WO2018043899A1 - 폴리카보네이트 제조 방법 - Google Patents

폴리카보네이트 제조 방법 Download PDF

Info

Publication number
WO2018043899A1
WO2018043899A1 PCT/KR2017/006904 KR2017006904W WO2018043899A1 WO 2018043899 A1 WO2018043899 A1 WO 2018043899A1 KR 2017006904 W KR2017006904 W KR 2017006904W WO 2018043899 A1 WO2018043899 A1 WO 2018043899A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
polymerization solution
steam
manufacturing
solvent
Prior art date
Application number
PCT/KR2017/006904
Other languages
English (en)
French (fr)
Inventor
고운
전병규
홍무호
손영욱
고태윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17846824T priority Critical patent/PL3508512T3/pl
Priority to CN201780003896.0A priority patent/CN108291018B/zh
Priority to ES17846824T priority patent/ES2826751T3/es
Priority to EP17846824.5A priority patent/EP3508512B1/en
Priority to US15/765,686 priority patent/US10538620B2/en
Publication of WO2018043899A1 publication Critical patent/WO2018043899A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/406Purifying; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'

Definitions

  • the present invention is to provide a method for producing a polycarbonate by removing the solvent from the polycarbonate polymerization solution without inhibiting the physical properties of the polycarbonate.
  • Polycarbonate is a resin produced by condensation polymerization of aromatic di, for example, bisphenol A, carbonate precursor, for example, phosgene, and has excellent lamella strength, numerical stability, heat resistance and transparency, etc. It is applied to a wide range of fields such as construction, building materials and optical components.
  • a method of manufacturing a polycarbonate it can be divided into the melt-coating process and solid-state polymerization process which do not use a phosgene, and the interfacial polymerization process which uses a phosgene.
  • the melt polymerization process is a method of proceeding polymerization in a state in which a raw material monomer is melted, and has a low risk of not using toxic substances.
  • the solid state polymerization process is a method of crystallizing a low molecular weight polycarbonate prepolymer and then subjecting the polymerization reaction at a temperature lower than the melting temperature. have.
  • it requires a high pressure equipment and has a disadvantage in that it is difficult to apply to continuous processes.
  • an aromatic hydroxy compound such as bisphenol A and a gaseous phosgene are mixed in an organic solvent, and polymerization reaction proceeds at the interface between the aqueous solution charge and the organic solvent layer. It is a process to make it possible.
  • the process has the advantage that it is relatively easy to produce polycarbonate in a continuous process, but a process for removing the organic solvent is required. Since the polycarbonate prepared by the interfacial polymerization process as described above is dissolved in an organic solvent, a process of obtaining the polymer particles by removing the solvent is required, which is generally referred to as a solidification process.
  • a process of obtaining the polymer particles by removing the solvent is required, which is generally referred to as a solidification process.
  • US Pat. Nos. 4,546,172, 6,214, 892, etc. spray a solution in which polycarbonate is dissolved into water maintained at a temperature higher than the boiling point of the solvent to evaporate the solvent to form an aqueous dispersion.
  • a method of obtaining polymer particles is disclosed.
  • this method has a problem in that an excessive amount of antisolvent must be used as compared to the polymer solution, and an additional process of separating the antisolvent and the solvent is required.
  • the solvent is removed from a solution in which polycarbonate is dissolved by using a hot and humid steam of a steam ejector instead of the above method.
  • the removal method is used.
  • This method has the advantage that the size of the steam ejector can be increased and the equipment is relatively simple.
  • the steam is a high temperature, there is a problem that discoloration and hydrolysis of the polycarbonate occurs in the process of removing the solvent.
  • the present invention is to provide a method for producing a polycarbonate by removing the solvent from the polycarbonate polymerization solution without inhibiting the physical properties of the polycarbonate.
  • the present invention provides a method for producing a polycarbonate comprising the following steps:
  • polycarbonate polymerization solution' used in the present invention means a solution in which a polycarbonate prepared by a polymerization process is dissolved in an organic solvent.
  • the polycarbonate polymerization solution means a polycarbonate polymerization solution prepared by an interfacial polymerization process. As described above, the polycarbonate prepared by the interfacial polymerization process is in a dissolved state in an organic solvent, and thus a process for removing the organic solvent is required.
  • a hydrolysis agent having a added to the polycarbonate polymerization solution, adding an antioxidant and a hydrolysis agent having an epoxy fused aliphatic ring (step 1)
  • Step 1 is a step of adding an antioxidant and a hydrolysis agent having an epoxy fused aliphatic ring to the polycarbonate polymerization solution, in order to suppress the physical degradation of the polycarbonate by the high temperature steam to be used in step 2 to be described later.
  • the polycarbonate polymerization solution means a polycarbonate polymerization solution prepared by an interfacial polymerization process.
  • Interfacial polymerization of polycarbonates is well known in the art and means the polymerization of aromatic diol compounds and carbonate precursors in the presence of acid binders, water and organic solvents.
  • the aromatic diol compound and the carbonate precursor are not particularly limited as long as they are used for producing polycarbonate.
  • an aromatic diol compound is bisphenol A, 1, 1-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl ) Sulfone, Bis (4-hydroxyphenyl) sulfoxide, Bis (4- Hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) ketone, 2, 2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclonucleic acid, 2, 2-bis (4-hydroxy-3, 5-dibromophenyl) propane, 2, 2-bis (4-hydroxy-3, 5-dichlorophenyl) propane, 2, 2-bis (4-hydroxy-3- Bromophenyl) propane, 2, 2-bis (4-hydroxy-3-chlorophenyl) propane, 2, 2-bis (4-hydroxy-3-methylphenyl) propane, 2, 2-bis (4-hydride Hydroxy-3,5-dimethylphenyl) propane, 1,1-bis
  • the carbonate precursor is, for example, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclonuclear carbonate, diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, di-m-cresyl carbonate, dinaphthyl carbonate.
  • Bis (diphenyl) carbonate, phosgene, triphosgene, diphosgene, bromophosgene, or bishaloformate can be used.
  • an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, or an amine compound such as pyridine can be used.
  • the organic solvent is not particularly limited as long as it is a solvent usually used for polymerization of polycarbonate, and halogenated hydrocarbons such as methylene chloride and chlorobenzene can be used as an example.
  • the interfacial polymerization is a reaction such as triethylamine, tetra-n-butylammonium bromide, tertiary aman compounds such as tetra-n-butylphosphonium bromide, quaternary ammonium compound, quaternary phosphonium compound, etc. Accelerators may additionally be used.
  • the reaction temperature of the interfacial polymerization is preferably 0 to 40 ° C, the reaction time is preferably 10 minutes to 5 hours.
  • the concentration of polycarbonate is 10 to 35% by weight.
  • the antioxidant added to the polycarbonate polymerization solution is added to suppress the physical degradation of the polycarbonate due to the high temperature steam to be used in step 2, which will be described later.
  • two or more antioxidants are added.
  • the antioxidant includes a phosphite antioxidant and a hindered phenolic antioxidant.
  • phosphite-based antioxidants examples include PEP-36 (Bis (2,6-di-ter-butyl-4-methy 1 heny 1) ent aery t hr itol-diphosphite), and DP9228 (bis (2,4) -dicumyl phenyl) pentaerythr itol diphosphate) at least one selected from the group consisting of.
  • examples of the hindered phenolic antioxidants include IR1010 ([3- [3- (4-hy (iroxy-3,5-ditert-butyl-pheny 1) pr opano 1 oxy] —2,2_bis [3_ (4-hydr oxy-3,5 ⁇ ditert ⁇ butyl—
  • the antioxidant is preferably added at 100 ppmw to 1,000 pp ⁇ compared to the polycarbonate in the polycarbonate polymerization solution.
  • the addition amount is less than 100 ppmw, the effect of suppressing the degradation of the physical properties of the polycarbonate is insignificant.
  • the addition amount is more than 1,000 ppmw, the effect of suppressing the reduction of the physical properties of the polycarbonate does not substantially increase, and You can rather drop physical properties.
  • the antioxidant is 150 ppmw or more, 200 ppmw or more, 250 ppmw or more, or 300 ppmw subphase, 900 ppmw or less, 800 ppmw or less, 700 ppw or less, compared to polycarbonate in the polycarbonate polymerization solution. Or 600 ppmw or less.
  • the hydrolysis agent having an epoxy fused aliphatic ring added to the polycarbonate polymerization solution is participated in order to suppress the deterioration of the physical properties of the polycarbonate by the high temperature steam to be used in step 2 to be described later.
  • the hydrolysis agent having an epoxy fused aliphatic ring preferably has two or more epoxy fused aliphatic rings.
  • hydrolysis agent having an epoxy fused aliphatic ring examples include C-2021P (3,4-Epoxy eye lohexyl methyl 3, 4-epoxycyc 1 ohexanecar boxy 1 at e).
  • the hydrolysis agent having the epoxy fused aliphatic ring is added at 100 ppmw to 1,000 ppPa relative to the polycarbonate in the polycarbonate polymerization solution.
  • the hydrolysis agent having an epoxy fused aliphatic ring is at least 110 ppmw, at least 120 ppmw, at least 130 ppmw, at least 140 ppmw, and at most 900 ppmw, relative to the polycarbonate in the polycarbonate polymerization solution. It is preferably added at 800 ppmw or less, 700 ppmw or less, 600 ppmw or less, or 500 ppmw or less. Removing solvent by using steam in the polycarbonate polymerization solution (Step 2)
  • Step 2 is a step of preparing a polycarbonate by removing the solvent from the polycarbonate polymerization solution to which the antioxidant and the hydrolysis agent having an epoxy fused aliphatic ring in step 1 is added.
  • the polycarbonate prepared in step 2 is present as a solid because the solvent is removed.
  • a steam ejector is used to remove the solvent of the polycarbonate polymerization solution.
  • the steam ejector is well known in the art, polycarbonate polymerization using steam of high temperature and high pressure Remove the solvent from the solution. That is, the solvent may be removed in such a manner that vapors having a high temperature and pressure higher than the solvent break point of the polycarbonate polymerization solution are in contact with the polycarbonate polymerization solution to evaporate the solvent.
  • the temperature of the steam is 2KTC to 23CTC.
  • the pressure of the steam is 17 to 23 kgf / cm 2 .
  • the temperature of the steam is a high temperature, but as described above, the polycarbonate polymerization solution includes an antioxidant and an hydrolysis agent having an epoxy-fused aliphatic ring, and thus can effectively remove the solvent while suppressing the deterioration of the physical properties of the polycarbonate. have.
  • the polycarbonate prepared in step 2 has a YI value of 1.0 or less measured according to ASTM D1925.
  • the weight average molecular weight decrease after 168 hours at 85 ° C. and 85% relative humidity is 400 g / mol or less.
  • the polycarbonate prepared in step 2 after 168 hours at 85 ° C and 85% relative humidity of room temperature impact strength (measured at 23 ° C based on ASTM D256 (l / 8 inch, Notched Izod)) The reduction is below 100 J / m.
  • the polycarbonate produced by the production method according to the present invention showed a remarkably excellent effect in the YI, weight average molecular weight reduction, and room temperature layer strength reduction.
  • the method for producing a polycarbonate according to the present invention comprises adding an antioxidant and an hydrolysis agent having an epoxy-fused aliphatic ring to the polycarbonate polymerization solution, and then removing the solvent using steam to remove the polycarbonate.
  • an antioxidant and an hydrolysis agent having an epoxy-fused aliphatic ring to the polycarbonate polymerization solution, and then removing the solvent using steam to remove the polycarbonate.
  • Example 1 After 10 minutes, the pH was adjusted to 3 with IN aqueous hydrochloric acid solution, and washed three times with distilled water to obtain 8645 g of a polycarbonate polymerization solution.
  • the polycarbonate dissolved in the polycarbonate polymerization solution was 1, 125 g at a concentration of about 13% by weight.
  • Example 2 0.2250 g of IR1010, 0.3374 g of PEP-36, and 0.2250 g of C-2021P were mixed.
  • the mixed solution was sprayed with steam (e.g., temperature: 220 ° C., pressure: 20 kgf / cm 2 ) with steam ej ector to obtain a solid polycarbonate.
  • steam e.g., temperature: 220 ° C., pressure: 20 kgf / cm 2
  • 0.2250 g of IR1010, 0.3374 g of DP9228, and 0.2250 g of C-2021P were mixed with 975 g of the polycarbonate polymerization solution 4 prepared in the above preparation.
  • the mixed solution was sprayed with steam (e.g., temperature: 220 ° C., pressure: 20 kgf / cm 2 ) with steam ej ector to obtain a solid polycarbonate.
  • steam e.g., temperature: 220 ° C., pressure: 20 kgf / cm 2
  • YI Yel low Index
  • Aperture size Large area of view
  • Measurement method transmittance measurement in the spectral range (360 nm to 750 nm)
  • P-168 Tris (2,4-ditert-butylphenyl) phosphite (IRGAFOS® 168)
  • IR1010 [3- [3- (4-hydr oxy-3, 5-dit er t -butyl -pheny 1) r opanoy 1 oxy] -2, 2-bis [3- (4-hydr oxy- 3, 5 -di ter t-butyl-phenyl) pr opanoy loxymethyl Jpropyl] 3 ⁇ (4 ⁇ hydroxy ⁇ 3,5 ⁇ ditert ⁇ butyl ⁇ phenyl) propanoate
  • PEP ⁇ 36 Bis (2 f 6-di-ter-butyl-4-methylphenyl) pentaerythr i tol-diphosphi te
  • O2021P 3, 4-Epoxycyc 1 ohexy 1 me t hy 1 3, -epoxycyc 1 ohexanecarboxy 1 ate
  • ADR4370 J0NCRYL® ADR-4370

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 1) 폴리카보네이트 중합 용액에, 산화방지제, 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가하는 단계; 및 2) 상기 폴리카보네이트 중합 용액에 스팀을 이용하여 용매를 제거하는 단계를 포함하는 폴리카보네이트의 제조 방법에 대한 것이다.본 출원은 폴리카보네이트의 물성을 저해하지 않으면서도 폴리카보네이트 중합 용액으로부터 용매를 제거할 수 있다.

Description

【명세서】
【발명의 명칭】
폴리카보네이트 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 8월 31일자 한국 특허 출원 제 10-2016-0111868호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 폴리카보네이트의 물성올 저해하지 않으면서도 폴리카보네이트 중합 용액으로부터 용매를 제거하여 폴리카보네이트를 제조하는 방법을 제공하기 위한 것이다.
【배경기술】
플리카보네이트는 방향족 디을, 예를 들어 비스페놀 A와, 카보네이트 전구체, 예를 들어 포스겐이 축중합하여 제조되는 수지로서, 우수한 층격강도, 수치안정성, 내열성 및 투명성 등을 가지며, 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품 등 광범위한 분야에 적용된다. 폴리카보네이트를 제조하는 방법으로는, 포스겐을 사용하지 않는 용융 증합 공정 및 고상 중합 공정과, 포스겐을 사용하는 계면 중합 공정으로 나눌 수 있다. 먼저, 용융 중합 공정은 원료 단량체를 용융시킨 상태에서 중합을 진행하는 방법으로, 유독 물질을 사용하지 않아 위험성이 적다는 장점이 있지만, 고점도의 반웅물 처리시 고온, 고진공의 설비가 필요할 뿐 아니라, 이에 따라 품질이 저하된다는 문제점이 있다. 고상 중합 공정은 저분자량의 폴리카보네이트 프리폴리머를 결정화시킨 후, 용융 온도보다 낮은 범위의 온도에서 중합 반웅을 진행하는 방법으로, 유독 물질을 사용하지 않으며, 고상에서 반웅이 진행되므로 품질 저하를 방지할 수 있다. 그러나, 고압 장비를 필요로 하며 연속공정에 적용하는데 어려움이 있다는 단점이 있다. 계면 중합 공정은 미국특허 게 3 , 799 , 953호에 개시된 바와 같이, 비스페놀 A와 같은 방향족 하이드록시 화합물과 기상의 포스겐을 유기 용매 내에서 흔합하여 수용액충과 유기용매층 사이의 계면에서 중합반웅이 진행되도록 하는 공정이다. 상기 공정은 폴리카보네이트를 연속 공정으로 비교적 쉽게 생산할 수 있다는 장점이 있으나, 유기 용매를 제거하는 공정이 필요하다. 상기와 같이 계면 중합 공정으로 제조된 폴리카보네이트는 유기 용매에 용해되어 있기 때문에 용매를 제거하여 고분자 입자를 얻는 공정이 필요하며, 이를 통상 고형화 공정이라고 한다. 이와 관련하여, 미국특허번호 4,546,172 , 및 6 , 214 , 892 등에는, 폴리카보네이트가 용해된 용액을 용매의 끓는점보다 높은 온도로 유지되는 물에 분사하여 용매를 증발시켜 수분산 형태의 고분자 입자를 얻는 방법이 개시되어 있다. 그러나, 상기 방법의 경우에는 용매가 빠른 속도로 증발하기 때문에 입자 생성 속도가 빠르지만 끈적거리는 큰 덩어리의 입자가 생성될 수 있을 뿐만 아니라 다공성 입자 내의 공극에 존재하는 물을 제거하기 위한 추가의 건조 공정이 필요하고, 이러한 건조 공정에 많은 에너지가요구된다는단점이 있다. 또한, 미국특허번호 4, 668 , 768, 및 7 , 947 , 803 등에 고분자 용액으로부터 고분자 입자를 얻는 방법으로 반용매 (ant i-sol vent )를 사용하는 방법이 개시되어 있다. 이 방법에서는 용매와는 잘 섞이지만 고분자는 용해되지 않는 반용매를 사용하여 고분자 입자를 수득한다. 그러나, 이 방법에서는 고분자 용액에 비하여 매우 과량의 반용매가 사용되어야 하고, 반용매와 용매를 분리해야 하는 추가 공정이 필요한 문제점이 있다. 최근에는 상기의 방법 대신 스팀 이젝터 (steam ejector)의 고온 및 고습한 스팀을 이용하여 폴리카보네이트가 용해된 용액으로부터 용매를 제거하는 방법이 사용되고 있다. 상기 방법은 스팀 이젝터의 대형화가 가능하고 비교적 설비가 간단한 이점이 있다. 그러나, 상기 스팀이 고온이기 때문에, 용매를 제거하는 과정에서 폴리카보네이트의 변색과 가수분해가 발생하는 문제가 있다. 변색이 발생할 경우에는 추후 공정에서 이를 회복시키는 것이 어렵고, 또한 가수분해는 폴리카보네이트의 분자량 감소 및 물성 저하를 초래하게 된다. 따라서, 스팀을 이용하여 폴리카보네이트가 용해된 용액으로부터 용매를 제거하면서도 폴리카보네이트의 물성을 저해하지 않는 방법이 요구된다. 이에 본 발명자들은 폴리카보네이트 중합 용액으로부터 용매를 제거하는 방법을 예의 연구한 결과, 후술할 바와 같이 폴리카보네이트 중합 용액에 산화방지제 및 내가수분해제를 첨가한 후 스팀을 이용하여 용매를 제거하면 폴리카보네이트의 물성을 저해하지 않으면서도 용매를 효과적으로 제거할 수 있음을 확인하여 본 발명을 완성하였다.
【발명의 내용】
【해결하려는 과제】
본 발명은 폴리카보네이트의 물성올 저해하지 않으면서도 폴리카보네이트 중합 용액으로부터 용매를 제거하여 폴리카보네이트를 제조하는 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
상가 과제를 해결하기 위하여, 본 발명은 하기의 단계를 포함하는 폴리카보네이트의 제조 방법을 제공한다:
1) 폴리카보네이트 중합 용액에, 산화방지제, 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가하는 단계; 및
2) 상기 폴리카보네이트 중합 용액에 스팀을 이용하여 용매를 제거하는 단계. 본 발명에서 사용하는 용어 '폴리카보네이트 중합 용액' 이란, 중합 공정으로 제조된 폴리카보네이트가 유기 용매에 용해된 용액을 의미한다. 구체적으로, 상기 폴리카보네이트 중합 용액이란 계면 중합 공정으로 제조된 폴리카보네이트 중합 용액을 의미한다. 상기와 같이 계면 중합 공정으로 제조된 폴리카보네이트는 유기 용매에 용해된 상태이며, 따라서 유기 용매를 제거하는 공정이 필요하다. 이에 본 발명에서는 후술할 바와 같이 단계 2에서 스팀을 이용하여 유기 용매를 제거하기 전에, 고온의 스팀에 의한 폴리카보네이트의 물성 저하를 억제하기 위하여 폴리카보네이트 중합 용액에, 산화방지제 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가하는 것을 특징으로 한다. 이하, 각 단계 별로 본 발명을 상세히 설명한다. 폴리카보네이트 중합 용액에, 산화방지제, 및 에폭시 융합된 지방족 고리를갖는내가수분해제를 첨가하는단계 (단계 1)
상기 단계 1은 폴리카보네이트 중합 용액에, 후술할 단계 2에서 사용할 고온의 스팀에 의한 폴리카보네이트의 물성 저하를 억제하기 위하여 산화방지제 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가하는 단계이다. 바람직하게는, 상기 폴리카보네이트 중합 용액은, 계면 중합 공정으로 제조된 폴리카보네이트 중합 용액을 의미한다. 폴리카보네이트의 계면 중합은 당업계에 널리 알려진 것으로, 방향족 디올 화합물과 카보네이트 전구체를 산결합제, 물 및 유기 용매의 존재 하에 중합하는 것을 의미한다. 상기 방향족 디올 화합물과 카보네이트 전구체는, 폴리카보네이트의 제조에 사용되는 것이면 특별히 제한되지 않는다. 일례로 방향족 디올 화합물은 비스페놀 A, 1 , 1-비스 (4-히드록시페닐)에탄, 비스 (4- 히드록시페닐)메탄, 비스 (4-히드록시페닐)에테르, 비스 (4- 히드록시페닐)설폰, 비스 (4-히드록시페닐)설폭사이드, 비스 (4- 히드록시페닐)설파이드, 비스 (4-히드록시페닐)케톤, 2 , 2-비스 (4- 히드록시페닐)부탄, 1,1-비스 (4-히드록시페닐)시클로핵산, 2 , 2-비스 (4- 히드록시 -3, 5-디브로모페닐)프로판, 2, 2-비스 (4-히드록시—3 , 5- 디클로로페닐)프로판, 2 , 2-비스 (4-히드록시 -3-브로모페닐)프로판, 2 , 2- 비스 (4-히드록시 -3-클로로페닐)프로판, 2, 2-비스 (4-히드록시 -3- 메틸페닐)프로판, 2 , 2-비스 (4-히드록시 -3,5-디메틸페닐)프로판, 1,1- 비스 (4-히드록시페닐 )-1-페닐에탄, 비스 (4-히드록시페닐)디페닐메탄, 또는 a, 0 -비스 [3-( o -히드록시페닐)프로필]폴리디메틸실록산을 사용할 수 있다. 또한, 일례로 카보네이트 전구체는 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로핵실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스 (클로로페닐) 카보네이트, 디 -m-크레실 카보네이트, 디나프틸 카보네이트, 비스 (디페닐) 카보네이트, 포스겐, 트리포스겐, 디포스겐, 브로모포스겐, 또는 비스할로포르메이트를 사용할 수 있다. 상기 산결합제로는 일례로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등의 아민 화합물을 사용할 수 있다. 상기 유기 용매로는 통상 폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 메틸렌 클로라이드, 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 있다. 또한, 상기 계면중합은 반웅 촉진을 위해 트리에틸아민, 테트라 -n- 부틸암모늄브로마이드, 테트라 -n-부틸포스포늄브로마이드 등의 3차 아만 화합물, 4차 암모늄 화합물, 4차 포스포늄 화합물 등과 같은 반웅 촉진제를 추가로 사용할 수 있다. 상기 계면중합의 반웅 온도는 0 내지 40°C인 것이 바람직하며, 반웅 시간은 10분 내지 5시간이 바람직하다. 또한, 계면중합 반웅 중, pH는 9이상또는 11이상으로 유지하는 것이 바람직하다. 상기 폴리카보네이트 중합 용액에서, 바람직하게는 폴리카보네이트의 농도는 10 내지 35 중량 %이다. 상기 폴리카보네이트 중합 용액에 첨가되는 산화방지제는, 후술할 단계 2에서 사용할 고온의 스팀에 의한 폴리카보네이트의 물성 저하를 억제하기 위하여 첨가되는 것으로, 바람직하게는 산화방지제는 2종 이상이 첨가된다. 또한, 바람직하게는, 상기 산화방지제는 포스파이트계 산화방지제 및 힌더드 페놀계 산화방지제를 포함한다. 상기 포스파이트계 산화방지제의 예로는, PEP-36(Bis(2,6-di-ter- butyl -4-methy 1 heny 1 ) ent aery t hr itol-diphosphite) , 및 DP9228 (bis(2,4- dicumyl phenyl )pentaerythr itol diphosphate)로 구성되는 군으로부터 선택되는 어느 하나 이상을 들 수 있다. 또한, 상기 힌더드 페놀계 산화방지제의 예로는, IR1010([3-[3-(4-hy(iroxy-3,5-ditert-butyl- pheny 1 )pr opano 1 oxy ]—2,2_bis[3_( 4-hydr oxy-3,5一 ditert一 butyl—
pheny 1 ) pr opanoy 1 oxymethy 1 ] ropy 1 ] 3— ( 4— hydroxy— 3 ,5-ditert一 but y 1一 phenyl )propanoate)을 들 수 있다. 또한, 상기 산화방지제는 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 100 ppmw 내지 1,000 pp贿로 첨가되는 것이 바람직하다. 상기 첨가량이 100 ppmw 미만인 경우에는 폴리카보네이트의 물성 저하를 억제하는 효과가 미미하고, 상기 첨가량이 1,000 ppmw 초과인 경우에는 폴리카보네이트의 물성 저하를 억제하는 효과가 실질적으로 증가하지 않고, 또한 폴리카보네이트의 물성을 오히려 떨어뜨릴 수 있다. 보다 바람직하게는, 상기 산화방지제는 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 150 ppmw 이상, 200 ppmw 이상, 250 pp隱 이상, 또는 300 ppmw 아상이고, 900 ppmw 이하, 800 ppmw 이하, 700 pp隱 이하, 또는 600 ppmw 이하로 첨가돠는 것이 바람직하다. 상기 폴리카보네이트 중합 용액에 첨가되는 에폭시 융합된 지방족 고리를 갖는 내가수분해제는, 후술할 단계 2에서 사용할 고온의 스팀에 의한 폴리카보네이트의 물성 저하를 억제하기 위하여 참가된다. 바람직하게는, 상기 에폭시 융합된 지방족 고리를 갖는 내가수분해제는 에폭시 융합된 지방족 고리를 2개 이상 가지는 것이 바람직하다. 상기 에폭시 융합된 지방족 고리를 갖는 내가수분해제의 예로는, C-2021P(3 ,4-Epoxy eye lohexyl methyl 3 , 4- epoxycyc 1 ohexanecar boxy 1 at e ) 들 수 있다. 또한, 상기 에폭시 융합된 지방족 고리를 갖는 내가수분해제는 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 100 ppmw 내지 1 , 000 pp匿로 첨가되는 것이 바람직하다. 상기 첨가량이 100 ppmw 미만인 경우에는 폴리카보네이트의 물성 저하를 억제하는 효과가 미미하고, 상기 첨가량이 1 , 000 ppmw 초과인 경우에는 폴리카보네이트의 물성 저하를 억제하는 효과가 실질적으로 증가하지 않고, 또한 폴리카보네이트의 물성을 오히려 떨어뜨릴 수 있다. 보다 바람직하게는, 상기 에폭시 융합된 지방족 고리를 갖는 내가수분해제는 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 110 ppmw 이상, 120 ppmw 이상, 130 ppmw 이상, 140 ppmw 이상이고, 900 ppmw 이하, . 800 ppmw 이하, 700 ppmw 이하, 600 ppmw 이하, 또는 500 ppmw 이하로 첨가되는 것이 바람직하다. 폴리카보네이트 중합 용액에 스팀을 이용하여 용매를 제거하는 단계 (단계 2)
상기 단계 2는, 상기 단계 1에서 산화방지제 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가한 폴리카보네이트 중합 용액으로부터 용매를 제거하여 폴리카보네이트를 제조하는 단계이다. 상기 단계 2에서 제조되는 폴리카보네이트는 용매가 제거되었기 때문에, 고형분으로 존재한다. 구체적으로, 상기 폴리카보네이트 중합 용액의 용매를 제거하기 위하여 스팀 이젝터를 이용한다. 상기 스팀 이젝터는 당업계에 널리 알려진 것으로, 고온 및 고압의 증기를 사용하여 폴리카보네이트 중합 용액으로부터 용매를 제거한다. 즉, 폴리카보네이트 중합 용액의 용매의 끊는점 보다 높은 고온 및 고압의 증기가 폴리카보네이트 중합 용액과 접촉하여 용매를 증발시키는 방식으로 용매를 제거할수 있다. 바람직하게는, 상기 스팀의 온도는 2KTC 내지 23CTC이다. 또한 상기 스팀의 압력은 17 내지 23 kgf/cm2이다. 상기 스팀의 온도는 고온이나, 상술한 바와 같이 상기 폴리카보네이트 중합 용액에는 산화방지제 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제가 포함되어 있어, 폴리카보네이트의 물성 저하를 억제하면서도 용매를 효과적으로 제거할 수 있다. 구체적으로, 상기 단계 2에서 제조된 폴리카보네이트는 ASTM D1925에 의거하여 측정한 YI 값이 1.0 이하이다. 또한, 상기 단계 2에서 제조된 폴리카보네이트는, 85°C 및 85% 상대습도에서 168시간둔 후 중량평균분자량 감소가 400 g/mol 이하이다. 또한, 상기 단계 2에서 제조된 폴리카보네이트는, 85°C 및 85% 상대습도에서 168시간 둔 후 상온충격강도 (ASTM D256( l/8 inch, Notched Izod)에 의거하여 23°C에서 측정 )의 감소가 100 J/m 이하이다. 본 발명의 일실시예에 따르면, 본 발명에 따른 제조방법으로 제조된 폴리카보네이트는 YI , 중량평균분자량 감소량, 및 상온층격강도 감소량 등에서 현저히 우수한 효과를 나타내었다.
【발명의 효과】
상술한 바와 같이, 본 발명에 따른 폴리카보네이트의 제조 방법은, 폴리카보네이트 중합 용액에 산화방지제 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가한 후 스팀을 이용하여 용매晕 제거함으로써, 폴리카보네이트의 물성을 저해하지 않으면서도 용매를 효과적으로 제거할 수 있다는 특징이 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명올 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 제조예: 폴리카보네이트 중합용액
20L 글라스 (Glass) 반웅기에 비스페놀 A(BPA) 978.4 g, NaOH 32% 수용액 1 , 620 g, 및 증류수 7,500 g을 넣고, 질소 분위기 하에 BPA가 완전히 녹은. 것을 확인한 후, 메틸렌 클로라이드 3 , 670 g, p-tert- 부틸페놀 (PTBP) 18.3 g을 투입하여 흔합하였다. 여기에 트리포스겐 (TPG) 542.5 g을 녹인 메틸렌 클로라이드 3,850 g을 1시간 동안 적가하였다. 이때, NaOH 수용액을 이용하여 pH 12로 유지하였다. 적가 완료 후 15분 동안 숙성하고, 트리에틸아민 195.7 g을 메틸렌 클로라이드에 녹여 투입하였다. 10분 후, IN 염산 수용액으로 pH를 3으로 맞춘 후, 증류수로 3회 수세하여 폴리카보네이트 중합 용액 8, 645 g을 얻었다. 상기 폴리카보네이트 중합 용액 내 용해된 폴리카보네이트는 1 , 125 g으로 농도는 약 13 중량%이었다. 실시예 1
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4, 975 g에,
IR1010 0.2250 g, PEP-36 0.3374 g, 및 C-2021P 0.2250 g을 흔합하였다. 상기 흔합 용액에 steam ej ector로 증기 (온도: 220°C , 압력: 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 실시예 2
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4,975 g에, IR1010 0. 1688 g, PEP-36 0.3936 g, 및 C— 2021P 0.2250 g을 흔합하였다. 상기 흔합 용액에 steam ejector로 증기 (온도: 220°C, 압력 : 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 실시예 3
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4 , 975 g에, IR1010 0.2250 g, DP9228 0.3374 g, 및 C— 2021P 0.2250 g을 흔합하였다. 상기 흔합 용액에 steam ej ector로 증기 (온도: 220°C, 압력 : 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 실시예 4
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4, 975 g에, IR1010 0. 1688 g, DP9228 0.3936 g, 및 C-2021P 0.2250 g을 흔합하였다. 상기 흔합 용액에 steam ejector로 증기 (온도: 220°C , 압력 : 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 비교예 1
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4,975 g에, P-168 0.5623 g을 흔합하였다. 상기 흔합 용액에 steam ejector로 증기 (온도: 220 °C , 압력 : 20 kgf/cm2)를 분사하여 고상의 플리카보네이트를 수득하였다. 비교예 2
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4,975 g에, IR1010 0.2250 g 및 PEP-36 0.3374 g을 흔합하였다. 상기 흔합 용액에 steam ejector로 증기 (온도: 220°C , 압력 : 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 비교예 3
상기 제조예에서 제조한 폴리카보네이트 중합 용액 4 , 975 g에,
IR1010 0.2250 g, PEP-36 0.3374 g, 및 ADR4370 0.2250 g을 흔합하였다. 상기 흔합 용액에 steam ejector로 증기 (온도: 220°C, 압력 : 20 kgf/cm2)를 분사하여 고상의 폴리카보네이트를 수득하였다. 실험예 상기 실시예 및 비교예에서 각각 제조한 고상의 폴리카보네이트에 트리스 (2,4-디 -tert—부틸페닐)포스파이트 0.050 중량부, 옥타데실 -3-(3,5_ 디 -tert-부틸 -4-히드록시페닐)프로피오네이트를 0.010 중량부, 펜타에리스리를테트라스테아레이트를 0.030 중량부 첨가하여, 벤트 부착 Φ30ι腿 이축압출기를 사용하여, 펠릿화한 후, JSW (주) N-20C 사출성형기를 사용하여 실린더 온도 3(xrc , 금형 온도 8(rc에서 성형 시편을 사출 성형하였다. 이의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기 표 1에 나타내었다.
1) YI (Yel low Index) : 시편 (가로 /세로 /두께 = 60 隱 / 40 mm/ 3 隱)을 300°C에서 사출 성형한 후, ASTM D1925에 의거하여 이를 Color-Eye 7000A(X-r i te社)를 이용하여 YKYel low Index)를 측정하였다. 한편, 상기 YI (Yel low Index) 측정 조건은 하기와 같았다.
-측정 온도: 상온 (23°C )
- Aperture size : Large area of view
-측정법: Spectral range (360 nm 내지 750 nm)에서 투과율 측정
2) 중량평균분자량 감소량 (AMw) 및 상온층격강도 감소량 (ANotched Izod Impact ) : Agi lent 1200 ser ies를 이용하여 PC standard로 검량하여 중량평균분자량을 측정 (Mw0)하였다. 또한, ASTM D256( l/8 inch, Notched Izod)에 의거하여 23°C에서 상온층격강도를 측정 (NI Io)하였다. 이어, 상기 시편을 항온항습기 (JEI0 TECH, TH-KE)를 이용하여 85°C 및 85% 상대습도에서 168시간 동안 그대로 둔 후, 다시 같은 방법으로 중량평균분자량 (Mw 및 상온층격강도 ( ^를 측정하였으며, 이의 차이 (Mwo-M^ 및 ^-!에 를 각각 계산하였다. 상기 결과를 하기 표 1에 나타내었다. 【표 1】
Figure imgf000013_0001
P-168: Tris(2,4-ditert-butylphenyl)phosphite (IRGAFOS® 168)
IR1010: [ 3- [ 3- ( 4-hydr oxy-3 , 5-d i t er t -butyl -pheny 1 ) r opanoy 1 oxy ] -2 , 2-b i s [ 3- ( 4-hydr oxy- 3 , 5-di ter t-butyl-phenyl )pr opanoy loxymethyl Jpropyl] 3一 (4一 hydroxyᅳ 3,5ᅳ ditert一 butyl一 phenyl )propanoate
PEP一 36: Bis(2f 6-di-ter-butyl-4-methylphenyl )pentaerythr i tol-diphosphi te
DP9228: bis(2,4-dicumylphenyl )pentaerythr itol diphosphite
O2021P: 3 , 4-Epoxycyc 1 ohexy 1 me t hy 1 3 , -epoxycyc 1 ohexanecarboxy 1 ate
ADR4370: J0NCRYL® ADR-4370

Claims

【특허청구범위】
【청구항 11
1) 폴리카보네이트 중합 용액에, 산화방지제, 및 에폭시 융합된 지방족 고리를 갖는 내가수분해제를 첨가하는 단계; 및
2) 상기 폴리카보네이트 중합 용액에 스팀을 이용하여 용매를 제거하는 단계를 포함하는,
폴리카보네이트의 제조 방법 .
【청구항 2】
제 1항에 있어서,
상기 폴리카보네이트 중합 용액의 용매는 메틸렌 클로라이드, 또는 클로로벤젠인 것을 특징으로 하는,
폴리카보네이트의 제조 방법 .
【청구항 3】
제 1항에 있어서,
상기 산화방지제는 2종 이상이 첨가되는 것을 특징으로 하는, 제조 방법 .
【청구항 4】
게 1항에 있어서,
상기 산화방지제는 포스파이트계 산화방지제 및 힌더드 페놀계 산화방지제를 포함하는 것을 특징으로 하는 ,
제조 방법 .
【청구항 5】
제 1항에 있어서,
상기 산화방지제는, 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 100 ppmw 내지 1 , 000 pp賺로 첨가되는 것을 특징으로 하는, 제조 방법
[청구항 6】
제 1항에 있어서,
상기 내가수분해제는, 상기 폴리카보네이트 중합 용액 내 폴리카보네이트 대비 100 ppmw 내지 1,000 pp隱로 첨가되는 것을 특징으로 하는,
제조 방법 .
【청구항 7】
제 1항에 있어서,
상기 스팀의 온도는 210°C 내지 230°C인
제조 방법 .
【청구항 8】
게 1항에 있어서,
상기 스팀의 압력은 17 내지 23 kgf/cm2인,
제조 방법 .
【청구항 9】
제 1항에 있어서,
상기 제조된 폴리카보네이트는 ASTM D1925에 의거하여 측정한 YI 값이 1.0 이하인 것을 특징으로 하는,
제조 방법 .
【청구항 10】
거 U항에 있어서,
상기 제조된 폴리카보네이트는, 85 °C 및 85% 상대습도에서 168시간 둔 후 중량평균분자량 감소가 400 g/ii )l이하인,
제조 방법 . 【청구항 in
게 1항에 있어서,
상기 제조된 폴리카보네이트는, 85 °C 및 85% 상대습도에서 168시간 둔 후 상온충격강도 (ASTM D256(l/8 inch, Notched Izod)에 의거하여 231:에서 측정 )의 감소가 100 J/m 이하인,
제조 방법ᅳ
PCT/KR2017/006904 2016-08-31 2017-06-29 폴리카보네이트 제조 방법 WO2018043899A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17846824T PL3508512T3 (pl) 2016-08-31 2017-06-29 Sposób wytwarzania poliwęglanu
CN201780003896.0A CN108291018B (zh) 2016-08-31 2017-06-29 聚碳酸酯的制备方法
ES17846824T ES2826751T3 (es) 2016-08-31 2017-06-29 Procedimiento para preparar policarbonato
EP17846824.5A EP3508512B1 (en) 2016-08-31 2017-06-29 Method for preparing polycarbonate
US15/765,686 US10538620B2 (en) 2016-08-31 2017-06-29 Method for preparing polycarbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0111868 2016-08-31
KR1020160111868A KR102120397B1 (ko) 2016-08-31 2016-08-31 폴리카보네이트 제조 방법

Publications (1)

Publication Number Publication Date
WO2018043899A1 true WO2018043899A1 (ko) 2018-03-08

Family

ID=61301339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006904 WO2018043899A1 (ko) 2016-08-31 2017-06-29 폴리카보네이트 제조 방법

Country Status (7)

Country Link
US (1) US10538620B2 (ko)
EP (1) EP3508512B1 (ko)
KR (1) KR102120397B1 (ko)
CN (1) CN108291018B (ko)
ES (1) ES2826751T3 (ko)
PL (1) PL3508512T3 (ko)
WO (1) WO2018043899A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604441A4 (en) * 2017-03-30 2020-12-23 Idemitsu Kosan Co., Ltd. COMPOSITION OF POLYCARBONATE RESIN AND MOLDED BODY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539494B2 (ja) * 2020-10-23 2024-08-23 エルジー・ケム・リミテッド ポリカーボネート組成物およびその成形品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799953A (en) 1972-09-01 1974-03-26 Bayer Ag 1,4-bis(4,'4''-dihydroxy-triphenylmethyl)benzene
US4546172A (en) 1983-01-20 1985-10-08 Mitsubishi Chemical Industries Ltd. Process for producing polycarbonate resin particles
US4668768A (en) 1985-11-25 1987-05-26 General Electric Company Anti-solvent precipitation process for isolating polymers from solution
US6214892B1 (en) 1999-12-23 2001-04-10 General Electric Company Polycarbonate isolation through homogenization devolatization
KR20030045665A (ko) * 2000-04-07 2003-06-11 다우 글로벌 테크놀로지스 인크. 폴리카보네이트 제조방법
KR20080105143A (ko) * 2006-03-30 2008-12-03 사빅 이노베이티브 플라스틱스 아이피 비.브이. 기계적 특성이 향상된 열가소성 폴리카보네이트 조성물, 이로부터 제조된 제조물 및 제조방법
KR20090013211A (ko) * 2006-05-31 2009-02-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. 열가소성 폴리카보네이트 조성물
US7947803B2 (en) 2006-12-05 2011-05-24 Lg Chem, Ltd. Apparatus and method for recovering polymer
KR20130018988A (ko) * 2006-01-06 2013-02-25 미쓰비시 엔지니어링-플라스틱스 코포레이션 도광판용 방향족 폴리카보네이트 수지 조성물 및 도광판
KR20140119018A (ko) * 2012-01-30 2014-10-08 이데미쓰 고산 가부시키가이샤 폴리카보네이트 수지 조성물, 성형품

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916189A (en) 1988-07-05 1990-04-10 General Electric Company Method for the preparation of cross-linked polycarbonates, and compositions made therefrom
JP3299570B2 (ja) 1992-10-22 2002-07-08 日本ジーイープラスチックス株式会社 共重合ポリカーボネート系樹脂組成物
JPH08169959A (ja) 1994-12-20 1996-07-02 Teijin Chem Ltd ポリカーボネート樹脂粉粒体の製造方法
DE19501501A1 (de) 1995-01-19 1996-07-25 Bayer Ag Mischungen aus aromatischen Polycarbonaten und epoxyfunktionellen Terpolymeren
DE19608521A1 (de) 1996-03-06 1997-09-11 Bayer Ag Verfahren zur Herstellung von Polycarbonatagglomerat
KR100341349B1 (ko) * 1999-07-16 2002-06-21 박찬구 내수성 및 흐름성이 우수한 폴리카보네이트 수지 조성물
US6660787B2 (en) 2001-07-18 2003-12-09 General Electric Company Transparent, fire-resistant polycarbonate compositions
KR100702436B1 (ko) * 2004-11-06 2007-04-03 주식회사 엘지화학 스프레이 결정화 방법을 사용한 실록산계코폴리카보네이트의 제조방법
CN101469117B (zh) * 2007-12-25 2012-07-04 上海普利特复合材料股份有限公司 一种耐水解、高韧性、抗紫外聚碳酸酯组合物
US20100168317A1 (en) 2008-12-30 2010-07-01 Cahoon-Brister Kristen Poly(butylene terephthalate) compositions, methods of manufacture, and articles thereof
CN101845213A (zh) 2010-04-30 2010-09-29 中国科学院宁波材料技术与工程研究所 共聚酯和聚碳酸酯的高分子聚合物合金及其制备方法
CN102002226A (zh) 2010-12-10 2011-04-06 深圳市富恒塑胶新材料有限公司 一种阻燃pc/pbt/pet合金及其制备方法
JP5893856B2 (ja) 2011-06-16 2016-03-23 帝人株式会社 ポリカーボネート樹脂のゲル化物の生成を低減する方法
JP2013095877A (ja) 2011-11-02 2013-05-20 Mitsubishi Chemicals Corp 成形体
CN102492277B (zh) 2011-11-30 2013-10-23 深圳市科聚新材料有限公司 一种聚碳酸酯复合材料及其制备方法
JP5938419B2 (ja) * 2011-12-13 2016-06-22 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
EP2818499B1 (en) 2012-02-20 2022-01-12 Mitsubishi Chemical Corporation Resin composition and molded body of same
CN102617997B (zh) 2012-03-30 2014-08-27 深圳市科聚新材料有限公司 一种玻璃纤维增强pbt/pet复合材料及其制备方法
JP2013209581A (ja) 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 成形体
JP2013209582A (ja) 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 成形体
KR101636128B1 (ko) 2013-07-01 2016-07-04 주식회사 엘지화학 폴리카보네이트 수지 조성물
JP6215717B2 (ja) 2014-01-14 2017-10-18 帝人株式会社 帯電防止性ポリカーボネート樹脂組成物
JP6283264B2 (ja) 2014-05-30 2018-02-21 出光興産株式会社 ポリカーボネートの製造方法
US9284449B2 (en) 2014-06-19 2016-03-15 Sabic Global Technologies B.V. Reinforced thermoplastic compound with chemical resistance
KR101770452B1 (ko) 2014-11-25 2017-09-06 주식회사 엘지화학 고온 열안정성이 우수한 폴리카보네이트 수지 조성물

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799953A (en) 1972-09-01 1974-03-26 Bayer Ag 1,4-bis(4,'4''-dihydroxy-triphenylmethyl)benzene
US4546172A (en) 1983-01-20 1985-10-08 Mitsubishi Chemical Industries Ltd. Process for producing polycarbonate resin particles
US4668768A (en) 1985-11-25 1987-05-26 General Electric Company Anti-solvent precipitation process for isolating polymers from solution
US6214892B1 (en) 1999-12-23 2001-04-10 General Electric Company Polycarbonate isolation through homogenization devolatization
KR20030045665A (ko) * 2000-04-07 2003-06-11 다우 글로벌 테크놀로지스 인크. 폴리카보네이트 제조방법
KR20130018988A (ko) * 2006-01-06 2013-02-25 미쓰비시 엔지니어링-플라스틱스 코포레이션 도광판용 방향족 폴리카보네이트 수지 조성물 및 도광판
KR20080105143A (ko) * 2006-03-30 2008-12-03 사빅 이노베이티브 플라스틱스 아이피 비.브이. 기계적 특성이 향상된 열가소성 폴리카보네이트 조성물, 이로부터 제조된 제조물 및 제조방법
KR20090013211A (ko) * 2006-05-31 2009-02-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. 열가소성 폴리카보네이트 조성물
US7947803B2 (en) 2006-12-05 2011-05-24 Lg Chem, Ltd. Apparatus and method for recovering polymer
KR20140119018A (ko) * 2012-01-30 2014-10-08 이데미쓰 고산 가부시키가이샤 폴리카보네이트 수지 조성물, 성형품

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604441A4 (en) * 2017-03-30 2020-12-23 Idemitsu Kosan Co., Ltd. COMPOSITION OF POLYCARBONATE RESIN AND MOLDED BODY
US11220600B2 (en) 2017-03-30 2022-01-11 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded body
US11732129B2 (en) 2017-03-30 2023-08-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded body

Also Published As

Publication number Publication date
PL3508512T3 (pl) 2021-02-08
CN108291018A (zh) 2018-07-17
US10538620B2 (en) 2020-01-21
KR102120397B1 (ko) 2020-06-08
US20190085122A1 (en) 2019-03-21
EP3508512B1 (en) 2020-08-12
CN108291018B (zh) 2020-12-01
EP3508512A4 (en) 2019-08-14
EP3508512A1 (en) 2019-07-10
ES2826751T3 (es) 2021-05-19
KR20180024879A (ko) 2018-03-08

Similar Documents

Publication Publication Date Title
US10174194B2 (en) Copolycarbonate and composition comprising the same
CN106883575B (zh) 聚碳酸酯树脂组合物和成型品
US9670359B2 (en) Polycarbonate resin composition and molded article
JP5978555B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP6014788B1 (ja) ポリカーボネート樹脂組成物及び成形品
KR101702182B1 (ko) 높은 유동성을 갖는 폴리카보네이트
WO2018043899A1 (ko) 폴리카보네이트 제조 방법
CN110709452B (zh) 具有提高的铅笔硬度的聚碳酸酯复合物
JP6176066B2 (ja) ポリカーボネート樹脂組成物
JP6708664B2 (ja) 樹脂組成物およびそれを用いたフィルム並びにキャリアテープ
JP6671114B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体、及びその製造方法
TWI462967B (zh) Polycarbonate resin composition
KR101770452B1 (ko) 고온 열안정성이 우수한 폴리카보네이트 수지 조성물
KR101714834B1 (ko) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
JP2005025149A (ja) 偏光板
KR101649038B1 (ko) 높은 유동성을 갖는 폴리카보네이트 및 그의 제조방법
WO2016089118A2 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
JP2015014013A (ja) ポリカーボネート樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE