WO2016051624A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2016051624A1
WO2016051624A1 PCT/JP2015/003037 JP2015003037W WO2016051624A1 WO 2016051624 A1 WO2016051624 A1 WO 2016051624A1 JP 2015003037 W JP2015003037 W JP 2015003037W WO 2016051624 A1 WO2016051624 A1 WO 2016051624A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
wiring
insulating layer
sealing member
cell module
Prior art date
Application number
PCT/JP2015/003037
Other languages
English (en)
French (fr)
Inventor
祐 石黒
村上 洋平
大裕 岩田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016551473A priority Critical patent/JPWO2016051624A1/ja
Publication of WO2016051624A1 publication Critical patent/WO2016051624A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module provided with a wiring layer provided to be overlapped with a solar cell.
  • a plurality of solar cells are arranged in the solar cell module. If the extraction wiring is provided along the outer periphery of the plurality of solar cells, a non-power generation region that does not contribute to power generation is formed, and the power generation amount per unit area of the solar cell module is reduced. In order to improve the decrease in the amount of power generation per unit area, a lead-out wiring is provided so as to be overlaid on the solar battery cell (see, for example, Patent Document 1).
  • an insulating sheet for preventing contact between the tab wiring provided on the solar battery cell and the extraction wiring is inserted therebetween.
  • the back sheet which covers the photovoltaic cell and the extraction wiring is provided, and the space between the back sheet is sealed with a sealing member.
  • a sealing member it is desirable that the insulating properties of the solar cell module be improved.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a highly reliable solar cell module.
  • a solar cell module includes a solar cell having a main surface, an insulating member provided on the main surface, an extraction wiring provided on the insulating member, and an extraction wiring. And a protective member provided on the sealing member.
  • the insulating member includes an insulating layer having a lower hardness than the sealing member.
  • the reliability of the solar cell module can be improved.
  • the Example of this invention is related with the solar cell module by which the several photovoltaic cell is arrange
  • Tab wiring for connecting adjacent solar cells is provided on the main surface of each solar cell.
  • an extraction wiring for extracting electric power generated in the plurality of solar cells to the outside is provided so as to overlap the tab wiring.
  • an insulating member is inserted therebetween.
  • a protective member that covers the solar cell and the extraction wiring is provided, and the space between the protective member and the protective member is sealed with the sealing member. Therefore, a tab wiring is provided on the main surface of the solar battery cell, and an insulating member, a lead-out wiring, a sealing member, and a protective member are sequentially stacked thereon.
  • the distance between the solar cell and the protective member may be relatively small depending on how the force is applied. In that case, the distance between the lead-out wiring and the protective member becomes small, and the insulation of the lead-out wiring with respect to the outside of the solar cell module may be reduced. Therefore, in the solar cell module according to the present embodiment, an insulating member including an insulating layer having a lower hardness than the sealing member is used as the insulating member. As a result, when an external force is applied that reduces the distance between the solar cell and the protective member, the relatively flexible insulating layer included in the insulating member is deformed, and the deformation amount of the sealing member is relatively small. .
  • the distance between the solar battery cell and the protection member becomes small, the distance between the extraction wiring and the protection member can be maintained, and the extraction wiring outside the module can be maintained. It is possible to suppress a decrease in insulation.
  • FIG. 1 is a plan view from the light receiving surface side of a solar cell module 100 according to an embodiment of the present invention.
  • FIG. 2 is a plan view from the back side of the solar cell module 100.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the principal plane disposed on the positive side of the z-axis is the light-receiving surface
  • the z-axis The main plane arranged on the negative direction side is the back surface.
  • the positive direction side of the z-axis is referred to as “light-receiving surface side”
  • the negative direction side of the z-axis is referred to as “back surface side”.
  • the solar cell module 100 includes eleventh solar cells 10aa, collectively referred to as solar cells 10, ..., 84th solar cell 10hd, inter-group wiring member 14, group end wiring member 16, inter-cell wiring member 18,
  • the conductive material 20 includes a first extraction wiring 30, a second extraction wiring 32, a first bypass diode connection wiring 40, and a second bypass diode connection wiring 42, which are collectively referred to as extraction wiring.
  • the first non-power generation region 80a and the second non-power generation region 80b are arranged so as to sandwich the plurality of solar cells 10 in the y-axis direction.
  • the first non-power generation region 80a is disposed on the positive side of the y-axis with respect to the plurality of solar cells 10, and the second non-power generation region 80b is more on the y-axis than the plurality of solar cells 10. It is arranged on the negative direction side.
  • the first non-power generation region 80 a and the second non-power generation region 80 b (hereinafter, sometimes collectively referred to as “non-power generation region 80”) have a rectangular shape and do not include the solar battery cell 10.
  • the solar battery cell 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG. 1 and FIG.
  • a plurality of finger electrodes extending in the x-axis direction in parallel to each other on the light receiving surface and the back surface of each solar cell 10, and a y-axis so as to be orthogonal to the plurality of finger electrodes
  • a plurality of, for example, two bus bar electrodes extending in the direction are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • eight solar cells 10 are arranged in the x-axis direction, and four solar cells 10 are arranged in the y-axis direction.
  • the four solar cells 10 arranged side by side in the y-axis direction are connected in series by the inter-cell wiring member 18 to form one solar cell group 12.
  • the first solar cell group 12a is formed by connecting the eleventh solar cell 10aa, the twelfth solar cell 10ab, the thirteenth solar cell 10ac, and the fourteenth solar cell 10ad.
  • Other solar cell groups 12, for example, the second solar cell group 12b to the eighth solar cell group 12h are formed in the same manner.
  • the eight solar cell groups 12 are arranged in parallel in the x-axis direction.
  • the inter-cell wiring member 18 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side.
  • the two inter-cell wiring members 18 for connecting the eleventh solar cell 10aa and the twelfth solar cell 10ab include the bus bar electrode on the back surface side of the eleventh solar cell 10aa and the twelfth solar cell 10ab.
  • the bus bar electrode on the light receiving surface side is electrically connected.
  • Each of the seven inter-group wiring members 14 extends in the x-axis direction and is electrically connected to two adjacent solar cell groups 12 via the group end wiring member 16.
  • Each is electrically connected to the inter-group wiring member 14 via the group end wiring member 16.
  • the first bypass diode connection wiring 40 and the second bypass diode connection wiring 42 are electrically connected to the inter-group wiring member 14. The first bypass diode connection wiring 40 and the second bypass diode connection wiring 42 will be described later.
  • the conductive material 20 is connected to the first solar cell group 12a and the eighth solar cell group 12h located at both ends in the x-axis direction.
  • the conductive material 20 connected to the first solar cell group 12a extends in the direction of the first non-power generation region 80a from the light receiving surface side of the eleventh solar cell 10aa.
  • a pair of positive and negative first extraction wirings 30 and second extraction wirings 32 are connected to the conductive material 20 by a conductive adhesive such as solder. Therefore, the first extraction wiring 30 is electrically connected to the first solar cell group 12a via the conductive material 20, and the second extraction wiring 32 is connected to the eighth solar cell group 12h via the conductive material 20. Electrically connected.
  • the first extraction wiring 30 extends from the position where it is solder-connected to the conductive material 20 to the back surface side of the eleventh solar battery cell 10aa.
  • the first extraction wiring 30 extends in the negative direction of the y axis on the back surface side of the eleventh solar battery cell 10aa and then bends in the positive direction of the x axis.
  • the 1st extraction wiring 30 is arrange
  • the first extraction wiring 30 is the group end wiring member 16 provided on the back side of the eleventh solar cell 10aa, the twenty-first solar cell 10ba, the thirty-first solar cell 10ca, and the forty-first solar cell 10da, It is separated from the inter-cell wiring member 18 in the z-axis direction.
  • the group end wiring member 16 and the inter-cell wiring member 18 correspond to the aforementioned tab wiring.
  • the 2nd extraction wiring 32 is similarly arrange
  • the two group end wiring members 16 extend from the back surface side of the 21st solar cell 10ba in the second solar cell group 12b in the direction of the first non-power generation region 80a.
  • the other two group end wiring members 16 extend from the light receiving surface side of the 31st solar cell 10ca in the third solar cell group 12c toward the first non-power generation region 80a.
  • the inter-group wiring member 14 is electrically connected to these four group end wiring members 16 using a conductive adhesive such as solder.
  • the first bypass diode connection wiring 40 is disposed between the two group end wiring members 16 and is electrically connected to the inter-group wiring member 14 using a conductive adhesive such as solder.
  • the first bypass diode connection wiring 40 extends from the position soldered to the inter-group wiring member 14 to the back surface side of the thirty-first solar cell 10ca.
  • the first bypass diode connection wiring 40 extends in the negative y-axis direction and then bends in the positive x-axis direction on the back surface side of the thirty-first solar cell 10ca. In this way, the first bypass diode connection wiring 40 is arranged along the x-axis in parallel with the first extraction wiring 30 on the back side of the thirty-first solar cell 10ca and the forty-first solar cell 10da.
  • the first bypass diode connection wiring 40 includes a group end wiring member 16 and an inter-cell wiring member 18 provided on the back side of the thirty-first solar cell 10 ca and the forty-first solar cell 10 da. With respect to the z-axis direction.
  • the second bypass diode connection wiring 42 is similarly arranged with respect to the 61st solar cell 10fa and the 51st solar cell 10ea.
  • FIG. 3 is a cross-sectional view taken along the y-axis of the solar cell module 100, and is a cross-sectional view taken along the line A-A ′ of FIG.
  • the solar cell module 100 includes an eleventh solar cell 10aa, a twelfth solar cell 10ab, a thirteenth solar cell 10ac, a fourteenth solar cell 10ad, an inter-group wiring member 14, and a group end.
  • the upper side in FIG. 3 corresponds to the back surface side, and the lower side corresponds to the light receiving surface side.
  • the first protective member 52 a is disposed on the light receiving surface side of the solar cell module 100 and protects the light receiving surface of the solar cell module 100.
  • the first protective member 52a is made of a light-transmitting and water-blocking glass, a light-transmitting plastic, or the like, and is formed in a rectangular plate shape.
  • the 1st sealing member 50a is laminated
  • the 1st sealing member 50a is arrange
  • thermoplastic resins like resin films such as EVA (ethylene vinyl acetate copolymer), PVB (polyvinyl butyral), a polyimide, are used, for example.
  • a thermosetting resin may be used.
  • the first sealing member 50a is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the first protection member 52a.
  • the second sealing member 50b is laminated on the back side of the first sealing member 50a.
  • the second sealing member 50b seals the plurality of solar cells 10, the inter-cell wiring member 18 and the like with the first sealing member 50a.
  • the 2nd sealing member 50b can use the thing similar to the 1st sealing member 50a. Further, the second sealing member 50b may be integrated with the first sealing member 50a by heating in the laminating / curing process.
  • the second protective member 52b is laminated on the back side of the second sealing member 50b.
  • the 2nd protection member 52b protects the back surface side of the solar cell module 100 as a back sheet.
  • a resin film such as PET (polyethylene terephthalate), a laminated film having a structure in which an Al foil is sandwiched between resin films, and the like are used.
  • the second protective member 52b is provided with an opening (not shown) penetrating in the z direction.
  • the terminal box 56 is formed in a rectangular parallelepiped shape, and is bonded from the back surface side of the second protective member 52b using an adhesive such as silicone so as to cover the opening (not shown) of the second protective member 52b.
  • the A pair of positive and negative first extraction wirings 30, second extraction wirings 32, first bypass diode connection wirings 40, and second bypass diode connection wirings 42 are connected to bypass diodes (not shown) stored in the terminal box 56.
  • the terminal box 56 is disposed on the second protective member 52b at a position overlapping the 41st solar cell 10da and the 51st solar cell 10ea.
  • a frame frame made of aluminum (Al) or the like may be attached around the solar cell module 100.
  • the first extraction wiring 30 is separated in the z-axis direction from the inter-cell wiring member 18 provided on the back surface side of the eleventh solar battery cell 10aa.
  • an insulating member 54 is inserted between them.
  • the structure of the insulating member 54 will be described later.
  • the insulating member 54 includes the eleventh solar cell 10aa, the twenty-first solar cell 10ba, the thirty-first solar cell 10ca, the forty-first solar cell 10da, the first extraction wiring 30, and the first bypass diode. It has a size on the xy plane that can cover the overlapping portion with the connection wiring 40.
  • another insulating member 54 is also inserted into the second extraction wiring 32 and the second bypass diode connection wiring 42 in FIG.
  • the insulating member 54 and another insulating member 54 may be integrated.
  • FIG. 4 is a partial cross-sectional view along the x-axis of the solar cell module 100, and is a cross-sectional view taken along the line B-B ′ of FIG.
  • the solar cell module 100 includes a solar cell 10, a first group end wiring member 16 a collectively referred to as a group end wiring member 16, a second group end wiring member 16 b, and a first inter-cell wiring collectively referred to as an inter-cell wiring member 18.
  • Material 18a, second inter-cell wiring material 18b, first sealing member 50a, second sealing member 50b, collectively referred to as sealing member 50, first protection member 52a, second protection member, collectively referred to as protection member 52 52b and the insulating member 54 is included.
  • the insulating member 54 includes a first insulating layer 54a, a second insulating layer 54b, and a third insulating layer 54c.
  • the group end wiring member 16 is bonded onto the light receiving surface of the solar battery cell 10 and connected to a bus bar electrode (not shown) on the light receiving surface.
  • the inter-cell wiring member 18 is bonded onto the back surface of the solar battery cell 10 and connected to a bus bar electrode (not shown) on the back surface.
  • the group end wiring member 16 and the inter-cell wiring member 18 are bonded to the main surface of the solar battery cell 10 by an adhesive layer obtained by curing a resin adhesive, and have adhesive properties such as epoxy resin, acrylic resin, urethane resin, and the like.
  • a thermosetting resin material is used.
  • the insulating member 54 is configured by stacking three layers of a first insulating layer 54a, a second insulating layer 54b, and a third insulating layer 54c in the z-axis direction.
  • the insulating member 54 is inserted between the solar battery cell 10 and the first extraction wiring 30, the third insulating layer 54 c is arranged on the solar battery cell 10 side, and the second insulating layer 54 b is on the first extraction wiring 30 side. Be placed. Therefore, the third insulating layer 54c is stacked on the solar battery cell 10, the first insulating layer 54a is stacked on the third insulating layer 54c, and the second insulating layer 54b is stacked on the first insulating layer 54a. Is done.
  • the first insulating layer 54a is formed of a polyester resin.
  • An example of the polyester resin is PET.
  • the first insulating layer 54a, the second insulating layer 54b, and the third insulating layer 54c are formed of polyolefin resin or EVA.
  • the second insulating layer 54b and the third insulating layer 54c may be formed of the same material or different materials.
  • Each insulating layer desirably has a thickness that can ensure insulation between the solar battery cell 10 and the first extraction wiring 30 and a thickness that can reduce the thickness of the entire solar cell module 100.
  • Each of the first insulating layer 54a, the second insulating layer 54b, and the third insulating layer 54c has a thickness of about 50 ⁇ m to 500 ⁇ m, and preferably has a thickness of about 100 ⁇ m to 200 ⁇ m. It is desirable that the second insulating layer 54b and the third insulating layer 54c have a thickness of 100 ⁇ m or more.
  • the thicknesses of the group end wiring member 16, the inter-cell wiring member 18, and the extraction wiring 30 are about 200 ⁇ m to 300 ⁇ m.
  • the second sealing member 50b desirably has a thickness of 400 ⁇ m or more.
  • Polyester resin is hard as a material and excellent in strength, but has a high melting point and is not easily deformed during lamination. Therefore, when only the first insulating layer 54a is inserted between the inter-cell wiring member 18 and the first extraction wiring 30, the inter-cell wiring member 18 and the first extraction wiring 30 are sufficiently insulated. Not glued. Therefore, in order to improve the adhesive force, the second insulating layer 54b and the third insulating layer 54c are used, and the insulating member 54 is configured such that these sandwich the first insulating layer 54a from both sides.
  • the second insulating layer 54 b is made of a material having a lower hardness than the above-described sealing member 50 (second sealing member 50 b), and is made of a material that is relatively softer than the sealing member 50.
  • “Hardness” here refers to so-called indentation hardness, for example, a physical property value represented by an index such as Rockwell hardness, Rockwell superficial hardness, or monotron hardness. These indexes are represented by the deformation amount when a test load is applied to the target member via an indenter, the deformation amount when the test load is applied and then returned to the reference load, and the like. Therefore, when the same load is applied to members having different “hardness”, a member having a large “hardness” has a relatively small deformation amount, and a member having a small “hardness” has a relatively large deformation amount.
  • the hardness of the second insulating layer 54b may be not more than 0.75 times the hardness of the sealing member 50, and preferably about 0.05 to 0.5 times.
  • an external force is applied to the solar cell module 100, and the space between the solar cell 10 and the second protective member 52b.
  • the second insulating layer 54b can be deformed larger than the second sealing member 50b.
  • the second insulating layer 54b can be used as a buffer layer.
  • the second insulating layer 54b is relatively greatly deformed, the distance between the solar battery cell 10 and the extraction wiring 30 is likely to be reduced. Therefore, in order to improve the insulation by the insulating member 54, a resin material having higher hardness than the second insulating layer 54b and the second sealing member 50b is used as the first insulating layer 54a.
  • the hardness of the first insulating layer 54a may be 1.2 times or more the hardness of the sealing member 50, and preferably about 1.5 to 20 times. In this way, the second insulating layer 54b is deformed relatively greatly by providing the first insulating layer 54a having excellent insulation and strength between the solar battery cell 10 and the extraction wiring 30. However, the insulation between the solar battery cell 10 and the first extraction wiring 30 can be ensured.
  • the first extraction wiring 30 may be the second extraction wiring 32, the first bypass diode connection wiring 40, and the second bypass diode connection wiring 42.
  • the inter-cell wiring material 18 is disposed on the back surface side and the group end wiring material 16 is disposed on the light receiving surface side.
  • the group end wiring material 16 and the conductive material 20 may be disposed on the back surface side.
  • the inter-cell wiring member 18 and the conductive member 20 may be disposed on the surface side.
  • FIG. 5 is a diagram showing a first step of the method for manufacturing the solar cell module 100.
  • the solar cell 10 is prepared, and an adhesive for adhering the inter-cell wiring member 18 is applied to the surface of the solar cell 10.
  • the inter-cell wiring member 18 is disposed on the bus bar electrode, and the adhesive is cured by heating. Thereby, an adhesive agent hardens
  • a first extraction wiring 30 is provided on the back side of the solar battery cell 10.
  • FIG. 6 is a diagram showing a second step of the method for manufacturing the solar cell module 100.
  • An insulating member 54 is inserted between the first extraction wiring 30 and the solar battery cell 10. At that time, the second insulating layer 54b is directed to the first extraction wiring 30 side, and the third insulating layer 54c is directed to the solar battery cell 10 side.
  • FIG. 7 is a diagram showing a third step of the method for manufacturing the solar cell module 100.
  • the second sealing member 50 b is stacked on the back side of the first extraction wiring 30.
  • the 2nd protection member 52b is laminated
  • the 1st sealing member 50a and the 1st protection member 52a are laminated
  • a laminate curing process is performed on the laminate.
  • the laminate is pressurized under reduced pressure, thereby removing air from the laminate and heating it to integrate the laminate.
  • the temperature is set to about 150 ° C. in the vacuum laminating in the laminating and curing process.
  • the terminal box 56 is attached to the second protective member 52b with an adhesive. Thereby, the solar cell module 100 shown in FIG. 4 is completed.
  • the distance between the solar battery cell 10 and the second protective member 52b is reduced.
  • the deformation amount of the second sealing member 50b can be reduced by deforming the relatively flexible second insulating layer 54b.
  • the solar battery cell 10 can be used even when the second insulating layer 54b is deformed relatively greatly. And insulation between the first extraction wiring 30 can be secured.
  • the location where the inter-cell wiring member 18 is provided on the main surface of the solar battery cell 10 is likely to deteriorate the insulating property because the inter-cell wiring member 18 protrudes toward the first extraction wiring 30.
  • the first insulating layer 54a having a relatively high strength it is possible to suppress a decrease in insulation even at a location where the inter-cell wiring member 18 is provided.
  • the first extraction wiring 30 and the second extraction wiring 32 for extracting electric power to the outside of the solar cell module 100 are separated from the back surface in the direction along the back surface on the back surface of the solar battery cell 10. It is extended. That is, the first extraction wiring 30 and the second extraction wiring 32 are provided avoiding the non-power generation region 80. Therefore, it is possible to reduce the relative area of the non-power generation region 80 that occupies the entire solar cell module 100 and improve the reduction in the amount of power generation per unit area.
  • the solar cell is a back junction type solar cell. Also good.
  • a back junction solar cell an n-side region and a p-side region are formed on the back surface side of the solar cell, and an n-side electrode and a p-side electrode are provided corresponding to each region.
  • an insulating member similar to that in the above-described embodiment between the back surface of the solar cell on which the n-side electrode and the p-side electrode are provided and the extraction wiring or the diode connection wiring, the insulation between the two is provided.
  • a solar cell module 100 includes: A solar cell 10 having a main surface; An insulating member 54 provided on the main surface; Extraction wirings (first extraction wiring 30 and second extraction wiring 32) provided on the insulating member 54; A sealing member (second sealing member 50b) provided on the extraction wiring; A protective member (second protective member 52b) provided on the sealing member,
  • the insulating member 54 includes an insulating layer (second insulating layer 54b) having a lower hardness than the sealing member.
  • the insulating member 54 may include a resin material having a hardness of 0.02 to 0.75 times the hardness of the sealing member.
  • Insulating member 54 A first insulating layer 54a made of a resin material having a hardness higher than that of the sealing member; A second insulating layer 54b made of a resin material having a lower hardness than the sealing member and provided between the first insulating layer 54a and the extraction wiring; May be included.
  • the first insulating layer 54a may include a resin material having a hardness of 1.2 to 20 times the hardness of the sealing member.
  • the insulating member 54 may electrically insulate between the extraction wiring and the wiring material.
  • the lead-out wiring may extend away from the main surface in a direction parallel to the main surface on the main surface.
  • the reliability of the solar cell module can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール100は、主面を有する太陽電池セル10と、主面上に設けられる絶縁部材54と、絶縁部材54上に設けられる取出し配線である第1取出し配線30と、取出し配線上に設けられる封止部材である第2封止部材50bと、封止部材上に設けられる保護部材である第2保護部材52bと、を備える。絶縁部材54は、封止部材よりも硬度の低い絶縁層である第2絶縁層54bを含む。

Description

太陽電池モジュール
 本発明は、太陽電池モジュール、特に太陽電池セルに重ねられて設けられた配線層を備える太陽電池モジュールに関する。
 太陽電池モジュールには、複数の太陽電池セルが配置される。複数の太陽電池セルの外周に沿って取出し配線が設けられると、発電に寄与しない非発電領域が形成されてしまい、太陽電池モジュールの単位面積あたりの発電量が低下する。単位面積あたりの発電量の低下を改善するために、太陽電池セルに重ねられるように取出し配線が設けられる(例えば、特許文献1参照)。
特開2008-300449号公報
 太陽電池セルと取出し配線とが重ねて設けられる場合、太陽電池セル上に設けられたタブ配線と取出し配線との接触を防止するための絶縁シートが間に挿入される。また、太陽電池セルおよび取出し配線の上を覆うバックシートが設けられ、バックシートとの間が封止部材により封止される。このような絶縁シートおよび封止部材が用いられる場合において、太陽電池モジュールの絶縁性が高められることが望ましい。
 本発明はこうした状況に鑑みなされたものであり、その目的は、信頼性の高い太陽電池モジュールを提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、主面を有する太陽電池セルと、主面上に設けられる絶縁部材と、絶縁部材上に設けられる取出し配線と、取出し配線上に設けられる封止部材と、封止部材上に設けられる保護部材と、を備える。絶縁部材は、封止部材よりも硬度の低い絶縁層を含む。
 本発明によれば、太陽電池モジュールの信頼性を高めることができる。
実施例に係る太陽電池モジュールの受光面側からの平面図である。 図1の太陽電池モジュールの裏面側からの平面図である。 図1の太陽電池モジュールのy軸に沿った断面図である。 図1の太陽電池モジュールのx軸に沿った部分断面図である。 図1の太陽電池モジュールの製造方法の第1工程を示す図である。 図1の太陽電池モジュールの製造方法の第2工程を示す図である。 図1の太陽電池モジュールの製造方法の第3工程を示す図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、複数の太陽電池セルが配置された太陽電池モジュールに関する。各太陽電池セルの主面には、隣接した太陽電池セル間を接続するためのタブ配線が設けられる。また、複数の太陽電池セルにおいて発電した電力を外部に取り出すための取出し配線がタブ配線に重ねられて設けられる。タブ配線と取出し配線との接触を避けるために、絶縁部材が間に挿入される。さらに、太陽電池セルおよび取出し配線の上を覆う保護部材が設けられ、保護部材との間が封止部材により封止される。したがって、太陽電池セルの主面上にはタブ配線が設けられ、その上に絶縁部材、取出し配線、封止部材、保護部材が順に積層される。
 太陽電池モジュールに対してモジュール全体が撓むような外力が加わる場合、力のかかり方によっては太陽電池セルと保護部材との距離が相対的に小さくなることがある。その場合、取出し配線と保護部材との距離が小さくなり、太陽電池モジュールの外部に対する取出し配線の絶縁性が低下するおそれが生じる。そこで、本実施例に係る太陽電池モジュールでは、絶縁部材として、封止部材よりも硬度の低い絶縁層が含まれる絶縁部材を用いる。これにより、太陽電池セルと保護部材の距離が小さくなるような外力が加わる場合に、絶縁部材に含まれる相対的に柔軟な絶縁層を変形させ、封止部材の変形量を相対的に小さくする。本実施例によれば、太陽電池セルと保護部材の距離が小さくなるような外力が加わる場合であっても、取出し配線と保護部材の間の距離を維持することができ、モジュール外に対する取出し配線の絶縁性低下を抑えることができる。
 図1は、本発明の実施例に係る太陽電池モジュール100の受光面側からの平面図である。図2は、太陽電池モジュール100の裏面側からの平面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主面であって、かつx-y平面に平行な2つの主面のうち、z軸の正方向側に配置される主平面が受光面であり、z軸の負方向側に配置される主平面が裏面である。以下では、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶ。
 太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、・・・、第84太陽電池セル10hd、群間配線材14、群端配線材16、セル間配線材18、導電材20、取出し配線と総称される第1取出し配線30、第2取出し配線32、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42を含む。第1非発電領域80aと第2非発電領域80bは、y軸方向において、複数の太陽電池セル10を挟むように配置される。具体的には、第1非発電領域80aは、複数の太陽電池セル10よりもy軸の正方向側に配置され、第2非発電領域80bは、複数の太陽電池セル10よりもy軸の負方向側に配置される。第1非発電領域80a、第2非発電領域80b(以下、「非発電領域80」と総称することもある)は、矩形状を有し、太陽電池セル10を含まない。
 複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。図1および図2では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、x軸方向に8つの太陽電池セル10が並べられ、y軸方向に4つの太陽電池セル10が並べられる。y軸方向に並んで配置される4つの太陽電池セル10は、セル間配線材18によって直列に接続され、1つの太陽電池群12が形成される。例えば、第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10adが接続されることによって、第1太陽電池群12aが形成される。他の太陽電池群12、例えば、第2太陽電池群12bから第8太陽電池群12hも同様に形成される。その結果、8つの太陽電池群12がx軸方向に平行に並べられる。
 太陽電池群12を形成するために、セル間配線材18は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを接続する。例えば、第11太陽電池セル10aaと第12太陽電池セル10abとを接続するための2つのセル間配線材18は、第11太陽電池セル10aaの裏面側のバスバー電極と第12太陽電池セル10abの受光面側のバスバー電極とを電気的に接続する。
 7つの群間配線材14のうちの3つが、第1非発電領域80aに配置され、残りの4つが、第2非発電領域80bに配置される。7つの群間配線材14のそれぞれは、x軸方向に延びて、群端配線材16を介して互いに隣接する2つの太陽電池群12に電気的に接続される。例えば、第1太陽電池群12aの第2非発電領域80b側に位置する第14太陽電池セル10ad、第2太陽電池群12bの第2非発電領域80b側に位置する第24太陽電池セル10bdのそれぞれは、群端配線材16を介して群間配線材14に電気的に接続される。さらに、群間配線材14には、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42が電気的に接続される。第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42については後述する。
 x軸方向の両端に位置する第1太陽電池群12a、第8太陽電池群12hには、導電材20が接続される。第1太陽電池群12aに接続される導電材20は、第11太陽電池セル10aaの受光面側から第1非発電領域80aの方向に延びている。導電材20には、正負一対の第1取出し配線30、第2取出し配線32がそれぞれ半田等の導電性接着剤によって接続されている。そのため、第1取出し配線30は、導電材20を介して、第1太陽電池群12aに電気的に接続され、第2取出し配線32は、導電材20を介して、第8太陽電池群12hに電気的に接続される。
 第1取出し配線30は、導電材20に半田接続された位置から、第11太陽電池セル10aaの裏面側に延びている。また、第1取出し配線30は、第11太陽電池セル10aaの裏面側においてy軸の負方向に延びてからx軸の正方向に屈曲する。このようにして、第1取出し配線30は、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側においてx軸に沿って配置される。その際、第1取出し配線30は、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側に設けられた群端配線材16、セル間配線材18に対してz軸方向に離間する。なお、群端配線材16、セル間配線材18は、前述のタブ配線に相当する。第2取出し配線32は、第81太陽電池セル10ha、第71太陽電池セル10ga、第61太陽電池セル10fa、第51太陽電池セル10eaに対して同様に配置される。
 次に、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42の構成を説明する。2本の群端配線材16は、第2太陽電池群12bにおける第21太陽電池セル10baの裏面側から第1非発電領域80aの方向に延びている。また、別の2本の群端配線材16は、第3太陽電池群12cにおける第31太陽電池セル10caの受光面側から第1非発電領域80aの方向に延びている。群間配線材14は、これら4本の群端配線材16に半田等の導電性接着剤を用いて電気的に接続されている。第1バイパスダイオード接続用配線40は、2本の群端配線材16の間に配置され、群間配線材14に半田等の導電性接着剤を用いて電気的に接続される。
 第1バイパスダイオード接続用配線40は、群間配線材14に半田接続された位置から、第31太陽電池セル10caの裏面側に延びている。また、第1バイパスダイオード接続用配線40は、第31太陽電池セル10caの裏面側においてy軸の負方向に延びてからx軸の正方向に屈曲する。このようにして、第1バイパスダイオード接続用配線40は、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側を第1取出し配線30と平行にx軸に沿って配置される。第1バイパスダイオード接続用配線40は、第1取出し配線30と同様に、第31太陽電池セル10ca、第41太陽電池セル10daの裏面側に設けられた群端配線材16、セル間配線材18に対してz軸方向において離間する。第2バイパスダイオード接続用配線42は、第61太陽電池セル10fa、第51太陽電池セル10eaに対して同様に配置される。
 図3は、太陽電池モジュール100のy軸に沿った断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、太陽電池セル10と総称される第11太陽電池セル10aa、第12太陽電池セル10ab、第13太陽電池セル10ac、第14太陽電池セル10ad、群間配線材14、群端配線材16、セル間配線材18、導電材20、封止部材50と総称される第1封止部材50a、第2封止部材50b、保護部材52と総称される第1保護部材52a、第2保護部材52b、絶縁部材54、端子ボックス56を含む。図3の上側が裏面側に相当し、下側が受光面側に相当する。
 第1保護部材52aは、太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の受光面を保護する。第1保護部材52aには、透光性および遮水性を有するガラス、透光性プラスチック等が使用され、矩形板状に形成される。第1封止部材50aは、第1保護部材52aの裏面側に積層される。第1封止部材50aは、第1保護部材52aと太陽電池セル10との間に配置されて、これらを接着する。第1封止部材50aとして、例えば、EVA(エチレン酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。第1封止部材50aは、透光性を有するとともに、第1保護部材52aにおけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。
 第2封止部材50bは、第1封止部材50aの裏面側に積層される。第2封止部材50bは、第1封止部材50aとの間で、複数の太陽電池セル10、セル間配線材18等を封止する。第2封止部材50bは、第1封止部材50aと同様のものを用いることができる。また、ラミネート・キュア工程における加熱によって、第2封止部材50bは第1封止部材50aと一体化されていてもよい。
 第2保護部材52bは、第2封止部材50bの裏面側に積層される。第2保護部材52bは、バックシートとして太陽電池モジュール100の裏面側を保護する。第2保護部材52bとしては、PET(ポリエチレンテレフタラート)等の樹脂フィルム、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用される。第2保護部材52bには、z方向に貫通した開口部(図示せず)が設けられる。
 端子ボックス56は、直方体状に形成され、第2保護部材52bの開口部(図示せず)を覆うように、第2保護部材52bの裏面側から、シリコーンなどの接着剤を使用して接着される。正負一対の第1取出し配線30、第2取出し配線32と、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42は、端子ボックス56に格納されているバイパスダイオード(不図示)に導かれている。ここで端子ボックス56は、第2保護部材52b上において、第41太陽電池セル10da、第51太陽電池セル10eaにオーバーラップする位置に配置される。太陽電池モジュール100の周囲には、アルミニウム(Al)等からなるフレーム枠が取り付けられてもよい。
 前述のごとく、第1取出し配線30は、第11太陽電池セル10aaの裏面側に設けられたセル間配線材18に対してz軸方向に離間する。このような構成において、第1取出し配線30とセル間配線材18との接触を防止するために、これらの間には、絶縁部材54が挿入される。絶縁部材54の構造については後述する。なお、絶縁部材54は、図2において、第11太陽電池セル10aa、第21太陽電池セル10ba、第31太陽電池セル10ca、第41太陽電池セル10daと、第1取出し配線30、第1バイパスダイオード接続用配線40との重複部分を覆うことが可能なx-y平面のサイズを有する。また、図2における第2取出し配線32、第2バイパスダイオード接続用配線42に対しても、別の絶縁部材54が挿入される。なお、絶縁部材54と別の絶縁部材54が一体化されていてもよい。
 図4は、太陽電池モジュール100のx軸に沿った部分断面図であり、図1のB-B’断面図である。太陽電池モジュール100は、太陽電池セル10、群端配線材16と総称される第1群端配線材16a、第2群端配線材16b、セル間配線材18と総称される第1セル間配線材18a、第2セル間配線材18b、封止部材50と総称される第1封止部材50a、第2封止部材50b、保護部材52と総称される第1保護部材52a、第2保護部材52b、絶縁部材54を含む。絶縁部材54は、第1絶縁層54a、第2絶縁層54b、第3絶縁層54cを有する。
 群端配線材16は、太陽電池セル10の受光面上に接着され、受光面上のバスバー電極(図示せず)と接続される。同様に、セル間配線材18は、太陽電池セル10の裏面上に接着され、裏面上のバスバー電極(図示せず)と接続される。群端配線材16およびセル間配線材18は、樹脂接着剤を硬化させた接着層により太陽電池セル10の主面に接着され、例えば、エポキシ樹脂やアクリル樹脂、ウレタン樹脂などの接着性を有する熱硬化性の樹脂材料が用いられる。
 絶縁部材54は、第1絶縁層54a、第2絶縁層54b、第3絶縁層54cの3層がz軸方向に重ねられて構成される。絶縁部材54は、太陽電池セル10と第1取出し配線30との間に挿入され、第3絶縁層54cが太陽電池セル10側に配置され、第2絶縁層54bが第1取出し配線30側に配置される。そのため、太陽電池セル10の上に第3絶縁層54cが積層され、第3絶縁層54cの上に第1絶縁層54aが積層され、第1絶縁層54aの上に第2絶縁層54bが積層される。
 第1絶縁層54aは、ポリエステル系樹脂で形成される。ポリエステル系樹脂の一例は、PETである。第1絶縁層54aは、第2絶縁層54bおよび第3絶縁層54cは、ポリオレフィン系樹脂あるいはEVAで形成される。第2絶縁層54bおよび第3絶縁層54cは、同一の材料で形成されてもよいし、別の材料で形成されてもよい。
 各絶縁層は、太陽電池セル10と第1取出し配線30の間の絶縁を確保できる程度の厚さを有するとともに、太陽電池モジュール100全体の厚さを薄くできるような厚さを有することが望ましい。第1絶縁層54a、第2絶縁層54b、第3絶縁層54cのそれぞれは、50μm~500μm程度の厚さを有し、好ましくは、100μ~200μm程度の厚さを有する。第2絶縁層54bおよび第3絶縁層54cは、100μm以上の厚さを有することが望ましい。なお、群端配線材16、セル間配線材18、取出し配線30の厚さは、200μm~300μm程度である。また、第2封止部材50bは、400μm以上の厚さを有することが望ましい。
 ポリエステル系樹脂は、材料として硬くかつ強度に優れているが、融点が高いためにラミネート加工において変形しにくい。そのため、セル間配線材18と第1取出し配線30との間に、第1絶縁層54aだけを挿入する場合、セル間配線材18と第1取出し配線30は十分に絶縁されるが、十分に接着されない。そこで、接着力を向上させるために、第2絶縁層54bと第3絶縁層54cが使用され、これらが第1絶縁層54aを両面から挟むようにして絶縁部材54が構成される。
 なお、第2絶縁層54bは、上述の封止部材50(第2封止部材50b)よりも硬度の低い材料で構成され、封止部材50よりも相対的に柔軟な材料で構成される。ここでいう「硬度」とは、いわゆる押し込み硬度のこといい、例えば、ロックウェル硬度、ロックウェルスーパーフィシャル硬度、モノトロン硬度などの指標で表される物性値である。これらの指標は、対象部材に圧子を介して試験荷重を加えたときの変形量や、試験荷重を加えた後に基準荷重に戻したときの変形量などにより表される。したがって、「硬度」の異なる部材に同じ荷重を加えた場合、「硬度」の大きい部材は変形量が相対的に小さく、「硬度」の小さい部材は変形量が相対的に大きい。
 第2絶縁層54bの硬度は、封止部材50の硬度の0.75倍以下とすればよく、好ましくは、0.05倍~0.5倍程度とすればよい。封止部材50および第2絶縁層54bの材料として、このような硬度値の関係を有する材料を用いることで、太陽電池モジュール100に外力が加わって太陽電池セル10と第2保護部材52bの間の距離が小さくなる場合に、第2封止部材50bよりも第2絶縁層54bを大きく変形させることができる。言いかえれば、第2絶縁層54bを緩衝層として用いることができる。これにより、第2封止部材50bの変形を抑制し、第1取出し配線30と第2保護部材52bの距離を維持して、モジュール外部に対する第1取出し配線30の絶縁性を確保することができる。
 一方で、第2絶縁層54bは相対的に大きく変形するため、太陽電池セル10と取出し配線30の距離が小さくなりやすい。そこで絶縁部材54による絶縁性を高めるため、第1絶縁層54aとして、第2絶縁層54bや第2封止部材50bよりも硬度の高い樹脂材料を用いる。第1絶縁層54aの硬度は、封止部材50の硬度の1.2倍以上とすればよく、好ましくは、1.5倍~20倍程度とすればよい。このように、太陽電池セル10と取出し配線30の間に、絶縁性および強度の優れた第1絶縁層54aを設けることで、第2絶縁層54bが相対的に大きく変形してしまう場合であっても、太陽電池セル10と第1取出し配線30の間の絶縁性を確保することができる。
 なお、以上の説明において、第1取出し配線30が、第2取出し配線32、第1バイパスダイオード接続用配線40、第2バイパスダイオード接続用配線42であってもよい。また、裏面側にセル間配線材18が配置され、受光面側に群端配線材16が配置されているが、裏面側に群端配線材16、導電材20が配置されてもよく、受光面側にセル間配線材18、導電材20が配置されてもよい。
 以下では、太陽電池モジュール100の製造方法について説明する。
 図5は、太陽電池モジュール100の製造方法の第1工程を示す図である。まず、太陽電池セル10を用意し、セル間配線材18を接着するための接着剤を太陽電池セル10の表面に塗布する。次に、セル間配線材18をバスバー電極の上に配置し、加熱によって接着剤を硬化させる。これにより、接着剤が硬化して樹脂層となり、セル間配線材18が太陽電池セル10の裏面に接着される。同様にして、群端配線材16が太陽電池セル10の受光面に接着される。太陽電池セル10の裏面側には、第1取出し配線30が設けられる。
 図6は、太陽電池モジュール100の製造方法の第2工程を示す図である。第1取出し配線30と、太陽電池セル10との間に、絶縁部材54が挿入される。その際、第2絶縁層54bが第1取出し配線30側に向けられ、第3絶縁層54cが太陽電池セル10側に向けられる。
 図7は、太陽電池モジュール100の製造方法の第3工程を示す図である。第2封止部材50bが、第1取出し配線30の裏面側に積層される。また、第2保護部材52bが、第2封止部材50bの裏面側に積層される。同様に、太陽電池セル10の受光面側にも第1封止部材50aおよび第1保護部材52aが積層されて、積層体が形成される。
 これに続いて、積層体に対して、ラミネート・キュア工程がなされる。この工程では、積層体を減圧下で加圧することによって、積層体から空気を抜き、加熱して、積層体を一体化する。前述のごとく、ラミネート・キュア工程における真空ラミネートでは、温度が150℃程度に設定される。さらに、第2保護部材52bに対して、端子ボックス56が接着剤にて取り付けられる。これにより、図4に示す太陽電池モジュール100ができあがる。
 上述の実施例によれば、第2封止部材50bよりも硬度の低い第2絶縁層54bを含む絶縁部材54を用いることで、太陽電池セル10と第2保護部材52bの距離が小さくなるような外力が加わる場合に、相対的に柔軟な第2絶縁層54bを変形させて第2封止部材50bの変形量を小さくできる。これにより、太陽電池モジュール100に外力が加わる場合であっても、第1取出し配線30と第2保護部材52bの間の距離を維持することができ、外部に対する第1取出し配線30の絶縁性低下を抑えることができる。したがって、本実施例によれば、信頼性の高い太陽電池モジュール100とすることができる。
 また、第2封止部材50bよりも硬度の高い第1絶縁層54aを含む絶縁部材54を用いることで、第2絶縁層54bが相対的に大きく変形する場合であっても、太陽電池セル10と第1取出し配線30の間の絶縁を確保することができる。特に、太陽電池セル10の主面上においてセル間配線材18が設けられる箇所は、セル間配線材18が第1取出し配線30に向かって突出しているため、絶縁性が低下しやすいといえる。本実施例によれば、相対的に強度の高い第1絶縁層54aを設けることで、セル間配線材18が設けられる箇所においても絶縁性の低下を抑えることができる。
 本実施例によれば、太陽電池モジュール100の外部へ電力を取り出すための第1取出し配線30および第2取出し配線32が太陽電池セル10の裏面上において、裏面から離れて裏面に沿った方向に延在している。つまり、第1取出し配線30および第2取出し配線32が非発電領域80を避けて設けられる。そのため、太陽電池モジュール100全体において占める非発電領域80の相対的な面積を小さくし、単位面積あたりの発電量の低下を改善することができる。
 以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施例では、太陽電池の受光面側と裏面側のそれぞれに電極が設けられる両面電極型の太陽電池を用いる場合を示したが、変形例においては、裏面接合型の太陽電池であってもよい。裏面接合型の太陽電池では、太陽電池の裏面側にn側領域とp側領域が形成され、それぞれの領域に対応してn側電極とp側電極が設けられる。この場合においても、n側電極およびp側電極が設けられる太陽電池の裏面と、取出し配線またはダイオード接続用配線との間に上述の実施例と同様の絶縁部材を設けることで、両者間の絶縁性を高めることができる。また、取出し配線またはダイオード接続用配線の上に設けられる封止部材よりも硬度の低い樹脂材料が含まれる絶縁部材を用いることで、取出し配線またはダイオード接続用配線の絶縁性低下を抑えることができる。
 本実施例の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、
 主面を有する太陽電池セル10と、
 主面上に設けられる絶縁部材54と、
 絶縁部材54上に設けられる取出し配線(第1取出し配線30,第2取出し配線32)と、
 取出し配線上に設けられる封止部材(第2封止部材50b)と、
 封止部材上に設けられる保護部材(第2保護部材52b)と、を備え、
 絶縁部材54は、封止部材よりも硬度の低い絶縁層(第2絶縁層54b)を含む。
 絶縁部材54は、封止部材の硬度の0.02倍以上、0.75倍以下の硬度の樹脂材料を含んでもよい。
 絶縁部材54は、
 封止部材よりも硬度の高い樹脂材料で構成される第1絶縁層54aと、
 封止部材よりも硬度の低い樹脂材料で構成され、第1絶縁層54aおよび取出し配線の間に設けられる第2絶縁層54bと、
 を含んでもよい。
 第1絶縁層54aは、封止部材の硬度の1.2倍以上、20倍以下の硬度の樹脂材料を含んでもよい。
 主面上に接続される配線材(群端配線材16、セル間配線材18)をさらに備え、
 絶縁部材54は、取出し配線と配線材の間を電気的に絶縁してもよい。
 取出し配線は、主面上において主面から離れて主面に平行な方向に延在してもよい。
 10 太陽電池セル、 16 群端配線材、 18 セル間配線材、 30 第1取出し配線、 32 第2取出し配線、50a 第1封止部材、 50b 第2封止部材、 52a 第1保護部材、 52b 第2保護部材、 54 絶縁部材、 54a 第1絶縁層、 54b 第2絶縁層、 54c 第3絶縁層、 100 太陽電池モジュール。
 本発明によれば、太陽電池モジュールの信頼性を高めることができる。

Claims (6)

  1.  主面を有する太陽電池セルと、
     前記主面上に設けられる絶縁部材と、
     前記絶縁部材上に設けられる取出し配線と、
     前記取出し配線上に設けられる封止部材と、
     前記封止部材上に設けられる保護部材と、を備え、
     前記絶縁部材は、前記封止部材よりも硬度の低い絶縁層を含む太陽電池モジュール。
  2.  前記絶縁部材は、前記封止部材の硬度の0.02倍以上、0.75倍以下の硬度の樹脂材料を含む、請求項1に記載の太陽電池モジュール。
  3.  前記絶縁部材は、
     前記封止部材よりも硬度の高い樹脂材料で構成される第1絶縁層と、
     前記封止部材よりも硬度の低い樹脂材料で構成され、前記第1絶縁層および前記取出し配線の間に設けられる第2絶縁層と、
     を含む、請求項1または2に記載の太陽電池モジュール。
  4.  前記第1絶縁層は、前記封止部材の硬度の1.2倍以上、20倍以下の硬度の樹脂材料を含む、請求項3に記載の太陽電池モジュール。
  5.  前記主面上に接続される配線材をさらに備え、
     前記絶縁部材は、前記取出し配線と前記配線材の間を電気的に絶縁する請求項1から4のいずれか一項に記載の太陽電池モジュール。
  6.  前記取出し配線は、前記主面上において前記主面から離れて前記主面に平行な方向に延在する、請求項1から5のいずれか一項に記載の太陽電池モジュール。
PCT/JP2015/003037 2014-09-30 2015-06-17 太陽電池モジュール WO2016051624A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551473A JPWO2016051624A1 (ja) 2014-09-30 2015-06-17 太陽電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201004 2014-09-30
JP2014201004 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051624A1 true WO2016051624A1 (ja) 2016-04-07

Family

ID=55629704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003037 WO2016051624A1 (ja) 2014-09-30 2015-06-17 太陽電池モジュール

Country Status (2)

Country Link
JP (1) JPWO2016051624A1 (ja)
WO (1) WO2016051624A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278905A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008300449A (ja) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356349A (ja) * 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
WO2010122856A1 (ja) * 2009-04-20 2010-10-28 シャープ株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2013219233A (ja) * 2012-04-10 2013-10-24 Ulvac Japan Ltd 太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278905A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008300449A (ja) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
JPWO2016051624A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6536838B2 (ja) 太陽電池モジュールの製造方法およびそれを利用した太陽電池モジュール
US10797186B2 (en) Solar cell, solar cell module, and solar cell manufacturing method in which wiring member is connected to surface
WO2018051658A1 (ja) 太陽電池モジュール
JP6893330B2 (ja) 太陽電池モジュール
JP2020057652A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2017112175A (ja) 太陽電池モジュール
JP6562314B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2017174986A (ja) 太陽電池セルおよび太陽電池モジュール
WO2013030993A1 (ja) 太陽電池モジュール
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
WO2016051624A1 (ja) 太陽電池モジュール
JP6761958B2 (ja) 太陽電池モジュールおよび太陽電池セル
WO2019087802A1 (ja) 太陽電池モジュール
WO2017150372A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2016051625A1 (ja) 太陽電池モジュール
JP2020088133A (ja) 太陽電池モジュール
JP6726909B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2016184625A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
WO2018061703A1 (ja) 太陽電池モジュール
JP6541106B2 (ja) 太陽電池モジュール
WO2016103626A1 (ja) 端子ボックスおよびそれを利用した端子ボックス付太陽電池モジュール
JP2017059776A (ja) 太陽電池モジュール
JP2017183650A (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法
JP2017037909A (ja) 太陽電池モジュール
JP2018107211A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846729

Country of ref document: EP

Kind code of ref document: A1