JP6742000B2 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP6742000B2
JP6742000B2 JP2018539558A JP2018539558A JP6742000B2 JP 6742000 B2 JP6742000 B2 JP 6742000B2 JP 2018539558 A JP2018539558 A JP 2018539558A JP 2018539558 A JP2018539558 A JP 2018539558A JP 6742000 B2 JP6742000 B2 JP 6742000B2
Authority
JP
Japan
Prior art keywords
type
photoelectric conversion
conversion layer
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018539558A
Other languages
English (en)
Other versions
JPWO2018051658A1 (ja
Inventor
優也 中村
優也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2018051658A1 publication Critical patent/JPWO2018051658A1/ja
Application granted granted Critical
Publication of JP6742000B2 publication Critical patent/JP6742000B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池モジュールに関し、特に複数の太陽電池セルを含む太陽電池モジュールに関する。
太陽電池モジュールは、表面保護材と裏面保護材との間に、配線用のタブにより互いに電気的に接続された複数の太陽電池セルを備える。太陽電池セルは、光電変換部と、光電変換部上に積層された複数のフィンガー電極とを備える。光電変換部、フィンガー電極、タブの線膨張係数は異なるので、タブを太陽電池セルに半田付けする際の温度変化により、太陽電池セルとタブとの交差領域において応力が発生し、フィンガー電極の断線が発生しうる。フィンガー電極の断線が発生したとしても電気出力の低下を抑制するために、交差領域においてフィンガー電極が複数の枝部に分岐され、枝部の分岐点がタブから離間される(例えば、特許文献1参照)。
特開2008−159895号公報
太陽電池モジュールの製造を簡易にするために、2つの透明部材が複数のワイヤによって接続されたワイヤフィルムを使用することがある。ワイヤフィルムを太陽電池モジュールに使用する場合、2つの透明部材のそれぞれが隣接の太陽電池セルに貼り付けられ、ワイヤが配線材として使用される。太陽電池セル上の集電極が銀ペーストで形成され、ワイヤの表面が低融点半田でコートされている場合、集電極とワイヤとの接着力が低くなる。接着力が低い場合、温度サイクル試験によってワイヤが太陽電池セルからはがれてしまうおそれがある。
本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池セルと配線材との接着力を向上させる技術を提供することにある。
上記課題を解決するために、本発明のある態様の太陽電池モジュールは、複数の太陽電池セルと、隣接する太陽電池セルを電気的に接続する複数の配線材とを備える。複数の太陽電池セルのそれぞれは、光電変換層と、光電変換層の表面において、複数の配線材が延びる方向に並べられる複数の集電極とを備える。複数の集電極において、複数の配線材が配置される部分の光電変換層からの高さは、光電変換層の中央部側よりも端部側において低く、複数の集電極において、端部側における集電極の表面粗さは、中央部側における集電極の表面粗さよりも小さい。
本発明によれば、太陽電池セルと配線材との接着力を向上できる。
本発明の実施例1に係る太陽電池モジュールの構造を示す平面図である。 図1の太陽電池モジュールの構造を示す断面図である。 図1の太陽電池モジュールにおいて使用されるフィルムの斜視図である。 図4(a)−(b)は、図1の太陽電池セルの構造を示す平面図である。 図5(a)−(f)は、図4の太陽電池セルの部分的な構成を示す図である。 図6(a)−(d)は、本発明の実施例2に係る太陽電池セルの部分的な構成を示す図である。
(実施例1)
本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、複数の太陽電池セルがマトリックス状に配置された太陽電池モジュールに関する。太陽電池モジュールでは、第1保護部材と第2保護部材との間に封止部材が配置され、封止部材によって複数の太陽電池セルが封止される。その際、隣接した2つの太陽電池セルは、ワイヤフィルムによって接続される。ワイヤフィルムは、前述のごとく、2つの透明部材が複数のワイヤによって接続されており、各透明部材が隣接の太陽電池セルに貼り付けられる。ワイヤが配線材の役割を有するので、ワイヤが延びる方向に配置された複数の太陽電池セルを複数のワイヤフィルムで接続することによってストリングが形成される。このようなワイヤフィルムは、太陽電池モジュールの製造を簡易にするために使用される。一方、太陽電池セル上の集電極が銀ペーストで形成され、ワイヤの表面が低融点半田でコートされている場合、集電極とワイヤとの接着力が低くなる。接着力が低い場合、温度の上昇および下降を繰り返す温度サイクル試験を実行すると、ワイヤが太陽電池セルからはがれてしまうおそれがある。
ワイヤフィルムを使用する場合であっても、太陽電池セルとワイヤとの接着力を向上させるために、本実施例では、複数の集電極において複数のワイヤが配置される部分(以下、「交差領域」という)の高さは、太陽電池セルの中央部側よりも端部側において低くされる。集電極は、スクリーン印刷等によって形成される。低い部分を形成するために使用される銀ペーストの量は、高い部分を形成するために使用される銀ペーストの量よりも少なくなる。銀ペーストの量が少なくなるほど集電極の表面が滑らかになることによって、集電極とワイヤとの接触面積が増加する。つまり、本実施例では、太陽電池セルの中央部側の交差領域よりも端部側の交差領域において、集電極とワイヤとの接触面積を増加させる。ここで、接触面積の増加は接着力の増加につながる。なお、以下の説明において、「平行」、「垂直」は、完全な平行、垂直だけではなく、誤差の範囲で平行、垂直からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
図1は、本発明の実施例1に係る太陽電池モジュール100の構造を示す平面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx−y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。そのため、図1は、太陽電池モジュール100の受光面側からの平面図であるといえる。
太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第46太陽電池セル10df、第1種配線材14、第2種配線材16、第3種配線材18、フレーム20と総称される第1フレーム20a、第2フレーム20b、第3フレーム20c、第4フレーム20dを含む。
第1フレーム20aは、x軸方向に延び、第2フレーム20bは、第1フレーム20aのx軸の正方向側端からy軸の負方向に延びる。また、第3フレーム20cは、第2フレーム20bのy軸の負方向側端からx軸の負方向に延び、第4フレーム20dは、第3フレーム20cのx軸の負方向側端と第1フレーム20aのx軸の負方向側端とを結ぶ。フレーム20は、太陽電池モジュール100の外周を囲んでおり、アルミニウム等の金属で形成される。ここで、第1フレーム20a、第3フレーム20cは、第2フレーム20b、第4フレーム20dよりも長いので、太陽電池モジュール100は、y軸方向よりもx軸方向に長い矩形状を有する。
複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。特に、太陽電池セル10は、受光面において吸収した光から起電力を発生するとともに、裏面において吸収した光からも光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。また、太陽電池セル10は、x−y平面において、四角形の形状を有するが、その他の形状、例えば、八角形の形状を有してもよい。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にy軸方向に延びる複数のフィンガー電極が備えられる。
複数の太陽電池セル10は、x−y平面上にマトリックス状に配列される。ここでは、x軸方向に6つの太陽電池セル10が並べられる。x軸方向に並んで配置される6つの太陽電池セル10は、第1種配線材14によって直列に接続され、1つのストリング12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、・・・、第16太陽電池セル10afが接続されることによって、第1ストリング12aが形成される。また、第2ストリング12bから第4ストリング12dも同様に形成される。その結果、4つのストリング12がy軸方向に平行に並べられる。このように、x軸方向に並べられる太陽電池セル10の数は、y軸方向に並べられる太陽電池セル10の数よりも多い。x軸方向を「第1方向」とよぶ場合、y軸方向は「第2方向」とよばれる。なお、ストリング12に含まれる太陽電池セル10の数は「6」に限定されず、ストリング12の数は「4」に限定されない。
ストリング12を形成するために、第1種配線材14は、x軸方向に隣接した太陽電池セル10のうちの一方の受光面側のフィンガー電極と、他方の裏面側のフィンガー電極とを接続する。例えば、隣接した第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための5つの第1種配線材14は、第11太陽電池セル10aaの裏面側のフィンガー電極と第12太陽電池セル10abの受光面側のフィンガー電極とを電気的に接続する。なお、第1種配線材14の数は「5」に限定されない。第1種配線材14は、前述のワイヤに相当する。第1種配線材14と太陽電池セル10との接続については後述する。
第2種配線材16は、y軸方向に延びて、互いに隣接する2つのストリング12を電気的に接続する。例えば、第1ストリング12aのx軸の正方向側端に位置する第16太陽電池セル10afと、第2ストリング12bのx軸の正方向側端に位置する第26太陽電池セル10bfは、第2種配線材16によって電気的に接続される。さらに、第2ストリング12bと第3ストリング12cは、x軸の負方向側において第2種配線材16によって電気的に接続されるとともに、第3ストリング12cと第4ストリング12dは、x軸の正方向側において第2種配線材16によって電気的に接続される。その結果、複数のストリング12は、第2種配線材16によって直列に接続される。
第1ストリング12aのx軸の負方向側端における第11太陽電池セル10aaには、第2種配線材16が接続されておらず、その代わりに第3種配線材18が接続される。第3種配線材18には、図示しない取出し配線材が接続される。取出し配線材は、複数の太陽電池セル10において発電した電力を太陽電池モジュール100外に取り出すための配線材である。なお、第3種配線材18は、第4ストリング12dのx軸の負方向側端における第41太陽電池セル10daにも接続される。
図2は、太陽電池モジュール100の構造を示すx軸に沿った断面図であり、図1のA−A’断面図である。太陽電池モジュール100は、第12太陽電池セル10ab、第13太陽電池セル10ac、第1種配線材14、第1保護部材30、第1封止部材32、第2封止部材34、第2保護部材36、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を含む。図2の上側が受光面側に相当し、下側が裏面側に相当する。
第1保護部材30は、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。また、太陽電池モジュール100は、x−y平面において、フレーム20に囲まれるような矩形状を有する。第1保護部材30には、透光性および遮水性を有するガラス、透光性プラスチック等が使用される。第1保護部材30によって太陽電池モジュール100の機械的強度が高くされる。
第1封止部材32は、第1保護部材30の裏面側に積層される。第1封止部材32は、第1保護部材30と太陽電池セル10との間に配置されて、これらを接着する。第1封止部材32として、例えば、ポリオレフィン、EVA(エチレン酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材32は、透光性を有するとともに、第1保護部材30におけるx−y平面と略同一寸法の面を有するシート材によって形成される。
第12太陽電池セル10ab、第13太陽電池セル10acは、第1保護部材30の裏面側に積層される。各太陽電池セル10は、z軸の正方向側に受光面22を向け、z軸の負方向側に裏面24を向けて配置される。受光面22を「第1面」とよぶ場合、裏面24は「第2面」とよばれる。太陽電池セル10の受光面22には、第1種配線材14、第1接着剤44、第1透明部材40が配置され、太陽電池セル10の裏面24には、第1種配線材14、第2接着剤46、第2透明部材42が配置される。ここでは、太陽電池セル10に対するこれらの配置を説明するために、図3を使用する。
図3は、太陽電池モジュール100において使用される樹脂シート80の斜視図である。樹脂シート80は、第1種配線材14、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を含む。樹脂シート80は前述のワイヤフィルムに相当する。
第1透明部材40は、隣接した2つの太陽電池セル10の一方、例えば、第13太陽電池セル10acの受光面22側に配置される。第1透明部材40は、例えば、PET(ポリエチレンテレフタラート)等の透明な樹脂フィルムで構成される。第1透明部材40は、x−y平面において、太陽電池セル10と同等サイズの四角形の形状を有する。第1透明部材40における第13太陽電池セル10ac側の面には第1接着剤44が配置され、第1接着剤44には複数の第1種配線材14が配置される。第1接着剤44は、第13太陽電池セル10acの受光面22を第1透明部材40に接着可能である。第1接着剤44には、例えば、EVAが使用される。
第2透明部材42は、隣接した2つの太陽電池セル10の他方、例えば、第12太陽電池セル10abの裏面24側に配置される。第2透明部材42は、第1透明部材40と同様に、例えば、PET等の透明な樹脂フィルムで構成される。第2透明部材42は、x−y平面において、太陽電池セル10と同等サイズの四角形の形状を有する。第2透明部材42における第12太陽電池セル10ab側の面には第2接着剤46が配置され、第2接着剤46には複数の第1種配線材14が配置される。第2接着剤46は、第12太陽電池セル10abの裏面24を第2透明部材42に接着可能である。第2接着剤46にも、例えば、EVAが使用される。
このように構成された樹脂シート80は、太陽電池モジュール100の製造とは別に予め製造されている。太陽電池モジュール100を製造する際、第1接着剤44が第13太陽電池セル10acの受光面22に接着され、第2接着剤46が第12太陽電池セル10abの裏面24に接着される。このような接着により、第1種配線材14は、第13太陽電池セル10acの受光面22におけるフィンガー電極(図示せず)と、第12太陽電池セル10abの裏面24におけるフィンガー電極(図示せず)とを電気的に接続する。図2に戻る。
第1透明部材40と第2透明部材42の接着が、他の太陽電池セル10に対してもなされることによって、図1に示すようなストリング12が形成される。第2封止部材34は、第1封止部材32の裏面側に積層される。第2封止部材34は、第1封止部材32との間で、複数の太陽電池セル10、第1種配線材14、第2種配線材16、第3種配線材18、第1透明部材40、第2透明部材42等を封止する。第2封止部材34には、第1封止部材32と同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材34は第1封止部材32と一体化されていてもよい。
第2保護部材36は、第1保護部材30に対向するように、第2封止部材34の裏面側に積層される。第2保護部材36は、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材36としては、PET、PTFE(ポリテトラフルオロエチレン)等の樹脂フィルム、Al箔をポリオレフィン等の樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用される。
以下では、太陽電池セル10におけるフィンガー電極と、第1種配線材14との接続をさらに詳細に説明する。図4(a)−(b)は、太陽電池セル10の構造を示す平面図である。図4(a)は太陽電池セル10の受光面22を示し、図4(b)は太陽電池セル10の裏面24を示す。これらでは、説明を明瞭にするために、第1透明部材40、第2透明部材42、第1接着剤44、第2接着剤46を省略し、太陽電池セル10と第1種配線材14のみが示される。
光電変換層60は、前述の半導体材料に相当するとともに、前述のごとく四角形の形状を有する。以下では、光電変換層60におけるz軸の正方向側の表面も「受光面22」といい、光電変換層60におけるz軸の負方向側の表面も「裏面24」という。受光面22を「第1の表面」とよぶ場合、裏面24は「第2の表面」とよばれる。図4(a)に示すように、光電変換層60の受光面22には、y軸方向に延びる第1種フィンガー電極62と第2種フィンガー電極64とが、x軸方向に複数並べられる。第1種フィンガー電極62、第2種フィンガー電極64の構成は後述するが、いずれもフィンガー電極であり、前述の集電極に相当する。第1種フィンガー電極62、第2種フィンガー電極64は、例えば、樹脂と銀粒子とが混合した銀ペースト(エポキシ樹脂・エステルを含む)により形成される。第1種フィンガー電極62は、x軸方向の中央部側に複数配置され、第2種フィンガー電極64は、x軸方向の端部側に配置される。ここでは、x軸の正方向側端と負方向側端のそれぞれに第2種フィンガー電極64が配置される。
また、光電変換層60の受光面22には、第1種フィンガー電極62、第2種フィンガー電極64に交差、例えば直交するようにx軸方向に延びる複数の第1種配線材14が配置される。第1種配線材14は、例えば、断面が略円形の銅心材を低融点半田でコートすることによって形成される。ここで、第1種配線材14の金属密度は、第1種フィンガー電極62、第2種フィンガー電極64の金属密度よりも高いので、第1種配線材14の電気抵抗率は、第1種フィンガー電極62、第2種フィンガー電極64の電気抵抗率よりも小さくなる。
第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14のそれぞれと交差して接続する部分は、「交差領域」とよばれる。第1種フィンガー電極62では、y軸方向の中央部側に第1交差領域70が配置され、y軸方向の端部側に第2交差領域72が配置される。ここでは、y軸方向の中央部側に配置された3つの第1種配線材14に対して第1交差領域70が配置され、y軸の正方向側端と負方向側端のそれぞれの第1種配線材14に対して第2交差領域72が配置される。また、図面を明瞭にするために、第1交差領域70の近傍は実線の円印で示され、第2交差領域72の近傍は点線の丸印で示される。第1交差領域70、第2交差領域72の構成については後述する。一方、第2種フィンガー電極64では複数の第2交差領域72のみが配置され、第1交差領域70が配置されない。つまり、第1種フィンガー電極62と第2種フィンガー電極64では、第1交差領域70と第2交差領域72の配置が異なっているだけであり、それ以外は同一に構成される。
図5(a)−(f)は、太陽電池セル10の部分的な構成を示す。図5(a)は、第1交差領域70における第1種フィンガー電極62と第1種配線材14の構成を示す。上段は、x−y平面での平面図を示し、下段は、上段の平面図のB−B’断面図を示す。なお、図面を明瞭にするために、上段と図4(a)とでは、x軸とy軸の方向が変えられている。図5(a)の上段に示すように、第1種フィンガー電極62のx軸方向の幅は、第1種配線材14と重ねられる部分と、重ねられる部分から離れた部分のいずれにおいても「a」で共通する。前者は第1交差領域70に相当し、後者は第1交差領域70から離れた部分に相当する。
図5(a)の下段に示すように、第1種フィンガー電極62のz軸の正方向側の表面には、複数の突起がランダムにy軸方向に並べられた凹凸形状が形成されている。この凹凸形状は、第1種フィンガー電極62をスクリーン印刷等によって形成する場合に、光電変換層60からの高さを「c」程度にするために必要な量の銀ペーストを使用することによって形成される。第1種配線材14は、第1種フィンガー電極62のz軸の正方向側の表面に接着される。
図5(b)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。上段は、x−y平面での平面図を示し、下段は、上段の平面図のC−C’断面図を示す。なお、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。図5(b)の上段に示すように、第1種フィンガー電極62は、第1種配線材14と重ねられる部分、つまり第2交差領域72において複数に分岐する。ここでは、「2」つに分岐されるが、「2」に限定されない。また、第1種フィンガー電極62のx軸方向の幅は、第2交差領域72では「b」であり、第2交差領域72から離れた部分では「a」であり、それらは異なる。ここで、b<aである。つまり、第1種フィンガー電極62のx軸方向の幅は、第2交差領域72から離れた部分よりも第2交差領域72において細くされる。
図5(b)の下段に示すように、第1種フィンガー電極62のz軸の正方向側の表面には、第2交差領域72から離れた部分において、図5(a)の下段と同様に、複数の突起がランダムにy軸方向に並べられた凹凸形状が形成されている。一方、第1種フィンガー電極62のz軸の正方向側の表面は、第2交差領域72において、複数の突起による凹凸形状が小さくなり滑らかな表面に近づく。この部分では、前述のごとく、第1種フィンガー電極62が細くされているので、第1種フィンガー電極62をスクリーン印刷等によって形成する場合に必要な銀ペーストの量が少なくなる。その結果、当該部分では、光電変換層60からの高さが「d」程度となり、凹凸形状も小さくなる。なお、d<cである。第1種配線材14は、第1種フィンガー電極62のz軸の正方向側の表面に接着される。
図5(a)の下段と図5(b)の下段とを比較すると、第2交差領域72における第1種フィンガー電極62の光電変換層60からの高さは、第1交差領域70における第1種フィンガー電極62の光電変換層60からの高さよりも低くされる。このような第1交差領域70と第2交差領域72との構成を図4(a)に対応づけると、第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、光電変換層60の中央部側よりも端部側において低い。また、第1種フィンガー電極62において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、y軸方向の中央部側よりも端部側において低くされる。さらに、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、第1種フィンガー電極62の中央部側において第1種配線材14が配置される部分の高さよりも低くされる。
図5(c)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。これは、図5(b)の変形例であり、図5(b)の上段と同様に示される。ここでも、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。第1種フィンガー電極62は、第1種配線材14と重ねられる部分、つまり第2交差領域72において分岐せずに、細くなるようなテーパ形状に形成される。第1種フィンガー電極62のx軸方向の幅は、第2交差領域72では「b」であり、第2交差領域72から離れた部分では「a」であり、それらは異なる。ここでも、b<aである。一方、図5(c)のように示された第2交差領域72における断面図は図5(b)の下段と同様に構成される。
図5(d)は、図5(c)の変形例であり、第2交差領域72において細くなる部分から、x軸方向に突出する2つの突起部66が形成される。第2交差領域72の第1種フィンガー電極62に設けられる突起部66のy軸方向の幅は、第1種フィンガー電極62のx軸方向の幅「b」と同程度とすることができる。
図5(e)は、図5(c)の別の変形例であり、第2交差領域72において細くなる部分の近傍に、y軸方向に延びる2つの補助電極68が形成される。補助電極68は、第1種フィンガー電極62と同じ材料で形成されるが、連続しないように島状に形成される。補助電極68のx軸方向の幅は、第1種フィンガー電極62のx軸方向の幅「b」と同程度とすることができる。
図5(f)は、第2交差領域72における第1種フィンガー電極62と第1種配線材14の構成を示す。これは、図5(b)の理想形であり、図5(b)の下段と同様に示される。ここでも、第1種フィンガー電極62の代わりに第2種フィンガー電極64であっても同様に構成される。第1種配線材14の断面の半径を「r」と示し、第1種フィンガー電極62のz軸方向の厚みを「x」とするとともに、図5(f)に示すように「a」、「b」を定義すると、これらの関係は次のように示される。
x−a=r−√(r−b
図4(b)に示すように、光電変換層60の受光面22には、図4(a)と同様に、第1種フィンガー電極62、第2種フィンガー電極64、第1種配線材14が配置される。ここで、第1種配線材14の数は、受光面22と裏面24とで同一であるが、第1種フィンガー電極62と第2種フィンガー電極64の合計数は、受光面22よりも裏面24において多い。ここでは、x軸の正方向側端から「3」つの第2種フィンガー電極64が配置されるとともに、x軸の負方向側端から「3」つの第2種フィンガー電極64が配置される。そのため、第2種フィンガー電極64の数は、光電変換層60の受光面22よりも裏面24において多い。なお、光電変換層60の裏面24における第2種フィンガー電極64の数は、光電変換層60の受光面22における第2種フィンガー電極64の数と同じでもよい。一方、第1種フィンガー電極62は、x軸方向において、第2種フィンガー電極64に挟まれて配置される。
第1種フィンガー電極62は、y軸の両端部に第2交差領域72を配置し、それらの間に第1交差領域70を配置しており、受光面22での構成と同一である。しかしながら、光電変換層60の受光面22に配置される第1種フィンガー電極62における第2交差領域72の数よりも、光電変換層60の裏面24に配置される第1種フィンガー電極62における第2交差領域72の数が多くされてもよい。例えば、y軸の正方向側端から「2」つの第2交差領域72が配置されるとともに、y軸の負方向側端から「2」つの第2交差領域72が配置される。
以下では、太陽電池モジュール100の製造方法について説明する。まず、樹脂シート80が用意される。隣接した2つの太陽電池セル10の一方に樹脂シート80の第1透明部材40を重ね合せるとともに、隣接した2つの太陽電池セル10の他方に樹脂シート80の第2透明部材42を重ね合わせることによって、ストリング12が生成される。z軸の正方向から負方向に向かって、第1保護部材30、第1封止部材32、ストリング12、第2封止部材34、第2保護部材36が順に重ね合わせられることによって、積層体が生成される。これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体から空気を抜き、加熱、加圧して、積層体を一体化する。ラミネート・キュア工程における真空ラミネートでは、温度が前述のごとく、50〜140℃程度に設定される。さらに、第2保護部材36に対して、端子ボックスが接着剤にて取り付けられる。
本実施例によれば、複数のフィンガー電極において、第1種配線材14が配置される部分の高さは、光電変換層60の中央部側よりも端部側において低いので、端部側においてフィンガー電極の表面を滑らかにできる。また、端部側においてフィンガー電極の表面が滑らかになるので、第1種配線材14とフィンガー電極との接触面積を増加できる。また、第1種配線材14とフィンガー電極との接触面積が増加するので、第1種配線材14とフィンガー電極との接着力を向上できる。また、光電変換層60からの高さが低くされる部分においてフィンガー電極が複数に分岐するので、電気抵抗率の増加を抑制できる。
また、第1交差領域70と第2交差領域72とを含む第1種フィンガー電極62を中央部側に配置し、第2交差領域72だけを含む第2種フィンガー電極64を端部側に配置するので、構成を簡易にできる。また、光電変換層60の受光面22よりも裏面24において、第2種フィンガー電極64の数を多くするので、第1種フィンガー電極62と第2種フィンガー電極64の合計数が多くても、太陽電池セル10と第1種配線材14との接着力を向上できる。また、第1種フィンガー電極62における第2交差領域72の数が受光面22よりも裏面24において多いので、第1種フィンガー電極62と第2種フィンガー電極64の合計数が多くても、太陽電池セル10と第1種配線材14との接着力を向上できる。
本発明の一態様の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、複数の太陽電池セル10と、隣接する太陽電池セル10を電気的に接続する複数の第1種配線材14とを備える。複数の太陽電池セル10のそれぞれは、光電変換層60と、光電変換層60の表面において、複数の第1種配線材14が延びる方向に並べられる複数の第1種フィンガー電極62、第2種フィンガー電極64とを備える。複数の第1種フィンガー電極62、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、光電変換層60の中央部側よりも端部側において低い。
複数の第1種フィンガー電極62、第2種フィンガー電極64は、光電変換層60からの高さが低くされる部分において複数に分岐してもよい。
複数の第1種フィンガー電極62、第2種フィンガー電極64は、複数の第1種配線材14が延びる方向の中央部側に配置される第1種フィンガー電極62と、複数の第1種配線材14が延びる方向の端部側に配置される第2種フィンガー電極64とを含んでもよい。第1種フィンガー電極62において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、当該第1種フィンガー電極62が延びる方向の中央部側よりも端部側において低く、第2種フィンガー電極64において、複数の第1種配線材14が配置される部分の光電変換層60からの高さは、第1種フィンガー電極62の中央部側において第1種配線材14が配置される部分の高さよりも低い。
光電変換層60の両面に、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置され、光電変換層60の受光面22よりも裏面24において、第2種フィンガー電極64の数が多い。
光電変換層60の両面に、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置され、光電変換層60の受光面22に配置される第1種フィンガー電極62において、光電変換層60からの高さが低くされる部分の数よりも、光電変換層60の裏面24に配置される第1種フィンガー電極62において、光電変換層60からの高さが低くされる部分の数が多くしてもよい。
(実施例2)
次に、実施例2を説明する。実施例2は、実施例1と同様に、樹脂フィルムを太陽電池セルに貼り付けることによって形成したストリングを含む太陽電池モジュールに関する。実施例1では、第1交差領域であるか第2交差領域であるかにかかわらず第1種配線材の形状は同一である。一方、実施例2では、第1交差領域であるか第2交差領域であるかに応じて第1種配線材の形状が異なる。実施例2に係る太陽電池モジュール100は、図1、図2と同様のタイプであり、樹脂シート80は、図3と同様のタイプであり、太陽電池セル10は、図4(a)−(b)と同様のタイプである。ここでは、これまでとの差異を中心に説明する。
図6(a)−(d)は、本発明の実施例2に係る太陽電池セル10の部分的な構成を示す。これらは、図5(b)の下段と同様に示される。図6(a)−(d)において第1種フィンガー電極62は、図5(b)と同様に構成される。図6(a)の第1種配線材14は、z軸方向よりもy軸方向に長い矩形状を有する。矩形状に形成されることによって、図5(b)のように円形状に形成される場合よりも第1種フィンガー電極62との接触面積が大きくなる。
図6(b)の第1種配線材14は、z軸方向よりもy軸方向に長い楕円形状を有する。z軸方向よりもy軸方向に長い楕円形状に形成されることによって、円形状に形成される場合よりも第1種フィンガー電極62との接触面積が大きくなる。つまり、光電変換層60の第1交差領域70よりも第2交差領域72において、複数の第1種配線材14における光電変換層60に面した面積は広くされる。図6(c)の第1種配線材14は、表面に複数の突起部が設けられる。複数の突起部が設けられることによって、第1種配線材14自体が第1種フィンガー電極62にささるように固定されるので、接着力が増加する。図6(d)の第1種配線材14は、光電変換層60と重なる領域とその周辺の領域を覆うように保護樹脂76が設けられる。第1種配線材14と光電変換層60とが、保護樹脂76によっても固定されるので、接着力が増加する。このとき、保護樹脂76に白色材料を含ませることが好ましい。
本実施例によれば、第1種配線材14において、フィンガー電極が配置される部分の光電変換層60に面した面積は、光電変換層60の中央部側よりも端部側において広いので、端部側において接触面積を増加できる。また、端部側において接触面積が増加するので、第1種配線材14とフィンガー電極との接着力を向上できる。
本発明の一態様の概要は、次の通りである。複数の第1種配線材14において、複数の第1種フィンガー電極62、第2種フィンガー電極64が配置される部分の光電変換層60に面した面積は、光電変換層60の中央部側よりも端部側において広い。
以上、本発明について、実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
実施例1と実施例2とを組み合わせてもよい。本変形例によれば、組合せによる効果を得ることができる。
実施例1と2において、樹脂シート80が使用されている。しかしながらこれに限らず例えば、樹脂シート80が使用されず、隣接した太陽電池セル10が第1種配線材14によって接続されてもよい。その際、第1種配線材14はワイヤでなくてもよい。本変形例によれば、構成の自由度を向上できる。
実施例1と2において、第2交差領域72は太陽電池セル10の端部近傍に設けられ、太陽電池セル10の中央部側に設けられない。しかしながら太陽電池セル10の端部近傍に限らず、太陽電池セル10と第1種配線材14との接着強度が比較的低くなる箇所に第2交差領域72を設けてもよい。その際、太陽電池セル10と第1種配線材14との接着強度が比較的高くなる箇所には第2交差領域72を設けない構成とすることで、ストリング12全体としての太陽電池セル10と第1種配線材14との接着強度が高くなればよい。
実施例2において、第1種フィンガー電極62と第2種フィンガー電極64には、第1交差領域70、第2交差領域72が配置される。しかしながらこれに限らず例えば、第1交差領域70だけが配置されてもよい。本変形例によれば、フィンガー電極の構成を単一化できる。
10 太陽電池セル、 12 ストリング、 14 第1種配線材、 16 第2種配線材、 18 第3種配線材、 20 フレーム、 22 受光面(第1の表面)、 24 裏面(第2の表面)、 30 第1保護部材、 32 第1封止部材、 34 第2封止部材、 36 第2保護部材、 40 第1透明部材、 42 第2透明部材、 44 第1接着剤、 46 第2接着剤、 60 光電変換層、 62 第1種フィンガー電極(集電極、第1種の集電極)、 64 第2種フィンガー電極(集電極、第2種の集電極)、 70 第1交差領域、 72 第2交差領域、 80 樹脂シート、 100 太陽電池モジュール。
本発明によれば、太陽電池セルと配線材との接着力を向上できる。

Claims (6)

  1. 複数の太陽電池セルと、
    隣接する前記太陽電池セルを電気的に接続する複数の配線材とを備え、
    前記複数の太陽電池セルのそれぞれは、
    光電変換層と、
    前記光電変換層の表面において、前記複数の配線材が延びる方向に並べられる複数の集電極とを備え、
    前記複数の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、前記光電変換層の中央部側よりも端部側において低く、
    前記複数の集電極において、前記端部側における前記集電極の表面粗さは、前記中央部側における前記集電極の表面粗さよりも小さいことを特徴とする太陽電池モジュール。
  2. 前記複数の集電極は、前記光電変換層からの高さが低くされる部分において複数に分岐することを特徴とする請求項1に記載の太陽電池モジュール。
  3. 前記複数の集電極は、前記複数の配線材が延びる方向の中央部側に配置される第1種の集電極と、前記複数の配線材が延びる方向の端部側に配置される第2種の集電極とを含み、
    前記第1種の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、当該第1種の集電極が延びる方向の中央部側よりも端部側において低く、
    前記第2種の集電極において、前記複数の配線材が配置される部分の前記光電変換層からの高さは、前記第1種の集電極の中央部側において前記配線材が配置される部分の高さよりも低いことを特徴とする請求項1または2に記載の太陽電池モジュール。
  4. 前記光電変換層の両面に、複数の集電極が配置され、
    前記光電変換層の第1の表面よりも第2の表面において、前記第2種の集電極の数が多いことを特徴とする請求項3に記載の太陽電池モジュール。
  5. 前記光電変換層の両面に、複数の集電極が配置され、
    前記光電変換層の第1の表面に配置される前記第1種の集電極において、前記光電変換層からの高さが低くされる部分の数よりも、前記光電変換層の第2の表面に配置される前記第1種の集電極において、前記光電変換層からの高さが低くされる部分の数が多いことを特徴する請求項3に記載の太陽電池モジュール。
  6. 前記複数の配線材において、前記複数の集電極が配置される部分の前記光電変換層に面した面積は、前記光電変換層の中央部側よりも端部側において広いことを特徴とする請求項1から5のいずれか1項に記載の太陽電池モジュール。
JP2018539558A 2016-09-13 2017-07-31 太陽電池モジュール Expired - Fee Related JP6742000B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016178913 2016-09-13
JP2016178913 2016-09-13
PCT/JP2017/027754 WO2018051658A1 (ja) 2016-09-13 2017-07-31 太陽電池モジュール

Publications (2)

Publication Number Publication Date
JPWO2018051658A1 JPWO2018051658A1 (ja) 2019-06-24
JP6742000B2 true JP6742000B2 (ja) 2020-08-19

Family

ID=61619522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018539558A Expired - Fee Related JP6742000B2 (ja) 2016-09-13 2017-07-31 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20190207045A1 (ja)
JP (1) JP6742000B2 (ja)
CN (1) CN109743885A (ja)
WO (1) WO2018051658A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193695A (ja) 2018-09-28 2021-12-23 パナソニック株式会社 太陽電池モジュールの製造方法および太陽電池モジュール
JP7317479B2 (ja) * 2018-09-28 2023-07-31 パナソニックホールディングス株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2020107758A (ja) * 2018-12-27 2020-07-09 パナソニック株式会社 太陽電池モジュール
TW202101780A (zh) * 2019-05-23 2021-01-01 美商阿爾發金屬化工公司 用於太陽能電池之模組製造的焊料膏

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353691A (ja) * 2004-06-08 2005-12-22 Sharp Corp 電極、太陽電池、これらの製造方法
JP5384004B2 (ja) * 2007-03-19 2014-01-08 三洋電機株式会社 太陽電池モジュール
JP2010135562A (ja) * 2008-12-04 2010-06-17 Sharp Corp 光電変換素子、光電変換素子モジュールおよび光電変換素子の製造方法
WO2013046389A1 (ja) * 2011-09-29 2013-04-04 三洋電機株式会社 太陽電池、太陽電池モジュール及びその製造方法
FR2990797B1 (fr) * 2012-05-21 2016-04-01 Commissariat Energie Atomique Cellule photovoltaique a elargissement local du bus
CN104350604B (zh) * 2012-06-29 2017-02-22 松下知识产权经营株式会社 太阳能电池组件和太阳能电池组件的制造方法

Also Published As

Publication number Publication date
US20190207045A1 (en) 2019-07-04
JPWO2018051658A1 (ja) 2019-06-24
WO2018051658A1 (ja) 2018-03-22
CN109743885A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
JP6742000B2 (ja) 太陽電池モジュール
JP5879513B2 (ja) 太陽電池モジュール
JP7317479B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6893330B2 (ja) 太陽電池モジュール
JP2018046112A (ja) 太陽電池モジュール
JP6706849B2 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
JP6735472B2 (ja) 太陽電池モジュール
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
JP2020088268A (ja) 太陽電池モジュール
US20200168755A1 (en) Solar cell module including a plurality of solar cells
WO2011152350A1 (ja) 太陽電池モジュールの製造方法
JP2020107758A (ja) 太陽電池モジュール
JP6706841B2 (ja) 端子ボックス、太陽電池モジュール、太陽電池モジュールの製造方法
US20210066523A1 (en) Solar cell module including solar cell
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2020098902A (ja) 太陽電池モジュール
US20190221680A1 (en) Solar cell module including terminal box and method of manufacturing solar cell
JP2017183650A (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2018107211A (ja) 太陽電池モジュール
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
JP2021044360A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R151 Written notification of patent or utility model registration

Ref document number: 6742000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees