WO2023035928A1 - 光学透镜以及光学检测设备 - Google Patents

光学透镜以及光学检测设备 Download PDF

Info

Publication number
WO2023035928A1
WO2023035928A1 PCT/CN2022/114102 CN2022114102W WO2023035928A1 WO 2023035928 A1 WO2023035928 A1 WO 2023035928A1 CN 2022114102 W CN2022114102 W CN 2022114102W WO 2023035928 A1 WO2023035928 A1 WO 2023035928A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
area
optical lens
region
incident surface
Prior art date
Application number
PCT/CN2022/114102
Other languages
English (en)
French (fr)
Inventor
李凡
张俊瑞
周全国
程久阳
唐浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/271,950 priority Critical patent/US20240069274A1/en
Publication of WO2023035928A1 publication Critical patent/WO2023035928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection

Definitions

  • the present disclosure relates to the field of optical technology, in particular to an optical lens and an optical detection device.
  • the display panel is the main component of the display device, and the quality of the display panel determines the quality of the display device.
  • defects such as cracks, air bubbles or stains are prone to occur on the display panel, and the display panel needs to be inspected after the display panel is manufactured.
  • the present disclosure provides an optical lens for adjusting the propagation direction of light from a display panel.
  • the display panel includes at least a curved area and a plane area connected to the curved area.
  • the optical lens includes:
  • the first area includes a first incident surface and a first exit surface oppositely arranged, the first incident surface is used to receive the first light from the planar area when the display panel is detected, the first The light is emitted from the first exit surface after passing through the first area;
  • the second area connected to the first area, includes a second incident surface and a second exit surface oppositely arranged, and the second incident surface is used to receive information from the curved surface area when the display panel is tested. .
  • first emitting surface and the second emitting surface are located on the same plane.
  • the second region in a direction perpendicular to the interface between the first region and the second region, includes a plurality of waveguide layers stacked, each of the waveguide layers It is used to emit from the second exit surface after total reflection of the second light entering therein.
  • a coating is provided on the surface of each waveguide layer close to the first region and/or on the surface away from the first region, and the refractive index of the coating is greater than that of the The refractive index of the waveguide layer.
  • the material of the waveguide layer includes borosilicate crown glass, and the material of the coating is silver.
  • the multiple waveguide layers divide the second incident surface into multiple sub-surfaces, and the area of each of the sub-surfaces is the same.
  • the thickness of each waveguide layer is greater than or equal to 1.5 mm and less than or equal to 100 mm.
  • the first incident surface is arranged parallel to the first outgoing surface.
  • the shape of the cross section of the second incident surface is a circular arc.
  • the first incident surface is tangent to the arc.
  • the central angle of the arc is greater than or equal to 10° and less than or equal to 90°.
  • the radius of curvature of the arc is greater than or equal to 5 mm and less than or equal to 1000 mm.
  • the second region is provided on opposite sides of the periphery of the first region.
  • the present disclosure provides an optical detection device, including a stage, a light source, an image acquisition device, an image processing device, and an optical lens as described in any one;
  • the carrier is used to carry the display panel
  • the light source is used to provide initial light incident on the display panel, so that the display panel reflects the initial light to the optical lens;
  • the optical lens is arranged between the stage and the image acquisition device;
  • the image acquisition device is used to acquire light from the first exit surface and the second exit surface of the optical lens, and output image information
  • the image processing device is configured to receive the image information output by the image acquisition device, and determine defect information of the display panel.
  • the orthographic projection of the second area on the display panel covers the curved surface area in a third direction, wherein the third direction is a direction perpendicular to the boundary line between the first incident surface and the second incident surface.
  • the orthographic projection of the first area on the display panel may completely overlap the plane area in the third direction.
  • the cross section of the second incident surface is a first circular arc
  • the display panel When detected, the cross section of the curved surface area is a second circular arc, and the first circular arc and the second circular arc are arranged concentrically.
  • central angles of the first circular arc and the second circular arc are the same.
  • the ratio of the radius of curvature of the first arc to the radius of curvature of the second arc is greater than or equal to 1.5 and less than or equal to 5.
  • the image acquisition device includes a CCD camera, the CCD camera is electrically connected to the image processing device, and a lens of the CCD camera faces the first exit surface.
  • the first direction is located outside the field angle range of the CCD camera lens
  • the second direction is located within the field angle range of the CCD camera lens
  • the number of the CCD camera is one.
  • FIG. 1 schematically shows a schematic cross-sectional structure diagram of a display panel
  • Fig. 2 schematically shows a schematic structural diagram of a detection device in the related art
  • FIG. 3 schematically shows a schematic cross-sectional structure diagram of an optical lens provided by the present disclosure
  • FIG. 4 schematically shows a schematic cross-sectional structure diagram of an optical lens and a display panel
  • FIG. 5 schematically shows a schematic diagram of a three-dimensional structure of an optical lens and a display panel
  • Fig. 6 schematically shows a display panel image and a schematic diagram of luminous flux distribution obtained without an optical lens
  • Fig. 7 schematically shows a display panel image obtained under the condition of setting an optical lens and a schematic diagram of luminous flux distribution
  • Fig. 8 schematically shows a side view structural diagram of an optical detection device provided by the present disclosure.
  • the method of testing the display panel is usually to obtain the overall appearance image of the display panel through a camera, and then use related software to identify the appearance image.
  • the inventors found that, for the non-planar display panel shown in FIG. 1 , if a single camera is used for shooting, a clear appearance image cannot be obtained due to the existence of the curved surface area.
  • multiple cameras can be used, such as ⁇ 1 line-scan camera, ⁇ 2 line-scan camera and ⁇ 3 line-scan camera in Fig.
  • the captured images are stitched, and then the stitched images are subjected to defect detection. This detection method requires splicing multiple images and setting multiple cameras, all of which increase the complexity of the detection equipment.
  • an embodiment of the present disclosure provides an optical lens, which is used to adjust the propagation direction of the light from the display panel.
  • the display panel 42 at least includes a curved area and a planar area connected to the curved area.
  • FIG. 3 schematically shows a schematic cross-sectional structural view of an optical lens provided by the present disclosure.
  • the optical lens includes:
  • the first area 31 includes a first incident surface a1 and a first exit surface b1 oppositely arranged, the first incident surface a1 is used to receive the first light from the planar area when the display panel 42 is detected, and the first light passes through the second A region 31 is then emitted from the first emission surface b1;
  • the second area 32 connected to the first area 31, includes a second incident surface a2 and a second exit surface b2 that are oppositely arranged.
  • the second incident surface a2 is used to receive images from the curved area along the first
  • the second light propagates in the second direction, and the second light passes through the second area 32 and is emitted from the second exit surface b2 along the second direction.
  • the light emitted by the first exit surface b1 and the second exit surface b2 of the optical lens 41 can be captured by the image acquisition device 82 .
  • the first incident surface a1 of the optical lens 41 receives the first light from the plane area of the display panel 42, and the first light passes through the first area 31 and exits from the first exit surface b1; the second incident surface a2 of the optical lens 41 receives the light from The second light in the curved area of the display panel 42 is adjusted from the first direction to the second direction and then emitted from the second exit surface b2.
  • the second area 32 of the optical lens 41 receives the divergent light rays from the curved surface area, and adjusts the propagation direction of these light rays, so that the propagation direction of the light rays that cannot be collected by the image acquisition device 82 can be adjusted to be able to be collected by the image acquisition device 82 direction, thereby increasing the amount of light collected from the surface area.
  • the first emitting surface b1 and the second emitting surface b2 are located on the same plane.
  • the collection surface of the image acquisition device 82 is the surface of the display panel 42 close to the image acquisition device 82, that is, the collection surface is non-planar.
  • the optical lens 41 can be used to be arranged between the display panel 42 and the image acquisition device 82 when the display panel 42 is detected, so that the acquisition surface of the image acquisition device 82 is the first exit surface b1 and the second exit surface b1.
  • the surface b2 since the first emitting surface b1 and the second emitting surface b2 are located on the same plane, the transformation of the collection surface from non-planar to planar can be realized by setting the optical lens 41 .
  • the image acquisition device 82 can collect the light emitted from the first exit surface b1 and the second exit surface b2, realizing the conversion of the collection surface from non-planar to planar, even
  • the image acquisition device 82 has a single-camera structure, and can also obtain clear images of flat areas and curved areas, thereby improving the accuracy of defect detection.
  • the second region 32 may include multiple Each waveguide layer 33 is used for total reflection of the second light that enters it, and then emits from the second exit surface b2.
  • the second light entering the waveguide layer 33 is totally reflected between the surface of the waveguide layer 33 close to the first region 31 and the surface of the waveguide layer 33 away from the first region 31 , and then emit from the second emitting surface b2.
  • the transmittance can be a ratio of the intensity of light passing through the waveguide layer 33 and exiting the second exit surface b2 to the total light intensity entering the waveguide layer 33 .
  • a coating is provided on the surface of each waveguide layer 33 close to the first region 31 and/or on the surface far away from the first region 31, and the coating The refractive index is greater than that of the waveguide layer 33 .
  • a coating can be provided on the surface of each waveguide layer 33 close to the first region 31, or a coating can be provided on the surface of each waveguide layer 33 away from the first region 31, or a coating can be provided on the surface of each waveguide layer 33 close to the first region 31.
  • a coating is provided on the surface of the first region 31 and the surface away from the first region 31 .
  • the material of the waveguide layer 33 can include, for example, borosilicate crown glass, etc., and the material of the coating can be, for example, metal materials such as silver.
  • the borosilicate crown glass is BK7 glass
  • the refractive index is 1.15872
  • the absorption rate is 0.0002001
  • the transmittance is 0.998001.
  • the refractive index of silver is 1.67.
  • the material of the waveguide layer 33 and the coating are not limited in this embodiment.
  • multiple waveguide layers 33 divide the second incident surface a2 into multiple sub-surfaces, and the area of each sub-surface is the same.
  • the number of sub-surfaces is the same as the number of waveguide layers 33 .
  • the second incident surface a2 is equally divided into a plurality of sub-surfaces by the plurality of waveguide layers 33 .
  • the area of each sub-surface can be the same, and the shape of each sub-surface can also be the same.
  • the parts of different waveguide layers 33 on the second incident surface a2 correspond to different subsurfaces, that is, the surfaces of different waveguide layers 33 on the side close to the display panel correspond to different subsurfaces.
  • the number of waveguide layers 33 may be 10, and then the waveguide layers 33 divide the second incident surface a2 into ten equal parts, that is, 10 sub-surfaces.
  • the thickness of each waveguide layer 33 may be greater than or equal to 1.5 mm and less than or equal to 100 mm. When the thickness of the waveguide layer 33 is within this range, it can not only meet the requirement of adjusting the propagation direction of the second light, but also ensure that the manufacturing difficulty of the waveguide layer 33 is within a controllable range and reduce the cost.
  • the number of waveguide layers 33 and the thickness of each waveguide layer 33 can be designed according to actual conditions, which are not limited in this embodiment.
  • each waveguide layer 33 can totally reflect the second light rays entering therein, and realize the adjustment of the propagation direction of the second light rays.
  • the light rays on the plane are transformed into light rays emitted from the second exit surface b2, that is, the plane.
  • the inventor simulated the two schemes of not setting the optical lens 41 and setting the optical lens 41 through simulation software. In both schemes, a single camera is used to obtain the image of the display panel 42.
  • a single camera is used to obtain the image of the display panel 42.
  • the right figure shows the luminous flux distribution along the two lines g1 and h1 in the display panel image
  • Figure 7 schematically shows the display panel image with the optical lens set
  • the right figure The luminous flux distribution along the two lines g2 and h2 in the image of the display panel is shown.
  • the edge light is relatively divergent, the luminous flux in the curved surface area decreases sharply, and the luminous flux at the boundary of the curved surface area is only 0.0006-0.0007W/m 2 .
  • the luminous flux at the boundary of the curved surface area is increased to about 0.0011W/ m2 , and at the same time, the light at the edge of the image
  • the dispersion phenomenon of the curved surface area is significantly weakened, which can effectively control the loss of light in the curved surface area.
  • the camera can collect more light from the curved surface area, thereby improving the brightness of the image in the curved surface area and realizing accurate detection of defects in the curved surface area.
  • the first incident surface a1 and the first outgoing surface b1 may be arranged in parallel. Specifically, when the display panel 42 is detected, both the first incident surface a1 and the first exit surface b1 may be parallel to the display panel 42 , as shown in FIG. 4 .
  • the first region 31 may be a flat glass with an integral structure, and the material of the flat glass may be, for example, borosilicate crown glass.
  • the propagation direction of the first light before entering the first region 31 is the same as the propagation direction after exiting the first region 31 .
  • the first region 31 may be any structure capable of transmitting the first light.
  • the first region 31 may also be a structure such as a convex lens, which is not limited in this embodiment.
  • the propagating direction of the first light before entering the first region 31 and after exiting the first region 31 may be the same or different, which is not limited in this embodiment.
  • the shape of the cross section of the second incident surface a2 is a circular arc.
  • the first incident surface a1 and the second incident surface a2 may be tangent.
  • the first incident surface a1 is tangent to the arc.
  • the central angle of the arc may be greater than or equal to 10° and less than or equal to 90°.
  • the central angle of the arc can be 30°, 45°, 60° and so on.
  • the central angle of the arc can be set according to the structure of the curved area of the display panel 42 to be tested, which is not limited in this embodiment.
  • the radius of curvature of the arc may be greater than or equal to 5mm and less than or equal to 1000mm.
  • the radius of curvature of the arc may be 6mm, 10mm, 100mm, 500mm, and so on.
  • the radius of curvature of the arc can be set according to the structure of the curved area of the display panel 42 to be tested, which is not limited in this embodiment.
  • the positional relationship between the second area 32 and the first area 31 can be designed according to the actual structure of the display panel, and the second area 32 can be set corresponding to the position of the curved surface area to ensure that when the display panel is tested, The second area 32 can receive light from the curved area.
  • the second area 32 may be correspondingly disposed at the periphery of the first area 31 .
  • second areas 32 may be provided on opposite sides of the periphery of the first area 31 .
  • the second area 32 may be symmetrically arranged on both sides of the first area 31 .
  • the second area 32 may be arranged around the first area 31 . In this way, it can be ensured that the second light from the curved area enters the second area 32 as much as possible, thereby increasing the amount of light collected from the curved area.
  • FIG. 8 a schematic side view structural diagram of an optical detection device provided by the present disclosure is schematically shown.
  • the optical detection device includes a stage 81 , a light source, an image acquisition device 82 , an image processing device, and an optical lens 41 according to any of the above-mentioned embodiments.
  • the carrier 81 is used for carrying the display panel 42 .
  • the display panel 42 is disposed on a side of the stage 81 close to the image acquisition device 82 .
  • the light source is used to provide initial light incident on the display panel 42 , so that the display panel 42 reflects the initial light to the optical lens 41 .
  • the optical lens 41 is disposed between the stage 81 and the image acquisition device 82 .
  • the relative positional relationship between the display panel 42 and the optical lens 41 disposed on the stage 81 can be shown in FIG. 4 and FIG. 5 .
  • the display panel 42 is spaced apart from the optical lens 41, and the distance between them can be adjusted according to actual needs.
  • the image acquisition device 82 is configured to acquire light from the first exit surface b1 and the second exit surface b2 of the optical lens 41 and output image information.
  • the image processing device is configured to receive the image information output by the image acquisition device 82 and determine the defect information of the display panel 42 .
  • the optical lens 41 is provided between the stage 81 and the image acquisition device 82, the light collection surfaces of the image acquisition device 82 are the first exit surface b1 and the second exit surface b2, since the first exit surface b1 and the second exit surface b2 are located on the same plane, so the light collection surface of the image acquisition device 82 is a plane, therefore, even if the structure of the image acquisition device 82 is a single-camera structure, a clear display panel image can be obtained, and the defect detection efficiency can be improved. Accuracy.
  • the structure of the image acquisition device is a single camera structure, compared with the multi-camera structure, it can not only reduce the structural complexity of the detection equipment, but also avoid splicing the images collected by multiple cameras, thereby reducing the complexity of algorithm processing. Improve the processing speed of the algorithm.
  • the image acquisition device 82 can collect more light from the curved surface area, thus increasing the brightness of the image of the curved surface area, which is helpful for detecting subtle defects and improving detection precision and accuracy.
  • the orthographic projection of the second area 32 on the display panel 42 overlaps with the curved area, so as to ensure that the second light from the curved area can enter the second area 32 .
  • the orthographic projection of the second area 32 on the display panel 42 covers the curved area in the third direction.
  • the third direction is a direction perpendicular to the boundary line between the first incident surface a1 and the second incident surface a2.
  • the orthographic projection of the first area 31 on the display panel 42 overlaps with the planar area, ensuring that the first light from the planar area can enter the first area 31 .
  • the orthographic projection of the first area 31 on the display panel 42 can completely overlap with the plane area in the third direction, so as to ensure that As much first light as possible enters the first area 31 while preventing the second light from the curved area from entering the first area 31 .
  • FIG. 5 a schematic perspective view of the three-dimensional structure of the optical lens 41 and the display panel 42 is schematically shown.
  • the orthographic projection of the first region 31 on the display panel 42 completely overlaps the planar region
  • the orthographic projection of the second region 32 on the display panel 42 completely overlaps the curved region.
  • the image of the entire display panel can be obtained by using a single camera for one shot, without moving the camera and optical lens along the direction of the boundary line between the first incident surface a1 and the second incident surface a2, and without image stitching, which can further improve detection efficiency .
  • the cross-section of the second incident surface a2 is the first arc c1
  • the cross-section of the curved area is the second arc c2
  • the first arc c1 and the second arc c2 are arranged concentrically.
  • the second arc c2 is a cross-section of the surface of the curved surface area close to the optical lens, along the direction of the boundary line between the first incident surface a1 and the second incident surface a2.
  • the central angles of the first arc c1 and the second arc c2 may be the same or different, which is not limited in this embodiment.
  • the ratio of the radius of curvature of the first arc c1 to the radius of curvature of the second arc c2 may be greater than or equal to 1.5 and less than or equal to 5.
  • the radius of curvature of the first arc c1 may be twice the radius of curvature of the second arc c2.
  • the image acquisition device 82 may include a single high-definition industrial wide-angle camera.
  • the image acquisition device 82 includes a CCD camera, and the CCD camera is electrically connected to the image processing device.
  • the number of CCD cameras may be one, for example.
  • the lens of the CCD camera may face the first exit surface b1.
  • the minimum distance d between the lens of the CCD camera and the display panel 42 may be greater than or equal to 500mm and less than or equal to 1000mm.
  • the first direction may be located outside the range of the viewing angle ⁇ of the CCD camera lens, and the second direction may be located within the range of the viewing angle ⁇ of the CCD camera lens. In this way, it can be ensured that the image acquisition device 82 can collect more light rays from the curved surface area, and the brightness of the image of the curved surface area can be improved.
  • the viewing angle ⁇ of the CCD camera lens may be greater than or equal to 90° and less than or equal to 100°.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the disclosure can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

光学透镜以及光学检测设备,涉及光学技术领域。光学透镜用于调节来自显示面板(42)的光线的传播方向,显示面板(42)至少包括曲面区域以及与曲面区域连接的平面区域,光学透镜包括:第一区域(31),包括相对设置的第一入射表面(a1)和第一出射表面(b1),第一入射表面(a1)用于在显示面板(42)被检测时,接收来自平面区域的第一光线,第一光线经过第一区域(31)后从第一出射表面(a1)射出;第二区域(32),连接第一区域(31),包括相对设置的第二入射表面(a2)和第二出射表面(b2),第二入射表面(a2)用于在显示面板(42)被检测时,接收来自曲面区域、沿第一方向传播的第二光线,第二光线经过第二区域(32)后沿着第二方向从第二出射表面(b2)射出;其中,第一出射表面(b1)与第二出射表面(b2)位于同一个平面。从而可以提高不良检测的准确率。

Description

光学透镜以及光学检测设备
相关申请的交叉引用
本公开要求在2021年09月13日提交中国专利局、申请号为202111067757.9、名称为“光学透镜以及光学检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光学技术领域,特别是涉及一种光学透镜以及光学检测设备。
背景技术
显示面板是显示装置的主要组成部分,显示面板的质量决定了显示装置的质量。
在显示面板的生产过程中,显示面板容易产生裂纹、气泡或污渍等缺陷,在显示面板制作完成后需对显示面板进行检测。
概述
本公开提供了一种光学透镜,用于调节来自显示面板的光线的传播方向,所述显示面板至少包括曲面区域以及与所述曲面区域连接的平面区域,所述光学透镜包括:
第一区域,包括相对设置的第一入射表面和第一出射表面,所述第一入射表面用于在所述显示面板被检测时,接收来自所述平面区域的第一光线,所述第一光线经过所述第一区域后从所述第一出射表面射出;
所述第二区域,连接所述第一区域,包括相对设置的第二入射表面和第二出射表面,所述第二入射表面用于在所述显示面板被检测时,接收来自所述曲面区域、沿第一方向传播的第二光线,所述第二光线经过所述第二区域后沿着第二方向从所述第二出射表面射出;
其中,所述第一出射表面与所述第二出射表面位于同一个平面。
在一种可选的实现方式中,在垂直于所述第一区域与所述第二区域的交 界面的方向上,所述第二区域包括层叠设置的多个波导层,各所述波导层用于对进入其中的第二光线进行全反射后,从所述第二出射表面射出。
在一种可选的实现方式中,各所述波导层靠近所述第一区域的表面和/或远离所述第一区域的表面上设置有涂层,所述涂层的折射率大于所述波导层的折射率。
在一种可选的实现方式中,所述波导层的材料包括硼硅酸盐冕玻璃,所述涂层的材料为银。
在一种可选的实现方式中,所述多个波导层将所述第二入射表面划分为多个子表面,各所述子表面的面积相同。
在一种可选的实现方式中,在垂直于所述第一区域与所述第二区域的交界面的方向上,各所述波导层的厚度大于或等于1.5mm,且小于或等于100mm。
在一种可选的实现方式中,所述第一入射表面与所述第一出射表面平行设置。
在一种可选的实现方式中,沿着所述第一入射表面与所述第二入射表面交界线的方向,所述第二入射表面的横截面的形状为圆弧。
在一种可选的实现方式中,所述第一入射表面与所述圆弧相切。
在一种可选的实现方式中,所述圆弧的圆心角大于或等于10°,且小于或等于90°。
在一种可选的实现方式中,所述圆弧的曲率半径大于或等于5mm,且小于或等于1000mm。
在一种可选的实现方式中,在所述第一区域外围相对的两侧设置有所述第二区域。
本公开提供了一种光学检测设备,包括载台、光源、图像获取装置、图像处理装置以及如任一项所述光学透镜;
所述载台,用于承载所述显示面板;
所述光源,用于提供向所述显示面板入射的初始光线,以使所述显示面板将所述初始光线反射至所述光学透镜;
所述光学透镜,设置在所述载台与所述图像获取装置之间;
所述图像获取装置,用于获取来自所述光学透镜的所述第一出射表面以 及所述第二出射表面的光线,并输出图像信息;
所述图像处理装置,用于接收所述图像获取装置输出的图像信息,并确定所述显示面板的缺陷信息。
在一种可选的实现方式中,在所述显示面板被检测时,所述第二区域在所述显示面板上的正投影在第三方向上覆盖所述曲面区域,其中,所述第三方向为垂直于所述第一入射表面与所述第二入射表面交界线的方向。
在一种可选的实现方式中,在所述显示面板被检测时,所述第一区域在所述显示面板上的正投影在第三方向上可以与平面区域完全重叠。
在一种可选的实现方式中,沿着所述第一入射表面与所述第二入射表面交界线的方向,所述第二入射表面的横截面为第一圆弧,在所述显示面板被检测时,所述曲面区域的横截面为第二圆弧,所述第一圆弧与所述第二圆弧同心设置。
在一种可选的实现方式中,所述第一圆弧与所述第二圆弧的圆心角相同。
在一种可选的实现方式中,所述第一圆弧的曲率半径与所述第二圆弧的曲率半径的比值大于或等于1.5,且小于或等于5。
在一种可选的实现方式中,所述图像获取装置包括CCD相机,所述CCD相机与所述图像处理装置电连接,所述CCD相机的镜头朝向所述第一出射表面。
在一种可选的实现方式中,所述第一方向位于所述CCD相机镜头的视场角范围之外,所述第二方向位于所述CCD相机镜头的视场角范围之内。
在一种可选的实现方式中,所述述CCD相机的数量为一个。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。需要说 明的是,附图中的比例仅作为示意并不代表实际比例。
图1示意性地示出了一种显示面板的剖面结构示意图;
图2示意性地示出了相关技术中的一种检测设备的结构示意图;
图3示意性地示出了本公开提供的一种光学透镜的剖面结构示意图;
图4示意性地示出了光学透镜与显示面板的剖面结构示意图;
图5示意性地示出光学透镜与显示面板的立体结构示意图;
图6示意性地示出了未设置光学透镜的情况下获取的显示面板图像以及光通量分布示意图;
图7示意性地示出了设置光学透镜的情况下获取的显示面板图像以及光通量分布示意图;
图8示意性地示出了本公开提供的一种光学检测设备的侧视结构示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
显示面板在生产过程中会出现裂痕、气泡、污渍等不良,若不及时检出,会造成后端工艺及材料的浪费。对显示面板进行检测的方法通常是通过相机获得显示面板的整体外观图像,然后再通过相关软件对外观图像进行不良识别。发明人发现,对于如图1所示的非平面显示面板,如果采用单摄像头拍摄,由于曲面区域的存在,无法获得清晰的外观图像。为了获得清晰的外观图像,可以采用多个摄像头,如图2中的θ1线扫相机、θ2线扫相机和θ3线扫相机,分别对曲面区域上的不同曲率位置进行拍摄,然后对多个摄像头拍摄的图像进行拼接,之后再对拼接图像进行不良检测。这种检测方式需要对多个图像进行拼接,并且需要设置多个摄像头,这些均增加了检测设备的复杂程度。
为了解决上述问题,本公开一实施例提供了一种光学透镜,用于调节来自显示面板的光线的传播方向,参照图4示意性示出了光学透镜41与显示面 板42的剖面结构示意图,如图4所示,显示面板42至少包括曲面区域以及与曲面区域连接的平面区域。
参照图3示意性示出了本公开提供的一种光学透镜的剖面结构示意图,如图3和图4所示,该光学透镜包括:
第一区域31,包括相对设置的第一入射表面a1和第一出射表面b1,第一入射表面a1用于在显示面板42被检测时,接收来自平面区域的第一光线,第一光线经过第一区域31后从第一出射表面b1射出;
第二区域32,连接第一区域31,包括相对设置的第二入射表面a2和第二出射表面b2,第二入射表面a2用于在显示面板42被检测时,接收来自曲面区域、沿第一方向传播的第二光线,第二光线经过第二区域32后沿着第二方向从第二出射表面b2射出。
在具体实现中,当显示面板42被检测时,如图8所示,可以将光学透镜41设置在显示面板42与图像获取装置82之间,光学透镜41用于调节来自显示面板42的光线的传播方向,光学透镜41的第一出射表面b1和第二出射表面b2出射的光线可以被图像获取装置82获取。
光学透镜41的第一入射表面a1接收来自显示面板42的平面区域的第一光线,第一光线经过第一区域31后从第一出射表面b1射出;光学透镜41的第二入射表面a2接收来自显示面板42的曲面区域的第二光线,并将第二光线的传播方向由第一方向调节为第二方向后从第二出射表面b2射出。光学透镜41的第二区域32接收来自曲面区域的发散光线,并对这些光线的传播方向进行调节,可以将不能被图像获取装置82采集到的光线的传播方向调节到能够被图像获取装置82采集到的方向,从而提高来自曲面区域的光线的采集量。
本实施例中,第一出射表面b1与第二出射表面b2位于同一个平面。
相关技术中,在显示面板42被检测时,由于不设置光学透镜41,因此图像获取装置82的采集表面为显示面板42靠近图像获取装置82的一侧表面,即采集表面为非平面。
本实施例中,光学透镜41可以用于在显示面板42被检测时,设置在显示面板42与图像获取装置82之间,这样图像获取装置82的采集表面为第一出射表面b1和第二出射表面b2,由于第一出射表面b1和第二出射表面b2位 于同一个平面,因此通过设置光学透镜41,可以实现采集表面由非平面向平面的转化。
由于第一出射表面b1和第二出射表面b2位于同一个平面,图像获取装置82可以采集第一出射表面b1和第二出射表面b2出射的光线,实现采集表面由非平面向平面的转化,即使图像获取装置82为单摄像头结构,也能够获得清晰的平面区域和曲面区域的图像,从而提高不良检测的准确率。
在一种可选的实现方式中,在垂直于第一区域31与第二区域32的交界面的方向上,如图3中箭头T所指的方向,第二区域32可以包括层叠设置的多个波导层33,各波导层33用于对进入其中的第二光线进行全反射后,从第二出射表面b2射出。
本实现方式中,对于每一个波导层33,进入该波导层33的第二光线在该波导层33靠近第一区域31的表面以及该波导层33远离第一区域31的表面之间发生全反射,之后从第二出射表面b2射出。
对于每一个波导层33,透过率可以为通过该波导层33并从第二出射表面b2射出的光线强度与进入该波导层33的总光线强度的比值。为了提高波导层33的透过率,在一种可选的实现方式中,各波导层33靠近第一区域31的表面和/或远离第一区域31的表面上设置有涂层,涂层的折射率大于波导层33的折射率。
本实现方式中,可以在各波导层33靠近第一区域31的表面上设置有涂层,或者在各波导层33远离第一区域31的表面上设置有涂层,或者在各波导层33靠近第一区域31的表面和远离第一区域31的表面上均设置有涂层。通过设置涂层,可以提高波导层33内光线的反射率,降低折射。
波导层33的材料例如可以包括硼硅酸盐冕玻璃等,涂层的材料例如可以为银等金属材料。其中,硼硅酸盐冕玻璃即BK7玻璃,折射率为1.15872,吸收率为0.0002001,穿透率为0.998001。银的折射率为1.67。在具体实现中,只要波导层33的折射率小于涂层的折射率即可,本实施例对波导层33的材料以及涂层的材料不作限定。
可选地,多个波导层33将第二入射表面a2划分为多个子表面,各子表面的面积相同。子表面的数量与波导层33的数量相同。具体地,第二入射表面a2被多个波导层33平均划分为多个子表面。各个子表面的面积可以相同, 各个子表面的形状也可以相同。其中,不同的波导层33位于第二入射表面a2上的部分分别对应不同的子表面,即不同的波导层33靠近显示面板一侧的表面分别对应不同的子表面。
例如,波导层33的数量可以为10个,则波导层33将第二入射表面a2划分为十等份,即10个子表面。
在垂直于第一区域31与第二区域32的交界面的方向上,如图3中箭头T所指的方向,各波导层33的厚度可以大于或等于1.5mm,且小于或等于100mm。当波导层33的厚度在这个范围内时,既能够满足调节第二光线的传播方向的需求,还可以确保波导层33的制作难度在可控范围内,降低成本。
在具体实现中,波导层33的数量以及各波导层33的厚度可以根据实际情况进行设计,本实施例对此不作限定。
本实现方式中,通过在第二区域32设置多个波导层33,各波导层33对进入其中的第二光线进行全反射,实现对第二光线传播方向的调整,实现将来自曲面区域即非平面的光线,转化为自第二出射表面b2即平面出射的光线。
发明人通过模拟软件模拟了不设置光学透镜41以及设置光学透镜41两种方案,两种方案中均采用单摄像头获取显示面板42的图像,参照图6中的左图示意性示出了不设置光学透镜的显示面板图像,右图示出了显示面板图像中沿着g1和h1两条线的光通量分布,参照图7中的左图示意性示出了设置光学透镜的显示面板图像,右图示出了显示面板图像中沿着g2和h2两条线的光通量分布。
如图6所示,采用单摄像头、不加光学透镜41的方案获得的显示面板图像,边缘光线较为发散,曲面区域光通量急剧降低,曲面区域边界处的光通量仅为0.0006-0.0007W/m 2。如图7所示,采用单摄像头、增加了光学透镜41的方案获得的显示面板图像,在其它参数相同的条件下,曲面区域边界处的光通量提升至0.0011W/m 2左右,同时图像边缘光线的分散现象明显减弱,可以有效地控制曲面区域光线的流失,摄像头能够采集更多来自曲面区域的光线,从而提高曲面区域图像的亮度,实现曲面区域不良的精准检测。
在一种可选的实现方式中,如图3所示,第一入射表面a1与第一出射表面b1可以平行设置。具体地,在显示面板42被检测时,第一入射表面a1与第一出射表面b1可以均为平行于显示面板42,如图4所示。在具体实现中, 第一区域31可以为一体结构的平面玻璃,该平面玻璃的材质例如可以为硼硅酸盐冕玻璃。
本实现方式中,第一光线在进入第一区域31之前的传播方向与从第一区域31射出之后的传播方向相同。
需要说明的是,第一区域31可以为能够透过第一光线的任意结构,例如,第一区域31还可以为凸透镜等结构,本实施例对此不作限定。第一光线的传播方向在进入第一区域31之前以及从第一区域31射出之后可以相同或不同,本实施例对此不作限定。
在一种可选的实现方式中,如图3所示,沿着第一入射表面a1与第二入射表面a2交界线的方向,第二入射表面a2的横截面的形状为圆弧。
在具体实现中,如图3所示,第一入射表面a1与第二入射表面a2可以相切。本实现方式中,第一入射表面a1与圆弧相切。
圆弧的圆心角可以大于或等于10°,且小于或等于90°。例如,圆弧的圆心角可以为30°,45°,60°等等。在具体实现中,圆弧的圆心角可以根据被测试的显示面板42的曲面区域的结构进行设定,本实施例对此不作限定。
圆弧的曲率半径可以大于或等于5mm,且小于或等于1000mm。例如,圆弧的曲率半径可以为6mm、10mm、100mm、500mm等等。在具体实现中,圆弧的曲率半径可以根据被测试的显示面板42的曲面区域的结构进行设定,本实施例对此不作限定。
需要说明的是,第二区域32与第一区域31之间的位置关系可以根据显示面板的实际结构进行设计,第二区域32可以与曲面区域的位置对应设置,确保在显示面板被检测时,第二区域32能够接收到来自曲面区域的光线。例如,当显示面板的曲面区域位于平面区域的外围时,第二区域32可以对应设置在第一区域31的外围。
在一种可选的实现方式中,如图4所示,若曲面区域设置在平面区域外围相对的两侧,则在第一区域31外围相对的两侧可以均设置有第二区域32。可选地,第二区域32可以对称地设置在第一区域31的两侧。
可选地,若曲面区域环绕设置在平面区域的四周,则在第一区域31四周可以环绕设置有第二区域32。这样,可以确保来自曲面区域的第二光线尽可能多地进入第二区域32,提高来自曲面区域的光线的采集量。
本公开另一实施例提供了光学检测设备,参照图8示意性示出了本公开提供的一种光学检测设备的侧视结构示意图。如图8所示,该光学检测设备包括载台81、光源、图像获取装置82、图像处理装置以及如上述任一实施例提供光学透镜41。
其中,载台81用于承载显示面板42。显示面板42设置在载台81靠近图像获取装置82的一侧。
光源用于提供向显示面板42入射的初始光线,以使显示面板42将初始光线反射至光学透镜41。
光学透镜41设置在载台81与图像获取装置82之间。设置于载台81上的显示面板42与光学透镜41之间的相对位置关系可以如图4和图5所示。显示面板42与光学透镜41间隔设置,二者之间的距离可以根据实际需求进行调整。
图像获取装置82,用于获取来自光学透镜41的第一出射表面b1以及第二出射表面b2的光线,并输出图像信息。
图像处理装置,用于接收图像获取装置82输出的图像信息,并确定显示面板42的缺陷信息。
本实施例中,由于在载台81和图像获取装置82之间设置了光学透镜41,使得图像获取装置82的光线采集表面为第一出射表面b1以及第二出射表面b2,由于第一出射表面b1和第二出射表面b2位于同一平面,因此图像获取装置82的光线采集表面为平面,因此,即使图像获取装置82的结构为单摄像头结构,也能获得清晰的显示面板图像,提高不良检测的准确率。
当图像获取装置的结构为单摄像头结构时,与多摄像头结构相比,不但可以降低检测设备的结构复杂度,还可以避免对多个摄像头的采集图像进行拼接,从而降低算法处理的复杂程度,提高算法的处理速度。
由于光学透镜41的设置,使得图像获取装置82可以采集更多来自曲面区域的光线,因此提高曲面区域图像的亮度,有助于检测细微不良,提高检测精度和准确度。
本实施例中,在显示面板42被检测时,第二区域32在显示面板42上的正投影与曲面区域有交叠,这样可以确保来自曲面区域的第二光线能够进入 第二区域32。
在一种可选的实现方式中,如图4所示,在显示面板42被检测时,第二区域32在显示面板42上的正投影在第三方向上覆盖曲面区域。这样,可以确保尽可能多的第二光线进入第二区域32,提高来自曲面区域的光线的采集量。其中,第三方向为垂直于第一入射表面a1与第二入射表面a2交界线的方向。
本实施例中,在显示面板42被检测时,第一区域31在显示面板42上的正投影与平面区域有交叠,确保来自平面区域的第一光线能够进入第一区域31。
在一种可选的实现方式中,如图4所示,在显示面板42被检测时,第一区域31在显示面板42上的正投影在第三方向上可以与平面区域完全重叠,这样可以确保尽可能多的第一光线进入第一区域31,同时防止来自曲面区域的第二光线进入第一区域31。
参照图5示意性示出了光学透镜41与显示面板42的立体结构示意图。在图5中,第一区域31在显示面板42上的正投影与平面区域完全重叠,第二区域32在显示面板42上的正投影与曲面区域完全重叠。这样,采用单摄像头进行一次拍摄就可以获得整个显示面板的图像,无需沿着第一入射表面a1与第二入射表面a2交界线的方向移动摄像头以及光学透镜,无需图像拼接,可以进一步提高检测效率。
在一种可选的实现方式中,如图4所示,沿着第一入射表面a1与第二入射表面a2交界线的方向,第二入射表面a2的横截面为第一圆弧c1,在显示面板42被检测时,曲面区域的横截面为第二圆弧c2,第一圆弧c1与第二圆弧c2同心设置。
其中,第二圆弧c2为曲面区域靠近光学透镜的一侧表面,沿着第一入射表面a1与第二入射表面a2交界线的方向的横截面。
第一圆弧c1与第二圆弧c2的圆心角可以相同或不相同,本实施例对此不作限定。
当第一圆弧c1与第二圆弧c2同心设置,且第一圆弧c1与第二圆弧c2的圆心角相同时,调整显示面板42与光学透镜41之间的距离,当显示面板42的曲面区域靠近载台81的一端与光学透镜41的第二区域32靠近载台81的 一端平齐时,可以确保第二区域32在显示面板42上的正投影在第三方向上完全覆盖曲面区域,如图4所示出的,第二区域32在显示面板42上的正投影在第三方向上与曲面区域完全重叠。
第一圆弧c1的曲率半径与第二圆弧c2的曲率半径的比值可以大于或等于1.5,且小于或等于5。例如,第一圆弧c1的曲率半径可以是第二圆弧c2的曲率半径的2倍。
本实施例中,图像获取装置82可以包括单个高清工业广角摄像头。在一种可选的实现方式中,图像获取装置82包括CCD相机,CCD相机与图像处理装置电连接。为了降低检测设备的复杂度,CCD相机的数量例如可以为一个。
如图8所示,CCD相机的镜头可以朝向第一出射表面b1。
如图8所示,在显示面板42被检测时,CCD相机的镜头与显示面板42之间的最小距离d可以大于或等于500mm,且小于或等于1000mm。
在具体实现中,第一方向可以位于CCD相机镜头的视场角θ范围之外,第二方向位于CCD相机镜头的视场角θ范围之内。这样,可以确保图像获取装置82可以采集更多来自曲面区域的光线,提高曲面区域图像的亮度。
如图8所示,CCD相机镜头的视场角θ可以大于或等于90°,且小于或等于100°。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种光学透镜以及光学检测设备进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (21)

  1. 一种光学透镜,其中,用于调节来自显示面板的光线的传播方向,所述显示面板至少包括曲面区域以及与所述曲面区域连接的平面区域,所述光学透镜包括:
    第一区域,包括相对设置的第一入射表面和第一出射表面,所述第一入射表面用于在所述显示面板被检测时,接收来自所述平面区域的第一光线,所述第一光线经过所述第一区域后从所述第一出射表面射出;
    所述第二区域,连接所述第一区域,包括相对设置的第二入射表面和第二出射表面,所述第二入射表面用于在所述显示面板被检测时,接收来自所述曲面区域、沿第一方向传播的第二光线,所述第二光线经过所述第二区域后沿着第二方向从所述第二出射表面射出;
    其中,所述第一出射表面与所述第二出射表面位于同一个平面。
  2. 根据权利要求1所述的光学透镜,其中,在垂直于所述第一区域与所述第二区域的交界面的方向上,所述第二区域包括层叠设置的多个波导层,各所述波导层用于对进入其中的第二光线进行全反射后,从所述第二出射表面射出。
  3. 根据权利要求2所述的光学透镜,其中,各所述波导层靠近所述第一区域的表面和/或远离所述第一区域的表面上设置有涂层,所述涂层的折射率大于所述波导层的折射率。
  4. 根据权利要求3所述的光学透镜,其中,所述波导层的材料包括硼硅酸盐冕玻璃,所述涂层的材料为银。
  5. 根据权利要求2所述的光学透镜,其中,所述多个波导层将所述第二入射表面划分为多个子表面,各所述子表面的面积相同。
  6. 根据权利要求2所述的光学透镜,其中,在垂直于所述第一区域与所述第二区域的交界面的方向上,各所述波导层的厚度大于或等于1.5mm,且小于或等于100mm。
  7. 根据权利要求1所述的光学透镜,其中,所述第一入射表面与所述第一出射表面平行设置。
  8. 根据权利要求1所述的光学透镜,其中,沿着所述第一入射表面与所 述第二入射表面交界线的方向,所述第二入射表面的横截面的形状为圆弧。
  9. 根据权利要求8所述的光学透镜,其中,所述第一入射表面与所述圆弧相切。
  10. 根据权利要求8所述的光学透镜,其中,所述圆弧的圆心角大于或等于10°,且小于或等于90°。
  11. 根据权利要求8所述的光学透镜,其中,所述圆弧的曲率半径大于或等于5mm,且小于或等于1000mm。
  12. 根据权利要求1至11任一项所述的光学透镜,其中,在所述第一区域外围相对的两侧设置有所述第二区域。
  13. 一种光学检测设备,其中,包括载台、光源、图像获取装置、图像处理装置以及如权利要求1至12任一项所述光学透镜;
    所述载台,用于承载所述显示面板;
    所述光源,用于提供向所述显示面板入射的初始光线,以使所述显示面板将所述初始光线反射至所述光学透镜;
    所述光学透镜,设置在所述载台与所述图像获取装置之间;
    所述图像获取装置,用于获取来自所述光学透镜的所述第一出射表面以及所述第二出射表面的光线,并输出图像信息;
    所述图像处理装置,用于接收所述图像获取装置输出的图像信息,并确定所述显示面板的缺陷信息。
  14. 根据权利要求13所述的光学检测设备,其中,在所述显示面板被检测时,所述第二区域在所述显示面板上的正投影在第三方向上覆盖所述曲面区域,其中,所述第三方向为垂直于所述第一入射表面与所述第二入射表面交界线的方向。
  15. 根据权利要求14所述的光学检测设备,其中,在所述显示面板被检测时,所述第一区域在所述显示面板上的正投影在第三方向上可以与平面区域完全重叠。
  16. 根据权利要求13所述的光学检测设备,其中,沿着所述第一入射表面与所述第二入射表面交界线的方向,所述第二入射表面的横截面为第一圆弧,在所述显示面板被检测时,所述曲面区域的横截面为第二圆弧,所述第一圆弧与所述第二圆弧同心设置。
  17. 根据权利要求16所述的光学检测设备,其中,所述第一圆弧与所述第二圆弧的圆心角相同。
  18. 根据权利要求16所述的光学检测设备,其中,所述第一圆弧的曲率半径与所述第二圆弧的曲率半径的比值大于或等于1.5,且小于或等于5。
  19. 根据权利要求13至18任一项所述的光学检测设备,其中,所述图像获取装置包括CCD相机,所述CCD相机与所述图像处理装置电连接,所述CCD相机的镜头朝向所述第一出射表面。
  20. 根据权利要求19所述的光学检测设备,其中,所述第一方向位于所述CCD相机镜头的视场角范围之外,所述第二方向位于所述CCD相机镜头的视场角范围之内。
  21. 根据权利要求19所述的光学检测设备,其中,所述述CCD相机的数量为一个。
PCT/CN2022/114102 2021-09-13 2022-08-23 光学透镜以及光学检测设备 WO2023035928A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/271,950 US20240069274A1 (en) 2021-09-13 2022-08-23 Optical lens and optical detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111067757.9A CN113777038A (zh) 2021-09-13 2021-09-13 光学透镜以及光学检测设备
CN202111067757.9 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023035928A1 true WO2023035928A1 (zh) 2023-03-16

Family

ID=78842993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114102 WO2023035928A1 (zh) 2021-09-13 2022-08-23 光学透镜以及光学检测设备

Country Status (3)

Country Link
US (1) US20240069274A1 (zh)
CN (1) CN113777038A (zh)
WO (1) WO2023035928A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777038A (zh) * 2021-09-13 2021-12-10 京东方科技集团股份有限公司 光学透镜以及光学检测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153886A (zh) * 2007-10-26 2008-04-02 东莞宏威数码机械有限公司 用于平面显示器件,尤其是oled显示面板的老化与分检装置
US20130234009A1 (en) * 2010-07-19 2013-09-12 European Space Agency Imaging optics and optical device for mapping a curved image field
CN108803028A (zh) * 2017-05-03 2018-11-13 英特尔公司 光束导向设备
CN111508400A (zh) * 2020-06-04 2020-08-07 霸州市云谷电子科技有限公司 显示屏图像的获取装置及显示屏检测设备
CN211669102U (zh) * 2019-05-10 2020-10-13 塔工程有限公司 基板检查装置
CN113777038A (zh) * 2021-09-13 2021-12-10 京东方科技集团股份有限公司 光学透镜以及光学检测设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568779A (zh) * 2015-10-09 2017-04-19 苍南县三维电子塑胶有限公司 液晶显示面板的缺陷检测方法
CN107664647A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 一种发光面板检测装置及其检测方法
KR101775458B1 (ko) * 2017-04-20 2017-09-19 주식회사 오디아이 곡면 모델 디스플레이 정렬 상태 검사 시스템 및 곡면 모델 디스플레이 정렬 상태 검사 방법
CN109949728B (zh) * 2019-04-24 2022-10-11 苏州华兴源创科技股份有限公司 一种显示面板的检测装置
CN111650201B (zh) * 2020-07-15 2023-06-06 Oppo(重庆)智能科技有限公司 检测装置及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153886A (zh) * 2007-10-26 2008-04-02 东莞宏威数码机械有限公司 用于平面显示器件,尤其是oled显示面板的老化与分检装置
US20130234009A1 (en) * 2010-07-19 2013-09-12 European Space Agency Imaging optics and optical device for mapping a curved image field
CN108803028A (zh) * 2017-05-03 2018-11-13 英特尔公司 光束导向设备
CN211669102U (zh) * 2019-05-10 2020-10-13 塔工程有限公司 基板检查装置
CN111508400A (zh) * 2020-06-04 2020-08-07 霸州市云谷电子科技有限公司 显示屏图像的获取装置及显示屏检测设备
CN113777038A (zh) * 2021-09-13 2021-12-10 京东方科技集团股份有限公司 光学透镜以及光学检测设备

Also Published As

Publication number Publication date
CN113777038A (zh) 2021-12-10
US20240069274A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
KR102231367B1 (ko) 공기 중의 이미징에 사용되는 시스템
KR20160138954A (ko) 면광원 장치 및 표시 장치
TWI417638B (zh) 一種具有降低尺寸大小並提高對比度之投影機
CN106855655B (zh) 非对称曲面棱镜影像显示光学系统
US20190004237A1 (en) Optical sheet, surface light source device and display device
WO2019024367A1 (zh) 投影屏幕和投影系统
WO2023035928A1 (zh) 光学透镜以及光学检测设备
KR102636975B1 (ko) 스크린 지문인식 어셈블리 및 단말 장비
US20130063682A1 (en) Optical Film and Backlight Module and LCD Device Having the Optical Film
TW202246744A (zh) 瞳孔模組以及檢查裝置
KR101895593B1 (ko) 광학 검사 시스템 및 광학 이미징 시스템
WO2022002140A1 (zh) 光学装置及近眼显示设备
US7477814B2 (en) Method of making a louver device for a light guide screen
TWI392955B (zh) 光線導引模組及包含該光線導引模組之投影裝置
TW201925764A (zh) 用於偵測玻璃片上之表面缺陷的方法及設備
CN113641067A (zh) 照明装置和激光投影设备
CN106568779A (zh) 液晶显示面板的缺陷检测方法
WO2020238963A1 (zh) 一种成像装置
CN115421228A (zh) 一种自聚焦透镜三维阵列及其制备方法
CN213814024U (zh) 光波导结构
KR20180060348A (ko) 표면 검사 장치
JP2016114602A (ja) 表面形状測定装置、および欠陥判定装置
KR20210108543A (ko) 디스플레이 장치의 검사 장치 및 디스플레이 장치의 검사 방법
KR20100133406A (ko) 오프셋 보상을 하는 빔 분할기
CN218273045U (zh) 一种应用于金属表面异色检测的光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18271950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE