WO2018116553A1 - 太陽電池モジュールおよび太陽電池セル - Google Patents

太陽電池モジュールおよび太陽電池セル Download PDF

Info

Publication number
WO2018116553A1
WO2018116553A1 PCT/JP2017/033600 JP2017033600W WO2018116553A1 WO 2018116553 A1 WO2018116553 A1 WO 2018116553A1 JP 2017033600 W JP2017033600 W JP 2017033600W WO 2018116553 A1 WO2018116553 A1 WO 2018116553A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
light receiving
receiving surface
finger electrode
electrode
Prior art date
Application number
PCT/JP2017/033600
Other languages
English (en)
French (fr)
Inventor
平 茂治
小林 伸二
譲 宮田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018557540A priority Critical patent/JP6761958B2/ja
Publication of WO2018116553A1 publication Critical patent/WO2018116553A1/ja
Priority to US16/447,730 priority patent/US20190305145A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar battery module and a solar battery cell having collector electrodes on both sides.
  • the inter-cell wiring material is pressurized toward the finger electrode formed on the surface of the solar battery cell.
  • the finger electrode formed on the light receiving surface of the solar cell and the finger electrode formed on the back surface are arranged so as to overlap each other on the projection surface parallel to the light receiving surface (see, for example, Patent Document 1).
  • the number of finger electrodes formed on the back surface is set to an integral multiple of the number of finger electrodes formed on the light receiving surface.
  • the finger electrode is formed using a material containing a noble metal such as silver paste, the cost of the solar battery cell is increased by increasing the number of finger electrodes formed on the back surface. Therefore, it is not desirable to increase the number of finger electrodes more than necessary.
  • the present invention has been made in view of such circumstances, and its purpose is to prevent the occurrence of cracks without making the number of finger electrodes formed on the back surface an integral multiple of the number of finger electrodes arranged on the light receiving surface side. It is to provide a technology to suppress.
  • a solar cell module includes a plurality of solar cells having a first surface and a second surface facing opposite to each other, and among the plurality of solar cells, And a wiring member for connecting two solar cells adjacent in one direction.
  • Each of the plurality of solar cells has n first collecting electrodes arranged in the first direction on the first surface and (n ⁇ 1) ⁇ m1 / m2 + 1 arranged in the first direction on the second surface.
  • the second collector electrode and one or more auxiliary lines arranged in the first direction on the second surface.
  • m2 first collector electrodes and m1 second collector electrodes are included, and the projection is parallel to the first surface or the second surface.
  • the auxiliary line is disposed on the second surface, and the length of the auxiliary line in the second direction intersecting the first direction is equal to that of the second collector electrode.
  • the wiring member is shorter than the length in the second direction, and is connected to the second collector electrode and the auxiliary line on the second surface of the solar battery cell.
  • the solar battery cell is a solar battery cell having a first surface and a second surface facing in opposite directions, and n first current collecting electrodes arranged in the first direction on the first surface, (N ⁇ 1) ⁇ m1 / m2 + 1 second collector electrodes arranged in the first direction on the surface, and one or more auxiliary lines arranged in the first direction on the second surface.
  • n first current collecting electrodes arranged in the first direction on the first surface
  • one or more auxiliary lines arranged in the first direction on the second surface.
  • m2 first collector electrodes and m1 second collector electrodes are included, and the projection is parallel to the first surface or the second surface.
  • the auxiliary line is disposed on the second surface, and the length of the auxiliary line in the second direction intersecting the first direction is equal to that of the second collector electrode. It is shorter than the length in the second direction.
  • the occurrence of cracks can be suppressed without making the number of finger electrodes formed on the back surface an integral multiple of the number of finger electrodes arranged on the light receiving surface side.
  • FIG. 3 (a)-(b) are plan views showing the structure of the solar battery cell of FIG.
  • FIG. 4 is a cross-sectional view of the solar battery cell of FIGS. 3 (a)-(b).
  • 5 (a)-(b) are plan views showing other structures of the solar battery cell of FIG.
  • Embodiments of the present invention relate to a solar cell module including a plurality of solar cells.
  • Each solar battery cell has a light receiving surface and a back surface, and a plurality of finger electrodes (hereinafter referred to as “light receiving surface finger electrodes”) are arranged on the light receiving surface side, and a plurality of finger electrodes (hereinafter referred to as “back surface finger electrodes”). ”).
  • the some light receiving surface finger electrode and several back surface finger electrode in two adjacent photovoltaic cells are connected by the wiring material.
  • the number of back surface finger electrodes is made larger than the number of light receiving surface finger electrodes.
  • the light receiving surface finger electrode is provided on a light receiving surface or a projection surface parallel to the back surface (hereinafter sometimes simply referred to as “projection surface”).
  • projection surface a light receiving surface or a projection surface parallel to the back surface
  • the number of back surface finger electrodes is made an integral multiple of the number of light receiving surface finger electrodes.
  • the cost of the solar battery cell increases due to the increase in the number of the light receiving surface finger electrode and the back surface finger electrode. Therefore, it is desired to suppress the occurrence of cracks while suppressing an increase in the number of finger electrodes under the condition that the number of back surface finger electrodes is larger than the number of light receiving surface finger electrodes.
  • the number of back surface finger electrodes is not an integral multiple of the number of light receiving surface finger electrodes.
  • An auxiliary line is arranged on the back surface so as to overlap such a light receiving surface finger electrode.
  • the auxiliary line has the same structure as the back finger electrode, but is shorter than the back finger electrode. For this reason, the light-receiving surface finger electrode and the auxiliary line overlap to suppress the generation of cracks, and the use of the auxiliary line suppresses the use of noble metal.
  • parallel and “orthogonal” include not only perfect parallel and orthogonal, but also a case of deviating from parallel within an error range. Further, “substantially” means that they are the same in an approximate range.
  • FIG. 1 is a plan view from the light receiving surface side of a solar cell module 100 according to an embodiment of the present invention.
  • an orthogonal coordinate system including an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the main plane arranged on the positive side of the z axis is the light receiving surface, and the z axis
  • the main plane arranged on the negative direction side is the back surface.
  • the positive direction side of the z-axis may be referred to as “light-receiving surface side”
  • the negative direction side of the z-axis may be referred to as “back surface side”.
  • the y-axis direction is referred to as a “first direction”
  • the x-axis direction is referred to as a “second direction”.
  • the solar cell module 100 includes eleventh solar cells 10aa, collectively referred to as solar cells 10,..., 64th solar cells 10fd, first crossover wiring members 14a, collectively referred to as crossover wiring members 14, and second crossovers.
  • the first non-power generation region 20a and the second non-power generation region 20b are arranged so as to sandwich the plurality of solar cells 10 in the y-axis direction.
  • the first non-power generation region 20a is disposed on the positive side of the y-axis with respect to the plurality of solar cells 10, and the second non-power generation region 20b is more on the y-axis than the plurality of solar cells 10. It is arranged on the negative direction side.
  • the first non-power generation region 20 a and the second non-power generation region 20 b (hereinafter, sometimes collectively referred to as “non-power generation region 20”) have a rectangular shape and do not include the solar battery cell 10.
  • Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is formed of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphide (InP). Although the structure of the solar battery cell 10 will be described later, it is assumed here that it is a heterojunction solar battery cell, for example.
  • a plurality of finger electrodes extending in the x-axis direction parallel to each other and extending in the y-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10.
  • a plurality of, for example, three bus bar electrodes are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the bus bar electrode and the finger electrode are formed of, for example, silver paste.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • six solar cells 10 are arranged in the x-axis direction, and four solar cells 10 are arranged in the y-axis direction.
  • the number of the photovoltaic cells 10 arranged in the x-axis direction and the number of the photovoltaic cells 10 arranged in the y-axis direction are not limited to this.
  • the four solar cells 10 arranged side by side in the y-axis direction are connected in series by the inter-cell wiring member 18 to form one solar cell string 12.
  • the first solar cell string 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, the thirteenth solar cell 10ac, and the fourteenth solar cell 10ad.
  • Other solar cell strings 12, for example, the second solar cell string 12b to the sixth solar cell string 12f are formed in the same manner.
  • the six solar cell strings 12 are arranged in parallel in the x-axis direction.
  • the inter-cell wiring member 18 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side.
  • the three inter-cell wiring members 18 for connecting the eleventh solar cell 10aa and the twelfth solar cell 10ab include the bus bar electrode on the back surface side of the eleventh solar cell 10aa and the twelfth solar cell 10ab.
  • the bus bar electrode on the light receiving surface side is electrically connected.
  • Each of the fifth transition wiring member 14e to the seventh transition wiring member 14g arranged in the second non-power generation region 20b extends in the x-axis direction and is adjacent to each other via the cell end wiring member 16 12 is electrically connected.
  • the fifth crossover wiring member 14e is connected to the fourteenth solar cell 10ad in the first solar cell string 12a and the twenty-fourth solar cell 10bd in the second solar cell string 12b.
  • the cell end wiring member 16 is arranged in the same manner as the inter-cell wiring member 18 on the light receiving surface or the back surface of the solar battery cell 10.
  • the first transition wiring member 14a disposed in the first non-power generation region 20a is connected to the eleventh solar cell 10aa of the first solar cell string 12a via the cell end wiring member 16.
  • the first transition wiring member 14 a extends from the connection portion with the cell end wiring member 16 to the vicinity of the center of the solar cell module 100 in the x-axis direction.
  • the second crossover wiring member 14b is connected to the twenty-first solar cell 10ba of the second solar cell string 12b through the cell end wiring member 16. Further, the second crossover wiring member 14 b is also connected to the thirty-first solar cell 10 ca of the third solar cell string 12 c through another cell end wiring member 16. With these connections, the second crossover wiring member 14b electrically connects the second solar cell string 12b and the third solar cell string 12c.
  • the third crossover wiring member 14c and the fourth crossover wiring member 14d are disposed so as to be reversed in the x-axis direction with respect to the second crossover wiring member 14b and the first crossover wiring member 14a. Therefore, the first solar cell string 12a to the sixth solar cell string 12f are electrically connected in series.
  • An unillustrated take-out wiring member is connected to each of the first crossover wiring member 14a to the fourth crossover wiring member 14d, and these take-out wires are connected to a terminal box (not shown).
  • FIG. 2 is a cross-sectional view of the solar cell module 100, and is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes an eleventh solar cell 10aa, a twelfth solar cell 10ab, a thirteenth solar cell 10ac, a fourteenth solar cell 10ad, a first crossover wiring material 14a, 5 crossover wiring member 14e, cell end wiring member 16, inter-cell wiring member 18, first protective member 40a, second protective member 40b collectively referred to as protective member 40, and first sealing member collectively referred to as sealing member 42 42a and the second sealing member 42b.
  • the upper side of FIG. 2 corresponds to the light receiving surface side, and the lower side corresponds to the back surface side.
  • the first protective member 40 a is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • the first protective member 40a is made of a light-transmitting and water-blocking glass, a light-transmitting plastic, or the like, and is formed in a rectangular plate shape. Here, glass is used as an example.
  • the 1st sealing member 42a is laminated
  • the first sealing member 42a for example, a thermoplastic resin such as a resin film of polyolefin, EVA (ethylene vinyl acetate copolymer), PVB (polyvinyl butyral), polyimide, or the like is used. A thermosetting resin may be used.
  • the first sealing member 42a is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first protection member 40a.
  • the second sealing member 42b is laminated on the back side of the first sealing member 42a.
  • the second sealing member 42b seals the plurality of solar cells 10, the inter-cell wiring member 18 and the like with the first sealing member 42a.
  • the same thing as the 1st sealing member 42a can be used for the 2nd sealing member 42b.
  • the second sealing member 42b may be integrated with the first sealing member 42a by heating in the laminating / curing process.
  • the second protective member 40b is laminated on the back side of the second sealing member 42b.
  • the 2nd protection member 40b protects the back surface side of the solar cell module 100 as a back sheet.
  • a resin film such as PET (polyethylene terephthalate) is used as the second protective member 40b.
  • a laminated film having a structure in which an Al foil is sandwiched between resin films may be used as the second protective member 40b.
  • an Al frame frame may be attached around the solar cell module 100.
  • FIGS. 3A to 3B are plan views showing the structure of the solar battery cell 10.
  • 3A is a plan view from the light receiving surface 50 side of the solar battery cell 10
  • FIG. 3B is a plan view from the back surface 52 side of the solar battery cell 10.
  • the light-receiving surface 50 of the photovoltaic cell 10 is called a 1st surface
  • the back surface 52 of the photovoltaic cell 10 is called a 2nd surface.
  • the light-receiving surface 50 and the back surface 52 of the photovoltaic cell 10 are comprised by the octagon in which the long side and the short side were connected alternately, the short side contained in other shapes, for example, an octagon May be non-linear or may be formed by a square.
  • a plurality of light receiving surface finger electrodes 60 extending in the x-axis direction are arranged in parallel to each other on the light receiving surface 50 in FIG.
  • “5” light receiving surface finger electrodes 60 of the first light receiving surface finger electrode 60a to the fifth light receiving surface finger electrode 60e are arranged in the y-axis direction.
  • the number of light receiving surface finger electrodes 60 is generalized to “n”.
  • a plurality of, for example, three light-receiving surface bus bar electrodes 62 that extend in the y-axis direction so as to intersect, for example, orthogonal to, the plurality of light-receiving surface finger electrodes 60 are disposed on the light-receiving surface 50.
  • the light receiving surface bus bar electrode 62 connects each of the plurality of light receiving surface finger electrodes 60.
  • the inter-cell wiring material 18 is disposed so as to overlap each of the plurality of light receiving surface bus bar electrodes 62. Therefore, the three inter-cell wiring members 18 extend in the direction of other adjacent solar cells 10, that is, in the y-axis direction while being arranged in the x-axis direction.
  • a plurality of back surface finger electrodes 64 extending in the x-axis direction are arranged in parallel to each other.
  • the plurality of back surface finger electrodes 64 “7” back surface finger electrodes 64 from the first back surface finger electrode 64a to the seventh back surface finger electrode 64g are arranged in the y-axis direction.
  • the number of the back surface finger electrodes 64 is made larger than the number of the light receiving surface finger electrodes 60.
  • three back surface bus bar electrodes 66 are arranged in the same manner as the light receiving surface 50.
  • the inter-cell wiring members 18 are also arranged so as to overlap each of the plurality of back surface bus bar electrodes 66.
  • the first light receiving surface finger electrode 60a and the first back surface finger electrode 64a overlap.
  • the projection plane corresponds to the xy plane.
  • the third light receiving surface finger electrode 60c and the fourth back surface finger electrode 64d overlap, and the fifth light receiving surface finger electrode 60e and the seventh back surface finger electrode 64g also overlap. That is, a part of the plurality of light receiving surface finger electrodes 60 and a part of the plurality of back surface finger electrodes 64 overlap on the projection surface.
  • the position where the first light receiving surface finger electrode 60a and the first back surface finger electrode 64a overlap is indicated as a first position 80. Further, the next overlap between the light receiving surface finger electrode 60 and the back surface finger electrode 64 from the first position 80 toward the positive direction of the y-axis is performed in the third light receiving surface finger electrode 60c and the fourth back surface finger electrode 64d. . Therefore, the second position 82 until the light receiving surface finger electrode 60 and the back surface finger electrode 64 overlap next from the first position 80 in the positive direction of the y-axis is the third light receiving surface finger electrode 60c and the fourth back surface finger. The position of the electrode 64d is shown on the negative direction side of the y-axis.
  • a unit interval 84 is indicated between the first position 80 and the second position 82. It can be said that the unit interval 84 is a section where non-overlap continues after the light-receiving surface finger electrode 60 and the back surface finger electrode 64 overlap.
  • the unit interval 84 includes two light receiving surface finger electrodes 60 and three back surface finger electrodes 64.
  • the number of light receiving surface finger electrodes 60 included in the unit interval 84 is indicated as “m2” and the number of back surface finger electrodes 64 is indicated as “m1”
  • the number of back surface finger electrodes 64 on the back surface 52 is “(n ⁇ 1) ⁇ m1 / m2 + 1 ”.
  • the position where the third light receiving surface finger electrode 60c and the fourth back surface finger electrode 64d overlap on the projection surface may also be referred to as the first position 80.
  • the second position 82 and the unit interval 84 are defined as before.
  • a position where only the light receiving surface finger electrode 60 exists for example, a position where the second light receiving surface finger electrode 60 b does not overlap with the light receiving surface bus bar electrode 62 is indicated as a third position 86.
  • the third position 86 is also shown with respect to the fourth light receiving surface finger electrode 60d.
  • the auxiliary line 68 is disposed on the back surface 52. More specifically, the first auxiliary line 68a, the third auxiliary line 68c, and the fifth auxiliary line 68e are disposed on the back surface 52 at the third position 86 with respect to the second light receiving surface finger electrode 60b.
  • the second auxiliary line 68b, the fourth auxiliary line 68d, and the sixth auxiliary line 68f are disposed on the back surface 52 at the third position 86 with respect to the fourth light receiving surface finger electrode 60d. Since the plurality of auxiliary lines 68 are arranged in the y-axis direction along the inter-cell wiring member 18, each auxiliary line 68 is connected to the inter-cell wiring member 18.
  • auxiliary lines 68 are disposed between the second back surface finger electrode 64b and the third back surface finger electrode 64c, and three auxiliary wires are disposed between the fifth back surface finger electrode 64e and the sixth back surface finger electrode 64f.
  • Line 68 is placed.
  • the auxiliary line 68 extends from the back finger electrode 64 at the first position 80 on the projection plane to the back finger electrode 64 of (m1-1) / 2 surfaces and ( m1 + 1) / 2 is arranged on the back surface 52 so as to be positioned between the back surface finger electrodes 64 of the two surfaces.
  • the back surface finger electrode 64 at the first position 80 on the projection surface here corresponds to the first back surface finger electrode 64a and the fourth back surface finger electrode 64d in FIG.
  • the auxiliary line 68 is formed of silver paste or the like, similar to the back finger electrode 64.
  • the length of the auxiliary line 68 is shorter than the length of the back finger electrode 64 in the x-axis direction.
  • the length of the auxiliary line 68 is shorter than the interval between two adjacent inter-cell wiring members 18 and longer than the width of the inter-cell wiring member 18.
  • FIG. 4 is a cross-sectional view of the solar battery cell 10, and is a cross-sectional view taken along the line B-B ′ of FIG. This includes a first adhesive layer 70a and a second adhesive layer 70b collectively referred to as an adhesive layer 70 in addition to the configuration shown in FIGS. 3 (a)-(b).
  • the upper surface in FIG. 4 is the light receiving surface 50, and the lower surface in FIG. 4 is the back surface 52.
  • the first light receiving surface finger electrode 60a to the fifth light receiving surface finger electrode 60e are disposed on the light receiving surface 50 of the solar battery cell 10. Further, the inter-cell wiring member 18 is bonded to the light receiving surface 50 via the first adhesive layer 70a. Therefore, the first light receiving surface finger electrode 60 a to the fifth light receiving surface finger electrode 60 e are electrically connected to the inter-cell wiring member 18.
  • the first back finger electrode 64a to the seventh back finger electrode 64g, the first auxiliary line 68a, and the second auxiliary line 68b are arranged on the back surface 52 via the second adhesive layer 70b. Therefore, the first back surface finger electrode 64 a to the seventh back surface finger electrode 64 g, the first auxiliary line 68 a, and the second auxiliary line 68 b are electrically connected to the inter-cell wiring member 18.
  • the first light receiving surface finger electrode 60a and the first back surface finger electrode 64a face each other in the thickness direction of the solar battery cell 10.
  • the pressure at the time of pressure bonding is canceled between the light receiving surface 50 and the back surface 52 between them.
  • the second light receiving surface finger electrode 60 b and the fourth light receiving surface finger electrode 60 d do not face the back finger electrode 64 in the thickness direction of the solar battery cell 10.
  • the second light receiving surface finger electrode 60b faces the first auxiliary line 68a
  • the fourth light receiving surface finger electrode 60d faces the second auxiliary line 68b.
  • FIGS. 5A and 5B are plan views showing other structures of the solar battery cell 10. This is shown in the same manner as in FIGS. 3 (a)-(b), so the differences will be described here.
  • the light receiving surface 50 of FIG. 5A as the plurality of light receiving surface finger electrodes 60, “7” light receiving surface finger electrodes 60 from the first light receiving surface finger electrode 60a to the seventh light receiving surface finger electrode 60g are arranged in the y-axis direction. Are lined up. Therefore, n is “7”.
  • the plurality of back surface finger electrodes 64 “9” back surface finger electrodes 64 from the first back surface finger electrode 64a to the ninth back surface finger electrode 64i are arranged in the y-axis direction. .
  • the first position 80, the second position 82, and the unit interval 84 are defined in the same manner as in FIGS.
  • the unit interval 84 includes three light receiving surface finger electrodes 60 and four back surface finger electrodes 64. Therefore, m1 is “4”, m2 is “3”, and m1> m2.
  • the third position 86 is also defined in the same manner as in FIGS. 3A and 3B, and the auxiliary line 68 is disposed on the back surface 52 at the third position 86.
  • the first auxiliary line 68a, the fifth auxiliary line 68e, and the ninth auxiliary line 68i are disposed on the back surface 52 at the third position 86 with respect to the second light receiving surface finger electrode 60b.
  • the second auxiliary line 68b, the sixth auxiliary line 68f, and the tenth auxiliary line 68j are disposed on the back surface 52 at the third position 86 with respect to the third light receiving surface finger electrode 60c. The same applies to the fifth light receiving surface finger electrode 60e and the sixth light receiving surface finger electrode 60f.
  • auxiliary lines 68 are disposed between the second back surface finger electrode 64b and the third back surface finger electrode 64c, and three auxiliary lines are disposed between the third back surface finger electrode 64c and the fourth back surface finger electrode 64d.
  • Line 68 is placed. This can be generalized as follows. When n is an even number, the auxiliary line 68 has an m1 / 2-1 back finger electrode 64 and an m1 / 2 back finger electrode 64 from the back finger electrode 64 at the first position 80 on the projection plane. It arrange
  • auxiliary line 68 is positioned between the m1 / 2 back finger electrode 64 and the m1 / 2 + 1 back finger electrode 64 from the back finger electrode 64 at the first position 80 on the projection plane. Is disposed on the back surface 52.
  • the back surface finger electrode 64 at the first position 80 on the projection surface here corresponds to the first back surface finger electrode 64a and the fifth back surface finger electrode 64e in FIG.
  • the manufacturing method of the solar cell module 100 is demonstrated.
  • the first protective member 40a, the first sealing member 42a, the solar battery cell 10 and the like, the second sealing member 42b, and the second protective member 40b are sequentially overlapped from the positive direction of the z axis toward the negative direction.
  • a laminated body is produced
  • a laminate curing process is performed on the laminate.
  • air is extracted from the laminated body, and heated and pressurized to integrate the laminated body.
  • the temperature is set to about 150 ° C. as described above.
  • n light receiving surface finger electrodes 60 are arranged on the light receiving surface 50 and (n ⁇ 1) ⁇ m1 / m2 + 1 back finger electrodes 64 are arranged on the back surface 52.
  • An increase in the number of electrodes 64 can be suppressed.
  • the increase in usage-amounts, such as a silver paste can be suppressed.
  • the increase in usage-amounts, such as a silver paste is suppressed, the increase in cost can be suppressed.
  • the auxiliary line 68 is disposed when only the light receiving surface finger electrode 60 exists, the pressure at the time of crimping can be partially offset between the light receiving surface 50 and the back surface 52. Moreover, since a part of stress is canceled, the shear stress with respect to the photovoltaic cell 10 can be relieved. Moreover, since the shear stress with respect to the photovoltaic cell 10 is relieved, generation
  • N a indicates the number of the light receiving surface finger electrodes 60, that is, the above-described n
  • 1 / (N a ⁇ 1) indicates the pitch of the light receiving surface finger electrodes 60
  • ma indicates the position of the ma light receiving surface finger electrode 60 from the light receiving surface finger electrode 60 at the end, and is a value of 1 ⁇ ma ⁇ (N a ⁇ 1).
  • N b in the term on the right side in parentheses indicates the number of the back surface finger electrodes 64, so 1 / (N b ⁇ 1) indicates the pitch of the light receiving surface bus bar electrodes 62.
  • mb indicates the position of the mb light receiving surface bus bar electrode 62 from the light receiving surface bus bar electrode 62 at the end, and is a value of 1 ⁇ mb ⁇ (N b ⁇ 1).
  • the above equation indicates the distance between the ma-th light-receiving surface finger electrode 60 and the mb-th light-receiving surface bus bar electrode 62.
  • this distance is any place in the plane of the solar battery cell 10. If there is a portion that is larger than the sum of the thickness of the finger electrode 60 and the thickness of the back surface finger electrode 64 or 500 ⁇ m or less, the corresponding portion of the solar cell 10 is likely to be subjected to shear stress and easily cracked. Therefore, in the case where the relationship between the numbers of the light receiving surface finger electrodes 60 and the back surface finger electrodes 64 is as described above, the present embodiment shows a particularly remarkable effect.
  • the length of the auxiliary line 68 is shorter than the interval between the two adjacent inter-cell wiring members 18, the amount of silver paste used can be reduced. Further, since the length of the auxiliary line 68 is longer than the width of the inter-cell wiring member 18, the amount of pressure offset during crimping can be increased. Further, when n is an odd number, from the back surface finger electrode 64 at the first position 80, the (m1-1) / 2 back surface finger electrode 64 and the (m1 + 1) / 2 back surface finger electrode 64 Since the auxiliary line 68 is disposed between them, the light receiving surface finger electrode 60 can be made to face the auxiliary line 68.
  • an auxiliary line 68 is formed between the back finger electrode 64 having the m1 / 2-1 plane and the back finger electrode 64 having the m1 / 2 plane from the back finger electrode 64 at the first position 80. Therefore, it is possible to face the light receiving surface finger electrode 60.
  • the auxiliary line 68 is arranged between the back finger electrode 64 of the m1 / 2 side and the back finger electrode 64 of the m1 / 2 + 1 side from the back finger electrode 64 at the first position 80. Therefore, the light-receiving surface finger electrode 60 can be opposed.
  • the solar cell module 100 includes a plurality of solar cells 10 having a light receiving surface 50 and a back surface 52 facing opposite to each other, and 2 adjacent to each other in the first direction among the plurality of solar cells 10. And an inter-cell wiring member 18 for connecting two solar cells 10.
  • Each of the plurality of solar cells 10 includes n light-receiving surface finger electrodes 60 arranged in the first direction on the light-receiving surface 50 and (n ⁇ 1) ⁇ m1 / m2 + 1 arranged in the first direction on the back surface 52.
  • the back surface finger electrode 64 of a book and the 1 or more auxiliary line 68 arranged in the 1st direction in the back surface 52 are provided.
  • a first position 80 where the light receiving surface finger electrode 60 and the back surface finger electrode 64 overlap, and the light receiving surface finger electrode 60 from the first position 80 toward the first direction.
  • M2 light receiving surface finger electrodes 60 and m1 back surface finger electrodes 64 are included between the second position 82 and the second position 82 until the back surface finger electrode 64 next overlaps.
  • the auxiliary line 68 is disposed on the back surface 52, and the auxiliary line 68 has a length in the second direction intersecting the first direction. Is shorter than the length of the back surface finger electrode 64 in the second direction, and the inter-cell wiring member 18 complements the back surface finger electrode 64 on the back surface 52 of the solar battery cell 10. It is connected to line 68.
  • a plurality of inter-cell wiring members 18 are arranged in the second direction on the back surface 52, and the length of the auxiliary line 68 in the second direction is shorter than the interval between two adjacent inter-cell wiring members 18 in the second direction.
  • the length of the auxiliary line 68 in the second direction is longer than the width of the inter-cell wiring member 18 in the second direction.
  • the auxiliary line 68 extends from the back surface finger electrode 64 at the first position 80 on the projection plane parallel to the light receiving surface 50 or the back surface 52 to the (m1-1) / 2 back surface finger electrode 64. And (m1 + 1) / 2 may be disposed on the back surface 52 so as to be positioned between the back surface finger electrodes 64.
  • the auxiliary line 68 extends from the back finger electrode 64 at the first position 80 on the projection plane parallel to the light receiving surface 50 or the back surface 52 to m1 / 2-1 back surface finger electrodes 64 and m1. It is arranged on the back surface 52 so as to be positioned between the two-sided back surface finger electrode 64 and between the m1 / 2-sided back surface finger electrode 64 and the m1 / 2 + 1-sided back surface finger electrode 64. You may arrange
  • This solar battery cell 10 is a solar battery cell 10 having a light receiving surface 50 and a back surface 52 facing in opposite directions, and n light receiving surface finger electrodes 60 arranged in the first direction on the light receiving surface 50; (N ⁇ 1) ⁇ m1 / m2 + 1 back finger electrodes 64 arranged in the first direction on the back surface 52 and one or more auxiliary lines 68 arranged in the first direction on the back surface 52 are provided.
  • a first position 80 where the light receiving surface finger electrode 60 and the back surface finger electrode 64 overlap, and the light receiving surface finger electrode 60 from the first position 80 toward the first direction.
  • M2 light receiving surface finger electrodes 60 and m1 back surface finger electrodes 64 are included between the second position 82 and the second position 82 until the back surface finger electrode 64 next overlaps.
  • the auxiliary line 68 is disposed on the back surface 52, and the auxiliary line 68 has a length in the second direction intersecting the first direction. However, it is shorter than the length of the back surface finger electrode 64 in the second direction.
  • the present invention is not limited to this.
  • the number of back surface finger electrodes 64 is “82”.
  • the values of n, m1, and m2 are not limited to these. According to this modification, the degree of freedom of configuration can be improved.
  • the occurrence of cracks can be suppressed without making the number of finger electrodes formed on the back surface an integral multiple of the number of finger electrodes arranged on the light receiving surface side.

Abstract

n本の受光面フィンガー電極(60)は、受光面(50)において並べられる。(n-1)×m1/m2+1本の裏面フィンガー電極(64)は裏面(52)において並べられる。投影面上において、第1位置(80)と、第1位置(80)と第2位置(82)との間には、m2本の受光面フィンガー電極(60)とm1本の裏面フィンガー電極(64)とが含まれる。投影面上において、受光面フィンガー電極(60)だけが存在する第3位置(86)では、補助線(68)が裏面(52)に配置される。補助線(68)の長さは、裏面フィンガー電極(64)の長さよりも短い。

Description

太陽電池モジュールおよび太陽電池セル
 本発明は、両面に集電極を備える太陽電池モジュールおよび太陽電池セルに関する。
 太陽電池モジュールでは、複数の太陽電池セルがセル間配線材によって接続される。その接続工程において、太陽電池セルの表面に形成されたフィンガー電極に向かってセル間配線材が加圧される。太陽電池セルの受光面に形成されたフィンガー電極と、裏面に形成されたフィンガー電極との位置関係が完全にずれている場合、セル間配線材を加圧する際に太陽電池セルに剪断応力が働く。剪断応力による負荷が太陽電池セルに蓄積すると、クラックが生じやすくなる。それを防ぐために、受光面と平行な投影面上において、受光面に形成されたフィンガー電極と、裏面に形成されたフィンガー電極とが重なるように配置される(例えば、特許文献1参照)。
特開2008-235354号公報
 太陽電池セルにおいて発電された電力の集電効率を向上させるために、受光面に形成されたフィンガー電極の本数よりも、裏面に形成されたフィンガー電極の本数が多くされるのが望ましい。さらに、クラックの発生を抑制するために、例えば、裏面に形成されたフィンガー電極の本数は、受光面に形成されたフィンガー電極の本数の整数倍にされる。しかしながら、フィンガー電極は銀ペースト等の貴金属を含む材料を用いて形成されるので、裏面に形成されたフィンガー電極の本数の増加によって、太陽電池セルのコストが増加する。したがって、必要以上にフィンガー電極の本数が増えるのは望ましくない。
 本発明はこうした状況に鑑みなされたものであり、その目的は、裏面に形成されたフィンガー電極の本数を受光面側に配置されたフィンガー電極の本数の整数倍にすることなく、クラックの発生を抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、互いに反対を向いた第1面と第2面とを有する複数の太陽電池セルと、複数の太陽電池セルのうち、第1方向に隣接した2つの太陽電池セルを接続する配線材とを備える。複数の太陽電池セルのそれぞれは、第1面において第1方向に並べられたn本の第1集電極と、第2面において第1方向に並べられた(n-1)×m1/m2+1本の第2集電極と、第2面において第1方向に並べられた1本以上の補助線とを備える。第1面あるいは第2面と平行な投影面上において、第1集電極と第2集電極とが重複した第1位置と、第1位置から第1方向に向かって第1集電極と第2集電極とが次に重複するまでの第2位置との間には、m2本の第1集電極とm1本の第2集電極とが含まれ、第1面あるいは第2面と平行な投影面上において、第1集電極だけが存在する第3位置では、補助線が第2面に配置され、補助線において、第1方向に交差した第2方向の長さが、第2集電極における第2方向の長さよりも短く、配線材は、太陽電池セルの第2面において、第2集電極と補助線に接続される。
 本発明の別の態様は、太陽電池セルである。この太陽電池セルは、互いに反対を向いた第1面と第2面とを有する太陽電池セルであって、第1面において第1方向に並べられたn本の第1集電極と、第2面において第1方向に並べられた(n-1)×m1/m2+1本の第2集電極と、第2面において第1方向に並べられた1本以上の補助線とを備える。第1面あるいは第2面と平行な投影面上において、第1集電極と第2集電極とが重複した第1位置と、第1位置から第1方向に向かって第1集電極と第2集電極とが次に重複するまでの第2位置との間には、m2本の第1集電極とm1本の第2集電極とが含まれ、第1面あるいは第2面と平行な投影面上において、第1集電極だけが存在する第3位置では、補助線が第2面に配置され、補助線において、第1方向に交差した第2方向の長さが、第2集電極における第2方向の長さよりも短い。
 本発明によれば、裏面に形成されたフィンガー電極の本数を受光面側に配置されたフィンガー電極の本数の整数倍にすることなく、クラックの発生を抑制できる。
本発明の実施例に係る太陽電池モジュールの受光面側からの平面図である。 図1の太陽電池モジュールの断面図である。 図3(a)-(b)は、図1の太陽電池セルの構造を示す平面図である。 図3(a)-(b)の太陽電池セルの断面図である。 図5(a)-(b)は、図1の太陽電池セルの別の構造を示す平面図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、複数の太陽電池セルを含む太陽電池モジュールに関する。各太陽電池セルは受光面と裏面を有するとともに、受光面側に複数のフィンガー電極(以下、「受光面フィンガー電極」という)を配置し、裏面側に複数のフィンガー電極(以下、「裏面フィンガー電極」という)を配置する。また、隣接した2つの太陽電池セルにおける複数の受光面フィンガー電極と複数の裏面フィンガー電極とが配線材によって接続される。このようなタイプの太陽電池セルにおいて、受光面は裏面よりも太陽光の入射量が多いので、受光面は裏面よりも大きく発電に寄与する。そのため、太陽電池セルにおいて発電された電力の集電効率を向上させるために、受光面フィンガー電極の本数よりも、裏面フィンガー電極の本数が多くされる。
 また、太陽電池セルにおけるクラックの発生を抑制して歩留まりを向上させるために、受光面あるいは裏面と平行な投影面(以下、単に「投影面」ということもある)上において、受光面フィンガー電極には裏面フィンガー電極が重複するように配置される。これらの状況を考慮すると、裏面フィンガー電極の本数は受光面フィンガー電極の本数の整数倍にされる。一方、受光面フィンガー電極と裏面フィンガー電極が貴金属で形成される場合、本数の増加によって太陽電池セルのコストが増加してしまう。そのため、受光面フィンガー電極の本数よりも裏面フィンガー電極の本数を多くする条件下において、フィンガー電極の本数の増加を抑制しつつ、クラックの発生を抑制したい。
 これらに対応するために、本実施例では、裏面フィンガー電極の本数は受光面フィンガー電極の本数の整数倍にしない。その結果、投影面上において、受光面フィンガー電極に裏面フィンガー電極が周期的に重複し、裏面フィンガー電極が重複しない受光面フィンガー電極も存在する。そのような受光面フィンガー電極に重複するように裏面には補助線が配置される。補助線は、裏面フィンガー電極と同様の構造を有するが、裏面フィンガー電極よりも短くされる。そのため、受光面フィンガー電極と補助線とが重複してクラックの発生が抑制されるとともに、補助線の使用によって貴金属の使用が抑制される。なお、以下の説明において、「平行」、「直交」は、完全な平行、直交だけではなく、誤差の範囲で平行からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
 図1は、本発明の実施例に係る太陽電池モジュール100の受光面側からの平面図である。図1に示すように、x軸、y軸、z軸からなる直交座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶこともある。また、y軸方向を「第1方向」とよぶ場合、x軸方向は「第2方向」とよばれる。
 太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第64太陽電池セル10fd、渡り配線材14と総称される第1渡り配線材14a、第2渡り配線材14b、第3渡り配線材14c、第4渡り配線材14d、第5渡り配線材14e、第6渡り配線材14f、第7渡り配線材14g、セル端配線材16、セル間配線材18を含む。第1非発電領域20aと第2非発電領域20bは、y軸方向において、複数の太陽電池セル10を挟むように配置される。具体的には、第1非発電領域20aは、複数の太陽電池セル10よりもy軸の正方向側に配置され、第2非発電領域20bは、複数の太陽電池セル10よりもy軸の負方向側に配置される。第1非発電領域20a、第2非発電領域20b(以下、「非発電領域20」と総称することもある)は、矩形状を有し、太陽電池セル10を含まない。
 複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は後述するが、ここでは例えばヘテロ接合型太陽電池セルであるとする。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば3本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。また、バスバー電極およびフィンガー電極は、例えば、銀ペースト等により形成される。
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、一例として、x軸方向に6つの太陽電池セル10が並べられ、y軸方向に4つの太陽電池セル10が並べられる。なお、x軸方向に並べられる太陽電池セル10の数と、y軸方向に並べられる太陽電池セル10の数は、これに限定されない。y軸方向に並んで配置される4つの太陽電池セル10は、セル間配線材18によって直列に接続され、1つの太陽電池ストリング12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10adが接続されることによって、第1太陽電池ストリング12aが形成される。他の太陽電池ストリング12、例えば、第2太陽電池ストリング12bから第6太陽電池ストリング12fも同様に形成される。その結果、6つの太陽電池ストリング12がx軸方向に平行に並べられる。
 太陽電池ストリング12を形成するために、セル間配線材18は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを接続する。例えば、第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための3つのセル間配線材18は、第11太陽電池セル10aaの裏面側のバスバー電極と第12太陽電池セル10abの受光面側のバスバー電極とを電気的に接続する。
 7つの渡り配線材14のうちの4つが、第1非発電領域20aに配置され、残りの3つが、第2非発電領域20bに配置される。第2非発電領域20bに配置される第5渡り配線材14eから第7渡り配線材14gのそれぞれは、x軸方向に延びて、セル端配線材16を介して互いに隣接する2つの太陽電池ストリング12に電気的に接続される。例えば、第5渡り配線材14eは、第1太陽電池ストリング12aにおける第14太陽電池セル10adと、第2太陽電池ストリング12bにおける第24太陽電池セル10bdとに接続される。ここで、セル端配線材16は、太陽電池セル10の受光面あるいは裏面において、セル間配線材18と同様に配置される。
 第1非発電領域20aに配置される第1渡り配線材14aは、セル端配線材16を介して第1太陽電池ストリング12aの第11太陽電池セル10aaに接続される。第1渡り配線材14aは、セル端配線材16との接続部分から、太陽電池モジュール100のx軸方向の中央付近まで延びる。第2渡り配線材14bは、セル端配線材16を介して第2太陽電池ストリング12bの第21太陽電池セル10baに接続される。また、第2渡り配線材14bは、別のセル端配線材16を介して第3太陽電池ストリング12cの第31太陽電池セル10caにも接続される。これらの接続により、第2渡り配線材14bは、第2太陽電池ストリング12bと第3太陽電池ストリング12cとを電気的に接続する。
 第3渡り配線材14c、第4渡り配線材14dは、第2渡り配線材14b、第1渡り配線材14aに対してx軸方向に反転して配置される。そのため、第1太陽電池ストリング12aから第6太陽電池ストリング12fは、電気的に直列に接続される。なお、第1渡り配線材14aから第4渡り配線材14dのそれぞれには、図示しない取出し配線材が接続され、それらの取出し配線は、図示しない端子ボックスに接続される。
 図2は、太陽電池モジュール100の断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10ad、第1渡り配線材14a、第5渡り配線材14e、セル端配線材16、セル間配線材18、保護部材40と総称される第1保護部材40a、第2保護部材40b、封止部材42と総称される第1封止部材42a、第2封止部材42bを含む。図2の上側が受光面側に相当し、下側が裏面側に相当する。
 第1保護部材40aは、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。第1保護部材40aには、透光性および遮水性を有するガラス、透光性プラスチック等が使用され、矩形板状に形成される。ここでは、一例としてガラスが使用されるとする。第1封止部材42aは、第1保護部材40aの裏面側に積層される。第1封止部材42aは、第1保護部材40aと太陽電池セル10との間に配置されて、これらを接着する。第1封止部材42aとして、例えば、ポリオレフィン、EVA(エチレン酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材42aは、透光性を有するとともに、第1保護部材40aにおけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。
 第2封止部材42bは、第1封止部材42aの裏面側に積層される。第2封止部材42bは、第1封止部材42aとの間で、複数の太陽電池セル10、セル間配線材18等を封止する。第2封止部材42bには、第1封止部材42aと同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材42bは第1封止部材42aと一体化されていてもよい。
 第2保護部材40bは、第2封止部材42bの裏面側に積層される。第2保護部材40bは、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材40bとしては、例えば、PET(ポリエチレンテレフタラート)等の樹脂フィルムが使用される。なお、第2保護部材40bとして、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用されてもよい。さらに、太陽電池モジュール100の周囲には、Alフレーム枠が取り付けられてもよい。
 図3(a)-(b)は、太陽電池セル10の構造を示す平面図である。特に、図3(a)は、太陽電池セル10の受光面50側からの平面図であり、図3(b)は、太陽電池セル10の裏面52側からの平面図である。なお、太陽電池セル10の受光面50を第1面とよぶ場合、太陽電池セル10の裏面52は第2面とよばれる。これらにおいて、太陽電池セル10の受光面50および裏面52は、長辺と短辺とが交互に接続された八角形により構成されるが、それ以外の形状、例えば、八角形に含まれる短辺が非直線であってもよいし、四角形により形成されてもよい。
 図3(a)の受光面50には、互いに平行にx軸方向に延びる複数の受光面フィンガー電極60が配置される。ここでは、複数の受光面フィンガー電極60として、第1受光面フィンガー電極60aから第5受光面フィンガー電極60eの「5」本の受光面フィンガー電極60がy軸方向に並べられる。なお、受光面フィンガー電極60の本数は、「n」本と一般化される。また、受光面50には、複数の受光面フィンガー電極60に交差、例えば直交するようにy軸方向に延びる複数、例えば3本の受光面バスバー電極62が配置される。受光面バスバー電極62は、複数の受光面フィンガー電極60のそれぞれを接続する。複数の受光面バスバー電極62のそれぞれに対して、セル間配線材18が重ねられて配置される。そのため、3つのセル間配線材18は、x軸方向に並べられながら、隣接した他の太陽電池セル10の方向、つまりy軸方向に延びる。
 図3(b)の裏面52には、互いに平行にx軸方向に延びる複数の裏面フィンガー電極64が配置される。ここでは、複数の裏面フィンガー電極64として、第1裏面フィンガー電極64aから第7裏面フィンガー電極64gの「7」本の裏面フィンガー電極64がy軸方向に並べられる。裏面フィンガー電極64の本数の一般化は後述するが、裏面フィンガー電極64の本数は受光面フィンガー電極60の本数よりも多くされる。また、裏面52には、受光面50と同様に3本の裏面バスバー電極66が配置される。複数の裏面バスバー電極66のそれぞれに対しても、セル間配線材18が重ねられて配置される。
 受光面50あるいは裏面52と平行な投影面上において、第1受光面フィンガー電極60aと第1裏面フィンガー電極64aは重複する。なお、投影面はx-y平面に相当する。また、投影面上において、第3受光面フィンガー電極60cと第4裏面フィンガー電極64dが重複するとともに、第5受光面フィンガー電極60eと第7裏面フィンガー電極64gも重複する。つまり、複数の受光面フィンガー電極60の一部と、複数の裏面フィンガー電極64の一部とが投影面上において重複する。
 ここで、第1受光面フィンガー電極60aと第1裏面フィンガー電極64aとが重複した位置は、第1位置80と示される。また、第1位置80からy軸の正方向に向かって受光面フィンガー電極60と裏面フィンガー電極64との次の重複は、第3受光面フィンガー電極60cと第4裏面フィンガー電極64dとにおいてなされる。そのため、第1位置80からy軸の正方向に向かって受光面フィンガー電極60と裏面フィンガー電極64が次に重複するまでの第2位置82は、第3受光面フィンガー電極60cと第4裏面フィンガー電極64dの位置のy軸の負方向側に示される。
 また、第1位置80と第2位置82との間は、単位間隔84と示される。単位間隔84は、受光面フィンガー電極60と裏面フィンガー電極64とが重複してから、非重複が継続する区間といえる。単位間隔84には、2本の受光面フィンガー電極60と3本の裏面フィンガー電極64とが含まれる。単位間隔84に含まれる受光面フィンガー電極60の本数を「m2」本と示し、裏面フィンガー電極64の本数を「m1」本と示す場合、裏面52における裏面フィンガー電極64の本数は、「(n-1)×m1/m2+1」本と一般化される。ここでは、m1>m2である。なお、投影面上において、第3受光面フィンガー電極60cと第4裏面フィンガー電極64dが重複した位置も第1位置80とよんでもよい。この第1位置80に対しても、第2位置82、単位間隔84がこれまでと同様に定義される。
 投影面上において、受光面フィンガー電極60だけが存在する位置、例えば、第2受光面フィンガー電極60bが受光面バスバー電極62と重複せずに存在する位置は、第3位置86と示される。また、第3位置86は、第4受光面フィンガー電極60dに対しても示される。第3位置86では、補助線68が裏面52に配置される。具体的に説明すると、第2受光面フィンガー電極60bに対する第3位置86において、第1補助線68a、第3補助線68c、第5補助線68eが裏面52に配置される。また、第4受光面フィンガー電極60dに対する第3位置86において、第2補助線68b、第4補助線68d、第6補助線68fが裏面52に配置される。複数の補助線68はセル間配線材18に沿ってy軸方向に並べられるので、各補助線68はセル間配線材18に接続される。
 裏面52において、第2裏面フィンガー電極64bと第3裏面フィンガー電極64cとの間に3つの補助線68が配置され、第5裏面フィンガー電極64eと第6裏面フィンガー電極64fとの間に3つの補助線68が配置される。これを一般化すると、補助線68は、nが奇数である場合、投影面上における第1位置80の裏面フィンガー電極64から、(m1-1)/2本面の裏面フィンガー電極64と、(m1+1)/2本面の裏面フィンガー電極64との間に位置するように裏面52に配置される。ここでの投影面上における第1位置80の裏面フィンガー電極64は、図3(b)における第1裏面フィンガー電極64a、第4裏面フィンガー電極64dに相当する。
 補助線68は、裏面フィンガー電極64と同じく銀ペースト等によって形成される。また、x軸方向において、補助線68の長さは裏面フィンガー電極64の長さよりも短い。特に、補助線68の長さは、隣接した2つのセル間配線材18の間隔よりも短く、かつセル間配線材18の幅よりも長い。このような補助線68を裏面フィンガー電極64の代わりに配置することによって、銀ペーストのような貴金属の使用量が減少する。
 図4は、太陽電池セル10の断面図であり、図3(a)のB-B’断面図である。これは、図3(a)-(b)に示された構成に加えて、接着層70と総称される第1接着層70a、第2接着層70bを含む。図4の上側の面が受光面50であり、図4の下側の面が裏面52である。
 太陽電池セル10の受光面50には、第1受光面フィンガー電極60aから第5受光面フィンガー電極60eが配置される。また、受光面50には、第1接着層70aを介してセル間配線材18が接着される。そのため、第1受光面フィンガー電極60aから第5受光面フィンガー電極60eは、セル間配線材18に電気的に接続される。一方、太陽電池セル10の裏面52には、第1裏面フィンガー電極64aから第7裏面フィンガー電極64g、第1補助線68a、第2補助線68bが配置される。また、裏面52には、第2接着層70bを介してセル間配線材18が接着される。そのため、第1裏面フィンガー電極64aから第7裏面フィンガー電極64g、第1補助線68a、第2補助線68bは、セル間配線材18に電気的に接続される。
 第1受光面フィンガー電極60aと第1裏面フィンガー電極64aは、太陽電池セル10の厚さ方向で対向する。また、第3受光面フィンガー電極60cと第4裏面フィンガー電極64d、第5受光面フィンガー電極60eと第7裏面フィンガー電極64gも同様である。そのため、これらの間では、圧着時の圧力が受光面50と裏面52とにおいて相殺される。一方、第2受光面フィンガー電極60bと第4受光面フィンガー電極60dは、太陽電池セル10の厚さ方向において裏面フィンガー電極64と対向しない。しかしながら、第2受光面フィンガー電極60bは第1補助線68aと対向し、第4受光面フィンガー電極60dは第2補助線68bと対向する。そのため、これらの間では、圧着時の圧力が受光面50と裏面52とにおいて一部相殺される。その結果、太陽電池セル10に対する剪断応力が緩和されるので、太陽電池セル10におけるクラックの発生が抑制され、歩留まりが向上する。
 以下では、n、m1、m2が異なった値となる一例を説明する。図5(a)-(b)は、太陽電池セル10の別の構造を示す平面図である。これは、図3(a)-(b)と同様に示されるので、ここでは差異を説明する。図5(a)の受光面50では、複数の受光面フィンガー電極60として、第1受光面フィンガー電極60aから第7受光面フィンガー電極60gの「7」本の受光面フィンガー電極60がy軸方向に並べられる。そのため、nは「7」である。一方、図5(b)の裏面52では、複数の裏面フィンガー電極64として、第1裏面フィンガー電極64aから第9裏面フィンガー電極64iの「9」本の裏面フィンガー電極64がy軸方向に並べられる。
 投影面上において、第1受光面フィンガー電極60aと第1裏面フィンガー電極64a、第4受光面フィンガー電極60dと第5裏面フィンガー電極64e、第7受光面フィンガー電極60gと第9裏面フィンガー電極64iは重複する。第1位置80、第2位置82、単位間隔84は、図3(a)-(b)と同様に定義される。ここで単位間隔84には、3本の受光面フィンガー電極60と4本の裏面フィンガー電極64とが含まれる。そのため、m1は「4」であり、m2は「3」であり、m1>m2である。
 また、第3位置86も図3(a)-(b)と同様に定義され、第3位置86において補助線68が裏面52に配置される。具体的に説明すると、第2受光面フィンガー電極60bに対する第3位置86において、第1補助線68a、第5補助線68e、第9補助線68iが裏面52に配置される。また、第3受光面フィンガー電極60cに対する第3位置86において、第2補助線68b、第6補助線68f、第10補助線68jが裏面52に配置される。第5受光面フィンガー電極60e、第6受光面フィンガー電極60fに対しても同様である。
 裏面52において、第2裏面フィンガー電極64bと第3裏面フィンガー電極64cとの間に3つの補助線68が配置され、第3裏面フィンガー電極64cと第4裏面フィンガー電極64dとの間に3つの補助線68が配置される。これを一般化すると次のようにいえる。補助線68は、nが偶数である場合、投影面上における第1位置80の裏面フィンガー電極64から、m1/2-1本面の裏面フィンガー電極64とm1/2本面の裏面フィンガー電極64との間に位置するように裏面52に配置される。また、補助線68は、投影面上における第1位置80の裏面フィンガー電極64から、m1/2本面の裏面フィンガー電極64とm1/2+1本面の裏面フィンガー電極64との間に位置するように裏面52に配置される。ここでの投影面上における第1位置80の裏面フィンガー電極64は、図5(b)における第1裏面フィンガー電極64a、第5裏面フィンガー電極64eに相当する。
 以下では、太陽電池モジュール100の製造方法について説明する。まず、z軸の正方向から負方向に向かって、第1保護部材40a、第1封止部材42a、太陽電池セル10等、第2封止部材42b、第2保護部材40bが順に重ね合わせられることによって、積層体が生成される。これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体から空気を抜き、加熱、加圧して、積層体を一体化する。ラミネート・キュア工程における真空ラミネートでは、温度が前述のごとく、150℃程度に設定される。
 本発明の実施例によれば、受光面50にn本の受光面フィンガー電極60を配置し、裏面52に(n-1)×m1/m2+1本の裏面フィンガー電極64を配置するので、裏面フィンガー電極64の本数の増加を抑制できる。また、裏面フィンガー電極64の本数の増加が抑制されるので、銀ペースト等の使用量の増加を抑制できる。また、銀ペースト等の使用量の増加が抑制されるので、コストの増加を抑制できる。また、受光面フィンガー電極60だけが存在する場合に補助線68を配置するので、圧着時の圧力を受光面50と裏面52とにおいて一部相殺できる。また、応力の一部が相殺されるので、太陽電池セル10に対する剪断応力を緩和できる。また、太陽電池セル10に対する剪断応力が緩和されるので、太陽電池セル10におけるクラックの発生を抑制できる。また、太陽電池セル10におけるクラックの発生が抑制されるので、歩留まりを向上できる。
 本実施例の構成は、受光面フィンガー電極60と裏面フィンガー電極64との本数の関係が特に以下のような場合に顕著な効果を示す。
Figure JPOXMLDOC01-appb-M000001
 括弧内左側の項におけるNは、受光面フィンガー電極60の本数、つまり前述のn本を示すので、1/(N-1)は、受光面フィンガー電極60のピッチを示す。maは、最も端にある受光面フィンガー電極60からma本目の受光面フィンガー電極60の位置を示しており、1<ma<(N-1)の値である。一方、括弧内右側の項におけるNは、裏面フィンガー電極64の本数を示すので、1/(N-1)は、受光面バスバー電極62のピッチを示す。mbは、最も端にある受光面バスバー電極62からmb本目の受光面バスバー電極62の位置を示しており、1<mb<(N-1)の値である。
 すなわち上式は、ma本目の受光面フィンガー電極60と、mb本目の受光面バスバー電極62との距離を示す。太陽電池セル10の面内において、少なくとも1つの(ma、mb)の組み合わせにおいて式(1)を満足する場合、つまり、太陽電池セル10の面内のいずれかの場所でこの間隔が、受光面フィンガー電極60の太さと裏面フィンガー電極64の太さの合計値よりも大きいか、あるいは500μm以下となる箇所がある場合、太陽電池セル10の該当箇所に剪断応力がかかりやすく、割れやすくなる。そのため、受光面フィンガー電極60と裏面フィンガー電極64との本数の関係が上記のようになる場合において、本実施例は特に顕著な効果を示す。
 また、補助線68の長さは隣接した2つのセル間配線材18の間隔よりも短いので、銀ペースト等の使用量を低減できる。また、補助線68の長さはセル間配線材18の幅よりも長いので、圧着時における圧力の相殺量を大きくできる。また、nが奇数である場合、第1位置80の裏面フィンガー電極64から、(m1-1)/2本面の裏面フィンガー電極64と、(m1+1)/2本面の裏面フィンガー電極64との間に補助線68を配置させるので、受光面フィンガー電極60に対向させることができる。また、nが偶数である場合、第1位置80の裏面フィンガー電極64から、m1/2-1本面の裏面フィンガー電極64とm1/2本面の裏面フィンガー電極64との間に補助線68を配置させるので、受光面フィンガー電極60に対向させることができる。また、nが偶数である場合、第1位置80の裏面フィンガー電極64から、m1/2本面の裏面フィンガー電極64とm1/2+1本面の裏面フィンガー電極64との間に補助線68を配置させるので、受光面フィンガー電極60に対向させることができる。
 本実施例の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、互いに反対を向いた受光面50と裏面52とを有する複数の太陽電池セル10と、複数の太陽電池セル10のうち、第1方向に隣接した2つの太陽電池セル10を接続するセル間配線材18とを備える。複数の太陽電池セル10のそれぞれは、受光面50において第1方向に並べられたn本の受光面フィンガー電極60と、裏面52において第1方向に並べられた(n-1)×m1/m2+1本の裏面フィンガー電極64と、裏面52において第1方向に並べられた1本以上の補助線68とを備える。受光面50あるいは裏面52と平行な投影面上において、受光面フィンガー電極60と裏面フィンガー電極64とが重複した第1位置80と、第1位置80から第1方向に向かって受光面フィンガー電極60と裏面フィンガー電極64とが次に重複するまでの第2位置82との間には、m2本の受光面フィンガー電極60とm1本の裏面フィンガー電極64とが含まれ、受光面50あるいは裏面52と平行な投影面上において、受光面フィンガー電極60だけが存在する第3位置86では、補助線68が裏面52に配置され、補助線68において、第1方向に交差した第2方向の長さが、裏面フィンガー電極64における第2方向の長さよりも短く、セル間配線材18は、太陽電池セル10の裏面52において、裏面フィンガー電極64と補助線68に接続される。
 裏面52において、セル間配線材18が第2方向に複数並べられ、補助線68における第2方向の長さは、第2方向において隣接した2つのセル間配線材18の間隔よりも短い。
 補助線68における第2方向の長さは、セル間配線材18における第2方向の幅よりも長い。
 補助線68は、nが奇数である場合、受光面50あるいは裏面52と平行な投影面上における第1位置80の裏面フィンガー電極64から、(m1-1)/2本面の裏面フィンガー電極64と、(m1+1)/2本面の裏面フィンガー電極64との間に位置するように裏面52に配置されてもよい。
 補助線68は、nが偶数である場合、受光面50あるいは裏面52と平行な投影面上における第1位置80の裏面フィンガー電極64から、m1/2-1本面の裏面フィンガー電極64とm1/2本面の裏面フィンガー電極64との間に位置するように裏面52に配置されるとともに、m1/2本面の裏面フィンガー電極64とm1/2+1本面の裏面フィンガー電極64との間に位置するように裏面52に配置されてもよい。
 本発明の別の態様は、太陽電池セル10である。この太陽電池セル10は、互いに反対を向いた受光面50と裏面52とを有する太陽電池セル10であって、受光面50において第1方向に並べられたn本の受光面フィンガー電極60と、裏面52において第1方向に並べられた(n-1)×m1/m2+1本の裏面フィンガー電極64と、裏面52において第1方向に並べられた1本以上の補助線68とを備える。受光面50あるいは裏面52と平行な投影面上において、受光面フィンガー電極60と裏面フィンガー電極64とが重複した第1位置80と、第1位置80から第1方向に向かって受光面フィンガー電極60と裏面フィンガー電極64とが次に重複するまでの第2位置82との間には、m2本の受光面フィンガー電極60とm1本の裏面フィンガー電極64とが含まれ、受光面50あるいは裏面52と平行な投影面上において、受光面フィンガー電極60だけが存在する第3位置86では、補助線68が裏面52に配置され、補助線68において、第1方向に交差した第2方向の長さが、裏面フィンガー電極64における第2方向の長さよりも短い。
 以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本実施例において、n=7、m1=3、m2=2の場合と、n=9、m1=4、m2=3の場合とを示している。しかしながらこれに限らず例えば、n=55、m1=3、m2=2であってもよく、その場合、裏面フィンガー電極64の本数は「82」本になる。また、n、m1、m2の値はこれらに限定されない。本変形例によれば、構成の自由度を向上できる。
 10 太陽電池セル、 12 太陽電池ストリング、 14 渡り配線材、 16 セル端配線材、 18 セル間配線材、 20 非発電領域、 40 保護部材、 42 封止部材、 50 受光面、 52 裏面、 60 受光面フィンガー電極、 62 受光面バスバー電極、 64 裏面フィンガー電極、 66 裏面バスバー電極、 68 補助線、 70 接着層、 80 第1位置、 82 第2位置、 84 単位間隔、 86 第3位置、 100 太陽電池モジュール。
 本発明によれば、裏面に形成されたフィンガー電極の本数を受光面側に配置されたフィンガー電極の本数の整数倍にすることなく、クラックの発生を抑制できる。

Claims (6)

  1.  互いに反対を向いた第1面と第2面とを有する複数の太陽電池セルと、
     前記複数の太陽電池セルのうち、第1方向に隣接した2つの太陽電池セルを接続する配線材とを備え、
     前記複数の太陽電池セルのそれぞれは、
     前記第1面において第1方向に並べられたn本の第1集電極と、
     前記第2面において第1方向に並べられた(n-1)×m1/m2+1本の第2集電極と、
     前記第2面において第1方向に並べられた1本以上の補助線とを備え、
     前記第1面あるいは前記第2面と平行な投影面上において、前記第1集電極と前記第2集電極とが重複した第1位置と、第1位置から第1方向に向かって前記第1集電極と前記第2集電極とが次に重複するまでの第2位置との間には、m2本の前記第1集電極とm1本の前記第2集電極とが含まれ、
     前記第1面あるいは前記第2面と平行な投影面上において、前記第1集電極だけが存在する第3位置では、前記補助線が前記第2面に配置され、
     前記補助線において、第1方向に交差した第2方向の長さが、前記第2集電極における第2方向の長さよりも短く、
     前記配線材は、前記太陽電池セルの第2面において、前記第2集電極と前記補助線に接続されることを特徴とする太陽電池モジュール。
  2.  前記第2面において、前記配線材が第2方向に複数並べられ、
     前記補助線における第2方向の長さは、第2方向において隣接した2つの前記配線材の間隔よりも短いことを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記補助線における第2方向の長さは、前記配線材における第2方向の幅よりも長いことを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記補助線は、nが奇数である場合、前記第1面あるいは前記第2面と平行な投影面上における第1位置の前記第2集電極から、(m1-1)/2本面の前記第2集電極と、(m1+1)/2本面の第2集電極との間に位置するように前記第2面に配置されることを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール。
  5.  前記補助線は、nが偶数である場合、前記第1面あるいは前記第2面と平行な投影面上における第1位置の前記第2集電極から、m1/2-1本面の前記第2集電極とm1/2本面の第2集電極との間に位置するように前記第2面に配置されるとともに、m1/2本面の第2集電極とm1/2+1本面の第2集電極との間に位置するように前記第2面に配置されることを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール。
  6.  互いに反対を向いた第1面と第2面とを有する太陽電池セルであって、
     前記第1面において第1方向に並べられたn本の第1集電極と、
     前記第2面において第1方向に並べられた(n-1)×m1/m2+1本の第2集電極と、
     前記第2面において第1方向に並べられた1本以上の補助線とを備え、
     前記第1面あるいは前記第2面と平行な投影面上において、前記第1集電極と前記第2集電極とが重複した第1位置と、第1位置から第1方向に向かって前記第1集電極と前記第2集電極とが次に重複するまでの第2位置との間には、m2本の前記第1集電極とm1本の前記第2集電極とが含まれ、
     前記第1面あるいは前記第2面と平行な投影面上において、前記第1集電極だけが存在する第3位置では、前記補助線が前記第2面に配置され、
     前記補助線において、第1方向に交差した第2方向の長さが、前記第2集電極における第2方向の長さよりも短いことを特徴とする太陽電池セル。
PCT/JP2017/033600 2016-12-22 2017-09-15 太陽電池モジュールおよび太陽電池セル WO2018116553A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018557540A JP6761958B2 (ja) 2016-12-22 2017-09-15 太陽電池モジュールおよび太陽電池セル
US16/447,730 US20190305145A1 (en) 2016-12-22 2019-06-20 Solar cell module and solar cell including collecting electrodes on both surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016249886 2016-12-22
JP2016-249886 2016-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/447,730 Continuation US20190305145A1 (en) 2016-12-22 2019-06-20 Solar cell module and solar cell including collecting electrodes on both surfaces

Publications (1)

Publication Number Publication Date
WO2018116553A1 true WO2018116553A1 (ja) 2018-06-28

Family

ID=62626351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033600 WO2018116553A1 (ja) 2016-12-22 2017-09-15 太陽電池モジュールおよび太陽電池セル

Country Status (3)

Country Link
US (1) US20190305145A1 (ja)
JP (1) JP6761958B2 (ja)
WO (1) WO2018116553A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211480063U (zh) * 2019-12-31 2020-09-11 苏州阿特斯阳光电力科技有限公司 光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049525A (ja) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011077362A (ja) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
JP2011228529A (ja) * 2010-04-21 2011-11-10 Shin Etsu Chem Co Ltd 太陽電池セル及びその製造方法
US20120042925A1 (en) * 2009-02-16 2012-02-23 Q-Cells Se Solar Cell String And Solar Module Equipped With Such Solar Cell String
WO2012057243A1 (ja) * 2010-10-27 2012-05-03 三洋電機株式会社 太陽電池及び太陽電池モジュール
JP2012156460A (ja) * 2011-01-28 2012-08-16 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2013207007A (ja) * 2012-03-28 2013-10-07 Sharp Corp 太陽電池セルおよび太陽電池モジュール
WO2016157683A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 太陽電池モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120042925A1 (en) * 2009-02-16 2012-02-23 Q-Cells Se Solar Cell String And Solar Module Equipped With Such Solar Cell String
JP2011049525A (ja) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011077362A (ja) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
JP2011228529A (ja) * 2010-04-21 2011-11-10 Shin Etsu Chem Co Ltd 太陽電池セル及びその製造方法
WO2012057243A1 (ja) * 2010-10-27 2012-05-03 三洋電機株式会社 太陽電池及び太陽電池モジュール
JP2012156460A (ja) * 2011-01-28 2012-08-16 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2013207007A (ja) * 2012-03-28 2013-10-07 Sharp Corp 太陽電池セルおよび太陽電池モジュール
WO2016157683A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
US20190305145A1 (en) 2019-10-03
JPWO2018116553A1 (ja) 2019-10-24
JP6761958B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6536838B2 (ja) 太陽電池モジュールの製造方法およびそれを利用した太陽電池モジュール
JP6893330B2 (ja) 太陽電池モジュール
CN110970522B (zh) 太阳能电池模块及太阳能电池模块的制造方法
US10797186B2 (en) Solar cell, solar cell module, and solar cell manufacturing method in which wiring member is connected to surface
US9490382B2 (en) Solar module and manufacturing method therefor
WO2018051658A1 (ja) 太陽電池モジュール
JP2017112175A (ja) 太陽電池モジュール
WO2018116553A1 (ja) 太陽電池モジュールおよび太陽電池セル
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
US11075312B2 (en) Solar cell module and method for manufacturing solar cell module
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
US11145775B2 (en) Inter-connector and solar panel
US20130122632A1 (en) Method of manufacturing solar cell module
CN111403509A (zh) 太阳能电池模块
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2018107211A (ja) 太陽電池モジュール
JP2016184625A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
US20190221680A1 (en) Solar cell module including terminal box and method of manufacturing solar cell
JP2020098902A (ja) 太陽電池モジュール
WO2016051624A1 (ja) 太陽電池モジュール
CN112531059A (zh) 太阳能电池模块、太阳能电池模块制作方法
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
JP2017183650A (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2017059776A (ja) 太陽電池モジュール
JP2017037909A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884376

Country of ref document: EP

Kind code of ref document: A1