WO2018050113A1 - 棱镜以及玻璃表面应力检测装置 - Google Patents

棱镜以及玻璃表面应力检测装置 Download PDF

Info

Publication number
WO2018050113A1
WO2018050113A1 PCT/CN2017/102099 CN2017102099W WO2018050113A1 WO 2018050113 A1 WO2018050113 A1 WO 2018050113A1 CN 2017102099 W CN2017102099 W CN 2017102099W WO 2018050113 A1 WO2018050113 A1 WO 2018050113A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
groove
detecting
light
glass
Prior art date
Application number
PCT/CN2017/102099
Other languages
English (en)
French (fr)
Inventor
李俊峰
Original Assignee
北京杰福科技有限公司
南通杰福光学仪器科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610830326.6A external-priority patent/CN106324730A/zh
Priority claimed from CN201621061885.7U external-priority patent/CN206193276U/zh
Application filed by 北京杰福科技有限公司, 南通杰福光学仪器科技有限公司 filed Critical 北京杰福科技有限公司
Publication of WO2018050113A1 publication Critical patent/WO2018050113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/386Glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Definitions

  • the present disclosure relates to an optical detecting device, and in particular to a glass surface stress detecting device and a prism that can be applied thereto.
  • Glass sheets are common materials in everyday life and industrial production. In order to measure the quality of the glass sheet and ensure the safety of the glass sheet, it is often necessary to measure the stress in the glass sheet. In order to detect the stress of the glass plate, it is stipulated in the national standard and the like that the surface stress of the glass is measured by means of birefringence to characterize the stress level inside the glass.
  • the methods for measuring the surface stress of the glass mainly include: differential surface refractometry (DSR), surface grazing angle (GLAS), and recently introduced a method of transmitting laser light in Estonia.
  • DSR differential surface refractometry
  • GLAS surface grazing angle
  • the GASP method has high measurement accuracy for tempered glass with low surface stress, and is suitable for surface stress detection of semi-tempered glass used in construction.
  • the principle of the GASP measurement method is that the incident polarized beam enters the thin layer of the glass surface, and runs away from the glass after running a distance from the parallel glass surface. Due to the surface stress of the glass, the beam produces birefringence, and the optical path difference can be accurately measured by the quartz wedge.
  • Introducing prisms for directing light to the glass surface and deriving prisms for directing light from the glass surface are typically employed in GASP measurement methods. In the prior art, the introduction prism and the derivation prism are separately formed and a need is provided between the two, which is insufficient in ensuring the parallel coplanarity between the introduction prism and the corresponding surface of the derivation prism and the glass surface. .
  • the present invention provides a portable glass surface stress detecting device which is simple in structure and easy to operate.
  • a glass surface stress detecting device which comprises: a lighting unit for providing polarized illumination light, the illumination unit comprising a light source; a detection prism comprising an introduction prism and a derivation prism, the introduction prism and the derivation prism respectively having a surface for bonding with the surface of the detected glass for detection a first detecting surface and a second detecting surface coplanar with each other; and an imaging unit including a quartz wedge, a polarizing plate, and a lens group disposed in sequence along the optical path, the imaging unit being arranged to receive light from the detecting prism and Forming a detection image, wherein the introduction prism of the detection prism and the lead-out prism are integrally formed, and the detection prism is disposed between the introduction prism and the derivation prism and perpendicular to the first detection surface and the second detection At least one groove of the surface, the at least one groove forming a stop for preventing light from propagating from a side
  • the groove may be formed as a stop by at least one of sanding, blackening, and filling of a light-shielding material.
  • the light shielding material is a light absorbing material.
  • the diaphragm may be formed by inserting and gluing a light shielding sheet in the groove.
  • the surface of the lead-out prism opposite to the second detecting surface is frosted or blackened.
  • the at least one groove may include at least one first groove disposed between the first detecting surface and the second detecting surface and disposed at the first detecting surface and the second detecting At least one second groove on the opposite surface of the surface.
  • the first groove and the second groove overlap each other in a direction perpendicular to the first and second detecting surfaces.
  • the at least one second groove comprises two second grooves respectively located on opposite sides of one of the first grooves. More preferably, the outer surface between the two second grooves is frosted or blackened.
  • the introduction prism of the detection prism includes a reflective surface that reflects light entering the detection prism and directs it to the first detection surface.
  • a prism comprising an integrally formed lead-in prism portion and a lead-out prism portion, the lead-in prism portion and the lead-out prism portion respectively having a first working surface and a second working surface that are coplanar with each other, wherein the prism is disposed between the lead-in prism portion and the lead-out prism portion and perpendicular to the first work At least one groove of the surface and the second working surface, the at least one groove forming a stop for preventing light from propagating from a side of the first working surface to a side of the second working surface.
  • the groove is formed into a stop by at least one of sanding, blackening, and filling of a light-shielding material.
  • the light shielding material is a light absorbing material.
  • the diaphragm may be formed by inserting and gluing a light shielding sheet in the groove.
  • the surface of the third surface opposite the second detecting surface is frosted or blackened.
  • the prism further has a third surface opposite the first and second working surfaces, the at least one groove including a first detection surface and a second detection surface disposed between At least one first groove and at least one second groove disposed on the third surface.
  • the first groove and the second groove overlap each other in a direction perpendicular to the first and second detecting surfaces.
  • the at least one second groove comprises two second grooves respectively located on opposite sides of one of the first grooves. More preferably, a portion of the third surface between the two second grooves is frosted or blackened.
  • the lead-in prism portion of the prism further includes a reflective surface that reflects light entering the lead-in prism portion and directs it to the first detecting surface.
  • the introduction prism and the derivation prism are integrally formed, and the aperture is formed on the integrated prism by opening the groove, which is convenient for ensuring the coplanar surface of the detection surface (working surface), and on the other hand, the prism structure is simple and compact. Easy to manufacture.
  • FIG. 1 is a schematic structural view of a glass surface stress detecting device according to an embodiment of the present invention.
  • FIG. 2A shows a detection edge that can be used in the glass surface stress detecting device shown in FIG.
  • Fig. 2B shows another example of a prism which can be used as a detecting prism in the glass surface stress detecting device shown in Fig. 1.
  • the glass surface stress detecting device 100 includes an illumination unit 10, a detecting prism 20, and an imaging unit 30.
  • the illumination unit 10 is for providing polarized illumination light, and the illumination unit comprises a light source.
  • the light source of the illumination unit 10 includes a laser 12 and a collimating beam expander 13.
  • the laser emitted by the laser 12 has good monochromaticity, good coherence, good directivity and high brightness.
  • the collimating beam expander 13 is for expanding the diameter of the light beam from the laser 12.
  • the invention is not limited to this configuration of the light source.
  • the light source may take other suitable forms.
  • the light source can include a single color LED and is not limited to the use of a collimating beam expander.
  • the detecting prism 20 includes an introduction prism 21 and a lead prism 22, and a diaphragm disposed therebetween.
  • the introduction prism 21 and the derivation prism 22 respectively have a first detection surface 21a and a second detection surface 22a which are coplanar with each other for bonding with the surface of the glass to be inspected for detection.
  • the introduction prism 21 guides light from the illumination unit 10 to the junction of the first detection surface 21a and the surface of the glass to be detected G, and the lead prism 22 is coupled from the junction of the second detection surface 22a and the glass surface G to be inspected. Light incident at a critical angle and propagating along the surface of the glass.
  • the introduction prism 21 of the detecting prism 20 may further include a reflecting surface 21b that reflects the light entering the detecting prism 20 and guides it to the first detecting surface 21a.
  • the imaging unit 30 includes a quartz wedge 32, a polarizing plate 33, and a lens 34 which are sequentially disposed along the optical path.
  • the imaging unit 30 is arranged to receive from the detection prism 20 Light and form a detection image.
  • the imaging unit 30 may also include a mirror 31 for reflecting light from the detection prism 20 into the quartz wedge 32.
  • the concentrated light beam from the illumination unit 10 enters the detecting prism 20 and is irradiated onto the first detecting surface 21a, wherein at least part of the light having the total reflection critical angle enters the surface of the glass to be inspected, along the glass
  • the surface propagates a distance and is coupled out by the second detecting surface 22a.
  • the light beam is birefringent due to the surface stress of the glass, and therefore, the light derived from the second detecting surface 22a contains the optical path difference in one direction.
  • the derived light is emitted to the lens group 34 after passing through the quartz wedge 32 and passing through the polarizing plate 33.
  • the use of the quartz wedge 32 allows the light to produce an optical path difference in another different direction which is superimposed with the optical path difference due to birefringence, causing the light to interfere to produce oblique interference fringes.
  • the glass surface stress value is proportional to the tilt angle tangent function of the interference fringes. By measuring the tilt angle of the interference fringes, the glass surface stress value can be calculated.
  • the structure of the glass surface stress detecting device 100 shown above with reference to FIG. 1 is merely exemplary, and the detecting device 100 may further include other components not described herein or components having similar functions for replacing the components described above.
  • the introduction prism (introduction prism portion) 21 and the derivation prism (derivation prism portion) of the detection prism 20 are detected.
  • 22 is integrally formed, and the detecting prism 20 is provided with at least one of being located between the introduction prism 21 and the lead-out prism 22 and perpendicular to the first detecting surface (first working surface) 20a and the second detecting surface (second working surface) 20b.
  • Groove 23 The at least one groove 23 forms a stop for preventing light from propagating from the side of the first detecting surface to the side of the second detecting surface.
  • the groove 23 can be formed, for example, by at least one of sanding, blackening, and filling of a light-shielding material.
  • a light-shielding sheet such as a metal sheet may be inserted and bonded in the groove 23 to form a diaphragm.
  • the lead-in prism 21 and the lead-out prism 22 of the detecting prism 20 are integrally formed such that the first detecting surface 21a and the second detecting surface 22a are on the same plane to improve the processing accuracy.
  • the glass surface stress detecting device according to the embodiment of the present invention can reduce an error caused by the misalignment of the optical contact faces of the lead-in prism 21 and the lead-out prism 22, compared to the glass surface stress detecting device in the prior art. Correspondingly, it also makes the structure of the device more Plus simple and compact.
  • FIG. 2A shows an example of a prism that can be used as the detecting prism 20, that is, the prism 20A.
  • the prism 20A includes an integrally formed lead-in prism portion 21 and a lead-out prism portion 22 having a first working surface 21a and a second working surface 22a that are coplanar with each other, respectively.
  • the prism 20A is provided with two recesses 23a, 23b between the lead-in prism portion 21 and the lead-out prism portion 22 and perpendicular to the first working surface 21a and the second working surface 22a.
  • a groove 23a is formed between the first work surface 21a and the second work surface 22a. In the orientation shown in Fig. 2A, the groove 23a extends from the bottom to the top.
  • a groove 23b is formed on the third surface 24 of the prism 20A opposite the first and second working surfaces 21a, 22a. In the orientation shown in Fig. 2A, the groove 23b extends from the top to the bottom.
  • the groove 23a and the groove 23b overlap each other in a direction perpendicular to the first and second working surfaces 21a, 22a, and the illustrated area O is an overlapping portion.
  • groove 23b is shown on the left side of the groove 23a (on the side of the introduction prism portion) in FIG. 2A, it may be located on the right side of the groove 23a (on the side of the lead prism portion), and the present invention does not Restricted.
  • the grooves 23a, 23b may be formed, for example, by at least one of sanding, blackening, and filling of a light-shielding material.
  • a light-shielding sheet such as a metal sheet may be inserted and bonded into the grooves 23a, 23b to form a diaphragm.
  • a sanding treatment or blackening is performed on a portion of the surface 24a of the third surface 24 opposite to the second working surface 22a. This will better eliminate the effects of stray light.
  • FIG. 2B shows another example of a prism that can be used as the detection prism 20, namely the prism 20B.
  • the prism 20B has a structure similar to that of the prism 20A except that two grooves 23b are formed on the third surface 24 of the prism 20B, and the two grooves 23b are respectively located on both sides of the groove 23a.
  • both recesses 23b are perpendicular to the first and the second with the recess 23a
  • the two working surfaces 21a, 22a overlap each other in the direction, and the illustrated area O' is an overlapping portion.
  • only one of the two grooves 23b may overlap the groove 23a in the vertical direction.
  • the grooves 23a, 23b of the prism 20B may be formed, for example, by at least one of sanding, blackening, and filling of a light-shielding material.
  • a light-shielding sheet such as a metal sheet may be inserted and bonded into the grooves 23a, 23b to form a diaphragm.
  • a sanding treatment or blackening is performed on a portion of the surface 24a of the third surface 24 opposite to the second working surface 22a. This will better eliminate the effects of stray light.
  • the partial surface 24b of the third surface 24 between the two grooves 23b may be frosted or blackened (e.g., black lacquered). This will better eliminate the effects of stray light.
  • the prism may be formed, for example, having a recess 23b formed on the third surface and two recesses 23a formed between the first and second working surfaces 21a, 22a.
  • the recess 23 may also include a side surface that is coupled between the working surface and the third surface.
  • the groove 23 may include a groove 23a opened between the first and second working surfaces and a groove 23b formed on the side surface.
  • the present invention is not limited thereto.
  • the prism 20 may be formed with only one groove.
  • the prism 20 may also include more than three grooves as long as the manufacturing process permits and the resulting structure can be adapted to the target application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

公开了一种棱镜(20)以及使用棱镜作为检测棱镜的玻璃表面应力检测装置(100)。棱镜(20)包括一体成型的导入棱镜部分(21)和导出棱镜部分(22),导入棱镜部分(21)和导出棱镜部分(22)分别具有彼此共面的第一工作表面(21a)和第二工作表面(22a),其中,棱镜(20)上设置有位于导入棱镜部分(21)和导出棱镜部分(22)之间且垂直于第一工作表面(21a)和第二工作表面(22a)的至少一个凹槽(23),至少一个凹槽(23)形成用于阻止光从第一工作表面(21a)一侧向第二工作表面(22a)一侧传播的光阑。由于导入棱镜部分(21)和导出棱镜部分(22)一体成型,并通过开设凹槽(23)在一体的棱镜上形成光阑,所以一方面便于保证工作表面的共面,另一方面使得棱镜结构简单紧凑,方便制造。

Description

棱镜以及玻璃表面应力检测装置 技术领域
本公开涉及一种光学检测装置,具体地,涉及一种玻璃表面应力检测装置以及可以应用于其的棱镜。
背景技术
玻璃板是日常生活和工业生产中都常见的材料。为了衡量玻璃板质量、确保玻璃板使用的安全,经常需要对玻璃板中的应力进行测量。为了检测玻璃板应力,在国标等标准中规定,采用双折射的方式测量玻璃的表面应力,以表征玻璃内部的应力水平。目前,实际使用中,测定玻璃表面应力的方式主要有:微分表面折射法DSR(Differential Surface Refractometry)、表面掠角偏光法GASP(Grazing Angle Surface Plarimetry),以及近期爱沙尼亚推出了透射激光的方法。其中GASP方式对表面应力比较低的钢化玻璃具有较高的测量精度,适用于建筑上使用的半钢化玻璃的表面应力检测。
GASP测量方法的原理是:入射偏振光束进入玻璃表面薄层,平行玻璃表面运行一段距离后离开玻璃,由于玻璃表面应力作用,光束产生双折射现象,其光程差可借助石英楔精确测出。GASP测量方法中通常采用用于将光引导至玻璃表面的导入棱镜和将光从玻璃表面导出的导出棱镜。现有技术中导入棱镜和导出棱镜是分开形成的并且两者之间需要设置光阑,这在保证导入棱镜和导出棱镜的与玻璃表面贴合的相应表面之间的平行共面方面尚有不足。
发明内容
鉴于现有技术中存在的上述不足,本发明提供了一种结构简单、操作容易的便携式玻璃表面应力检测装置。
根据本发明的一个方面,提供了一种玻璃表面应力检测装置,其 包括:照明单元,用于提供偏振照明光,该照明单元包括光源;检测棱镜,包括导入棱镜和导出棱镜,所述导入棱镜和导出棱镜分别具有用于与被检测玻璃的表面贴合以进行检测的彼此共面的第一检测表面和第二检测表面;和成像单元,其包括沿光路依次设置的石英楔、检偏振片和透镜组,该成像单元布置成接收来自所述检测棱镜的光并形成检测图像,其中,所述检测棱镜的导入棱镜和导出棱镜一体成型,且所述检测棱镜上设置有位于所述导入棱镜和导出棱镜之间且垂直于所述第一检测表面和第二检测表面的至少一个凹槽,所述至少一个凹槽形成用于阻止光从所述第一检测表面一侧向所述第二检测表面一侧传播的光阑。
在一些实施例中,所述凹槽可以通过磨砂、涂黑、填入遮光材料中的至少一种方式被形成为光阑。优选,所述遮光材料为光吸收材料。
或者,可以通过在所述凹槽中插入并胶粘遮光片材,从而形成所述光阑。
优选,在所述导出棱镜的与所述第二检测表面相对的表面被磨砂处理或被涂黑。
在一些实施例中,所述至少一个凹槽可以包括设置在所述第一检测表面和第二检测表面之间的至少一个第一凹槽和设置在与所述第一检测表面和第二检测表面相对的表面上的至少一个第二凹槽。
优选,所述第一凹槽和所述第二凹槽在垂直于所述第一和第二检测表面的方向上相互交叠。
优选,所述至少一个第二凹槽包括分别位于一个所述第一凹槽的两侧的两个第二凹槽。更优选,所述两个第二凹槽之间的外表面是被磨砂处理或被涂黑。
在一些实施例中,所述检测棱镜的导入棱镜包括对进入检测棱镜的光进行反射并将其引导到所述第一检测表面的反射面。
根据本发明的另一个方面,提供一种棱镜,包括一体成型的导入棱镜部分和导出棱镜部分,所述导入棱镜部分和导出棱镜部分分别具有彼此共面的第一工作表面和第二工作表面,其中,所述棱镜上设置有位于所述导入棱镜部分和导出棱镜部分之间且垂直于所述第一工作 表面和第二工作表面的至少一个凹槽,所述至少一个凹槽形成用于阻止光从所述第一工作表面一侧向所述第二工作表面一侧传播的光阑。
在一些实施例中,所述凹槽通过磨砂、涂黑、填入遮光材料中的至少一种方式被形成为光阑。优选,所述遮光材料为光吸收材料。
或者,可以通过在所述凹槽中插入并胶粘遮光片材,从而形成所述光阑。
优选,在所述第三表面的与所述第二检测表面相对的表面被磨砂处理或被涂黑。
在一些实施例中,所述棱镜还具有与所述第一和第二工作表面相对的第三表面,所述至少一个凹槽包括设置在所述第一检测表面和第二检测表面之间的至少一个第一凹槽和设置在所述第三表面上的至少一个第二凹槽。
优选,所述第一凹槽和所述第二凹槽在垂直于所述第一和第二检测表面的方向上相互交叠。
优选,所述至少一个第二凹槽包括分别位于一个所述第一凹槽的两侧的两个第二凹槽。更优选,所述两个第二凹槽之间的第三表面的部分被磨砂处理或被涂黑。
在一些实施例中,所述棱镜的导入棱镜部分还包括对进入导入棱镜部分的光进行反射并将其引导到所述第一检测表面的反射面。
根据本发明,导入棱镜和导出棱镜一体成型,并通过开设凹槽在一体的棱镜上形成光阑,这一方面便于保证检测表面(工作表面)的共面,另一方面使得棱镜结构简单紧凑,方便制造。
附图说明
通过参照以下附图所作的对非限制性实施例的详细描述,本发明的其它特征、目的和优点将会变得更明显,附图中相同的附图标记表示相同或相应的部件和特征。
图1为根据本发明实施例的玻璃表面应力检测装置的结构示意图;
图2A示出了可用作图1所示玻璃表面应力检测装置中的检测棱 镜的棱镜的一个示例;
图2B示出了可用作图1所示玻璃表面应力检测装置中的检测棱镜的棱镜的另一个示例。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
图1为根据本发明实施例的玻璃表面应力检测装置100的结构示意图。如图1所示,玻璃表面应力检测装置100包括:照明单元10、检测棱镜20和成像单元30。
照明单元10用于提供偏振照明光,该照明单元包括光源。在图1所示示例中,照明单元10的光源包括激光器12和准直扩束镜13。激光器12发出的激光单色性好、相干性好、方向性好、亮度高。准直扩束镜13用于扩大来自激光器12的光束的直径。本发明并不限于光源的这种结构。在玻璃表面应力检测装置100中,光源也可以采取其它合适的形式。例如,光源可以包括单色LED,并且不限于使用准直扩束镜。
检测棱镜20包括导入棱镜21和导出棱镜22以及设置在两者之间的光阑。导入棱镜21和导出棱镜22分别具有用于与被检测玻璃G的表面贴合以进行检测的彼此共面的第一检测表面21a和第二检测表面22a。导入棱镜21引导来自照明单元10的光照射到第一检测表面21a与被检测玻璃G的表面的贴合处,导出棱镜22从第二检测表面22a与被检测玻璃表面G的贴合处耦合导出以临界角入射并沿玻璃表面传播的光线。
检测棱镜20的导入棱镜21还可以包括对进入检测棱镜20的光进行反射并将其引导到第一检测表面21a的反射面21b。
如图1所示,成像单元30包括沿光路依次设置的石英楔32、检偏振片33和透镜34。该成像单元30布置成接收来自检测棱镜20的 光并形成检测图像。成像单元30还可以包括反射镜31,用于将来自检测棱镜20的光反射到石英楔32中。
玻璃表面应力检测装置100在工作时,来自照明单元10的会聚光束进入检测棱镜20,并照射到第一检测表面21a上,其中具有全反射临界角的至少部分光进入被检测玻璃表面,沿玻璃表面传播一段距离后被第二检测表面22a耦合导出。由于玻璃表面应力作用,光束产生双折射现象,因此,从第二检测表面22a导出的光中包含了一个方向上的光程差。所述导出的光在经过石英楔32,再经检偏振片33后发射至透镜组34。利用石英楔32可以使光产生在另一个不同方向上的光程差,其与由于双折射引起的光程差叠加,使光线干涉产生倾斜的干涉条纹。玻璃表面应力值与干涉条纹的倾斜角正切函数成正比。测定干涉条纹的倾斜角,就可以计算出玻璃表面应力值。
以上参照图1所示的玻璃表面应力检测装置100的结构仅仅是示例性的,检测装置100还可以包括其他在此没有描述的部件或用于替代上述介绍的部件的、具有类似功能的部件。
与现有技术中采用分体的导入棱镜和导出棱镜不同,根据本发明实施例的玻璃表面应力检测装置100中,检测棱镜20的导入棱镜(导入棱镜部分)21和导出棱镜(导出棱镜部分)22一体成型,且检测棱镜20上设置有位于导入棱镜21和导出棱镜22之间且垂直于第一检测表面(第一工作表面)20a和第二检测表面(第二工作表面)20b的至少一个凹槽23。所述至少一个凹槽23形成光阑,用于阻止光从第一检测表面一侧向第二检测表面一侧传播。
凹槽23例如可以通过磨砂、涂黑、填入遮光材料中的至少一种方式来形成光阑。或者,也可以在凹槽23中插入并粘接遮光片材例如金属片来形成光阑。
根据本发明,检测棱镜20的导入棱镜21和导出棱镜22一体成型,使得第一检测表面21a和第二检测表面22a在同一平面上,以提高加工精度。相比于现有技术中的玻璃表面应力检测装置,根据本发明实施例的玻璃表面应力检测装置可以减小由于导入棱镜21和导出棱镜22的光学接触面不重合而造成的误差。相应地,也使得装置的结构更 加简单紧凑。
以下结合图2A、图2B介绍可用作上述检测棱镜20的棱镜的结构示例。
图2A示出了可用作检测棱镜20的棱镜的一个示例,即棱镜20A。如图所示,棱镜20A包括一体成型的导入棱镜部分21和导出棱镜部分22,它们分别具有彼此共面的第一工作表面21a和第二工作表面22a。
如图2A所示,棱镜20A上设置有位于导入棱镜部分21和导出棱镜部分22之间且垂直于第一工作表面21a和第二工作表面22a的两个凹槽23a、23b。凹槽23a形成在第一工作表面21a和第二工作表面22a之间。在图2A中所示方位中,凹槽23a从下向上延伸。凹槽23b形成在棱镜20A的与第一和第二工作表面21a、22a相对的第三表面24上。在图2A中所示方位中,凹槽23b从上向下延伸。
为了更好地遮挡光线,优选,凹槽23a和凹槽23b在垂直于第一和第二工作表面21a、22a的方向上相互交叠,图示区域O即为交叠部分。
尽管图2A中示出了凹槽23b位于凹槽23a的左侧(导入棱镜部分一侧),但是其也可以位于凹槽23a的右侧(导出棱镜部分一侧),本发明在此方面不受限制。
凹槽23a、23b例如可以通过磨砂、涂黑、填入遮光材料中的至少一种方式来形成光阑。或者,也可以在凹槽23a、23b中插入并粘接遮光片材例如金属片来形成光阑。
优选地,在第三表面24的与第二工作表面22a相对的部分表面24a上进行磨砂处理或者涂黑(例如喷黑漆)。这样能够更好地消除杂散光的影响。
图2B示出了可用作检测棱镜20的棱镜的另一个示例,即棱镜20B。棱镜20B的结构类似于棱镜20A,不同之处主要在于,在棱镜20B的第三表面24上形成有两个凹槽23b,这两个凹槽23b分别位于凹槽23a的两侧。
优选,如图所示,两个凹槽23b都与凹槽23a在垂直于第一和第 二工作表面21a、22a的方向上相互交叠,图示区域O’即为交叠部分。然而,可以理解,两个凹槽23b中可以仅有一个凹槽23b与凹槽23a在所述垂直方向上交叠。
类似于棱镜20A,棱镜20B的凹槽23a、23b例如也可以通过磨砂、涂黑、填入遮光材料中的至少一种方式来形成光阑。或者,也可以在凹槽23a、23b中插入并粘接遮光片材例如金属片来形成光阑。
优选地,在第三表面24的与第二工作表面22a相对的部分表面24a上进行磨砂处理或者涂黑(例如喷黑漆)。这样能够更好地消除杂散光的影响。
优选地,在第三表面24的位于两个凹槽23b之间的部分表面24b可以进行磨砂处理或者涂黑(例如喷黑漆)。这样能够更好地消除杂散光的影响。
尽管图2B中示出了形成两个凹槽23b和一个凹槽23a,但是本发明并不限于此。在另一些示例中,棱镜可以形成为例如具有一个开设在第三表面上的凹槽23b和两个开设在第一和第二工作表面21a、22a之间的凹槽23a。
应该理解的是,尽管以上图2A和图2B所示示例中,凹槽23开设在工作表面和与之相对的第三表面上,但是本发明并不限于此。凹槽23也可以包括开设在连接在工作表面和第三表面之间的侧表面上。例如,凹槽23可以包括开设在第一和第二工作表面之间的凹槽23a和开设在侧表面上的凹槽23b。
此外,应该理解的是,尽管以上参照图2A和图2B描述的示例中,棱镜中形成两个或三个凹槽,但是本发明并不限于此。例如,在一个凹槽形成的光阑能够满足阻挡光线的要求的情况下,棱镜20可以只形成有一个凹槽。另一方面,棱镜20也可以包括多于3个的凹槽,只要制造工艺允许并且得到的结构能够适用于目标的应用场合即可。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合 而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (20)

  1. 一种玻璃表面应力检测装置,包括:
    照明单元,用于提供偏振照明光,该照明单元包括光源;
    检测棱镜,包括导入棱镜和导出棱镜,所述导入棱镜和导出棱镜分别具有用于与被检测玻璃的表面贴合以进行检测的彼此共面的第一检测表面和第二检测表面;和
    成像单元,其包括沿光路依次设置的石英楔、检偏振片和透镜组,该成像单元布置成接收来自所述检测棱镜的光并形成检测图像,
    其中,所述检测棱镜的导入棱镜和导出棱镜一体成型,且所述检测棱镜上设置有位于所述导入棱镜和导出棱镜之间且垂直于所述第一检测表面和第二检测表面的至少一个凹槽,所述至少一个凹槽形成用于阻止光从所述第一检测表面一侧向所述第二检测表面一侧传播的光阑。
  2. 如权利要求1所述的玻璃表面应力检测装置,其中,所述凹槽通过磨砂、涂黑、填入遮光材料中的至少一种方式被形成为光阑。
  3. 如权利要求1所述的玻璃表面应力检测装置,其中,所述遮光材料为光吸收材料。
  4. 如权利要求1所述的玻璃表面应力检测装置,其中,所述凹槽中插入并胶粘有遮光片材,从而形成所述光阑。
  5. 如权利要求1-4中任一项所述的玻璃表面应力检测装置,其中,在所述导出棱镜的与所述第二检测表面相对的表面被磨砂处理或被涂黑。
  6. 如权利要求1所述的玻璃表面应力检测装置,其中,所述至少一个凹槽包括设置在所述第一检测表面和第二检测表面之间的至少一个第一凹槽和设置在与所述第一检测表面和第二检测表面相对的表面上的至少一个第二凹槽。
  7. 如权利要求6所述的玻璃表面应力检测装置,其中,所述第一凹槽和所述第二凹槽在垂直于所述第一和第二检测表面的方向上相互交叠。
  8. 如权利要求6或7所述的玻璃表面应力检测装置,其中,所述至少一个第二凹槽包括分别位于一个所述第一凹槽的两侧的两个第二凹槽。
  9. 如权利要求8所述的玻璃表面应力检测装置,其中,所述两个第二凹槽之间的外表面是被磨砂处理或被涂黑。
  10. 如权利要求1-9中任一项所述的玻璃表面应力检测装置,其中,所述检测棱镜的导入棱镜包括对进入检测棱镜的光进行反射并将其引导到所述第一检测表面的反射面。
  11. 一种棱镜,包括一体成型的导入棱镜部分和导出棱镜部分,所述导入棱镜部分和导出棱镜部分分别具有彼此共面的第一工作表面和第二工作表面,
    其中,所述棱镜上设置有位于所述导入棱镜部分和导出棱镜部分之间且垂直于所述第一工作表面和第二工作表面的至少一个凹槽,所述至少一个凹槽形成用于阻止光从所述第一工作表面一侧向所述第二工作表面一侧传播的光阑。
  12. 如权利要求11所述的棱镜,其中,所述凹槽通过磨砂、涂黑、填入遮光材料中的至少一种方式被形成为光阑。
  13. 如权利要求11所述的棱镜,其中,所述遮光材料为光吸收材料。
  14. 如权利要求11所述的棱镜,其中,所述凹槽中插入并胶粘有遮光片材,从而形成所述光阑。
  15. 如权利要求11-14中任一项所述的棱镜,其中,在所述第三表面的与所述第二检测表面相对的表面被磨砂处理或被涂黑。
  16. 如权利要求11所述的棱镜,其中,所述棱镜还具有与所述第一和第二工作表面相对的第三表面,所述至少一个凹槽包括设置在所述第一检测表面和第二检测表面之间的至少一个第一凹槽和设置在所述第三表面上的至少一个第二凹槽。
  17. 如权利要求16所述的棱镜,其中,所述第一凹槽和所述第二凹槽在垂直于所述第一和第二检测表面的方向上相互交叠。
  18. 如权利要求16或17所述的棱镜,其中,所述至少一个第二 凹槽包括分别位于一个所述第一凹槽的两侧的两个第二凹槽。
  19. 如权利要求18所述的棱镜,其中,所述两个第二凹槽之间的第三表面的部分被磨砂处理或被涂黑。
  20. 如权利要求11-19中任一项所述的棱镜,其中,所述棱镜的导入棱镜部分还包括对进入导入棱镜部分的光进行反射并将其引导到所述第一检测表面的反射面。
PCT/CN2017/102099 2016-09-18 2017-09-18 棱镜以及玻璃表面应力检测装置 WO2018050113A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610830326.6A CN106324730A (zh) 2016-09-18 2016-09-18 棱镜以及玻璃表面应力检测装置
CN201621061885.7U CN206193276U (zh) 2016-09-18 2016-09-18 棱镜以及玻璃表面应力检测装置
CN2016108303266 2016-09-18
CN2016210618857 2016-09-18

Publications (1)

Publication Number Publication Date
WO2018050113A1 true WO2018050113A1 (zh) 2018-03-22

Family

ID=61619338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102099 WO2018050113A1 (zh) 2016-09-18 2017-09-18 棱镜以及玻璃表面应力检测装置

Country Status (1)

Country Link
WO (1) WO2018050113A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443603A (zh) * 2011-03-18 2013-12-11 旭硝子株式会社 玻璃的表面应力测定装置和玻璃的表面应力测定方法
CN203490010U (zh) * 2013-09-27 2014-03-19 中国建材检验认证集团股份有限公司 一种用于检测钢化玻璃表面应力的应力仪
CN104280171A (zh) * 2014-11-03 2015-01-14 苏州精创光学仪器有限公司 玻璃表面应力测量方法
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置
US20150338308A1 (en) * 2014-05-21 2015-11-26 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
CN205120285U (zh) * 2015-11-27 2016-03-30 苏州精创光学仪器有限公司 钢化玻璃表面应力测量仪
CN105705935A (zh) * 2013-10-30 2016-06-22 康宁股份有限公司 测量具有陡峭折射率区域的离子交换玻璃的模谱的设备和方法
CN106324730A (zh) * 2016-09-18 2017-01-11 北京杰福科技有限公司 棱镜以及玻璃表面应力检测装置
CN106500891A (zh) * 2016-11-29 2017-03-15 北京杰福科技有限公司 玻璃表面应力检测装置以及用于其的检测棱镜
CN206193276U (zh) * 2016-09-18 2017-05-24 北京杰福科技有限公司 棱镜以及玻璃表面应力检测装置
CN206399566U (zh) * 2016-11-29 2017-08-11 北京杰福科技有限公司 玻璃表面应力检测装置以及用于其的检测棱镜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443603A (zh) * 2011-03-18 2013-12-11 旭硝子株式会社 玻璃的表面应力测定装置和玻璃的表面应力测定方法
CN203490010U (zh) * 2013-09-27 2014-03-19 中国建材检验认证集团股份有限公司 一种用于检测钢化玻璃表面应力的应力仪
CN105705935A (zh) * 2013-10-30 2016-06-22 康宁股份有限公司 测量具有陡峭折射率区域的离子交换玻璃的模谱的设备和方法
US20150338308A1 (en) * 2014-05-21 2015-11-26 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
CN104280171A (zh) * 2014-11-03 2015-01-14 苏州精创光学仪器有限公司 玻璃表面应力测量方法
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置
CN205120285U (zh) * 2015-11-27 2016-03-30 苏州精创光学仪器有限公司 钢化玻璃表面应力测量仪
CN106324730A (zh) * 2016-09-18 2017-01-11 北京杰福科技有限公司 棱镜以及玻璃表面应力检测装置
CN206193276U (zh) * 2016-09-18 2017-05-24 北京杰福科技有限公司 棱镜以及玻璃表面应力检测装置
CN106500891A (zh) * 2016-11-29 2017-03-15 北京杰福科技有限公司 玻璃表面应力检测装置以及用于其的检测棱镜
CN206399566U (zh) * 2016-11-29 2017-08-11 北京杰福科技有限公司 玻璃表面应力检测装置以及用于其的检测棱镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, SHUNWU ET AL.: "Development of Surface Stress Meter of Toughened Glass", JOURNAL OF DALIAN INSTITUTE OF LIGHT INDUSTRY, 2 April 1987 (1987-04-02) *

Similar Documents

Publication Publication Date Title
WO2016188378A1 (zh) 一种具有透明基底的薄膜的测量装置及测量方法
TWI645159B (zh) 光學裝置
US11313805B2 (en) Differential interference-based optical film defect detection method
CN206193276U (zh) 棱镜以及玻璃表面应力检测装置
WO2018050113A1 (zh) 棱镜以及玻璃表面应力检测装置
TW201508244A (zh) 光學影像擷取模組、對位方法及觀測方法
TWI624735B (zh) 檢測裝置、曝光裝置及製造裝置的方法
WO2023035928A1 (zh) 光学透镜以及光学检测设备
US20010007502A1 (en) Optical system for oblique incidence interferometer and apparatus using the same
TW202012899A (zh) 溫度測定感測器、溫度測定系統及溫度測定方法
JP4810693B2 (ja) 光波干渉測定装置
JPS60209106A (ja) 平面度検査装置
TW201100864A (en) Hybrid light source system
TW201437604A (zh) 能夠檢測顏色資訊的三維形狀檢測裝置
JPH0530761U (ja) 欠陥観察装置
CN106324730A (zh) 棱镜以及玻璃表面应力检测装置
CN106500891B (zh) 玻璃表面应力检测装置以及用于其的检测棱镜
JP5574226B2 (ja) 干渉対物レンズ及びこれを有する顕微鏡装置
JPS6179109A (ja) 反射型ガラス歪検査装置
JP5019110B2 (ja) 赤外線厚さ計
TWI729615B (zh) 反射式聚光干涉儀
CN102901048A (zh) 反射罩、照明装置、检测/测量装置及检测/测量方法
JP3354698B2 (ja) 平面度測定装置
JP2007017287A (ja) クロスダイクロイックプリズムの検査装置、製造装置、検査方法、製造方法
KR101321058B1 (ko) 레이저를 이용하여 필름의 두께를 측정하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850314

Country of ref document: EP

Kind code of ref document: A1