the first frame 20a, the second frame 20b, the third frame 20c, and the fourth frame 20d, which are collectively referred to as the material 18 and the frame 20, are included.
  • the first frame 20a extends in the x-axis direction
  • the second frame 20b extends in the negative direction of the y-axis from the positive end of the first frame 20a in the x-axis direction.
  • the third frame 20c extends in the negative direction of the x axis from the negative end of the second frame 20b in the negative direction of the x axis
  • the fourth frame 20d extends from the negative end of the third frame 20c in the negative direction of the negative direction of the x axis.
  • the frame 20a is connected to the x-axis negative side end.
  • the frame 20 surrounds the outer periphery of the solar cell module 100 and is formed of a metal such as aluminum.
  • the solar cell module 100 has a rectangular shape that is longer in the x-axis direction than in the y-axis direction.
  • Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
  • the solar cell 10 generates an electromotive force from the light absorbed on the light receiving surface and also generates a photoelectromotive force from the light absorbed on the back surface.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked.
  • the solar battery cell 10 has a quadrangular shape in the xy plane, but may have another shape, for example, an octagonal shape. Although omitted in FIG. 1, a plurality of finger electrodes extending in the y-axis direction are provided in parallel to each other on the light receiving surface and the back surface of each solar battery cell 10.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • six solar cells 10 are arranged in the x-axis direction.
  • the six photovoltaic cells 10 arranged side by side in the x-axis direction are connected in series by the first-type wiring material 14 to form one string 12.
  • the first string 12a is formed by connecting the eleventh solar battery cell 10aa, the twelfth solar battery cell 10ab, ..., the sixteenth solar battery cell 10af.
  • the second string 12b to the fourth string 12d are formed in the same manner.
  • the four strings 12 are arranged in parallel in the y-axis direction.
  • the number of the photovoltaic cells 10 arranged in the x-axis direction is larger than the number of the photovoltaic cells 10 arranged in the y-axis direction.
  • the x-axis direction is called “first direction”
  • the y-axis direction is called “second direction”.
  • the number of the photovoltaic cells 10 included in the string 12 is not limited to “6”
  • the number of the strings 12 is not limited to “4”.
  • the first type wiring member 14 connects the finger electrode on one light receiving surface side of the photovoltaic cells 10 adjacent in the x-axis direction and the finger electrode on the other back surface side.
  • the five first-type wiring members 14 for connecting the adjacent eleventh solar cells 10aa and the twelfth solar cells 10ab are the finger electrodes on the back surface side of the eleventh solar cells 10aa and the twelfth solar cells.
  • the finger electrode on the light receiving surface side of the cell 10ab is electrically connected.
  • the number of first-type wiring members 14 is not limited to “5”.
  • the first type wiring member 14 corresponds to the above-described wire. The connection between the first type wiring member 14 and the solar battery cell 10 will be described later.
  • the second type wiring member 16 extends in the y-axis direction and electrically connects two strings 12 adjacent to each other.
  • the sixteenth solar cell 10af located at the positive x-direction end of the first string 12a and the twenty-sixth solar cell 10bf located at the positive x-direction end of the second string 12b are the second Electrical connection is made by the seed wiring member 16.
  • the second string 12b and the third string 12c are electrically connected by the second-type wiring member 16 on the negative direction side of the x axis
  • the third string 12c and the fourth string 12d are positive of the x axis. Electrical connection is established by the second-type wiring material 16 on the direction side.
  • the plurality of strings 12 are connected in series by the second type wiring material 16.
  • the second type wiring member 16 is not connected to the eleventh solar cell 10aa at the negative end of the first string 12a on the x axis, and the third type wiring member 18 is connected instead.
  • An extraction wiring material (not shown) is connected to the third type wiring material 18.
  • the extraction wiring material is a wiring material for extracting the electric power generated in the plurality of solar cells 10 to the outside of the solar cell module 100.
  • the third-type wiring member 18 is also connected to the forty-first solar cell 10da at the end of the fourth string 12d on the negative side of the x axis.
  • FIG. 2 is a cross-sectional view along the x-axis showing the structure of the solar cell module 100, and is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes a twelfth solar cell 10ab, a thirteenth solar cell 10ac, a first type wiring member 14, a first protection member 30, a first sealing member 32, a second sealing member 34, and a second protection.
  • a member 36, a first transparent member 40, a second transparent member 42, a first adhesive 44, and a second adhesive 46 are included.
  • the upper side of FIG. 2 corresponds to the light receiving surface side, and the lower side corresponds to the back surface side.
  • the first protection member 30 is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • the solar cell module 100 has a rectangular shape surrounded by the frame 20 in the xy plane.
  • the first protective member 30 is made of light-transmitting and water-blocking glass, light-transmitting plastic, or the like. The first protective member 30 increases the mechanical strength of the solar cell module 100.
  • the first sealing member 32 is laminated on the back surface side of the first protection member 30.
  • the 1st sealing member 32 is arrange
  • a thermoplastic resin such as a resin film such as polyolefin, EVA (ethylene vinyl acetate copolymer), PVB (polyvinyl butyral), or polyimide is used.
  • a thermosetting resin may be used.
  • the first sealing member 32 is formed of a sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first protection member 30.
  • the twelfth solar cell 10ab and the thirteenth solar cell 10ac are stacked on the back side of the first protective member 30.
  • Each photovoltaic cell 10 is arranged with the light receiving surface 22 facing the positive direction side of the z-axis and the back surface 24 facing the negative direction side of the z-axis.
  • the light receiving surface 22 is referred to as a “first surface”
  • the back surface 24 is referred to as a “second surface”.
  • the first type wiring member 14, the first adhesive 44, and the first transparent member 40 are disposed on the light receiving surface 22 of the solar battery cell 10, and the first type wiring member 14, A second adhesive 46 and a second transparent member 42 are disposed.
  • FIG. 3 is used in order to explain these arrangements with respect to the solar battery cell 10.
  • FIG. 3 is a perspective view of a resin sheet 80 used in the solar cell module 100.
  • the resin sheet 80 includes the first type wiring member 14, the first transparent member 40, the second transparent member 42, the first adhesive 44, and the second adhesive 46.
  • the resin sheet 80 corresponds to the aforementioned wire film.
  • the 1st transparent member 40 is arrange
  • the 1st transparent member 40 is comprised by transparent resin films, such as PET (polyethylene terephthalate), for example.
  • the first transparent member 40 has a quadrangular shape equivalent in size to the solar battery cell 10 in the xy plane.
  • a first adhesive 44 is disposed on the surface of the first transparent member 40 on the thirteenth solar cell 10ac side, and a plurality of first-type wiring members 14 are disposed on the first adhesive 44.
  • the first adhesive 44 can bond the light receiving surface 22 of the thirteenth solar battery cell 10ac to the first transparent member 40.
  • EVA is used for the first adhesive 44.
  • the second transparent member 42 is disposed on the other side of the two adjacent solar cells 10, for example, on the back surface 24 side of the twelfth solar cell 10ab. Similar to the first transparent member 40, the second transparent member 42 is made of, for example, a transparent resin film such as PET. The second transparent member 42 has a quadrangular shape of the same size as the solar battery cell 10 in the xy plane.
  • the second adhesive 46 is disposed on the surface of the second transparent member 42 on the twelfth solar cell 10ab side, and the plurality of first-type wiring members 14 are disposed on the second adhesive 46.
  • the second adhesive 46 can adhere the back surface 24 of the twelfth solar battery cell 10ab to the second transparent member 42.
  • EVA is also used for the second adhesive 46.
  • the resin sheet 80 configured in this manner is manufactured in advance separately from the manufacturing of the solar cell module 100.
  • the 1st adhesive agent 44 is adhere
  • the 2nd adhesive agent 46 is adhere
  • the first-type wiring member 14 is provided with finger electrodes (not shown) on the light receiving surface 22 of the thirteenth solar cell 10ac and finger electrodes (not shown) on the back surface 24 of the twelfth solar cell 10ab. Are electrically connected to each other.
  • the string 12 as shown in FIG. 1 is formed by bonding the first transparent member 40 and the second transparent member 42 to other solar cells 10.
  • the second sealing member 34 is stacked on the back side of the first sealing member 32. Between the second sealing member 34 and the first sealing member 32, the plurality of solar cells 10, the first type wiring material 14, the second type wiring material 16, the third type wiring material 18, and the first transparent member. The member 40, the second transparent member 42, and the like are sealed. The same material as the first sealing member 32 can be used for the second sealing member 34. Further, the second sealing member 34 may be integrated with the first sealing member 32 by heating in the laminating and curing process.
  • the second protective member 36 is laminated on the back surface side of the second sealing member 34 so as to face the first protective member 30.
  • the 2nd protection member 36 protects the back surface side of the solar cell module 100 as a back sheet.
  • a resin film such as PET or PTFE (polytetrafluoroethylene), a laminated film having a structure in which an Al foil is sandwiched between resin films such as polyolefin, or the like is used.
  • FIGS. 4A and 4B are plan views showing the structure of the solar battery cell 10.
  • 4A shows the light receiving surface 22 of the solar battery cell 10
  • FIG. 4B shows the back surface 24 of the solar battery cell 10.
  • the first transparent member 40, the second transparent member 42, the first adhesive 44, and the second adhesive 46 are omitted, and only the solar battery cell 10 and the first type wiring member 14 are omitted. Is shown.
  • the photoelectric conversion layer 60 corresponds to the semiconductor material described above and has a quadrangular shape as described above.
  • the surface on the positive side of the z axis in the photoelectric conversion layer 60 is also referred to as “light receiving surface 22”
  • the surface on the negative direction side of the z axis in the photoelectric conversion layer 60 is also referred to as “back surface 24”.
  • the light receiving surface 22 is referred to as a “first surface”
  • the back surface 24 is referred to as a “second surface”.
  • a plurality of first type finger electrodes 62 and second type finger electrodes 64 extending in the y-axis direction are arranged on the light receiving surface 22 of the photoelectric conversion layer 60 in the x-axis direction.
  • the first type finger electrode 62 and the second type finger electrode 64 are formed of, for example, a silver paste (including epoxy resin / ester) in which a resin and silver particles are mixed.
  • a plurality of first type finger electrodes 62 are arranged on the center side in the x-axis direction, and a second type finger electrode 64 is arranged on the end side in the x-axis direction.
  • the second type finger electrode 64 is disposed at each of the positive side end and the negative side end of the x-axis.
  • first-type wiring members 14 that extend in the x-axis direction so as to intersect, for example, orthogonally intersect with the first-type finger electrode 62 and the second-type finger electrode 64 are arranged.
  • the first type wiring material 14 is formed by coating a copper core material having a substantially circular cross section with a low melting point solder, for example.
  • the metal density of the first type wiring material 14 is higher than the metal density of the first type finger electrode 62 and the second type finger electrode 64, the electrical resistivity of the first type wiring material 14 is the first type. It becomes smaller than the electrical resistivity of the finger electrode 62 and the second kind finger electrode 64.
  • first-type finger electrode 62 and the second-type finger electrode 64 a portion that intersects and is connected to each of the plurality of first-type wiring members 14 is called an “intersection region”.
  • first intersecting region 70 is disposed on the center side in the y-axis direction
  • second intersecting region 72 is disposed on the end portion side in the y-axis direction.
  • first intersecting regions 70 are arranged for the three first-type wiring members 14 arranged on the center side in the y-axis direction, and each of the first end on the positive side and the negative side on the y-axis is arranged.
  • a second intersecting region 72 is disposed with respect to the type 1 wiring material 14.
  • the vicinity of the first intersecting region 70 is indicated by a solid circle, and the vicinity of the second intersecting region 72 is indicated by a dotted circle.
  • the configuration of the first intersection region 70 and the second intersection region 72 will be described later.
  • the second type finger electrode 64 only the plurality of second intersecting regions 72 are disposed, and the first intersecting region 70 is not disposed. That is, the first-type finger electrode 62 and the second-type finger electrode 64 are different from each other only in the arrangement of the first intersecting region 70 and the second intersecting region 72, and are otherwise configured in the same manner.
  • FIGS. 5A to 5F show a partial configuration of the solar battery cell 10.
  • FIG. 5A shows the configuration of the first type finger electrode 62 and the first type wiring member 14 in the first intersection region 70.
  • the upper part shows a plan view in the xy plane, and the lower part shows a B-B ′ sectional view of the upper plan view.
  • the directions of the x-axis and the y-axis are changed in the upper stage and FIG. 4 (a).
  • the width of the first type finger electrode 62 in the x-axis direction is “in both the portion overlapped with the first type wiring member 14 and the portion away from the overlapped portion. a ”is common.
  • the former corresponds to the first intersection region 70
  • the latter corresponds to a portion away from the first intersection region 70.
  • the first-type finger electrode 62 has a concavo-convex shape in which a plurality of protrusions are randomly arranged in the y-axis direction on the surface on the positive side of the z-axis. .
  • This uneven shape is formed by using a silver paste in an amount necessary to make the height from the photoelectric conversion layer 60 about “c” when the first type finger electrode 62 is formed by screen printing or the like. Is done.
  • the first type wiring member 14 is bonded to the surface of the first type finger electrode 62 on the positive direction side of the z axis.
  • FIG. 5B shows the configuration of the first type finger electrode 62 and the first type wiring member 14 in the second intersecting region 72.
  • the upper part shows a plan view in the xy plane, and the lower part shows a C-C ′ sectional view of the upper plan view.
  • the second type finger electrode 64 is configured in the same manner instead of the first type finger electrode 62.
  • the first type finger electrode 62 branches into a plurality at the portion that overlaps with the first type wiring material 14, that is, the second intersection region 72.
  • the number of branches is “2”, but is not limited to “2”.
  • the width of the first kind finger electrode 62 in the x-axis direction is “b” in the second intersecting region 72 and “a” in a portion away from the second intersecting region 72, which are different.
  • b ⁇ a. That is, the width in the x-axis direction of the first type finger electrode 62 is made narrower in the second intersection region 72 than in the portion away from the second intersection region 72.
  • the surface on the positive side of the z-axis of the first type finger electrode 62 is the same as the lower part of FIG.
  • a concavo-convex shape in which a plurality of protrusions are randomly arranged in the y-axis direction is formed.
  • the surface of the first-type finger electrode 62 on the positive side of the z-axis becomes closer to a smooth surface in the second intersecting region 72 because the uneven shape due to the plurality of protrusions is reduced.
  • the first type finger electrode 62 is thinned as described above, the amount of silver paste required when the first type finger electrode 62 is formed by screen printing or the like is reduced.
  • the height from the photoelectric conversion layer 60 is about “d”, and the uneven shape is also reduced. Note that d ⁇ c.
  • the first type wiring member 14 is bonded to the surface of the first type finger electrode 62 on the positive direction side of the z axis.
  • the height of the first type finger electrode 62 in the second intersecting region 72 from the photoelectric conversion layer 60 is the same as that in the first intersecting region 70.
  • the height of the type 1 finger electrode 62 from the photoelectric conversion layer 60 is made lower.
  • the first kind finger electrode 62 and the second kind finger electrode 64 have a plurality of first kind wiring materials.
  • the height from the photoelectric conversion layer 60 of the part where 14 is disposed is lower on the end side than the center side of the photoelectric conversion layer 60.
  • the height from the photoelectric conversion layer 60 at the portion where the plurality of first type wiring members 14 are arranged is lower on the end side than the central side in the y-axis direction.
  • the height from the photoelectric conversion layer 60 of the portion where the plurality of first type wiring members 14 are arranged is the first type wiring member on the center side of the first type finger electrode 62. It is made lower than the height of the part where 14 is arrange
  • FIG. 5C shows the configuration of the first type finger electrode 62 and the first type wiring member 14 in the second intersection region 72.
  • the second type finger electrode 64 is similarly configured instead of the first type finger electrode 62.
  • the first type finger electrode 62 is formed in a tapered shape so as not to be branched in the portion overlapped with the first type wiring member 14, that is, in the second intersection region 72.
  • the width of the first-type finger electrode 62 in the x-axis direction is “b” in the second intersecting region 72 and “a” in a portion away from the second intersecting region 72, which are different. Again, b ⁇ a.
  • the cross-sectional view of the second intersection region 72 shown in FIG. 5C is configured in the same manner as the lower part of FIG.
  • FIG. 5D is a modification of FIG. 5C, and two protrusions 66 protruding in the x-axis direction are formed from the narrowed portion in the second intersecting region 72.
  • the width in the y-axis direction of the protrusion 66 provided on the first type finger electrode 62 in the second intersecting region 72 can be approximately the same as the width “b” of the first type finger electrode 62 in the x axis direction.
  • FIG. 5 (e) is another modification of FIG. 5 (c), and two auxiliary electrodes 68 extending in the y-axis direction are formed in the vicinity of the narrowed portion in the second intersection region 72.
  • the auxiliary electrode 68 is formed of the same material as the first type finger electrode 62, but is formed in an island shape so as not to be continuous.
  • the width of the auxiliary electrode 68 in the x-axis direction can be made substantially equal to the width “b” of the first-type finger electrode 62 in the x-axis direction.
  • FIG. 5F shows the configuration of the first type finger electrode 62 and the first type wiring member 14 in the second intersecting region 72.
  • This is the ideal form of FIG. 5B and is shown in the same manner as the lower part of FIG.
  • the second type finger electrode 64 is similarly configured instead of the first type finger electrode 62.
  • the radius of the cross section of the first type wiring member 14 is denoted by “r”
  • the thickness of the first type finger electrode 62 in the z-axis direction is denoted by “x”
  • a as shown in FIG.
  • the first type finger electrode 62, the second type finger electrode 64, and the first type wiring member 14 are formed on the light receiving surface 22 of the photoelectric conversion layer 60 in the same manner as in FIG. 4A. Is placed.
  • the number of first-type wiring members 14 is the same on the light-receiving surface 22 and the back surface 24, but the total number of first-type finger electrodes 62 and second-type finger electrodes 64 is on the back surface than the light-receiving surface 22. Many in 24.
  • “3” second-type finger electrodes 64 are arranged from the positive side end of the x-axis
  • “3” second-type finger electrodes 64 are arranged from the negative-direction side end of the x-axis.
  • the number of second type finger electrodes 64 is larger on the back surface 24 than the light receiving surface 22 of the photoelectric conversion layer 60.
  • the number of second type finger electrodes 64 on the back surface 24 of the photoelectric conversion layer 60 may be the same as the number of second type finger electrodes 64 on the light receiving surface 22 of the photoelectric conversion layer 60.
  • the first type finger electrode 62 is disposed between the second type finger electrodes 64 in the x-axis direction.
  • the first type finger electrode 62 has a second crossing region 72 disposed at both ends of the y-axis and a first crossing region 70 disposed therebetween, which is the same as the configuration on the light receiving surface 22.
  • the number of the first type finger electrodes 62 arranged on the back surface 24 of the photoelectric conversion layer 60 is larger than the number of the second intersecting regions 72 in the first type finger electrodes 62 arranged on the light receiving surface 22 of the photoelectric conversion layer 60.
  • the number of the two intersection areas 72 may be increased. For example, “2” second crossing regions 72 are arranged from the positive side end of the y axis, and “2” second crossing regions 72 are arranged from the negative side end of the y axis.
  • the resin sheet 80 is prepared. By overlapping the first transparent member 40 of the resin sheet 80 on one of the two adjacent solar cells 10 and overlapping the second transparent member 42 of the resin sheet 80 on the other of the two adjacent solar cells 10 , String 12 is generated.
  • the first protective member 30, the first sealing member 32, the string 12, the second sealing member 34, and the second protective member 36 are sequentially stacked in this order from the positive direction of the z axis toward the negative direction. Is generated.
  • a laminate curing process is performed on the laminate. In this step, air is extracted from the laminated body, and heated and pressurized to integrate the laminated body. In vacuum laminating in the laminating and curing process, the temperature is set to about 50 to 140 ° C. as described above.
  • a terminal box is attached to the second protective member 36 with an adhesive.
  • the height of the portion where the first type wiring member 14 is arranged is lower on the end side than the central side of the photoelectric conversion layer 60.
  • the surface of the finger electrode can be made smooth.
  • the contact area between the first type wiring member 14 and the finger electrode can be increased.
  • the adhesive force between the first type wiring member 14 and the finger electrode can be improved.
  • the finger electrode branches into a plurality of portions where the height from the photoelectric conversion layer 60 is lowered, an increase in electrical resistivity can be suppressed.
  • the first type finger electrode 62 including the first intersecting region 70 and the second intersecting region 72 is disposed on the center side, and the second type finger electrode 64 including only the second intersecting region 72 is disposed on the end side. Therefore, the configuration can be simplified. Further, since the number of the second type finger electrodes 64 is increased on the back surface 24 than the light receiving surface 22 of the photoelectric conversion layer 60, even if the total number of the first type finger electrodes 62 and the second type finger electrodes 64 is large, The adhesive force between the solar battery cell 10 and the first type wiring member 14 can be improved.
  • the number of the second intersecting regions 72 in the first type finger electrode 62 is larger on the back surface 24 than the light receiving surface 22, even if the total number of the first type finger electrodes 62 and the second type finger electrodes 64 is large, The adhesive force between the battery cell 10 and the first type wiring member 14 can be improved.
  • the solar cell module 100 includes a plurality of solar cells 10 and a plurality of first-type wiring members 14 that electrically connect the adjacent solar cells 10.
  • Each of the plurality of solar cells 10 includes a photoelectric conversion layer 60, a plurality of first type finger electrodes 62 and a second type arranged in the direction in which the plurality of first type wiring members 14 extend on the surface of the photoelectric conversion layer 60.
  • a finger electrode 64 In the plurality of first-type finger electrodes 62 and the second-type finger electrodes 64, the height from the photoelectric conversion layer 60 of the portion where the plurality of first-type wiring members 14 are arranged is from the center side of the photoelectric conversion layer 60. Is also low on the end side.
  • the plurality of first-type finger electrodes 62 and second-type finger electrodes 64 may be branched into a plurality at portions where the height from the photoelectric conversion layer 60 is lowered.
  • the plurality of first-type finger electrodes 62 and the second-type finger electrodes 64 are a first-type finger electrode 62 disposed on the center side in the direction in which the plurality of first-type wiring members 14 extend, and a plurality of first-type wirings. It may also include a second type finger electrode 64 disposed on the end side in the direction in which the material 14 extends. In the first type finger electrode 62, the height from the photoelectric conversion layer 60 in the portion where the plurality of first type wiring members 14 are arranged is more end than the center side in the direction in which the first type finger electrode 62 extends.
  • the height from the photoelectric conversion layer 60 of the portion where the plurality of first-type wiring members 14 are arranged in the second-type finger electrode 64 is lower than the first-type finger electrode 62 at the center portion side. It is lower than the height of the portion where the wiring material 14 is disposed.
  • a plurality of first-type finger electrodes 62 and second-type finger electrodes 64 are arranged on both surfaces of the photoelectric conversion layer 60, and the number of second-type finger electrodes 64 is greater on the back surface 24 than the light-receiving surface 22 of the photoelectric conversion layer 60. Many.
  • a plurality of first-type finger electrodes 62 and second-type finger electrodes 64 are arranged on both surfaces of the photoelectric conversion layer 60.
  • the photoelectric conversion layer In the first type finger electrode 62 arranged on the back surface 24 of the photoelectric conversion layer 60 the number of portions where the height from the photoelectric conversion layer 60 is decreased is larger than the number of portions where the height from 60 is decreased. May be.
  • Example 2 is related with the solar cell module containing the string formed by affixing a resin film on a photovoltaic cell similarly to Example 1.
  • FIG. 1 the shape of the first-type wiring material is the same regardless of whether it is the first intersection region or the second intersection region.
  • Example 2 the shape of the first type wiring material differs depending on whether it is the first intersection region or the second intersection region.
  • the solar cell module 100 according to Example 2 is the same type as that shown in FIGS. 1 and 2
  • the resin sheet 80 is the same type as that shown in FIG. 3, and the solar cell 10 is shown in FIGS. It is the same type as b).
  • it demonstrates centering on the difference from before.
  • FIGS. 6A to 6D show a partial configuration of the solar battery cell 10 according to Example 2 of the present invention. These are shown in the same manner as the lower part of FIG.
  • the first type finger electrode 62 is configured in the same manner as in FIG. 5B.
  • the first type wiring member 14 in FIG. 6A has a rectangular shape that is longer in the y-axis direction than in the z-axis direction. By being formed in a rectangular shape, the contact area with the first type finger electrode 62 becomes larger than in the case of being formed in a circular shape as shown in FIG.
  • the first type wiring member 14 of FIG. 6C is provided with a plurality of protrusions on the surface.
  • the first type wiring member 14 itself is fixed so as to be in contact with the first type finger electrode 62, so that the adhesive force is increased.
  • a protective resin 76 is provided so as to cover a region overlapping with the photoelectric conversion layer 60 and a peripheral region thereof. Since the 1st type wiring material 14 and the photoelectric converting layer 60 are fixed also by the protective resin 76, adhesive force increases. At this time, it is preferable to include a white material in the protective resin 76.
  • the area facing the photoelectric conversion layer 60 in the part where the finger electrodes are arranged is wider on the end side than the center side of the photoelectric conversion layer 60.
  • the contact area can be increased on the end side. Further, since the contact area increases on the end side, the adhesive force between the first type wiring member 14 and the finger electrode can be improved.
  • the outline of one embodiment of the present invention is as follows.
  • the area facing the photoelectric conversion layer 60 in the portion where the plurality of first-type finger electrodes 62 and second-type finger electrodes 64 are arranged is from the center side of the photoelectric conversion layer 60. Is also wide on the end side.
  • Example 1 and Example 2 may be combined. According to this modification, the effect by the combination can be obtained.
  • a resin sheet 80 is used.
  • the present invention is not limited thereto, and for example, the resin sheet 80 may not be used, and the adjacent solar cells 10 may be connected by the first type wiring member 14. At that time, the first type wiring member 14 may not be a wire. According to this modification, the degree of freedom of configuration can be improved.
  • the second intersecting region 72 is provided in the vicinity of the end portion of the solar battery cell 10 and is not provided on the center side of the solar battery cell 10.
  • the second crossing region 72 may be provided not only in the vicinity of the end portion of the solar battery cell 10 but also at a location where the adhesive strength between the solar battery cell 10 and the first type wiring member 14 is relatively low.
  • the solar cell 10 as the entire string 12 is configured by not providing the second intersecting region 72 at a location where the adhesive strength between the solar cell 10 and the first type wiring member 14 is relatively high. It is only necessary that the adhesive strength with the first type wiring member 14 is increased.
  • a first intersecting region 70 and a second intersecting region 72 are arranged on the first kind finger electrode 62 and the second kind finger electrode 64.
  • the present invention is not limited to this.
  • only the first intersection region 70 may be arranged.
  • the configuration of the finger electrodes can be unified.
  • the adhesive force between the solar battery cell and the wiring material can be improved.

Abstract

太陽電池モジュールは、複数の太陽電池セル10と、隣接する太陽電池セル10を電気的に接続する複数の第1種配線材14とを備える。太陽電池セル10は、光電変換層60と、複数の第1種フィンガー電極62と第2種フィンガー電極64とを備える。複数の第1種フィンガー電極62と第2種フィンガー電極64とは、光電変換層60の表面において、複数の第1種配線材14が延びる方向に並べられる。複数の第1種フィンガー電極62と第2種フィンガー電極64とにおいて、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、光電変換層60の中央部側よりも端部側において低い。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関し、特に複数の太陽電池セルを含む太陽電池モジュールに関する。
 太陽電池モジュールは、表面保護材と裏面保護材との間に、配線用のタブにより互いに電気的に接続された複数の太陽電池セルを備える。太陽電池セルは、光電変換部と、光電変換部上に積層された複数のフィンガー電極とを備える。光電変換部、フィンガー電極、タブの線膨張係数は異なるので、タブを太陽電池セルに半田付けする際の温度変化により、太陽電池セルとタブとの交差領域において応力が発生し、フィンガー電極の断線が発生しうる。フィンガー電極の断線が発生したとしても電気出力の低下を抑制するために、交差領域においてフィンガー電極が複数の枝部に分岐され、枝部の分岐点がタブから離間される(例えば、特許文献1参照)。
特開2008-159895号公報
 太陽電池モジュールの製造を簡易にするために、2つの透明部材が複数のワイヤによって接続されたワイヤフィルムを使用することがある。ワイヤフィルムを太陽電池モジュールに使用する場合、2つの透明部材のそれぞれが隣接の太陽電池セルに貼り付けられ、ワイヤが配線材として使用される。太陽電池セル上の集電極が銀ペーストで形成され、ワイヤの表面が低融点半田でコートされている場合、集電極とワイヤとの接着力が低くなる。接着力が低い場合、温度サイクル試験によってワイヤが太陽電池セルからはがれてしまうおそれがある。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池セルと配線材との接着力を向上させる技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、複数の太陽電池セルと、隣接する太陽電池セルを電気的に接続する複数の配線材とを備える。複数の太陽電池セルのそれぞれは、光電変換層と、光電変換層の表面において、複数の配線材が延びる方向に並べられる複数の集電極とを備える。複数の集電極において、複数の配線材が配置される部分の光電変換層からの高さは、光電変換層の中央部側よりも端部側において低い。
 本発明によれば、太陽電池セルと配線材との接着力を向上できる。
本発明の実施例1に係る太陽電池モジュールの構造を示す平面図である。 図1の太陽電池モジュールの構造を示す断面図である。 図1の太陽電池モジュールにおいて使用されるフィルムの斜視図である。 図4(a)-(b)は、図1の太陽電池セルの構造を示す平面図である。 図5(a)-(f)は、図4の太陽電池セルの部分的な構成を示す図である。 図6(a)-(d)は、本発明の実施例2に係る太陽電池セルの部分的な構成を示す図である。
(実施例1)
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、複数の太陽電池セルがマトリックス状に配置された太陽電池モジュールに関する。太陽電池モジュールでは、第1保護部材と第2保護部材との間に封止部材が配置され、封止部材によって複数の太陽電池セルが封止される。その際、隣接した2つの太陽電池セルは、ワイヤフィルムによって接続される。ワイヤフィルムは、前述のごとく、2つの透明部材が複数のワイヤによって接続されており、各透明部材が隣接の太陽電池セルに貼り付けられる。ワイヤが配線材の役割を有するので、ワイヤが延びる方向に配置された複数の太陽電池セルを複数のワイヤフィルムで接続することによってストリングが形成される。このようなワイヤフィルムは、太陽電池モジュールの製造を簡易にするために使用される。一方、太陽電池セル上の集電極が銀ペーストで形成され、ワイヤの表面が低融点半田でコートされている場合、集電極とワイヤとの接着力が低くなる。接着力が低い場合、温度の上昇および下降を繰り返す温度サイクル試験を実行すると、ワイヤが太陽電池セルからはがれてしまうおそれがある。
 ワイヤフィルムを使用する場合であっても、太陽電池セルとワイヤとの接着力を向上させるために、本実施例では、複数の集電極において複数のワイヤが配置される部分(以下、「交差領域」という)の高さは、太陽電池セルの中央部側よりも端部側において低くされる。集電極は、スクリーン印刷等によって形成される。低い部分を形成するために使用される銀ペーストの量は、高い部分を形成するために使用される銀ペーストの量よりも少なくなる。銀ペーストの量が少なくなるほど集電極の表面が滑らかになることによって、集電極とワイヤとの接触面積が増加する。つまり、本実施例では、太陽電池セルの中央部側の交差領域よりも端部側の交差領域において、集電極とワイヤとの接触面積を増加させる。ここで、接触面積の増加は接着力の増加につながる。なお、以下の説明において、「平行」、「垂直」は、完全な平行、垂直だけではなく、誤差の範囲で平行、垂直からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
 図1は、本発明の実施例1に係る太陽電池モジュール100の構造を示す平面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。そのため、図1は、太陽電池モジュール100の受光面側からの平面図であるといえる。
 太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第46太陽電池セル10df、第1種配線材14、第2種配線材16、第3種配線材18、フレーム20と総称される第1フレーム20a、第2フレーム20b、第3フレーム20c、第4フレーム20dを含む。
 第1フレーム20aは、x軸方向に延び、第2フレーム20bは、第1フレーム20aのx軸の正方向側端からy軸の負方向に延びる。また、第3フレーム20cは、第2フレーム20bのy軸の負方向側端からx軸の負方向に延び、第4フレーム20dは、第3フレーム20cのx軸の負方向側端と第1フレーム20aのx軸の負方向側端とを結ぶ。フレーム20は、太陽電池モジュール100の外周を囲んでおり、アルミニウム等の金属で形成される。ここで、第1フレーム20a、第3フレーム20cは、第2フレーム20b、第4フレーム20dよりも長いので、太陽電池モジュール100は、y軸方向よりもx軸方向に長い矩形状を有する。
 複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。特に、太陽電池セル10は、受光面において吸収した光から起電力を発生するとともに、裏面において吸収した光からも光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。また、太陽電池セル10は、x-y平面において、四角形の形状を有するが、その他の形状、例えば、八角形の形状を有してもよい。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にy軸方向に延びる複数のフィンガー電極が備えられる。
 複数の太陽電池セル10は、x-y平面上にマトリックス状に配列される。ここでは、x軸方向に6つの太陽電池セル10が並べられる。x軸方向に並んで配置される6つの太陽電池セル10は、第1種配線材14によって直列に接続され、1つのストリング12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、・・・、第16太陽電池セル10afが接続されることによって、第1ストリング12aが形成される。また、第2ストリング12bから第4ストリング12dも同様に形成される。その結果、4つのストリング12がy軸方向に平行に並べられる。このように、x軸方向に並べられる太陽電池セル10の数は、y軸方向に並べられる太陽電池セル10の数よりも多い。x軸方向を「第1方向」とよぶ場合、y軸方向は「第2方向」とよばれる。なお、ストリング12に含まれる太陽電池セル10の数は「6」に限定されず、ストリング12の数は「4」に限定されない。
 ストリング12を形成するために、第1種配線材14は、x軸方向に隣接した太陽電池セル10のうちの一方の受光面側のフィンガー電極と、他方の裏面側のフィンガー電極とを接続する。例えば、隣接した第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための5つの第1種配線材14は、第11太陽電池セル10aaの裏面側のフィンガー電極と第12太陽電池セル10abの受光面側のフィンガー電極とを電気的に接続する。なお、第1種配線材14の数は「5」に限定されない。第1種配線材14は、前述のワイヤに相当する。第1種配線材14と太陽電池セル10との接続については後述する。
 第2種配線材16は、y軸方向に延びて、互いに隣接する2つのストリング12を電気的に接続する。例えば、第1ストリング12aのx軸の正方向側端に位置する第16太陽電池セル10afと、第2ストリング12bのx軸の正方向側端に位置する第26太陽電池セル10bfは、第2種配線材16によって電気的に接続される。さらに、第2ストリング12bと第3ストリング12cは、x軸の負方向側において第2種配線材16によって電気的に接続されるとともに、第3ストリング12cと第4ストリング12dは、x軸の正方向側において第2種配線材16によって電気的に接続される。その結果、複数のストリング12は、第2種配線材16によって直列に接続される。
 第1ストリング12aのx軸の負方向側端における第11太陽電池セル10aaには、第2種配線材16が接続されておらず、その代わりに第3種配線材18が接続される。第3種配線材18には、図示しない取出し配線材が接続される。取出し配線材は、複数の太陽電池セル10において発電した電力を太陽電池モジュール100外に取り出すための配線材である。なお、第3種配線材18は、第4ストリング12dのx軸の負方向側端における第41太陽電池セル10daにも接続される。
 図2は、太陽電池モジュール100の構造を示すx軸に沿った断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、第12太陽電池セル10ab、第13太陽電池セル10ac、第1種配線材14、第1保護部材30、第1封止部材32、第2封止部材34、第2保護部材36、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を含む。図2の上側が受光面側に相当し、下側が裏面側に相当する。
 第1保護部材30は、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。また、太陽電池モジュール100は、x-y平面において、フレーム20に囲まれるような矩形状を有する。第1保護部材30には、透光性および遮水性を有するガラス、透光性プラスチック等が使用される。第1保護部材30によって太陽電池モジュール100の機械的強度が高くされる。
 第1封止部材32は、第1保護部材30の裏面側に積層される。第1封止部材32は、第1保護部材30と太陽電池セル10との間に配置されて、これらを接着する。第1封止部材32として、例えば、ポリオレフィン、EVA(エチレン酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材32は、透光性を有するとともに、第1保護部材30におけるx-y平面と略同一寸法の面を有するシート材によって形成される。
 第12太陽電池セル10ab、第13太陽電池セル10acは、第1保護部材30の裏面側に積層される。各太陽電池セル10は、z軸の正方向側に受光面22を向け、z軸の負方向側に裏面24を向けて配置される。受光面22を「第1面」とよぶ場合、裏面24は「第2面」とよばれる。太陽電池セル10の受光面22には、第1種配線材14、第1接着剤44、第1透明部材40が配置され、太陽電池セル10の裏面24には、第1種配線材14、第2接着剤46、第2透明部材42が配置される。ここでは、太陽電池セル10に対するこれらの配置を説明するために、図3を使用する。
 図3は、太陽電池モジュール100において使用される樹脂シート80の斜視図である。樹脂シート80は、第1種配線材14、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を含む。樹脂シート80は前述のワイヤフィルムに相当する。
 第1透明部材40は、隣接した2つの太陽電池セル10の一方、例えば、第13太陽電池セル10acの受光面22側に配置される。第1透明部材40は、例えば、PET(ポリエチレンテレフタラート)等の透明な樹脂フィルムで構成される。第1透明部材40は、x-y平面において、太陽電池セル10と同等サイズの四角形の形状を有する。第1透明部材40における第13太陽電池セル10ac側の面には第1接着剤44が配置され、第1接着剤44には複数の第1種配線材14が配置される。第1接着剤44は、第13太陽電池セル10acの受光面22を第1透明部材40に接着可能である。第1接着剤44には、例えば、EVAが使用される。
 第2透明部材42は、隣接した2つの太陽電池セル10の他方、例えば、第12太陽電池セル10abの裏面24側に配置される。第2透明部材42は、第1透明部材40と同様に、例えば、PET等の透明な樹脂フィルムで構成される。第2透明部材42は、x-y平面において、太陽電池セル10と同等サイズの四角形の形状を有する。第2透明部材42における第12太陽電池セル10ab側の面には第2接着剤46が配置され、第2接着剤46には複数の第1種配線材14が配置される。第2接着剤46は、第12太陽電池セル10abの裏面24を第2透明部材42に接着可能である。第2接着剤46にも、例えば、EVAが使用される。
 このように構成された樹脂シート80は、太陽電池モジュール100の製造とは別に予め製造されている。太陽電池モジュール100を製造する際、第1接着剤44が第13太陽電池セル10acの受光面22に接着され、第2接着剤46が第12太陽電池セル10abの裏面24に接着される。このような接着により、第1種配線材14は、第13太陽電池セル10acの受光面22におけるフィンガー電極(図示せず)と、第12太陽電池セル10abの裏面24におけるフィンガー電極(図示せず)とを電気的に接続する。図2に戻る。
 第1透明部材40と第2透明部材42の接着が、他の太陽電池セル10に対してもなされることによって、図1に示すようなストリング12が形成される。第2封止部材34は、第1封止部材32の裏面側に積層される。第2封止部材34は、第1封止部材32との間で、複数の太陽電池セル10、第1種配線材14、第2種配線材16、第3種配線材18、第1透明部材40、第2透明部材42等を封止する。第2封止部材34には、第1封止部材32と同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材34は第1封止部材32と一体化されていてもよい。
 第2保護部材36は、第1保護部材30に対向するように、第2封止部材34の裏面側に積層される。第2保護部材36は、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材36としては、PET、PTFE(ポリテトラフルオロエチレン)等の樹脂フィルム、Al箔をポリオレフィン等の樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用される。
 以下では、太陽電池セル10におけるフィンガー電極と、第1種配線材14との接続をさらに詳細に説明する。図4(a)-(b)は、太陽電池セル10の構造を示す平面図である。図4(a)は太陽電池セル10の受光面22を示し、図4(b)は太陽電池セル10の裏面24を示す。これらでは、説明を明瞭にするために、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を省略し、太陽電池セル10と第1種配線材14のみが示される。
 光電変換層60は、前述の半導体材料に相当するとともに、前述のごとく四角形の形状を有する。以下では、光電変換層60におけるz軸の正方向側の表面も「受光面22」といい、光電変換層60におけるz軸の負方向側の表面も「裏面24」という。受光面22を「第1の表面」とよぶ場合、裏面24は「第2の表面」とよばれる。図4(a)に示すように、光電変換層60の受光面22には、y軸方向に延びる第1種フィンガー電極62と第2種フィンガー電極64とが、x軸方向に複数並べられる。第1種フィンガー電極62、第2種フィンガー電極64の構成は後述するが、いずれもフィンガー電極であり、前述の集電極に相当する。第1種フィンガー電極62、第2種フィンガー電極64は、例えば、樹脂と銀粒子とが混合した銀ペースト(エポキシ樹脂・エステルを含む)により形成される。第1種フィンガー電極62は、x軸方向の中央部側に複数配置され、第2種フィンガー電極64は、x軸方向の端部側に配置される。ここでは、x軸の正方向側端と負方向側端のそれぞれに第2種フィンガー電極64が配置される。
 また、光電変換層60の受光面22には、第1種フィンガー電極62、第2種フィンガー電極64に交差、例えば直交するようにx軸方向に延びる複数の第1種配線材14が配置される。第1種配線材14は、例えば、断面が略円形の銅心材を低融点半田でコートすることによって形成される。ここで、第1種配線材14の金属密度は、第1種フィンガー電極62、第2種フィンガー電極64の金属密度よりも高いので、第1種配線材14の電気抵抗率は、第1種フィンガー電極62、第2種フィンガー電極64の電気抵抗率よりも小さくなる。
 第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14のそれぞれと交差して接続する部分は、「交差領域」とよばれる。第1種フィンガー電極62では、y軸方向の中央部側に第1交差領域70が配置され、y軸方向の端部側に第2交差領域72が配置される。ここでは、y軸方向の中央部側に配置された3つの第1種配線材14に対して第1交差領域70が配置され、y軸の正方向側端と負方向側端のそれぞれの第1種配線材14に対して第2交差領域72が配置される。また、図面を明瞭にするために、第1交差領域70の近傍は実線の円印で示され、第2交差領域72の近傍は点線の丸印で示される。第1交差領域70、第2交差領域72の構成については後述する。一方、第2種フィンガー電極64では複数の第2交差領域72のみが配置され、第1交差領域70が配置されない。つまり、第1種フィンガー電極62と第2種フィンガー電極64では、第1交差領域70と第2交差領域72の配置が異なっているだけであり、それ以外は同一に構成される。
 図5(a)-(f)は、太陽電池セル10の部分的な構成を示す。図5(a)は、第1交差領域70における第1種フィンガー電極62と第1種配線材14の構成を示す。上段は、x-y平面での平面図を示し、下段は、上段の平面図のB-B’断面図を示す。なお、図面を明瞭にするために、上段と図4(a)とでは、x軸とy軸の方向が変えられている。図5(a)の上段に示すように、第1種フィンガー電極62のx軸方向の幅は、第1種配線材14と重ねられる部分と、重ねられる部分から離れた部分のいずれにおいても「a」で共通する。前者は第1交差領域70に相当し、後者は第1交差領域70から離れた部分に相当する。
 図5(a)の下段に示すように、第1種フィンガー電極62のz軸の正方向側の表面には、複数の突起がランダムにy軸方向に並べられた凹凸形状が形成されている。この凹凸形状は、第1種フィンガー電極62をスクリーン印刷等によって形成する場合に、光電変換層60からの高さを「c」程度にするために必要な量の銀ペーストを使用することによって形成される。第1種配線材14は、第1種フィンガー電極62のz軸の正方向側の表面に接着される。
 図5(b)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。上段は、x-y平面での平面図を示し、下段は、上段の平面図のC-C’断面図を示す。なお、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。図5(b)の上段に示すように、第1種フィンガー電極62は、第1種配線材14と重ねられる部分、つまり第2交差領域72において複数に分岐する。ここでは、「2」つに分岐されるが、「2」に限定されない。また、第1種フィンガー電極62のx軸方向の幅は、第2交差領域72では「b」であり、第2交差領域72から離れた部分では「a」であり、それらは異なる。ここで、b<aである。つまり、第1種フィンガー電極62のx軸方向の幅は、第2交差領域72から離れた部分よりも第2交差領域72において細くされる。
 図5(b)の下段に示すように、第1種フィンガー電極62のz軸の正方向側の表面には、第2交差領域72から離れた部分において、図5(a)の下段と同様に、複数の突起がランダムにy軸方向に並べられた凹凸形状が形成されている。一方、第1種フィンガー電極62のz軸の正方向側の表面は、第2交差領域72において、複数の突起による凹凸形状が小さくなり滑らかな表面に近づく。この部分では、前述のごとく、第1種フィンガー電極62が細くされているので、第1種フィンガー電極62をスクリーン印刷等によって形成する場合に必要な銀ペーストの量が少なくなる。その結果、当該部分では、光電変換層60からの高さが「d」程度となり、凹凸形状も小さくなる。なお、d<cである。第1種配線材14は、第1種フィンガー電極62のz軸の正方向側の表面に接着される。
 図5(a)の下段と図5(b)の下段とを比較すると、第2交差領域72における第1種フィンガー電極62の光電変換層60からの高さは、第1交差領域70における第1種フィンガー電極62の光電変換層60からの高さよりも低くされる。このような第1交差領域70と第2交差領域72との構成を図4(a)に対応づけると、第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、光電変換層60の中央部側よりも端部側において低い。また、第1種フィンガー電極62において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、y軸方向の中央部側よりも端部側において低くされる。さらに、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、第1種フィンガー電極62の中央部側において第1種配線材14が配置される部分の高さよりも低くされる。
 図5(c)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。これは、図5(b)の変形例であり、図5(b)の上段と同様に示される。ここでも、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。第1種フィンガー電極62は、第1種配線材14と重ねられる部分、つまり第2交差領域72において分岐せずに、細くなるようなテーパ形状に形成される。第1種フィンガー電極62のx軸方向の幅は、第2交差領域72では「b」であり、第2交差領域72から離れた部分では「a」であり、それらは異なる。ここでも、b<aである。一方、図5(c)のように示された第2交差領域72における断面図は図5(b)の下段と同様に構成される。
 図5(d)は、図5(c)の変形例であり、第2交差領域72において細くなる部分から、x軸方向に突出する2つの突起部66が形成される。第2交差領域72の第1種フィンガー電極62に設けられる突起部66のy軸方向の幅は、第1種フィンガー電極62のx軸方向の幅「b」と同程度とすることができる。
 図5(e)は、図5(c)の別の変形例であり、第2交差領域72において細くなる部分の近傍に、y軸方向に延びる2つの補助電極68が形成される。補助電極68は、第1種フィンガー電極62と同じ材料で形成されるが、連続しないように島状に形成される。補助電極68のx軸方向の幅は、第1種フィンガー電極62のx軸方向の幅「b」と同程度とすることができる。
 図5(f)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。これは、図5(b)の理想形であり、図5(b)の下段と同様に示される。ここでも、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。第1種配線材14の断面の半径を「r」と示し、第1種フィンガー電極62のz軸方向の厚みを「x」とするとともに、図5(f)に示すように「a」、「b」を定義すると、これらの関係は次のように示される。
 x-a=r-√(r-b
 図4(b)に示すように、光電変換層60の受光面22には、図4(a)と同様に、第1種フィンガー電極62、第2種フィンガー電極64、第1種配線材14が配置される。ここで、第1種配線材14の数は、受光面22と裏面24とで同一であるが、第1種フィンガー電極62と第2種フィンガー電極64の合計数は、受光面22よりも裏面24において多い。ここでは、x軸の正方向側端から「3」つの第2種フィンガー電極64が配置されるとともに、x軸の負方向側端から「3」つの第2種フィンガー電極64が配置される。そのため、第2種フィンガー電極64の数は、光電変換層60の受光面22よりも裏面24において多い。なお、光電変換層60の裏面24における第2種フィンガー電極64の数は、光電変換層60の受光面22における第2種フィンガー電極64の数と同じでもよい。一方、第1種フィンガー電極62は、x軸方向において、第2種フィンガー電極64に挟まれて配置される。
 第1種フィンガー電極62は、y軸の両端部に第2交差領域72を配置し、それらの間に第1交差領域70を配置しており、受光面22での構成と同一である。しかしながら、光電変換層60の受光面22に配置される第1種フィンガー電極62における第2交差領域72の数よりも、光電変換層60の裏面24に配置される第1種フィンガー電極62における第2交差領域72の数が多くされてもよい。例えば、y軸の正方向側端から「2」つの第2交差領域72が配置されるとともに、y軸の負方向側端から「2」つの第2交差領域72が配置される。
 以下では、太陽電池モジュール100の製造方法について説明する。まず、樹脂シート80が用意される。隣接した2つの太陽電池セル10の一方に樹脂シート80の第1透明部材40を重ね合せるとともに、隣接した2つの太陽電池セル10の他方に樹脂シート80の第2透明部材42を重ね合わせることによって、ストリング12が生成される。z軸の正方向から負方向に向かって、第1保護部材30、第1封止部材32、ストリング12、第2封止部材34、第2保護部材36が順に重ね合わせられることによって、積層体が生成される。これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体から空気を抜き、加熱、加圧して、積層体を一体化する。ラミネート・キュア工程における真空ラミネートでは、温度が前述のごとく、50~140℃程度に設定される。さらに、第2保護部材36に対して、端子ボックスが接着剤にて取り付けられる。
 本実施例によれば、複数のフィンガー電極において、第1種配線材14が配置される部分の高さは、光電変換層60の中央部側よりも端部側において低いので、端部側においてフィンガー電極の表面を滑らかにできる。また、端部側においてフィンガー電極の表面が滑らかになるので、第1種配線材14とフィンガー電極との接触面積を増加できる。また、第1種配線材14とフィンガー電極との接触面積が増加するので、第1種配線材14とフィンガー電極との接着力を向上できる。また、光電変換層60からの高さが低くされる部分においてフィンガー電極が複数に分岐するので、電気抵抗率の増加を抑制できる。
 また、第1交差領域70と第2交差領域72とを含む第1種フィンガー電極62を中央部側に配置し、第2交差領域72だけを含む第2種フィンガー電極64を端部側に配置するので、構成を簡易にできる。また、光電変換層60の受光面22よりも裏面24において、第2種フィンガー電極64の数を多くするので、第1種フィンガー電極62と第2種フィンガー電極64の合計数が多くても、太陽電池セル10と第1種配線材14との接着力を向上できる。また、第1種フィンガー電極62における第2交差領域72の数が受光面22よりも裏面24において多いので、第1種フィンガー電極62と第2種フィンガー電極64の合計数が多くても、太陽電池セル10と第1種配線材14との接着力を向上できる。
 本発明の一態様の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、複数の太陽電池セル10と、隣接する太陽電池セル10を電気的に接続する複数の第1種配線材14とを備える。複数の太陽電池セル10のそれぞれは、光電変換層60と、光電変換層60の表面において、複数の第1種配線材14が延びる方向に並べられる複数の第1種フィンガー電極62、第2種フィンガー電極64とを備える。複数の第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、光電変換層60の中央部側よりも端部側において低い。
 複数の第1種フィンガー電極62、第2種フィンガー電極64は、光電変換層60からの高さが低くされる部分において複数に分岐してもよい。
 複数の第1種フィンガー電極62、第2種フィンガー電極64は、複数の第1種配線材14が延びる方向の中央部側に配置される第1種フィンガー電極62と、複数の第1種配線材14が延びる方向の端部側に配置される第2種フィンガー電極64とを含んでもよい。第1種フィンガー電極62において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、当該第1種フィンガー電極62が延びる方向の中央部側よりも端部側において低く、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、第1種フィンガー電極62の中央部側において第1種配線材14が配置される部分の高さよりも低い。
 光電変換層60の両面に、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置され、光電変換層60の受光面22よりも裏面24において、第2種フィンガー電極64の数が多い。
 光電変換層60の両面に、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置され、光電変換層60の受光面22に配置される第1種フィンガー電極62において、光電変換層60からの高さが低くされる部分の数よりも、光電変換層60の裏面24に配置される第1種フィンガー電極62において、光電変換層60からの高さが低くされる部分の数が多くしてもよい。
(実施例2)
 次に、実施例2を説明する。実施例2は、実施例1と同様に、樹脂フィルムを太陽電池セルに貼り付けることによって形成したストリングを含む太陽電池モジュールに関する。実施例1では、第1交差領域であるか第2交差領域であるかにかかわらず第1種配線材の形状は同一である。一方、実施例2では、第1交差領域であるか第2交差領域であるかに応じて第1種配線材の形状が異なる。実施例2に係る太陽電池モジュール100は、図1、図2と同様のタイプであり、樹脂シート80は、図3と同様のタイプであり、太陽電池セル10は、図4(a)-(b)と同様のタイプである。ここでは、これまでとの差異を中心に説明する。
 図6(a)-(d)は、本発明の実施例2に係る太陽電池セル10の部分的な構成を示す。これらは、図5(b)の下段と同様に示される。図6(a)-(d)において第1種フィンガー電極62は、図5(b)と同様に構成される。図6(a)の第1種配線材14は、z軸方向よりもy軸方向に長い矩形状を有する。矩形状に形成されることによって、図5(b)のように円形状に形成される場合よりも第1種フィンガー電極62との接触面積が大きくなる。
 図6(b)の第1種配線材14は、z軸方向よりもy軸方向に長い楕円形状を有する。z軸方向よりもy軸方向に長い楕円形状に形成されることによって、円形状に形成される場合よりも第1種フィンガー電極62との接触面積が大きくなる。つまり、光電変換層60の第1交差領域70よりも第2交差領域72において、複数の第1種配線材14における光電変換層60に面した面積は広くされる。図6(c)の第1種配線材14は、表面に複数の突起部が設けられる。複数の突起部が設けられることによって、第1種配線材14自体が第1種フィンガー電極62にささるように固定されるので、接着力が増加する。図6(d)の第1種配線材14は、光電変換層60と重なる領域とその周辺の領域を覆うように保護樹脂76が設けられる。第1種配線材14と光電変換層60とが、保護樹脂76によっても固定されるので、接着力が増加する。このとき、保護樹脂76に白色材料を含ませることが好ましい。
 本実施例によれば、第1種配線材14において、フィンガー電極が配置される部分の光電変換層60に面した面積は、光電変換層60の中央部側よりも端部側において広いので、端部側において接触面積を増加できる。また、端部側において接触面積が増加するので、第1種配線材14とフィンガー電極との接着力を向上できる。
 本発明の一態様の概要は、次の通りである。複数の第1種配線材14において、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置される部分の光電変換層60に面した面積は、光電変換層60の中央部側よりも端部側において広い。
 以上、本発明について、実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 実施例1と実施例2とを組み合わせてもよい。本変形例によれば、組合せによる効果を得ることができる。
 実施例1と2において、樹脂シート80が使用されている。しかしながらこれに限らず例えば、樹脂シート80が使用されず、隣接した太陽電池セル10が第1種配線材14によって接続されてもよい。その際、第1種配線材14はワイヤでなくてもよい。本変形例によれば、構成の自由度を向上できる。
 実施例1と2において、第2交差領域72は太陽電池セル10の端部近傍に設けられ、太陽電池セル10の中央部側に設けられない。しかしながら太陽電池セル10の端部近傍に限らず、太陽電池セル10と第1種配線材14との接着強度が比較的低くなる箇所に第2交差領域72を設けてもよい。その際、太陽電池セル10と第1種配線材14との接着強度が比較的高くなる箇所には第2交差領域72を設けない構成とすることで、ストリング12全体としての太陽電池セル10と第1種配線材14との接着強度が高くなればよい。
 実施例2において、第1種フィンガー電極62と第2種フィンガー電極64には、第1交差領域70、第2交差領域72が配置される。しかしながらこれに限らず例えば、第1交差領域70だけが配置されてもよい。本変形例によれば、フィンガー電極の構成を単一化できる。
 10 太陽電池セル、 12 ストリング、 14 第1種配線材、 16 第2種配線材、 18 第3種配線材、 20 フレーム、 22 受光面(第1の表面)、 24 裏面(第2の表面)、 30 第1保護部材、 32 第1封止部材、 34 第2封止部材、 36 第2保護部材、 40 第1透明部材、 42 第2透明部材、 44 第1接着剤、 46 第2接着剤、 60 光電変換層、 62 第1種フィンガー電極(集電極、第1種の集電極)、 64 第2種フィンガー電極(集電極、第2種の集電極)、 70 第1交差領域、 72 第2交差領域、 80 樹脂シート、 100 太陽電池モジュール。
 本発明によれば、太陽電池セルと配線材との接着力を向上できる。

Claims (6)

  1.  複数の太陽電池セルと、
     隣接する前記太陽電池セルを電気的に接続する複数の配線材とを備え、
     前記複数の太陽電池セルのそれぞれは、
     光電変換層と、
     前記光電変換層の表面において、前記複数の配線材が延びる方向に並べられる複数の集電極とを備え、
     前記複数の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、前記光電変換層の中央部側よりも端部側において低いことを特徴とする太陽電池モジュール。
  2.  前記複数の集電極は、前記光電変換層からの高さが低くされる部分において複数に分岐することを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記複数の集電極は、前記複数の配線材が延びる方向の中央部側に配置される第1種の集電極と、前記複数の配線材が延びる方向の端部側に配置される第2種の集電極とを含み、
     前記第1種の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、当該第1種の集電極が延びる方向の中央部側よりも端部側において低く、
     前記第2種の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、前記第1種の集電極の中央部側において前記配線材が配置される部分の高さよりも低いことを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記光電変換層の両面に、複数の集電極が配置され、
     前記光電変換層の第1の表面よりも第2の表面において、前記第2種の集電極の数が多いことを特徴とする請求項3に記載の太陽電池モジュール。
  5.  前記光電変換層の両面に、複数の集電極が配置され、
     前記光電変換層の第1の表面に配置される前記第1種の集電極において、前記光電変換層からの高さが低くされる部分の数よりも、前記光電変換層の第2の表面に配置される前記第1種の集電極において、前記光電変換層からの高さが低くされる部分の数が多いことを特徴する請求項3に記載の太陽電池モジュール。
  6.  前記複数の配線材において、前記複数の集電極が配置される部分の前記光電変換層に面した面積は、前記光電変換層の中央部側よりも端部側において広いことを特徴とする請求項1から5のいずれか1項に記載の太陽電池モジュール。
PCT/JP2017/027754 2016-09-13 2017-07-31 太陽電池モジュール WO2018051658A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018539558A JP6742000B2 (ja) 2016-09-13 2017-07-31 太陽電池モジュール
CN201780056218.0A CN109743885A (zh) 2016-09-13 2017-07-31 太阳能电池模块
US16/299,927 US20190207045A1 (en) 2016-09-13 2019-03-12 Solar cell module including a plurality of solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178913 2016-09-13
JP2016-178913 2016-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/299,927 Continuation US20190207045A1 (en) 2016-09-13 2019-03-12 Solar cell module including a plurality of solar cells

Publications (1)

Publication Number Publication Date
WO2018051658A1 true WO2018051658A1 (ja) 2018-03-22

Family

ID=61619522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027754 WO2018051658A1 (ja) 2016-09-13 2017-07-31 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20190207045A1 (ja)
JP (1) JP6742000B2 (ja)
CN (1) CN109743885A (ja)
WO (1) WO2018051658A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066395A1 (ja) * 2018-09-28 2020-04-02 パナソニック株式会社 太陽電池モジュールの製造方法および太陽電池モジュール
CN110970522A (zh) * 2018-09-28 2020-04-07 松下电器产业株式会社 太阳能电池模块及太阳能电池模块的制造方法
CN111403509A (zh) * 2018-12-27 2020-07-10 松下电器产业株式会社 太阳能电池模块

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020233839A1 (en) * 2019-05-23 2020-11-26 Alpha Assembly Solutions Inc. Solder paste for module fabrication of solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353691A (ja) * 2004-06-08 2005-12-22 Sharp Corp 電極、太陽電池、これらの製造方法
JP2008263163A (ja) * 2007-03-19 2008-10-30 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010135562A (ja) * 2008-12-04 2010-06-17 Sharp Corp 光電変換素子、光電変換素子モジュールおよび光電変換素子の製造方法
WO2014002247A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
US20150144175A1 (en) * 2012-05-21 2015-05-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with photovoltaic cells having local widening of the bus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857245B2 (ja) * 2011-09-29 2016-02-10 パナソニックIpマネジメント株式会社 太陽電池、太陽電池モジュール及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353691A (ja) * 2004-06-08 2005-12-22 Sharp Corp 電極、太陽電池、これらの製造方法
JP2008263163A (ja) * 2007-03-19 2008-10-30 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010135562A (ja) * 2008-12-04 2010-06-17 Sharp Corp 光電変換素子、光電変換素子モジュールおよび光電変換素子の製造方法
US20150144175A1 (en) * 2012-05-21 2015-05-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with photovoltaic cells having local widening of the bus
WO2014002247A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066395A1 (ja) * 2018-09-28 2020-04-02 パナソニック株式会社 太陽電池モジュールの製造方法および太陽電池モジュール
CN110970522A (zh) * 2018-09-28 2020-04-07 松下电器产业株式会社 太阳能电池模块及太阳能电池模块的制造方法
CN112753107A (zh) * 2018-09-28 2021-05-04 松下电器产业株式会社 太阳能电池模块的制造方法及太阳能电池模块
US11581455B2 (en) 2018-09-28 2023-02-14 Panasonic Holdings Corporation Solar cell module manufacturing method and solar cell module
CN112753107B (zh) * 2018-09-28 2023-06-30 松下控股株式会社 太阳能电池模块的制造方法及太阳能电池模块
CN110970522B (zh) * 2018-09-28 2023-10-10 松下控股株式会社 太阳能电池模块及太阳能电池模块的制造方法
CN111403509A (zh) * 2018-12-27 2020-07-10 松下电器产业株式会社 太阳能电池模块
US11652178B2 (en) 2018-12-27 2023-05-16 Panasonic Holdings Corporation Solar cell module including solar cells
CN111403509B (zh) * 2018-12-27 2023-10-10 松下控股株式会社 太阳能电池模块

Also Published As

Publication number Publication date
JP6742000B2 (ja) 2020-08-19
JPWO2018051658A1 (ja) 2019-06-24
US20190207045A1 (en) 2019-07-04
CN109743885A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2018051658A1 (ja) 太陽電池モジュール
WO2012015031A1 (ja) 太陽電池モジュール
US20200105954A1 (en) Solar cell module including a plurality of solar cells connected and method of manufacturing a solar cell module
JP6893330B2 (ja) 太陽電池モジュール
JP2018046112A (ja) 太陽電池モジュール
WO2017168474A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
JP6735472B2 (ja) 太陽電池モジュール
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
US11652178B2 (en) Solar cell module including solar cells
US20200168755A1 (en) Solar cell module including a plurality of solar cells
EP3203532A1 (en) Solar cell module and method for manufacturing solar cell module
WO2018116553A1 (ja) 太陽電池モジュールおよび太陽電池セル
WO2018008258A1 (ja) 端子ボックス、太陽電池モジュール、太陽電池モジュールの製造方法
US20210066523A1 (en) Solar cell module including solar cell
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20190221680A1 (en) Solar cell module including terminal box and method of manufacturing solar cell
JP2020098902A (ja) 太陽電池モジュール
JP2018107211A (ja) 太陽電池モジュール
JP2017183650A (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2021039984A (ja) 太陽電池モジュール、太陽電池モジュール作製方法
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
JP2021044360A (ja) 太陽電池モジュール
JPWO2016051625A1 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850564

Country of ref document: EP

Kind code of ref document: A1