WO2022002140A1 - 光学装置及近眼显示设备 - Google Patents

光学装置及近眼显示设备 Download PDF

Info

Publication number
WO2022002140A1
WO2022002140A1 PCT/CN2021/103589 CN2021103589W WO2022002140A1 WO 2022002140 A1 WO2022002140 A1 WO 2022002140A1 CN 2021103589 W CN2021103589 W CN 2021103589W WO 2022002140 A1 WO2022002140 A1 WO 2022002140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
polarizing
angle
angle selection
Prior art date
Application number
PCT/CN2021/103589
Other languages
English (en)
French (fr)
Inventor
汤伟平
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022002140A1 publication Critical patent/WO2022002140A1/zh
Priority to US18/091,501 priority Critical patent/US20230145899A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/288Filters employing polarising elements, e.g. Lyot or Solc filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of optical technology, and in particular, to an optical device and a near-eye display device.
  • a near-eye display system it is usually necessary to zoom in and display a picture to be displayed.
  • the distance between a light-emitting source (eg, a display screen of an electronic device) and an optical device (eg, a near-eye display device) is usually distanced.
  • the distance is used to increase the field of view of the light entering the optical device, so as to enlarge the image, and then enter the human eye after changing the direction of the optical path through the optical device.
  • the optical device in order for the optical device to completely receive all the light within the field of view, it is usually necessary to form a light inlet with a larger diameter on the optical device, which will lead to the problem of a larger overall thickness of the optical device.
  • the embodiments of the present application provide an optical device and a near-eye display device to solve the problem of the relatively thick overall thickness of the near-eye display device in the prior art.
  • an embodiment of the present application provides an optical device, including a light source, an angle selection unit, a light conversion unit, a first polarizing unit, a second polarizing unit, and a lens, the first polarizing unit is disposed on the the light-emitting side of the light source, and the first surface of the first polarizing unit faces the light-emitting surface of the light-emitting source; the angle selection unit is arranged opposite to the first polarizing unit, and the light conversion unit is arranged at the angle The selection unit is away from the side of the first polarization unit; the second polarization unit is arranged opposite to the angle selection unit, and the mirror is arranged opposite to the light conversion unit.
  • embodiments of the present application provide a near-eye display device, including the optical device.
  • the first polarization unit is disposed on the light-emitting side of the light-emitting source, and the first surface of the first polarization unit faces the light-emitting surface of the light-emitting source;
  • the angle selection unit is disposed opposite to the first polarization unit, and the light conversion unit is disposed at the angle The side of the selection unit away from the first polarization unit, so that the light can penetrate the angle selection unit after being reflected at least once between the angle selection unit and the second polarization unit, and after the vibration direction of the light is converted by the light conversion unit, from the first polarization unit.
  • Two polarizing units pass through.
  • the propagation distance of the light emitted by the light emitting source inside the optical device can be extended, so that the image can be enlarged inside the optical device. Since the image can be enlarged inside the optical device, the difference between the light source and the optical device can be appropriately reduced The distance between the optical devices, that is, to reduce the field of view angle of the light emitted by the light-emitting source entering the optical device, so that the size of the light inlet of the optical device can be adaptively reduced, thus solving the problem of The problem that the overall thickness of the optical device is too large due to the large light inlet opening on the optical device.
  • FIG. 1 is one of the schematic structural diagrams of an optical device provided by an embodiment of the present application.
  • FIG. 2 is a second schematic structural diagram of an optical device provided by an embodiment of the present application.
  • FIG. 3 is a third schematic structural diagram of an optical device provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic structural diagram of an optical device provided by an embodiment of the present application.
  • FIG. 5 is a fifth schematic structural diagram of an optical device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • the optical device includes a light source 100, an angle selection unit 200, a light conversion unit 300, a first polarizing unit 400, a second polarizing unit 500 and Lens 600, the first polarizing unit 400 is disposed on the light-emitting side of the light-emitting source 100, and the first surface of the first polarizing unit 400 faces the light-emitting surface of the light-emitting source 100; the angle selection unit 200 and the The first polarizing unit 400 is disposed opposite to each other, and the light converting unit 300 is disposed on the side of the angle selecting unit 200 away from the first polarizing unit 400 ; the second polarizing unit 500 and the angle selecting unit 200 Oppositely disposed, the lens 600 is disposed opposite to the light conversion unit 300 .
  • the light-emitting source 100 can be a point light source or a surface light source, for example, it can be a surface light source formed by a display screen of an electronic device when displaying a picture, and the propagation path of the light emitted by the light-emitting source 100 can be changed by the above-mentioned optical device, so as to facilitate the display of the light source 100.
  • the content displayed on the screen is enlarged, the content displayed on the screen is projected in the specified direction.
  • the above-mentioned first polarizing unit 400 may include one or more first polarizers arranged in layers, wherein the first polarizer may be an absorbing polarizer.
  • the first polarizing unit 400 may also be a lens group formed by a combination of multiple optical lenses, and the light emitted by the light-emitting source 100 may be reflected and/or refracted multiple times through the multiple optical lenses to form polarization Light.
  • the first direction is denoted as the direction of the light transmission axis of the first polarizing unit 400 . In this way, when the light emitted by the light source 100 enters the first polarizing unit 400 , only the light vibrating in the first direction can pass through, and the light vibrating in other directions will be blocked by the first polarizing unit 400 .
  • the first end of the angle selection unit 200 and the first end of the second polarization unit 500 are spaced apart, so as to form an intrusion between the angle selection unit 200 and the second polarization unit 500 In the light port 120 , the light emitted by the light source 100 can enter between the angle selection unit 200 and the second polarizing unit 500 through the light entrance port 120 .
  • the first end of the angle selection unit 200 is the end of the angle selection unit 200 close to the first polarization unit 400
  • the first end of the second polarization unit 500 is the end of the second polarization unit 500 close to the One end of the first polarizing unit 400 .
  • the above-mentioned first polarizing unit 400 may be disposed facing the light entrance 120, so that the light emitted by the light exit surface of the light source 100 can pass through the first polarizing unit 400, and then enter the angle selection from the light entrance 120. between the unit 200 and the second polarizing unit 500 . Since the direction of the light transmission axis of the first polarizing unit 400 is the first direction, that is, only the light oscillating in the first direction of the light emitted by the light emitting source 100 can penetrate the first polarizing unit 400, thereby ensuring that it enters the first polarizing unit 400.
  • the light between the angle selection unit 200 and the second polarizing unit 500 is all linearly polarized light polarized in the first direction.
  • all the light rays entering the optical device can have the same vibration direction, and at the same time, the second polarizing unit 500 is arranged, and the second polarizing unit 500 is opposite to the angle selection unit.
  • the direction of the optical axis can further avoid the influence of stray light on the imaging effect, thereby improving the imaging effect of the optical device.
  • the above-mentioned angle selection unit 200 may include a light-transmitting body and an angle-selective film disposed on the surface of the light-transmitting body, wherein the angle-selective film can reflect incident light within a certain angle range (eg, 0 to 45°), At the same time, incident light outside the angular range (eg, 45° to 90°) may be transmitted.
  • the first interval is used to represent the angle interval that will be able to penetrate the angle selective film
  • the second interval is used to represent the angle interval reflected by the angle selective film.
  • the angle selection film may adopt the structure of the angle selection film commonly used in the prior art, for example, a Bragg mirror layer or a distributed Bragg reflector (Distributed Bragg reflector, DBR) layer may be used.
  • the DBR layer exhibits angle-selective reflectivity, so it can reflect light beams within a certain range of incident angles and transmit other light beams with incident angles outside the range.
  • the angle-selective film can also be a laminated structure of TiO2 and SiO2. By matching the thickness of each layer in the laminated structure, light with an incident angle greater than 45° is mainly transmitted, while light with an incident angle of less than 45° is mainly reflected.
  • the angle parameters can be adjusted by different ones of the coating films.
  • the above-mentioned second polarizing unit 500 may include one or more second polarizers arranged in layers, wherein the second polarizer may be a reflective polarizer, when the second polarizing unit 500 includes a plurality of second polarizers arranged in layers.
  • the direction of the light transmission axis of each of the second polarizers is the same, and the second direction is hereinafter referred to as the direction of the light transmission axis of the second polarizing unit 500 .
  • the second direction is hereinafter referred to as the direction of the light transmission axis of the second polarizing unit 500 .
  • the above-mentioned light conversion unit 300 can be a vibration direction phase retarder for converting light, for example, can be a quarter glass, and the quarter glass can be made of double-layered quartz, calcite, or mica with precise thickness.
  • Refractive wafers are made with the transmission axis parallel to the wafer surface. Taking the linearly polarized light incident vertically on the wafer as an example, its vibration direction and the wafer optical axis include an angle ⁇ ( ⁇ 0°), the incident light vibration can be decomposed into perpendicular to the optical axis (o vibration) and parallel to the optical axis (e vibration). vibration) two components.
  • the wave plate that can produce ⁇ /4 additional optical path difference between o light and e light is called quarter wave plate.
  • the light conversion unit 300 when the light conversion unit 300 is a quarter glass, and the angle between the optical axis direction of the quarter glass and the light transmission axis direction of the first polarizing unit 900 is 45° When °, the light conversion unit 300 can change the polarization direction of the received linearly polarized light by 45° to form circularly polarized light.
  • the above-mentioned mirror 600 may be a mirror with a reflective function.
  • a reflective film may be provided on the surface of the mirror 600 .
  • the transmitted light conversion unit 300 can be re-reflected to the light conversion unit 300 through the lens 600, so that the light passes through the light conversion unit 300 again, so as to further change the polarization direction.
  • the above-mentioned lens 600 may also have a transmissive portion, so that the user can see the external environment through the lens 600 .
  • the first polarizing unit 400 can only pass the polarized light with vibration in the second direction. Therefore, the first direction and the second direction can be set as different directions, so that the incident light from the second direction can be avoided.
  • the light entering the port 120 directly passes through the second polarizing unit 500 .
  • the angle selection unit 200 can only transmit the light with the incident angle in the first section, and the light with the incident angle in the second section will be reflected by the angle selection unit 200 .
  • the target light beam entering the angle selection unit 200 at the first incident angle will be reflected between the angle selection unit 200 and the second polarization unit 500, wherein the The first incident angle is located in the second interval. Since the angle selection unit 200 and the second polarization unit 500 are disposed opposite to each other, for example, the angle between the two surfaces facing the angle selection unit 200 and the second polarization unit 500 is an acute angle, therefore, the target beam is After the second polarizing unit 500 is reflected, the size of the incident angle entering the angle selecting unit 200 will change. When the incident angle of the target beam entering the angle selecting unit 200 is in the first interval, the target The beam penetration angle selection unit 200 .
  • the first polarizing unit can be arranged on the light-emitting side of the light-emitting source, and the first surface of the first polarizing unit faces the light-emitting surface of the light-emitting source; the angle selection unit is arranged opposite to the first polarizing unit, and the light conversion unit is arranged On the side of the angle selection unit away from the first polarizing unit, so that the light can be reflected between the angle selection unit 200 and the second polarizing unit 500 at least once, and then pass through the angle selection unit 200 and be converted by the light conversion unit 300. After the vibration direction of , it passes through the second polarizing unit 500 .
  • the propagation distance of the light emitted by the light-emitting source 100 inside the optical device can be extended, so that the image can be enlarged inside the optical device. Since the image can be enlarged inside the optical device, the light-emitting source can be appropriately reduced
  • the distance between 100 and the optical device that is, reducing the field of view angle of the light emitted by the light source 100 entering the optical device, so that the size of the light inlet of the optical device can be adaptively reduced, thereby solving the problem in the prior art.
  • the overall thickness of the optical device is too large due to the need to set a larger light inlet on the optical device.
  • the first light emitted by the light-emitting source 100 passes through the first polarization unit 400 and enters the angle selection unit 200;
  • the first light ray is transmitted through the angle selection unit 200 and transmitted to the light conversion unit 300, and the light ray is transmitted to the light conversion unit 300.
  • the conversion unit 300 converts the first light into a second light, the second light is reflected back to the light conversion unit 300 by the lens 600 , and the light conversion unit 300 converts the second light into a third light light, the third light is incident on the angle selection unit 200;
  • the third light ray passes through the angle selection unit 200 and is transmitted to the second polarizing unit 500 , and penetrate the second polarizing unit 500 .
  • the above-mentioned first light rays can be directly incident from the first polarizing unit 400 to the angle selecting unit 200 , or can be reflected by the second polarizing unit 500 and then incident to the angle selecting unit 200 .
  • the above-mentioned first preset condition may refer to that the incident angle of the first light ray is within the above-mentioned first interval. When the incident angle of the first light ray entering the angle selection unit 200 is in the first interval, the first light ray penetrates the angle selection unit 200 and enters the light conversion unit 300.
  • the second light is reflected back to the light conversion unit 300 by the lens 600, and the light conversion unit 300 converts the second light into a third light, wherein the vibration direction of the first light is the same as the vibration direction of the first light.
  • the included angle between the vibration directions of the third light rays is 2 ⁇ .
  • the third light passing through the light converting unit 300 is incident on the angle selecting unit 200 again, and the second preset condition may be the same as the first preset condition, that is, the incident angle is within the first interval In this way, when the incident angle of the third light entering the angle selection unit 200 is in the first interval, the third light penetrates the angle selection unit 200 and enters the second polarizing unit 500 . When the incident angle of the third light is in the second interval, the third light will be reflected between the angle selection unit 200 and the lens until the incident angle of the third light is in the first interval , passing through the angle selection unit 200 . After the third light passes through the angle selection unit 200 and is transmitted to the second polarizing unit 500, it can penetrate the second polarizing unit 500 to enter the human eye 800 for imaging.
  • the second polarizing unit 500 is disposed opposite to the first polarizing unit 400;
  • the first light emitted by the light-emitting source 100 passes through the first polarization unit 400 and enters the angle selection unit 200, including:
  • the first light emitted by the light emitting source 100 passes through the first polarizing unit 400 , enters the second polarizing unit 500 , and is reflected by the second polarizing unit 500 , and then enters the angle selecting unit 200 .
  • the first light can also be directly incident on the second polarizing unit 500 .
  • the first light After the first light is incident on the second polarizing unit 500 , it is reflected by the second polarizing unit 500 and then enters the second polarizing unit 500 .
  • the angle selection unit 200 penetrates the angle selection unit 200 when the incident angle of the first light entering the angle selection unit 200 is within the first interval, and when the first light enters the angle selection unit 200 When the incident angle is within the second interval, it is reflected by the angle selection unit 200 and incident on the second polarizing unit 500; the above process is repeated until the incident angle of the first light entering the angle selection unit 200 is at Within the first interval, the angle selection unit 200 is then penetrated.
  • the device further includes an absorption unit 700, the absorption unit 700 is disposed on the side of the second polarizing unit 500 away from the angle selection unit 200, and the light transmission axis direction of the absorption unit 700 is the same as the direction of the light transmission axis of the absorption unit 700.
  • the light transmission axis directions of the second polarizing unit 500 are the same.
  • the above-mentioned absorption unit 700 may use one or more third polarizers arranged in layers, and the third polarizer may be an absorption type polarizer. Since the transmission axis direction of the absorption unit 700 is the same as the transmission axis direction of the second polarizing unit 500, the absorption unit 700 can only transmit the polarized light along the second direction. The polarized light in other directions than the two directions penetrates the second polarized lens, and can also be blocked by the absorption unit 700, thereby reducing the influence of the interference light on the imaging effect. At the same time, it can be ensured that the linearly polarized light having the second direction is transmitted, so as to facilitate normal imaging.
  • the included angle between the second surface of the first polarizing unit 400 and the third surface of the second polarizing unit 500 is the first angle.
  • the second surface of the first polarizing unit 400 is the surface of the first polarizing unit 400 facing the second polarizing unit 500
  • the third surface of the second polarizing unit 500 is the second polarizing unit 500
  • the polarizing unit 500 faces the surface on the side of the first polarizing unit 400 .
  • the first angle may be 90°.
  • the first angle is equal to 90°. In this way, the entry into the second polarizing unit 500 and the angle selecting unit 200 from the light entrance can be improved. between the light rays, the reflection effect between the second polarizing unit 500 and the angle selection unit 200 .
  • the direction of the light transmission axis of the first polarizing unit 400 is perpendicular to the direction of the light transmission axis of the second polarizing unit 500 .
  • the light conversion unit 300 can use a quarter glass, so that the angle between the vibration direction of the first light and the vibration direction of the third light can be ensured to be 90°, and the first light
  • the vibration direction is the same as the light transmission axis direction of the first polarizing unit 400. Therefore, by setting the light transmission axis direction of the first polarizing unit 400 to be perpendicular to the light transmission axis direction of the second polarizing unit 500, it is convenient to The third light obtained after being converted by the light converting unit 300 can smoothly pass through the second polarizing unit 500 and the absorbing unit 700 to enter the human eye 800 for imaging.
  • the included angle between the direction of the light transmission axis of the first polarizing unit 400 and the direction of the light transmission axis of the light conversion unit 300 is the second angle.
  • the second angle may be 45°.
  • the polarization direction of the light can be changed by 45° after each time the light passes through the light conversion unit 300 , thereby ensuring that the third light passing through the light conversion unit 300 can smoothly pass through the second polarizing unit 500 .
  • the included angle between the fourth surface of the second polarizing unit 500 and the fifth surface of the angle selection unit 200 is a third angle, wherein the fourth surface faces the angle selection unit 200 , the fifth surface faces the first polarizing unit 400 .
  • the third angle may be between 10° and 50°, for example, in a near-eye display device, the third angle is set to 27°.
  • the image can be enlarged in the optical device. Since the image can be enlarged in the optical device, the distance between the light-emitting source 100 and the optical device can be appropriately reduced, that is, the field of view angle of the light emitted by the light-emitting source 100 entering the optical device can be reduced, so as to adapt to the In order to reduce the size of the light entrance 120 of the optical device, the overall thickness of the optical device can be reduced. By setting the above, the overall thickness of the optical device can be reduced to less than 15 mm.
  • the device further includes a light-transmitting substrate 110 , the light-transmitting substrate 110 is disposed opposite to the second polarizing unit 500 , and the light-transmitting substrate 110 is located at an angle away from the second polarizing unit 500 Select one side of cell 200.
  • the transparent substrate 110 may be a transparent glass sheet or a transparent plastic sheet. By disposing the transparent substrate 110, it is possible to ensure that the light can penetrate the transparent substrate 110 and realize the optical Protection of optics inside the unit.
  • the device further includes a lens group 900, the lens group 900 is disposed between the light source 100 and the first polarizing unit 400, and the sixth surface of the lens group 900 faces the The light-emitting surface of the light-emitting source 100 .
  • the number of the lens group 900 may be 1 or N, wherein the N is an integer greater than 1, and the sixth surface of the lens group 900 is facing the light-emitting source 100 side. surface, by arranging the lens group 900 between the light-emitting source 100 and the first polarizing unit 400, and making the sixth surface of the lens group 900 face the light-emitting surface of the light-emitting source 100, so that , the light emitted by the light emitting source 100 needs to pass through the lens group 900 before entering the first polarizing unit 400 , thereby improving the light distribution of the natural light emitted by the light emitting source 100 , thereby improving the image quality of the image transmitted through the optical device and entering the human eye 800 . image quality.
  • the device further includes a first mirror 130 , the first mirror 130 is arranged parallel to the second polarizing unit 500 , and the first mirror 130 is located on the first polarizing mirror
  • the first lens 130 is a convex lens or a concave lens.
  • the linearly polarized light passing through the first polarizing lens needs to pass through the first lens 130 after Only then can it enter the human eye 800 , so that the definition of the picture entering the human eye 800 can be improved. It ensures that even users with nearsightedness or farsightedness can clearly view the picture with the naked eye through the optical device.
  • the first lens 130 and the second polarizing unit 500 are detachably connected.
  • the first lens 130 may be located on the side of the absorption unit 700 away from the angle selection unit 200 or at the side of the transparent substrate 110 away from the absorption unit 700 .
  • a lens mounting position can be set on the side of the transparent substrate 110 away from the angle selection unit 200 , and all The first lens 130 is detachably connected to the lens mounting position, so as to realize the detachable connection between the first lens 130 and the second polarizing unit 500 .
  • the first lens 130 and the second polarizing unit 500 by detachably connecting the first lens 130 and the second polarizing unit 500, it is convenient for different users to replace different types of the first lens 130 according to their own vision requirements, and at the same time, it is also convenient for eyesight A normal user removes the first lens 130 for viewing, so that individual needs of different users can be met.
  • the second polarizing unit 500 and the angle selecting unit 200 are both sheet-like structures, so that a cavity can be formed between the second polarizing unit 500 and the angle selecting unit 200 .
  • a solid structure may also be formed between the second polarizing unit 500 and the angle selecting unit 200 .
  • the angle selection unit 200 includes a light-transmitting body with a triangular cross-section and an angle-selecting film disposed on the surface of the light-transmitting body. Specifically, the light-transmitting body can be close to the light conversion The surface on one side of the unit 300 is provided with the angle selection film.
  • one surface of the angle selection unit 200 is in contact with the second polarizing unit 500
  • the other surface of the angle selection unit 200 is in contact with the light conversion unit 300
  • the angle selection unit 200 is in contact with the light conversion unit 300.
  • the shape matches the cavity formed between the second polarizing unit 500 and the light converting unit 300 .
  • the optical device When a solid structure is formed between the second polarizing unit 500 and the angle selection unit 200, the optical device further includes a second lens 140, the second lens 140 and the angle selection unit 200 have the same shape and size, and The second lens 140 and the angle selection unit 200 are spliced together to form a solid lens structure with a parallelogram in cross section.
  • the second polarizing unit 500 and the absorbing unit 700 are disposed at the connection between the second lens 140 and the angle selecting unit 200 .
  • Embodiments of the present application provide a near-eye display device including an optical device.
  • the near-eye display device may be a common near-eye display device such as AR glasses.
  • For the structure of the optical device reference may be made to the descriptions of the above embodiments, and details are not repeated here. Since the near-eye display device provided by the embodiment of the present invention adopts the structure of the optical device in the above-mentioned embodiment, the near-eye display device provided by the embodiment of the present invention can realize all the beneficial effects of the optical device in the above-mentioned embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

本申请公开了一种光学装置及近眼显示设备。所述光学装置,包括:发光源、角度选择单元、光线转换单元、第一偏振单元、第二偏振单元和镜片,所述第一偏振单元设置在所述发光源的出光侧,且所述第一偏振单元的第一表面朝向所述发光源的出光面;所述角度选择单元与所述第一偏振单元相对设置,所述光线转换单元设置于所述角度选择单元远离所述第一偏振单元的一侧;所述第二偏振单元与所述角度选择单元相对设置,所述镜片与所述光线转换单元相对设置。

Description

光学装置及近眼显示设备
相关申请的交叉引用
本申请主张在2020年7月3日在中国提交的中国专利申请号No.202010636052.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及光学技术领域,具体涉及一种光学装置及近眼显示设备。
背景技术
在近眼显示系统中,通常需要对待显示的图片进行放大显示,现有技术中,通常是通过拉远发光源(例如,电子设备的显示屏)与光学装置(例如,近眼显示装置)之间的距离,以便于增大进入光学装置的光线的视场角,进而实现对图像进行放大,然后经光学装置改变光路的方向之后进入人眼。然而,为了使光学装置能够完全接收视场角内的全部光线,通常需要在光学装置上形成一个较大口径的进光口,这样,将导致光学装置整体厚度较大的问题。
发明内容
本申请实施例提供的一种光学装置及近眼显示设备,以解决现有技术中存在的近眼显示装置的整体厚度较厚的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种光学装置,包括发光源、角度选择单元、光线转换单元、第一偏振单元、第二偏振单元和镜片,所述第一偏振单元设置在所述发光源的出光侧,且所述第一偏振单元的第一表面朝向所述发光源的出光面;所述角度选择单元与所述第一偏振单元相对设置,所述光线转换单元设置于所述角度选择单元远离所述第一偏振单元的一侧;所述第二偏振单元与所述角度选择单元相对设置,所述镜片与所述光线转换单元相对设置。
第二方面,本申请实施例提供了一种近眼显示设备,包括所述光学装置。
该实施方式中,第一偏振单元设置在发光源的出光侧,且第一偏振单元的第一表面朝向发光源的出光面;角度选择单元与第一偏振单元相对设置,光线转换单元设置于角度选择单元远离第一偏振单元的一侧,使得光线可以在角度选择单元与第二偏振单元之间至少反射一次之后,穿透角度选择单元,并经光线转换单元转换光线的振动方向之后,从第二偏振单元穿出。这样,可以延长发光源发出的光线在光学装置内部的传播距离,使得图像可以在光学装置的内部进行放大,由于图像可以在光学装置的内部进行放大,因此,可以适当减小所述发光源与光学装置之间的距离,即减小发光源发出的光线进入光学装置的视场角,进而可以适应性的较小所述光学装置的进光口大小,从而解决了现有技术中由于需要在光学装置上设置较大的进光口而导致的光学装置整体厚度过大的问题。
附图说明
图1是本申请实施例提供的光学装置的结构示意图之一;
图2是本申请实施例提供的光学装置的结构示意图之二;
图3是本申请实施例提供的光学装置的结构示意图之三;
图4是本申请实施例提供的光学装置的结构示意图之四;
图5是本申请实施例提供的光学装置的结构示意图之五。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并 不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的光学装置进行详细地说明。
请参见图1-4,为本申请实施例提供的一种光学装置,所述光学装置包括发光源100、角度选择单元200、光线转换单元300、第一偏振单元400、第二偏振单元500和镜片600,所述第一偏振单元400设置在所述发光源100的出光侧,且所述第一偏振单元400的第一表面朝向所述发光源100的出光面;所述角度选择单元200与所述第一偏振单元400相对设置,所述光线转换单元300设置于所述角度选择单元200远离所述第一偏振单元400的一侧;所述第二偏振单元500与所述角度选择单元200相对设置,所述镜片600与所述光线转换单元300相对设置。
上述发光源100可以点光源或者面光源,例如,可以是电子设备的显示屏在显示画面时所形成的面光源,可以通过上述光学装置改变发光源100发出的光线的传播路径,以便于对显示屏所显示的内容进行放大的同时,使显示屏所显示的内容朝指定方向投射。
上述第一偏振单元400可以包括一个或者多个层叠设置的第一偏振片,其中,所述第一偏振片可以采用吸收型偏振片。当所述第一偏振单元400包括多个层叠设置的第一偏振片时,各所述第一偏振片的透光轴方向相同。此外,上述第一偏振单元400还可以是由多个光学镜片组合形成的镜片组,可以通过所述多个光学镜片对发光源100所发出的光线进行多次反射和/或折射,以形成偏振光。下文以第一方向表示为所述第一偏振单元400的透光轴方向。这样,当发光源100发出的光线进入第一偏振单元400时,仅沿第一方向振动的光可以透过,沿其他方向振动的光将被第一偏振单元400阻隔。
请参见图1,所述角度选择单元200的第一端与所述第二偏振单元500的第一端之间间隔设置,以在所述角度选择单元200与第二偏振单元500之间形成入光口120,发光源100的所发出的光线可以通过所述入光口120进入所述角度选择单元200与第二偏振单元500之间。其中,所述角度选择单 元200的第一端为所述角度选择单元200靠近所述第一偏振单元400的一端,所述第二偏振单元500的第一端为所述第二偏振单元500靠近所述第一偏振单元400的一端。
上述第一偏振单元400可以正对所述入光口120设置,这样,发光源100的出光面所发出的光线可以经过第一偏振单元400之后,从所述入光口120进入所述角度选择单元200与第二偏振单元500之间。由于所述第一偏振单元400的透光轴的方向为第一方向,即发光源100所发出的光线中只有沿第一方向振动的光线才能穿透第一偏振单元400,从而确保进入所述角度选择单元200与第二偏振单元500之间光线的均为沿第一方向偏振的线偏振光。这样,可以使得进入光学装置的所有光线的具有相同的振动方向,同时,设置第二偏振单元500,第二偏振单元500与角度选择单元相对,通过设置第一偏振单元与第二偏振单元的透光轴方向,还可以进一步可以避免杂光造成对成像效果的影响,从而提高了光学装置的成像效果。
上述角度选择单元200可以包括透光本体和设置于所述透光本体表面的角度选择膜,其中,所述角度选择膜可以使一定角度范围内(如0至45°)的入射光进行反射,同时,可以是使该角度范围之外(如45°至90°)的入射光进行透射。下文以第一区间表示将能够穿透所述角度选择膜的角度区间,以第二区间表示被所述角度选择膜反射的角度区间。
其中,所述角度选择膜可以采用现有技术中常用的角度选择膜结构,例如,可以采用布拉格反射镜层或者分布式布拉格反射器(Distributed Bragg reflector,DBR)层。DBR层表现出角度选择性反射率,因此,其可以将一定入射角度范围内的光束进行反射,将入射角度位于该范围之外的其他光束进行透射。此外,所述角度选择膜还可以是TiO2与SiO2的层叠结构,通过层叠结构内各层厚度搭配,允许大于45°入射角的光主要进行透射,同时使小于45°入射角的光主要进行反射。其中,所述角度参数可以通过镀膜的不同那个进行调整。
上述第二偏振单元500可以包括一个或多个层叠设置的第二偏振片,其中,所述第二偏振片可以采用反射型偏振片,当所述第二偏振单元500包括多个层叠设置的第二偏振片时,各所述第二偏振片的透光轴方向相同,下文 以第二方向表示为所述第二偏振单元500的透光轴方向。这样,当光线进入第二偏振单元时,仅沿第二方向振动的光可以透过,沿其他方向振动的光将被第二偏振单元500反射。
上述光线转换单元300可以是用于转换光线的振动方向相位延迟片,例如,可以是四分之一玻片,所述四分之一玻片可以由具有精确厚度的石英、方解石或云母等双折射晶片制成,其透光轴与晶片表面平行。以线偏振光垂直入射到晶片为例,其振动方向与晶片光轴夹θ角(θ≠0°),入射的光振动可分解成垂直于光轴(o振动)和平行于光轴(e振动)两个分量。能使o光和e光产生λ/4附加光程差的波片称为四分之一波片。又例如,当所述光线转换单元300为四分之一玻片时,且所述四分之一玻片的光轴方向与第一偏振单元900的透光轴方向之间的夹角为45°时,光线转换单元300可以将所接收到的线偏振光的偏振方向改变45°,形成圆偏振光。
此外,上述镜片600可以是选用具有反射功能的镜片,此外,为了提高镜片600的反射效果还可以在所述镜片600的表面设置反射膜。这样,可以通过镜片600将穿透光线转换单元300重新反射至光线转换单元300,使得光线再次通过光线转换单元300,以进一步改变偏振方向。上述镜片600除了具有反射膜形成的反射部分之外,还可以具有透射部分,这样,用户可以通过镜片600看到外界环境。
由上述论述可知,从发光源100发出的光线经第一偏振单元400之后仅沿第一方向振动的线偏振光可以进入所述入光口120。而所述第二偏振单元500仅能使具有第二方向振动的偏振光通过,因此,可以将所述第一方向与所述第二方向设置为不同方向,这样,可以避免从所述入光口120进入的光线直接从所述第二偏振单元500穿出。此外,所述角度选择单元200也仅能使入射角位于第一区间的光线穿透,入射角位于第二区间的光线将被所述角度选择单元200反射。这样,从入光口120进入的光线中以第一入射角进入所述角度选择单元200的目标光束,将在所述角度选择单元200与第二偏振单元500之间进行反射,其中,所述第一入射角位于所述第二区间。由于所述角度选择单元200与第二偏振单元500相对设置,如,角度选择单元200与第二偏振单元500相对的两个表面之间的夹角为锐角,因此,所述目标光 束每次被所述第二偏振单元500反射之后,进入所述角度选择单元200的入射角的大小将发生改变,当所述目标光束进入所述角度选择单元200的入射角位于第一区间时,所述目标光束穿透角度选择单元200。
该实施方式中,可以通过第一偏振单元设置在发光源的出光侧,且第一偏振单元的第一表面朝向发光源的出光面;角度选择单元与第一偏振单元相对设置,光线转换单元设置于角度选择单元远离第一偏振单元的一侧,,使得光线可以在角度选择单元200与第二偏振单元500之间至少反射一次之后,穿透角度选择单元200,并经光线转换单元300转换光线的振动方向之后,从第二偏振单元500穿出。这样,可以延长发光源100发出的光线在光学装置内部的传播距离,使得图像可以在光学装置的内部进行放大,由于图像可以在光学装置的内部进行放大,因此,可以适当减小所述发光源100与光学装置之间的距离,即减小发光源100发出的光线进入光学装置的视场角,进而可以适应性的较小所述光学装置的进光口大小,从而解决了现有技术中由于需要在光学装置上设置较大的进光口而导致的光学装置整体厚度过大的问题。
其中,请参见图1,为所述光线在角度选择单元200与第二偏振单元500之间反射一次之后,穿透角度选择单元200的光路图,请参见图2,为所述光线在角度选择单元200与第二偏振单元500之间反射多次之后,穿透角度选择单元200的光路图。
可选地,所述发光源100发出的第一光线经过所述第一偏振单元400,并入射到所述角度选择单元200;
在所述第一光线在所述角度选择单元200的入射角满足第一预设条件的情况下,所述第一光线透过所述角度选择单元200并传输至光线转换单元300,所述光线转换单元300将所述第一光线转换为第二光线,所述第二光线经所述镜片600反射回所述光线转换单元300,所述光线转换单元300将所述第二光线转换为第三光线,所述第三光线入射到所述角度选择单元200;
在所述第三光线在所述角度选择单元200的入射角满足第二预设条件的情况下,所述第三光线透过所述角度选择单元200并传输至所述第二偏振单元500,并穿透所述第二偏振单元500。
上述第一光线可以直接从所述第一偏振单元400入射至所述角度选择单元200,也可以经所述第二偏振单元500反射之后入射至所述角度选择单元200。上述第一预设条件可以是指所述第一光线的入射角位于上述第一区间内。当所述第一光线进入所述角度选择单元200的入射角位于所述第一区间时,所述第一光线穿透所述角度选择单元200,并入射至所述光线转换单元300,由所述光线转换单元300将所述第一光线转换为第二光线,其中,所述第二光线的振动方向与所述第一光线的振动方向之间的夹角为γ,当所述光线转换单元300为四分之一玻片时,所述γ=45°。所述第二光线经所述镜片600反射回所述光线转换单元300,所述光线转换单元300将所述第二光线转换为第三光线,其中,所述第一光线的振动方向与所述第三光线的振动方向之间的夹角为2γ。从所述光线转换单元300穿出的第三光线再次入射至所述角度选择单元200,上述第二预设条件可以与所述第一预设条件相同,即入射角位于所述第一区间内,这样,当所述第三光线进入角度选择单元200的入射角位于第一区间时,所述第三光线穿透所述角度选择单元200,并入射至所述第二偏振单元500。当所述第三光线的入射角位于第二区间时,所述第三光线将在所述角度选择单元200与镜片之间进行反射,直至所述第三光线的入射角位于所述第一区间,从所述角度选择单元200穿出。所述第三光线透过所述角度选择单元200并传输至所述第二偏振单元500之后,可以穿透所述第二偏振单元500,从而进入人眼800进行成像。
可选地,所述第二偏振单元500与第一偏振单元400相对设置;
所述发光源100发出的第一光线经过所述第一偏振单元400,并入射到所述角度选择单元200包括:
所述发光源100发出的第一光线经过所述第一偏振单元400,并入射到第二偏振单元500,经第二偏振单元500反射后,入射到所述角度选择单元200。
具体地,请参见图3所述第一光线也可以直接入射至所述第二偏振单元500,第一光线入射至所述第二偏振单元500之后,经第二偏振单元500反射之后进入所述角度选择单元200,当第一光线进入所述角度选择单元200的入射角位于所述第一区间内时穿透所述角度选择单元200,当所述第一光线 进入所述角度选择单元200的入射角位于所述第二区间内时,被所述角度选择单元200反射,并入射至所述第二偏振单元500;重复上述过程,直至第一光线进入所述角度选择单元200的入射角位于所述第一区间内,然后穿透所述角度选择单元200。
该实施方式中,通过使第一光线经第二偏振单元500反射之后,再入射至角度选择单元200,有利于延长发光源所发出的光线在第二偏振单元500与角度选择单元200之间的距离。
可选地,所述装置还包括吸收单元700,所述吸收单元700设置于所述第二偏振单元500远离所述角度选择单元200的一侧,所述吸收单元700的透光轴方向与所述第二偏振单元500的透光轴方向相同。
上述吸收单元700可以采用一个或多个层叠设置的第三偏振片,所述第三偏振片可以采用吸收型偏振片。由于所述吸收单元700的透光轴方向与所述第二偏振单元500的透光轴方向相同,因此,吸收单元700也仅能透过沿第二方向的偏振光,这样,即便存在除第二方向之外的其他方向的偏振光穿透所述第二偏振镜片,也可以通过吸收单元700对其进行阻隔,从而降低干扰光线对成像效果的影响。同时,可以确保具有第二方向的线偏振光进行透射,以便于实现正常成像。
可选地,所述第一偏振单元400的第二表面与所述第二偏振单元500的第三表面之间的夹角为第一角度。
其中,所述第一偏振单元400的第二表面为所述第一偏振单元400朝向所述第二偏振单元500一侧的表面,所述第二偏振单元500的第三表面为所述第二偏振单元500朝向所述第一偏振单元400一侧的表面。
该实施方式中,所述第一角度可以为90°,例如,请参见图1,所述第一角度等于90°,这样,可以提高从入光口进入第二偏振单元500与角度选择单元200之间光线,在所述第二偏振单元500与角度选择单元200之间的反射效果。
可选地,所述第一偏振单元400的透光轴方向与所述第二偏振单元500的透光轴方向垂直。
其中,上述光线转换单元300可以采用四分之一玻片,这样,可以确保 上述第一光线的振动方向与第三光线的振动方向之间的夹角为90°,而所述第一光线的振动方向与所述第一偏振单元400的透光轴方向相同,因此,通过将第一偏振单元400的透光轴方向设置为与所述第二偏振单元500的透光轴方向垂直,以便于经光线转换单元300转换之后得到的第三光线可以顺利通过所述第二偏振单元500,以及可以顺利通过吸收单元700,进入人眼800进行成像。
可选地,所述第一偏振单元400的透光轴方向与所述光线转换单元300的透光轴方向之间的夹角为第二角度。
具体地,当所述第一偏振单元400的透光轴方向与所述第二偏振单元500的透光轴方向垂直时,所述第二角度可以为45°。这样,可以使得光线每次穿透所述光线转换单元300之后偏振方向改变45°,进而确保从所述光线转换单元300穿出的第三光线可以顺利从所述第二偏振单元500穿出。
可选地,所述第二偏振单元500的第四表面与所述角度选择单元200的第五表面之间的夹角为第三角度,其中,所述第四表面朝向所述角度选择单元200,所述第五表面朝向所述第一偏振单元400。
具体地,请参见图1,所述第三角度可以位于10°至50°之间,如,在近眼显示设备中,所述第三角度设置为27°。
该实施方式中,通过延长发光源100发出的光线在光线装置中的传播距离,使得图像可以在光学装置内进行放大。由于图像可以在光学装置内进行放大,因此,可以适当减小发光源100与光学装置之间的距离,即减小发光源100发出的光线进入所述光学装置的视场角,进而可以适应性的减小所述光学装置的入光口120大小,以减小光学装置整体的厚度尺寸,通过如上设置,可以将光学装置的整体厚度尺寸减小至小于15mm。
可选地,所述装置还包括透光基板110,所述透光基板110与所述第二偏振单元500相对设置,且所述透光基板110位于所述第二偏振单元500远离所述角度选择单元200的一侧。
其中,所述透光基板110可以采用透光玻璃片或者透光塑料片,通过设置所述透光基板110,这样,可以保证光线可以穿透所述透光基板110的基础上,实现对光学装置内部光学器件的保护。
可选地,所述装置还包括透镜组900,所述透镜组900设置在所述发光源100的与所述第一偏振单元400之间,且所述透镜组900的第六表面朝向所述发光源100的出光面。
该实施方式中,所述透镜组900的数量可以为1个或N个,其中,所述N为大于1的整数,所述透镜组900的第六表面为朝向所述发光源100一侧的表面,通过将所述透镜组900设置于所述发光源100的与所述第一偏振单元400之间,并使所述透镜组900的第六表面朝向所述发光源100的出光面,这样,发光源100所发出的光线需穿过透镜组900之后,才能进入第一偏振单元400,从而改善发光源100发出的自然光的光线分布情况,进而提高经光学装置传播进入人眼800的画面的画质。
可选地,请参见图4,所述装置还包括第一镜片130,所述第一镜片130平行于所述第二偏振单元500设置,且所述第一镜片130位于所述第一偏振镜片远离所述角度选择单元200一侧,所述第一镜片130为凸透镜或者凹透镜。
该实施方式中,通过在所述第二偏振单元500远离所述角度选择单元200一侧设置第一镜片130,这样,从第一偏振片穿出的线偏振光需穿透第一镜片130之后才能进入人眼800,从而可以提高进入人眼800的画面的清晰度。确保了即便存在近视或者远视的用户也可以通过光学装置裸眼清晰的观看画面。
可选地,所述第一镜片130与所述第二偏振单元500可拆卸连接。
具体地,所述第一镜片130可以位于所述吸收单元700远离所述角度选择单元200一侧或者位于所述透光基板110远离所述吸收单元700一侧。当所述第一镜片130位于所述透光基板110远离所述吸收单元700一侧时,可以在所述透光基板110远离所述角度选择单元200一侧设置一个镜片安装位,并使所述第一镜片130与所述镜片安装位可拆卸连接,从而实现第一镜片130与所述第二偏振单元500可拆卸连接。
该实施方式中,通过将所述第一镜片130与所述第二偏振单元500可拆卸连接,这样,可以方便不同用户根据自身视力需求,更换不同类型的第一镜片130,同时,也方便视力正常的用户卸下第一镜片130进行观看,从而 可以满足不同用户的个性化需求。
可选地,所述第二偏振单元500与角度选择单元200均为片状结构,以在所述第二偏振单元500与角度选择单元200之间可以形成空腔。此外,所述第二偏振单元500与角度选择单元200之间还可以为实心结构。例如,请参见图5,所述角度选择单元200包括截面呈三角形的透光本体和设置于所述透光本体表面的角度选择膜,具体地,可以在所述透光本体靠近所述光线转换单元300一侧的表面设置所述角度选择膜。其中,所述角度选择单元200的其中一个面与所述第二偏振单元500相接触,所述角度选择单元200的另一个面与所述光线转换单元300相接触,所述角度选择单元200的形状与所述第二偏振单元500与光线转换单元300之间形成的空腔相匹配。
当所述第二偏振单元500与角度选择单元200之间为实心结构时,所述光学装置还包括第二镜片140,所述第二镜片140与所述角度选择单元200的形状大小相同,且所述第二镜片140与所述角度选择单元200拼接形成一个截面呈平行四边形的实心镜片结构。所述第二偏振单元500与所述吸收单元700设置于所述第二镜片140与所述角度选择单元200的连接处。通过设置第二镜片140,可以避免在利用所述光学装置观看外界时产生干扰影像。
本申请实施例提供了一种近眼显示设备,包括光学装置。其中,所述近眼显示设备可以为AR眼镜等常见的近眼显示设备。所述光学装置的结构可以参照上述实施例的描述,在此不再赘述。由于本发明实施例提供的近眼显示设备采用了上述实施例中光学装置的结构,因此,本发明实施例提供的近眼显示设备可以实现上述实施例中光学装置的全部有益效果。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如, 可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种光学装置,包括发光源、角度选择单元、光线转换单元、第一偏振单元、第二偏振单元和镜片,所述第一偏振单元设置在所述发光源的出光侧,且所述第一偏振单元的第一表面朝向所述发光源的出光面;所述角度选择单元与所述第一偏振单元相对设置,所述光线转换单元设置于所述角度选择单元远离所述第一偏振单元的一侧;所述第二偏振单元与所述角度选择单元相对设置,所述镜片与所述光线转换单元相对设置。
  2. 根据权利要求1所述的装置,其中,所述发光源发出的第一光线经过所述第一偏振单元,并入射到所述角度选择单元;
    在所述第一光线在所述角度选择单元的入射角满足第一预设条件的情况下,所述第一光线透过所述角度选择单元并传输至光线转换单元,所述光线转换单元将所述第一光线转换为第二光线,所述第二光线经所述镜片反射回所述光线转换单元,所述光线转换单元将所述第二光线转换为第三光线,所述第三光线入射到所述角度选择单元;
    在所述第三光线在所述角度选择单元的入射角满足第二预设条件的情况下,所述第三光线透过所述角度选择单元并传输至所述第二偏振单元,并穿透所述第二偏振单元。
  3. 根据权利要求2所述的装置,其中,所述第二偏振单元与第一偏振单元相对设置;
    所述发光源发出的第一光线经过所述第一偏振单元,并入射到所述角度选择单元包括:
    所述发光源发出的第一光线经过所述第一偏振单元,并入射到第二偏振单元,经第二偏振单元反射后,入射到所述角度选择单元。
  4. 根据权利要求1所述的装置,还包括吸收单元,所述吸收单元设置于所述第二偏振单元远离所述角度选择单元的一侧,所述吸收单元的透光轴方向与所述第二偏振单元的透光轴方向相同。
  5. 根据权利要求1所述的装置,其中,所述第一偏振单元的第二表面与所述第二偏振单元的第三表面之间的夹角为第一角度。
  6. 根据权利要求1所述的装置,其中,所述第一偏振单元的透光轴方向与所述第二偏振单元的透光轴方向垂直。
  7. 根据权利要求1所述的装置,其中,所述第一偏振单元的透光轴方向与所述光线转换单元的透光轴方向之间的夹角为第二角度。
  8. 根据权利要求1所述的装置,其中,所述第二偏振单元的第四表面与所述角度选择单元的第五表面之间的夹角为第三角度,其中,所述第四表面朝向所述角度选择单元,所述第五表面朝向所述第一偏振单元。
  9. 根据权利要求1所述的装置,还包括透光基板,所述透光基板与所述第二偏振单元相对设置,且所述透光基板位于所述第二偏振单元远离所述角度选择单元的一侧。
  10. 根据权利要求1所述的装置,还包括透镜组,所述透镜组设置在所述发光源的与所述第一偏振单元之间,且所述透镜组的第六表面朝向所述发光源的出光面。
  11. 一种近眼显示设备,包括权利要求1-10中任意一项所述的光学装置。
PCT/CN2021/103589 2020-07-03 2021-06-30 光学装置及近眼显示设备 WO2022002140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/091,501 US20230145899A1 (en) 2020-07-03 2022-12-30 Optical apparatus and near-eye display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010636052.3 2020-07-03
CN202010636052.3A CN111638602B (zh) 2020-07-03 2020-07-03 光学装置及近眼显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,501 Continuation US20230145899A1 (en) 2020-07-03 2022-12-30 Optical apparatus and near-eye display device

Publications (1)

Publication Number Publication Date
WO2022002140A1 true WO2022002140A1 (zh) 2022-01-06

Family

ID=72330176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103589 WO2022002140A1 (zh) 2020-07-03 2021-06-30 光学装置及近眼显示设备

Country Status (3)

Country Link
US (1) US20230145899A1 (zh)
CN (1) CN111638602B (zh)
WO (1) WO2022002140A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638602B (zh) * 2020-07-03 2022-05-24 维沃移动通信有限公司 光学装置及近眼显示设备
CN113009697A (zh) * 2021-03-17 2021-06-22 Oppo广东移动通信有限公司 近眼显示光学系统及近眼显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学系统及增强现实眼镜
KR20180050838A (ko) * 2016-11-07 2018-05-16 (주)엔디에스 헤드 마운트 디스플레이 광학 시스템
CN111025659A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN210488131U (zh) * 2019-10-10 2020-05-08 浙江水晶光电科技股份有限公司 一种光学模组和智能眼镜
CN111158154A (zh) * 2020-03-02 2020-05-15 宁波鸿蚁光电科技有限公司 一种光学显示系统及可穿戴设备
CN111273449A (zh) * 2020-03-23 2020-06-12 深圳惠牛科技有限公司 一种增强现实系统及增强现实装置
CN111338086A (zh) * 2020-04-21 2020-06-26 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN111638602A (zh) * 2020-07-03 2020-09-08 维沃移动通信有限公司 光学装置及近眼显示设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116548A (ko) * 2012-04-16 2013-10-24 (주)에스엠디 투과형 헤드 마운트 디스플레이용 광학시스템
US9594246B2 (en) * 2014-01-21 2017-03-14 Osterhout Group, Inc. See-through computer display systems
US9766463B2 (en) * 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
JP2018036501A (ja) * 2016-08-31 2018-03-08 パイオニア株式会社 虚像表示装置
JP2019045858A (ja) * 2017-09-06 2019-03-22 矢崎総業株式会社 バックライトユニットおよびヘッドアップディスプレイ装置
CN110161688A (zh) * 2018-02-12 2019-08-23 杭州太若科技有限公司 屈光矫正ar显示装置和穿戴式ar设备
CN109387942B (zh) * 2018-03-28 2024-05-10 深圳惠牛科技有限公司 一种光学系统及增强现实设备
US20200041790A1 (en) * 2018-08-02 2020-02-06 Google Llc Catadioptric freeform head mounted display
CN108897136A (zh) * 2018-09-10 2018-11-27 太若科技(北京)有限公司 Ar光学装置和穿戴式ar设备
US11347058B2 (en) * 2018-10-16 2022-05-31 Disney Enterprises, Inc. Wide field of view occlusion capable augmented reality pancake optics head mounted display
CN110208948B (zh) * 2019-06-03 2020-11-24 歌尔光学科技有限公司 光学系统及具有其的虚拟现实设备
CN209842241U (zh) * 2019-06-06 2019-12-24 舜宇光学(浙江)研究院有限公司 一种消伪影式显示光机和近眼显示设备
CN210072209U (zh) * 2019-06-06 2020-02-14 舜宇光学(浙江)研究院有限公司 一种近眼显示光机和近眼显示设备
CN209842242U (zh) * 2019-06-11 2019-12-24 浙江水晶光电科技股份有限公司 近眼成像装置
CN110286489A (zh) * 2019-06-26 2019-09-27 联想(北京)有限公司 穿戴设备
CN111221130B (zh) * 2020-03-20 2022-03-04 维沃移动通信有限公司 光学系统和近眼显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050838A (ko) * 2016-11-07 2018-05-16 (주)엔디에스 헤드 마운트 디스플레이 광학 시스템
CN107589546A (zh) * 2017-10-23 2018-01-16 北京小米移动软件有限公司 光学系统及增强现实眼镜
CN210488131U (zh) * 2019-10-10 2020-05-08 浙江水晶光电科技股份有限公司 一种光学模组和智能眼镜
CN111025659A (zh) * 2019-12-31 2020-04-17 上海视欧光电科技有限公司 一种增强现实光学模组及增强现实设备
CN111158154A (zh) * 2020-03-02 2020-05-15 宁波鸿蚁光电科技有限公司 一种光学显示系统及可穿戴设备
CN111273449A (zh) * 2020-03-23 2020-06-12 深圳惠牛科技有限公司 一种增强现实系统及增强现实装置
CN111338086A (zh) * 2020-04-21 2020-06-26 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN111638602A (zh) * 2020-07-03 2020-09-08 维沃移动通信有限公司 光学装置及近眼显示设备

Also Published As

Publication number Publication date
CN111638602A (zh) 2020-09-08
CN111638602B (zh) 2022-05-24
US20230145899A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
KR102537642B1 (ko) Loe를 통한 lcos 조명
TWI791049B (zh) 增強現實顯示器
WO2019154430A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
TWI480584B (zh) 分離極化光束之方法、廣角寬帶極化光束分離器及抬頭顯示器
US11726249B2 (en) Optical retarder segments
US7570859B1 (en) Optical substrate guided relay with input homogenizer
US7653268B1 (en) Substrate guided relay with polarization rotating apparatus
WO2022002140A1 (zh) 光学装置及近眼显示设备
CN107065181B (zh) 虚拟现实设备的光学系统
US10175401B2 (en) Dual-purpose, absorptive, reflective wire grid polarizer
CN210776039U (zh) 微型化短距离光学系统
WO2023273737A1 (zh) 成像模组和头戴显示设备
WO2022193880A1 (zh) 近眼显示光学系统、滤光件及近眼显示设备
EP3698202B1 (en) Near-eye system having polarization waveguide
CN115144952B (zh) 光波导器件及近眼显示装置
WO2018195983A1 (zh) 一种光波导结构及光学系统
CN215986726U (zh) 一种增强现实显示系统
TWM591624U (zh) 短距離之光學系統
CN113391393A (zh) 光学系统和可穿戴设备
CN110412676B (zh) 平板波导
TW202235959A (zh) 一種光學系統及混合實境設備
CN210200278U (zh) 成像组件和成像装置
JP2022542049A (ja) 拡大された仮想画像を表示する光学システム
CN111458879A (zh) 光学组件和头戴显示设备
CN112505920A (zh) 微型化短距离光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832180

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21832180

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21832180

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)