WO2018043184A1 - 貫通電極基板、貫通電極基板の製造方法及び実装基板 - Google Patents

貫通電極基板、貫通電極基板の製造方法及び実装基板 Download PDF

Info

Publication number
WO2018043184A1
WO2018043184A1 PCT/JP2017/029819 JP2017029819W WO2018043184A1 WO 2018043184 A1 WO2018043184 A1 WO 2018043184A1 JP 2017029819 W JP2017029819 W JP 2017029819W WO 2018043184 A1 WO2018043184 A1 WO 2018043184A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
substrate
inorganic film
inorganic
Prior art date
Application number
PCT/JP2017/029819
Other languages
English (en)
French (fr)
Inventor
前川 慎志
工藤 寛
貴正 高野
宏 馬渡
浅野 雅朗
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US16/325,911 priority Critical patent/US10957592B2/en
Priority to JP2018537143A priority patent/JP7075625B2/ja
Publication of WO2018043184A1 publication Critical patent/WO2018043184A1/ja
Priority to US17/178,659 priority patent/US11373906B2/en
Priority to JP2022079818A priority patent/JP7400873B2/ja
Priority to US17/752,062 priority patent/US11810820B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits

Definitions

  • Embodiment of this indication is related with a manufacturing method of a penetration electrode substrate and a penetration electrode substrate.
  • an embodiment of the present disclosure relates to a mounting substrate including a through electrode substrate.
  • a member including a substrate including the first surface and the second surface, a plurality of through holes provided in the substrate, and an electrode provided in the through hole, a so-called through electrode substrate is used in various applications.
  • the through electrode substrate is used as an interposer interposed between two LSI chips when a plurality of LSI chips are stacked in order to increase the mounting density of LSIs.
  • the through electrode substrate may be interposed between an element such as an LSI chip and a mounting substrate such as a mother board.
  • the electrode provided inside the through hole may be referred to as a through electrode.
  • the through electrode substrate includes a plurality of wiring layers stacked on the through electrode.
  • Each wiring layer has a conductive layer and an insulating layer located between the conductive layers of each wiring layer.
  • an organic material such as polyimide is used.
  • a metal material such as copper is used.
  • the step of forming the conductive layer includes a step of forming copper by plating, a step of annealing copper formed by plating, and the like.
  • the substrate and the through electrode are repeatedly exposed to a high temperature, for example, a temperature of 200 ° C. or higher, in an organic material baking process or a copper annealing process.
  • a high temperature for example, a temperature of 200 ° C. or higher
  • the thermal expansion coefficient of a metal material such as copper constituting the through electrode is generally larger than the thermal expansion coefficient of an inorganic material such as glass or silicon constituting the substrate.
  • Embodiment of this indication is made in view of such a point, and it aims at providing the penetration electrode substrate which can control generating of poor connection.
  • One embodiment of the present disclosure includes a substrate including a first surface located on a first side and a second surface located on a second side opposite to the first side and provided with a through hole, and the through hole
  • a through electrode having a side wall portion extending along the side wall of the substrate, a first portion located on the first surface of the substrate and connected to the side wall portion, and an organic film located inside the through hole
  • an inorganic film that at least partially covers the first portion of the through electrode from the first side and that has an opening located on the first portion, and closer to the first side than the inorganic film.
  • an insulating layer including at least an organic layer provided with an opening communicating with the opening of the inorganic film, and the first portion of the through electrode through the opening of the inorganic film and the opening of the insulating layer
  • a first wiring layer having a conductive layer connected to Comprising a through-electrode substrate.
  • the inorganic film may at least partially cover the side wall portion of the through electrode.
  • the through electrode further includes a second portion located on the second surface of the substrate and connected to the side wall portion, and the inorganic film includes: The second portion of the through electrode may be at least partially covered from the second side.
  • the inorganic film may at least partially cover the end surface on the first side of the organic film.
  • the through electrode further includes a second portion located on the second surface of the substrate and connected to the side wall portion, and the through electrode substrate includes: You may further provide the 2nd surface side inorganic film which at least partially covers the 2nd portion of the penetration electrode from the 2nd side.
  • the second surface-side inorganic film may at least partially cover the second-side end surface of the organic film.
  • a through electrode substrate includes an insulating layer provided with an opening located on the conductive layer of the first wiring layer, and the first wiring layer through the opening of the insulating layer.
  • a second wiring layer having a conductive layer connected to the conductive layer, wherein the insulating layer of the second wiring layer includes at least partially the conductive layer of the first wiring layer from the first side.
  • An covering inorganic layer may be included.
  • the through electrode substrate according to an embodiment of the present disclosure further includes a second wiring structure unit including at least a first wiring layer located on the second surface of the substrate, and the through electrode is formed on the second surface of the substrate.
  • a second portion located on the surface and connected to the side wall portion, and the first wiring layer of the second wiring structure portion has an opening located on the second portion of the through electrode.
  • the number of the conductive layers included in the second wiring structure part may be smaller than the number of conductive layers located on the first side of the substrate.
  • the organic layer of the first wiring layer of the second wiring structure portion may include a portion that is not covered with an insulating inorganic layer.
  • the inorganic film may partially cover the side wall portion so as not to extend to an end portion on the second side of the side wall portion of the through electrode.
  • the end surface on the second side of the organic film may at least partially include a portion that is not covered with an insulating inorganic film.
  • the inorganic film may include at least silicon oxide or silicon nitride.
  • One embodiment of the present disclosure includes preparing a substrate including a first surface located on a first side and a second surface located on a second side opposite to the first side and provided with a through hole; Forming a through electrode having a side wall portion extending along a side wall of the through hole and a first portion located on the first surface of the substrate and connected to the side wall portion; A step of forming an organic film inside the hole, a step of forming an inorganic film that at least partially covers the first portion of the through electrode from the first side, and a position closer to the first side than the inorganic film. And forming a conductive layer that penetrates the inorganic film and the insulating layer and is connected to the first portion of the through electrode. is there.
  • the inorganic film may at least partially cover the side wall portion of the through electrode.
  • the step of forming the through electrode further includes forming a second portion located on the second surface of the substrate and connected to the side wall portion.
  • the inorganic film may at least partially cover the second portion of the through electrode from the second side.
  • the inorganic film may at least partially cover the end surface on the first side of the organic film.
  • the step of forming the through electrode further includes forming a second portion located on the second surface of the substrate and connected to the side wall portion.
  • the method of manufacturing the through electrode substrate may further include a step of forming a second surface side inorganic film that at least partially covers the second part of the through electrode from the second side.
  • the second surface-side inorganic film may at least partially cover the second-side end surface of the organic film.
  • the inorganic film may include at least silicon oxide or silicon nitride.
  • One embodiment of the present disclosure includes a through electrode substrate and an element mounted on the through electrode substrate, and the through electrode substrate is opposite to the first surface located on the first side and the first side.
  • a through electrode substrate having a first portion connected to the organic layer, an organic film located inside the through hole, and at least partially covering the first portion of the through electrode from the first side, and
  • An inorganic film provided with an opening located on one part; an insulating layer including at least an organic layer located on the first side of the inorganic film and provided with an opening communicating with the opening of the inorganic film; The opening of the inorganic film and the opening of the insulating layer.
  • a first wiring layer having a conductive layer electrically connected to the first portion of the through electrode via a mounting board.
  • the through electrode substrate according to the embodiment of the present disclosure it is possible to suppress the occurrence of connection failure.
  • FIG. 1 is a cross-sectional view showing the through electrode substrate 10.
  • FIG. 2 is an enlarged cross-sectional view of the through electrode substrate 10 of FIG.
  • the through electrode substrate 10 includes a substrate 12, a through electrode 22, an organic film 26, an inorganic film 27, and a first wiring structure unit 30.
  • a substrate 12 a through electrode 22
  • an organic film 26 an inorganic film 27
  • a first wiring structure unit 30 a first wiring structure unit
  • the substrate 12 includes a first surface 13 positioned on the first side D1 and a second surface 14 positioned on the second side D2 opposite to the first side D1.
  • the substrate 12 is provided with a plurality of through holes 20 extending from the first surface 13 to the second surface 14.
  • the substrate 12 is made of an inorganic material having a certain insulating property.
  • the substrate 12 is a glass substrate, quartz substrate, sapphire substrate, resin substrate, silicon substrate, silicon carbide substrate, alumina (Al 2 O 3 ) substrate, aluminum nitride (AlN) substrate, zirconium oxide (ZrO 2 ) substrate, etc.
  • these substrates are stacked.
  • the substrate 12 may include a substrate made of a conductive material such as an aluminum substrate or a stainless steel substrate.
  • the thickness of the substrate 12 is not particularly limited. For example, it is preferable to use the substrate 12 having a thickness of 100 ⁇ m or more and 800 ⁇ m or less. More preferably, the substrate 12 has a thickness of 200 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the substrate 12 By setting the thickness of the substrate 12 to 100 ⁇ m or more, it is possible to suppress an increase in the deflection of the substrate 12. For this reason, it is possible to suppress the handling of the substrate 12 in the manufacturing process and the warping of the substrate 12 due to internal stress such as a thin film formed on the substrate 12.
  • the thickness of the substrate 12 to 800 ⁇ m or less, it is possible to suppress the time required for the step of forming the through hole 20 in the substrate 12 and increase the manufacturing cost of the through electrode substrate 10.
  • the side wall 21 of the through-hole 20 may extend along the normal direction of the first surface 13 of the substrate 12 as shown in FIG. Alternatively, although not illustrated, the side wall 21 may extend in a direction shifted from the normal direction of the first surface 13 of the substrate 12, or a part of the side wall 21 may be curved.
  • the through electrode 22 is a member that is at least partially located inside the through hole 20 and has conductivity. In the embodiment of the present disclosure, the through electrode 22 is configured such that a hollow portion remains in the through hole 20. That is, the through electrode 22 is a conformal via.
  • the through electrode 22 includes at least a side wall portion 23 and a first portion 24.
  • the through electrode 22 may further include a second portion 25.
  • the side wall portion 23 extends along the side wall 21 of the through hole 20.
  • the first portion 24 is connected to the side wall portion 23 from the first side D ⁇ b> 1 and is provided on the first surface 13 of the substrate 12.
  • the first portion 24 constitutes a first end surface 22 a that is an end surface on the first side D ⁇ b> 1 of the through electrode 22.
  • the second portion 25 is connected to the sidewall portion 23 from the second side D2 and is provided on the second surface 14 of the substrate 12.
  • the second portion 25 constitutes a second end surface 22 b that is an end surface on the second side D ⁇ b> 2 of the through electrode 22.
  • the formation method of the through electrode 22 is not particularly limited.
  • the through electrode 22 may be formed by a physical film formation method such as an evaporation method or a sputtering method, or may be formed by a chemical film formation method or a plating method.
  • the through electrode 22 may be composed of a single layer having conductivity, or may include a plurality of layers having conductivity.
  • FIG. 2 an example in which the through electrode 22 includes a barrier layer 221, a seed layer 222, and a plating layer 223 that are sequentially stacked on the surface of the substrate 12 will be described.
  • the surface of the substrate 12 is the first surface 13, the second surface 14, or the side wall 21 of the through hole 20 of the substrate 12.
  • the barrier layer 221 is located closest to the substrate 12 side.
  • the barrier layer 221 is a layer located between the constituent elements of the other through electrode 22 such as the seed layer 222 and the plating layer 223 and the surface of the substrate 12.
  • the barrier layer 221 is provided as necessary in order to suppress diffusion of metal elements in other components of the through electrode 22 such as the seed layer 222 and the plating layer 223 into the substrate 12.
  • the seed layer 222 or the plating layer 223 contains copper, as the material of the barrier layer 221, for example, titanium, titanium nitride, molybdenum, molybdenum nitride, tantalum, tantalum nitride, or the like, or a laminate of these is used. Can do.
  • a conductive material having high adhesion to the substrate 12 may be used.
  • a conductive material having high adhesion to the substrate 12 may be used.
  • titanium, molybdenum, tungsten, tantalum, nickel, chromium, aluminum, a compound thereof, an alloy thereof, or the like, or a stack of these can be used.
  • the thickness of the barrier layer 221 is, for example, not less than 10 nm and not more than 1 ⁇ m.
  • the barrier layer 221 is formed by a physical film forming method such as a vapor deposition method or a sputtering method, for example.
  • the seed layer 222 is a conductive layer that serves as a foundation for growing the plating layer 223 by depositing metal ions in the plating solution during the electrolytic plating step of forming the plating layer 223 by plating. .
  • the material of the seed layer 222 for example, the same metal material as the plating layer 223, such as copper, can be used.
  • the thickness of the seed layer 222 is, for example, not less than 100 nm and not more than 3 ⁇ m.
  • the seed layer 222 is formed by, for example, a physical film formation method such as an evaporation method or a sputtering method.
  • one layer that can serve both as a barrier layer and as a seed layer may be provided between the surface of the substrate 12 and the plating layer 223.
  • the plating layer 223 is a conductive layer formed by plating.
  • a metal such as copper, gold, silver, platinum, rhodium, tin, aluminum, nickel, chromium, an alloy using these, or a laminate of these can be used. .
  • the organic film 26 is located inside the through hole 20 on the center side of the through hole 20 with respect to the side wall portion 23 of the through electrode 22.
  • the “center side” means that the distance between the organic film 26 and the side wall 21 is larger than the distance between the side wall portion 23 and the side wall 21 in the through hole 20.
  • a recess that extends at least partially to the second surface 14 side of the end surface of the organic film 26 on the first surface D1 side of the substrate 12 may be formed.
  • the end surface of the organic film 26 on the second side D ⁇ b> 2 may be formed with a depression that extends at least partially toward the first surface 13 than the position of the second surface 14 of the substrate 12.
  • the organic film 26 is made of an organic material having an insulating property.
  • the organic film 26 includes an organic material such as polyimide or benzocyclobutene.
  • the inorganic film 27 is a film made of an inorganic material and at least partially covering the first portion 24 of the through electrode 22 from the first side D1.
  • the inorganic film 27 may further cover the side wall portion 23 of the through electrode 22.
  • the inorganic film 27 may further cover at least partially the second portion 25 of the through electrode 22 from the second side D2.
  • the inorganic film 27 may further cover the first surface 13 and the second surface 14 of the substrate 12.
  • the inorganic film 27 is formed on the first surface 13 of the substrate 12, on the sidewall portion 23 of the through electrode 22, on the first portion 24, on the second portion 25, and on the second surface 14 of the substrate 12. Is a series of membranes located in
  • An opening is provided in the inorganic film 27 located on the first portion 24 of the through electrode 22, and a conductive layer 38 of a first wiring layer 31 (described later) of the first wiring structure unit 30 passes through the opening. Connected to the first portion 24 of the electrode 22. Similarly, an opening may be provided in the inorganic film 27 located on the second portion 25 of the through electrode 22.
  • the inorganic film 27 silicon oxide such as SiO 2 or silicon nitride such as SiN can be used.
  • examples of the inorganic material of the inorganic film 27 include SiOC, SiC, SiOF, SiON, and SiCN.
  • the inorganic film 27 may include a plurality of films containing an inorganic material.
  • the inorganic film 27 includes a first inorganic film and a second inorganic film stacked on the first inorganic film.
  • the first inorganic layer has higher adhesion to the plating layer 383 of the conductive layer 38 than the second inorganic layer.
  • the first inorganic film includes silicon nitride such as SiN
  • the second inorganic film includes silicon oxide such as SiO 2 .
  • the thickness of the first inorganic film is, for example, 0.05 ⁇ m or more and 0.1 ⁇ m or less
  • the thickness of the second inorganic film is, for example, 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the first inorganic film is smaller than the thickness of the second inorganic film.
  • the first wiring structure unit 30 includes a first wiring layer 31 positioned on the first side D1 side with respect to the inorganic film 27 and a second wiring layer 32 positioned on the first wiring layer 31. Including.
  • the configuration of the first wiring layer 31 and the second wiring layer 32 will be described.
  • the first wiring layer 31 has an insulating layer 35 and a conductive layer 38.
  • the insulating layer 35 is provided with an opening communicating with the opening of the inorganic film 27 located on the first portion 24 of the through electrode 22.
  • the conductive layer 38 is connected to the first portion 24 of the through electrode 22 through the opening of the inorganic film 27 and the opening of the insulating layer 35.
  • the conductive layer 38 is located inside the opening of the inorganic film 27 and the opening of the insulating layer 35 and is connected to the first portion 24 of the through electrode 22, and A second portion 38b located on the first side D1 relative to the insulating layer 35 is included. A part of the second portion 38b is connected to the first portion 38a.
  • the insulating layer 35 of the first wiring layer 31 includes an organic layer 36 made of an insulating organic material.
  • the organic layer 36 is in contact with the end surface of the organic film 26 on the first side D1 side.
  • an organic material of the organic layer 36 for example, polyimide, epoxy, acrylic, or the like can be used.
  • the thickness of the insulating layer 35 is, for example, not less than 0.5 ⁇ m and not more than 10 ⁇ m.
  • the conductive layer 38 may include a barrier layer 381, a seed layer 382, and a plating layer 383 that are arranged in order from the side wall side of the opening of the insulating layer 35 to the center side of the opening.
  • the functions and configurations of the barrier layer 381, the seed layer 382, and the plating layer 383 are the same as the functions and configurations of the barrier layer 221, the seed layer 222, and the plating layer 223 of the through electrode 22 described above.
  • the second wiring layer 32 also has an insulating layer 35 and a conductive layer 38.
  • the insulating layer 35 is provided with an opening located on the conductive layer 38 of the first wiring layer 31.
  • the conductive layer 38 is connected to the conductive layer 38 of the first wiring layer 31 through the opening of the insulating layer 35.
  • the insulating layer 35 of the second wiring layer 32 includes an inorganic layer 37 positioned on the insulating layer 35 and the conductive layer 38 of the first wiring layer 31, and an organic layer 36 positioned on the first side D 1 with respect to the inorganic layer 37.
  • the inorganic layer 37 at least partially covers the second portion 38 b of the conductive layer 38 of the first wiring layer 31.
  • “cover” refers to the inorganic layer 37 of the second wiring layer 32 and the conductive layer of the first wiring layer 31 when the through electrode substrate 10 is viewed along the normal direction of the first surface 13 of the substrate 12. It means that the second portion 38b of the 38 overlaps at least partially.
  • the inorganic layer 37 is a layer composed of an insulating inorganic material.
  • silicon oxide such as SiO 2 or silicon nitride such as SiN can be used.
  • examples of the inorganic material of the inorganic layer 37 include SiOC, SiC, SiOF, SiON, and SiCN.
  • the inorganic layer 37 may include a plurality of inorganic layers.
  • the inorganic layer 37 includes a first inorganic layer 371 and a second inorganic layer 372 located on the first side D1 of the first inorganic layer 371.
  • the first inorganic layer 371 has higher adhesion to the plating layer 383 of the conductive layer 38 than the second inorganic layer 372.
  • the second inorganic layer 372 has a relative dielectric constant lower than that of the first inorganic layer 371.
  • the first inorganic layer 371 includes a silicon nitride such as SiN
  • the second inorganic layer 372 includes a silicon oxide such as SiO 2 .
  • the thickness of the first inorganic layer 371 is, for example, 0.05 ⁇ m or more and 5 ⁇ m or less, and the thickness of the second inorganic layer 372 is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the first inorganic layer 371 is smaller than the thickness of the second inorganic layer 372.
  • the organic layer 36 of the second wiring layer 32 is made of an organic material having an insulating property.
  • organic material of the organic layer 36 of the second wiring layer 32 polyimide, epoxy, acrylic, or the like can be used as in the case of the organic layer 36 of the first wiring layer 31 described above.
  • the substrate 12 is prepared.
  • a resist layer is provided on at least one of the first surface 13 and the second surface 14.
  • an opening is provided at a position corresponding to the through hole 20 in the resist layer.
  • the through hole 20 can be formed in the substrate 12 as shown in FIG.
  • the dimension S of the through hole 20 is, for example, 20 ⁇ m or more and 150 ⁇ m or less.
  • a dry etching method such as a reactive ion etching method or a deep reactive ion etching method, a wet etching method, or the like can be used.
  • the through hole 20 may be formed in the substrate 12 by irradiating the substrate 12 with a laser.
  • the resist layer may not be provided.
  • a laser for laser processing an excimer laser, an Nd: YAG laser, a femtosecond laser, or the like can be used.
  • an Nd: YAG laser is employed, a fundamental wave having a wavelength of 1064 nm, a second harmonic having a wavelength of 532 nm, a third harmonic having a wavelength of 355 nm, or the like can be used.
  • laser irradiation and wet etching can be appropriately combined. Specifically, first, a deteriorated layer is formed in a region of the substrate 12 where the through hole 20 is to be formed by laser irradiation. Subsequently, the altered layer is etched by immersing the substrate 12 in hydrogen fluoride or the like. Thereby, the through hole 20 can be formed in the substrate 12.
  • the through holes 20 may be formed in the substrate 12 by a blasting process in which an abrasive is sprayed onto the substrate 12.
  • the through electrode 22 is formed in the through hole 20 of the substrate 12.
  • the barrier layer 221 and the seed layer 222 are sequentially formed on the first surface 13, the second surface 14, and the side wall 21 of the substrate 12 by a physical film forming method such as an evaporation method or a sputtering method. To do.
  • a resist layer 28 provided with an opening 281 is formed on the seed layer 222.
  • a plating solution is supplied to the opening 281 of the resist layer 28 to partially form the plating layer 223 on the seed layer 222.
  • the resist layer is removed, and portions of the barrier layer 221 and the seed layer 222 that are covered with the resist layer are removed.
  • the through electrode 22 including the side wall portion 23, the first portion 24, and the second portion 25 can be obtained.
  • an inorganic film 27 that covers the surface of the substrate 12 and the through electrode 22 is formed by plasma CVD.
  • a first inorganic film containing SiN is formed on the surface of the substrate 12 and the through electrode 22 by plasma CVD, and then a second inorganic film containing SiO 2 is formed on the first inorganic film by plasma CVD. A film is formed.
  • the organic film 26 is filled in the through holes 20.
  • a film including a resin layer for forming the organic film 26 is disposed on the first side D1 side and the second side D2 of the substrate 12.
  • the resin layer is pushed into the through hole 20 by pressurizing the film.
  • the resin layer pushed into the through hole 20 is cured by irradiating the resin layer with light or the like. Also, unnecessary portions of the resin layer are removed. In this way, the organic film 26 can be provided inside the through hole 20.
  • an organic layer 36 provided with an opening 361 located on the first portion 24 of the through electrode 22 is formed.
  • an organic material such as photosensitive polyimide is formed on the substrate 12 by a spin coating method or the like to form the organic layer 36.
  • the organic layer 36 is exposed and developed so that a portion of the organic layer 36 corresponding to the opening 361 is removed.
  • the organic layer 36 is baked to cure the organic layer 36.
  • the firing temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • the inorganic film 27 exposed in the opening 361 of the organic layer 36 is etched by plasma etching. Thereby, as shown in FIG. 11, an opening 271 communicating with the opening 361 of the organic layer 36 is formed in the inorganic film 27.
  • the etching gas for example, a mixed gas of CF 4 and H 2 can be used.
  • the surface of the organic layer 36 is damaged by plasma etching, the surface of the damaged organic layer 36 may be removed by performing a heat treatment on the organic layer 36.
  • the heat treatment temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • a barrier layer 381 is formed by a physical film formation method on the surface of the organic layer 36 and the sidewalls of the opening of the organic layer 36 and the opening of the inorganic film 27. Further, a seed layer 382 is formed on the barrier layer 381 by a physical film formation method.
  • a resist layer 39 provided with an opening 391 is formed on the seed layer 382.
  • a plating solution is supplied to the opening 391 of the resist layer 39, and a plating layer 383 is formed on the seed layer 382 by electrolytic plating.
  • the resist layer 39 is removed.
  • portions of the barrier layer 381 and the seed layer 382 that are covered with the resist layer 39 are removed by, for example, wet etching.
  • the conductive layer 38 including the barrier layer 381, the seed layer 382, and the plating layer 383 can be formed as shown in FIG.
  • a step of annealing the plating layer 383 may be performed.
  • the annealing temperature of the plating layer 383 is, for example, 200 ° C. or higher.
  • the first wiring layer 31 including the organic layer 36 and the conductive layer 38 can be formed.
  • Step of forming the inorganic layer of the second wiring layer Next, as shown in FIG. 16, a first inorganic layer 371 is formed on the organic layer 36 and the conductive layer 38 of the first wiring layer 31 by plasma CVD. Subsequently, as shown in FIG. 16, a second inorganic layer 372 is formed on the first inorganic layer 371 by plasma CVD.
  • an organic material such as photosensitive polyimide is formed on the second inorganic layer 372 by spin coating or the like to form the organic layer 36.
  • the organic layer 36 is exposed and developed so that a portion of the organic layer 36 corresponding to the opening 361 is removed.
  • the organic layer 36 is baked to cure the organic layer 36.
  • the firing temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • the first inorganic layer 371 and the second inorganic layer 372 of the inorganic layer 37 exposed in the opening 361 of the organic layer 36 are etched by plasma etching using the organic layer 36 as a mask. Thereby, as shown in FIG. 18, an opening communicating with the opening 361 of the organic layer 36 is formed in the inorganic layer 37.
  • the etching gas for example, a mixed gas of CF 4 and H 2 can be used.
  • the heat treatment temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • a conductive layer 38 that is connected to the conductive layer 38 of the first wiring layer 31 and reaches the first side D ⁇ b> 1 of the organic layer 36 is formed.
  • the second wiring layer 32 including the organic layer 36, the inorganic layer 37, and the conductive layer 38 can be formed on the first side D1 of the first wiring layer 31.
  • the thermal expansion coefficient of a metal material such as copper constituting the through electrode 22 is larger than the thermal expansion coefficient of an insulating inorganic material such as glass or silicon constituting the substrate 12. For this reason, in the baking process of the organic layer 36, the annealing process of the conductive layer 38, and the like, it is considered that the through electrode 22 expands when the ambient temperature becomes 200 ° C. or higher. When the process of increasing the atmospheric temperature to 200 ° C. or more is repeatedly performed, the through electrode 22 is repeatedly expanded and contracted, and residual stress is generated in the through electrode 22.
  • a defect such as a void may be formed between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31, which has a relatively low mechanical connection strength.
  • an electrical connection failure occurs between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31.
  • the inorganic film 27 at least partially covers the first portion 24 of the through electrode 22.
  • the thermal expansion coefficient of the inorganic material constituting the inorganic film 27 is small, for example, 0.3E-6 / K or more and 10.0E-6 / K or less.
  • residual stress generated in the first portion 24 of the through electrode 22 can be reduced.
  • a void or the like is formed between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31.
  • the formation of defects can be suppressed.
  • the Young's modulus of the inorganic material constituting the inorganic film 27 is high, for example, 70 GPa or more. This also contributes to reducing the residual stress generated in the first portion 24 of the through electrode 22. For these reasons, it is possible to suppress a poor electrical connection between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31.
  • the inorganic film 27 covers the first portion 24 of the through electrode 22, atoms, molecules, and ions of a metal material such as copper constituting the first portion 24 of the through electrode 22 when the ambient temperature is high. And the like can be prevented from diffusing into the organic layer 36 of the insulating layer 35 of the first wiring layer 31. As a result, it is possible to suppress conduction between the two adjacent conductive layers 38 of the first wiring layer 31 and dielectric breakdown of the organic layer 36. Moreover, the thickness of the 1st part 24 of the penetration electrode 22 reduces by spreading
  • the inorganic film 27 further covers the side wall portion 23 of the through electrode 22. Therefore, when the ambient temperature is high, atoms, molecules, ions, etc. of a metal material such as copper constituting the side wall portion 23 of the through electrode 22 are diffused into the organic film 26 inside the through hole 20. Can be suppressed. Thereby, the thickness of the side wall portion 23 is reduced, and it is possible to suppress an increase in resistance or disconnection of the side wall portion 23.
  • the insulating layer 35 of the wiring layer such as the first wiring layer 31 and the second wiring layer 32 includes an organic layer 36 made of an organic material such as polyimide and in contact with the conductive layer 38.
  • the organic material of the organic layer 36 has a dielectric constant smaller than that of the inorganic material constituting the inorganic layer 37.
  • the relative dielectric constant of the organic material of the organic layer 36 is 2.0 or more and 3.3 or less, while the relative dielectric constant of P-SiO 2 which is an example of the inorganic material of the inorganic layer 37 is 4.1. It is.
  • the organic layer 36 composed of such an organic material is positioned between two adjacent conductive layers 38 in the wiring layer, the wiring capacitance between the conductive layers 38 is reduced and propagated through the conductive layer 38. The amount of signal delay can be reduced. Further, crosstalk between two adjacent conductive layers 38 can be suppressed. From the viewpoint of suppressing propagation delay and crosstalk, in the wiring layers such as the first wiring layer 31 and the second wiring layer 32, the ratio of the thickness of the organic layer 36 to the total thickness of the insulating layer 35 is 40% or more and 90%. % Or less is preferable.
  • the thermal expansion coefficient of the organic material such as polyimide constituting the organic layer 36 is larger than the thermal expansion coefficient of the inorganic material constituting the substrate 12 or the through electrode 22.
  • the organic material constituting the organic layer 36 has a coefficient of thermal expansion of 50 to 100E-6 / K
  • the copper constituting the through electrode 22 has a coefficient of thermal expansion of about 16E-6 / K.
  • the thermal expansion coefficient of glass, which is an example of the material of the substrate 12 is about 3E-6 / K
  • the thermal expansion coefficient of silicon which is another example of the material of the substrate 12, is about 2.4E-6 / K. K. For this reason, when the ambient temperature becomes 200 ° C.
  • the substrate 12 may be warped.
  • the inorganic film 27 further covers the first surface 13 of the substrate 12.
  • the thermal expansion coefficient of the inorganic material composing the inorganic film 27 is smaller than the thermal expansion coefficient of the organic material composing the organic layer 36, for example, 0.3E-6 / K or more and 10.0E-6 / K or less. . For this reason, it can suppress that the tensile stress generate
  • the first wiring structure unit 30 further includes an inorganic layer 37 in addition to the organic layer 36.
  • the second wiring layer 32 of the first wiring structure unit 30 includes an inorganic layer 37 positioned on the organic layer 36 and the conductive layer 38 of the first wiring layer 31.
  • the thermal expansion coefficient of the inorganic material composing the inorganic layer 37 is smaller than the thermal expansion coefficient of the organic material composing the organic layer 36, for example, 0.3E-6 / K or more and 10.0E-6 / K or less. .
  • the ratio of the thickness of the inorganic layer 37 to the total thickness of the insulating layer 35 in the wiring layers such as the first wiring layer 31 and the second wiring layer 32 is 10% or more and 60% or less. It is preferable.
  • the inorganic layer 37 includes a first inorganic layer 371 that is located between the plating layer 383 and the organic layer 36 and is made of silicon nitride such as SiN. For this reason, when the atmospheric temperature is high, it is possible to suppress diffusion of atoms, molecules, ions, and the like of a metal material such as copper constituting the plating layer 383 into the organic layer 36. As a result, it is possible to prevent the two adjacent conductive layers 38 from conducting and the dielectric breakdown of the organic layer 36 from occurring.
  • the inorganic layer 37 covers the second portion 38 b of the conductive layer 38 of the first wiring layer 31. For this reason, the residual stress generated in the conductive layer 38 of the first wiring layer 31 can be reduced. As a result, voids or the like are formed in the conductive layer 38 of the first wiring layer 31 and the conductive layer 38 of the second wiring layer 32. It is possible to suppress the formation of defects. Therefore, it is possible to suppress a poor electrical connection between the conductive layer 38 of the first wiring layer 31 and the conductive layer 38 of the second wiring layer 32.
  • FIG. 20 is a cross-sectional view showing the mounting substrate 60.
  • the mounting substrate 60 includes the through electrode substrate 10 and an element 61 mounted on the through electrode substrate 10 on the first surface 13 side of the substrate 12.
  • the element 61 is an LSI chip such as a logic IC or a memory IC.
  • the element 61 may be a MEMS (Micro Electro Mechanical Systems) chip.
  • a MEMS chip is an electronic device in which mechanical element parts, sensors, actuators, electronic circuits, and the like are integrated on a single substrate. As shown in FIG. 20, the element 61 has a terminal 62 connected to the conductive layer 38 of the first wiring structure portion 30 of the through electrode substrate 10.
  • FIG. 21 is a cross-sectional view showing a through electrode substrate 10 according to a first modification.
  • the inorganic film 27 may cover the through electrode 22 but not the surface of the substrate 12.
  • the inorganic film 27 covers the side wall portion 23, the first portion 24, and the second portion 25 of the through electrode 22, but may not cover the first surface 13 and the second surface 14 of the substrate 12.
  • FIG. 22 is a cross-sectional view showing a through electrode substrate 10 according to a second modification.
  • the inorganic film 27 may cover a part of the through electrode 22 and may not cover the other part.
  • the inorganic film 27 covers the side wall portion 23 of the through electrode 22, but may not cover the first portion 24 and the second portion 25 of the through electrode 22.
  • the inorganic film 27 covers the first portion 24 of the through electrode 22 but may not cover the side wall portion 23 of the through electrode 22.
  • FIG. 23 is a cross-sectional view showing a through electrode substrate 10 according to a first modification.
  • the first wiring structure unit 30 of the through electrode substrate 10 may further include a third wiring layer 33 located on the second wiring layer 32.
  • the third wiring layer 33 is connected to the insulating layer 35 provided with an opening located on the conductive layer 38 of the second wiring layer 32 and the conductive layer 38 of the second wiring layer 32 through the opening of the insulating layer 35.
  • a conductive layer 38 is a conductive layer 38.
  • the insulating layer 35 of the third wiring layer 33 includes an inorganic layer 37 and an organic layer 36 located closer to the first side D1 than the inorganic layer 37.
  • the inorganic layer 37 of the third wiring layer 33 at least partially covers the conductive layer 38 of the second wiring layer 32.
  • both the second wiring layer 32 and the third wiring layer 33 include the inorganic layer 37
  • the present invention is not limited to this. It is only necessary that at least one of the plurality of wiring layers of the structure unit 30 includes the inorganic layer 37.
  • the insulating layer 35 of the third wiring layer 33 includes the inorganic layer 37, but the insulating layer 35 of the second wiring layer 32 may not include the inorganic layer 37.
  • the insulating layer 35 of the second wiring layer 32 includes the inorganic layer 37, but the insulating layer 35 of the third wiring layer 33 may not include the inorganic layer 37.
  • the inorganic layer 37 When at least one of the plurality of wiring layers of the first wiring structure unit 30 includes the inorganic layer 37, it is possible to prevent the substrate 12 from warping. In addition, residual stress generated in the conductive layer 38 located on the second side D2 side with respect to the inorganic layer 37 can be reduced, thereby suppressing the formation of defects such as voids in the conductive layer 38. Can do.
  • the through electrode substrate 10 includes a first wiring layer 41 located on the second surface 14 of the substrate 12 and a second wiring layer 42 located on the first wiring layer 41 at least.
  • a wiring structure unit 40 may be further provided.
  • the first wiring layer 41 has an insulating layer 45 and a conductive layer 48.
  • the insulating layer 45 is provided with an opening communicating with the opening of the inorganic film 27 located on the second portion 25 of the through electrode 22.
  • the conductive layer 48 is connected to the second portion 25 of the through electrode 22 through the opening of the insulating layer 45 and the opening of the inorganic film 27.
  • the insulating layer 45 of the first wiring layer 41 includes an organic layer 46 made of an insulating organic material.
  • the organic material of the organic layer 46 for example, polyimide, epoxy, acrylic, or the like can be used.
  • the thickness of the insulating layer 45 is, for example, not less than 0.5 ⁇ m and not more than 10 ⁇ m.
  • the conductive layer 48 includes a conductive metal material, like the first wiring layer 31 and the conductive layer 38 of the second wiring layer 32. Similarly to the conductive layer 38, the conductive layer 48 may include a plurality of layers such as a barrier layer, a seed layer, and a plating layer that are sequentially stacked from the surface side of the substrate 12.
  • the second wiring layer 42 also has an insulating layer 45 and a conductive layer 48.
  • the insulating layer 45 is provided with an opening located on the conductive layer 48 of the first wiring layer 41.
  • the conductive layer 48 is connected to the conductive layer 48 of the first wiring layer 41 through the opening of the insulating layer 45.
  • the insulating layer 45 of the second wiring layer 42 includes an inorganic layer 47 positioned on the insulating layer 45 and the conductive layer 48 of the first wiring layer 41, and an organic layer 46 positioned on the second side D 2 with respect to the inorganic layer 47.
  • the inorganic layer 47 at least partially covers the conductive layer 48 of the first wiring layer 41.
  • “cover” refers to the inorganic layer 47 of the second wiring layer 42 and the conductive layer of the first wiring layer 41 when the through electrode substrate 10 is viewed along the normal direction of the second surface 14 of the substrate 12. 48 is at least partially overlapping.
  • the inorganic layer 47 is a layer made of an insulating inorganic material, like the inorganic layer 37 of the first wiring structure portion 30. Since the inorganic material constituting the inorganic layer 47 and the layer structure of the inorganic layer 47 are the same as those of the inorganic layer 37, the description thereof is omitted.
  • the organic layer 46 of the second wiring layer 42 is made of an organic material having an insulating property.
  • organic material of the organic layer 46 of the second wiring layer 42 polyimide, epoxy, acrylic, or the like can be used as in the case of the organic layer 46 of the first wiring layer 41 described above.
  • the number of conductive layers 38 included in the first wiring structure portion 30 located on the first side D1 of the substrate 12 and the second wiring structure located on the second side D2 of the substrate 12 are described.
  • An example in which the number of conductive layers 48 included in the portion 40 is the same is shown.
  • the number of conductive layers 38 included in the first wiring structure unit 30 and the number of conductive layers 48 included in the second wiring structure unit 40 may be different.
  • the number of conductive layers 48 included in the second wiring structure unit 40 may be smaller than the number of conductive layers 38 included in the first wiring structure unit 30.
  • FIG. 45 is a cross-sectional view showing the through electrode substrate 10 according to this modification.
  • the first wiring structure portion 30 of the through electrode substrate 10 includes a first wiring layer 31 and a second wiring layer 32. Therefore, the number of conductive layers 38 included in the first wiring structure portion 30 is two. is there.
  • the second wiring structure portion 40 of the through electrode substrate 10 includes the first wiring layer 41, and therefore, the number of conductive layers 48 included in the second wiring structure portion 40 is one.
  • the second wiring layer 32 of the first wiring structure portion 30 includes an organic layer 36 and an inorganic layer 37. For this reason, it is possible to prevent the substrate 12 from warping due to the first wiring structure portion 30.
  • the first wiring layer 41 of the second wiring structure unit 40 does not include the inorganic layer 47.
  • the organic layer 46 of the first wiring layer 41 of the second wiring structure portion 40 includes a portion that is not covered with the inorganic layer 47.
  • the second wiring structure portion 40 does not include the inorganic layer 47, and therefore the organic layer 46 of the first wiring layer 41 is covered from the second side D2 side by the inorganic layer 47. Absent.
  • the number of conductive layers 48 in the second wiring structure unit 40 is smaller than the number of conductive layers 38 in the first wiring structure unit 30.
  • the total number of organic layers 46 in the second wiring structure unit 40 is also smaller than the number of organic layers 36 in the first wiring structure unit 30. Therefore, the degree of warpage that occurs in the second wiring structure portion 40 due to the thermal expansion of the organic layer is smaller than the degree of warpage that occurs in the first wiring structure portion 30. For this reason, the fact that the organic layer 46 of the first wiring layer 41 of the second wiring structure portion 40 includes a portion that is not covered from the second side D2 by the inorganic layer 47 has an influence on the warpage of the entire substrate 12. Is considered insignificant.
  • the organic layer 46 and the conductive layer 48 of the 1st wiring layer 41 showed the example which is not covered at all from the 2nd side D2 side by the inorganic layer 47, it is not restricted to this.
  • the organic layer 46 and the conductive layer 48 of the first wiring layer 41 may be partially covered with the inorganic layer 47 from the second side D2 side. In this modification, the ratio of the portion of the organic layer 46 of the first wiring layer 41 that is covered with the inorganic layer 47 is lower than in the example shown in FIG.
  • the ratio of the portion of the organic layer 46 of the second wiring structure unit 40 covered by the inorganic layer 47 is covered by the inorganic layer 37 of the organic layer 36 of the first wiring structure unit 30. It will be lower than the ratio of the broken part.
  • the ratio of the portion covered by the inorganic layer 47 in the organic layer 46 of the second wiring structure portion 40 is, for example, 1% or more and 20% or less.
  • the thickness of the inorganic layer 47 of the second wiring structure unit 40 may be equal to the thickness of the inorganic layer 37 of the first wiring structure unit 30, but may be smaller than the thickness of the inorganic layer 37 of the first wiring structure unit 30. .
  • the thickness of the inorganic layer 47 of the second wiring structure unit 40 may be at least 30% or more of the thickness of the inorganic layer 37 of the first wiring structure unit 30.
  • the organic layer 46 of the first wiring layer 41 of the second wiring structure unit 40 includes a portion that is not covered from the second side D2 by the inorganic layer 47, the gas generated in the through electrode 22 or the like is generated in the first wiring layer. It becomes easy to pass through the through electrode substrate 10 through the organic layer 46 of 41. For this reason, it can suppress that the conductive layer 48 of the 1st wiring layer 41 is pushed up or blown away.
  • FIG. 45 shows an example in which the number of conductive layers 38 included in the first wiring structure portion 30 is two and the number of conductive layers 48 included in the second wiring structure portion 40 is one.
  • the specific number of layers is arbitrary. For example, as shown in FIG. 46, even if the number of conductive layers 38 included in the first wiring structure unit 30 is three and the number of conductive layers 48 included in the second wiring structure unit 40 is one. Good. 47, even if the number of conductive layers 38 included in the first wiring structure portion 30 is three and the number of conductive layers 48 included in the second wiring structure portion 40 is two, as shown in FIG. Good.
  • the organic layer 46 of the first wiring layer 41 may not be covered from the second side D2 by the inorganic layer 47. .
  • the organic layer 46 of the first wiring layer 41 is partially covered from the second side D2 by the inorganic layer 47, but the ratio of the covered portion is the first wiring structure 30. It may be lower than the organic layer 36.
  • the inorganic film 27 covers the side wall portion 23 of the through electrode 22 from the end on the first side D1 to the end on the second side D2 of the side wall portion 23. Indicated. However, the present invention is not limited to this. As shown in FIG. 48, the inorganic film 27 does not have to extend to the end of the side wall portion 23 on the second side D2. For example, the inorganic film 27 may cover a portion on the first side D1 side of the side wall portion 23 but may not cover a portion on the second side D2 side. As shown in FIG.
  • the inorganic film 27 at least partially covers the first portion 24 of the through electrode 22 from the first side D1, but covers the second portion 25 of the through electrode 22 from the second side D2. It does not have to be. That is, the inorganic film 27 may not be provided on the second surface 14 side of the substrate 12.
  • the advantage of not providing the inorganic film 27 on the second surface 14 side of the substrate 12 will be described.
  • a method for forming the inorganic film 27 a chemical film formation method such as plasma CVD, or a physical film formation method such as vapor deposition or sputtering is used.
  • film formation methods such as a chemical film formation method and a physical film formation method can also be used. It carries out for each of the two surfaces 14 side.
  • the inorganic film 27 is not provided on the second surface 14 side of the substrate 12, so that the step of forming the inorganic film 27 on the second surface 14 side of the substrate 12 can be omitted. For this reason, the man-hour required for preparation of the 2nd wiring structure part 40 can be reduced. Thereby, the manufacturing cost of the through electrode substrate 10 can be reduced.
  • the number of conductive layers 48 of the second wiring structure unit 40 may be smaller than the number of conductive layers 38 of the first wiring structure unit 30. Good.
  • the degree of warpage that occurs in the second wiring structure portion 40 due to the thermal expansion of the organic layer is smaller than the degree of warpage that occurs in the first wiring structure portion 30. For this reason, it is considered that the influence that the second surface 14 of the substrate 12 is not covered from the second side D2 by the inorganic film 27 on the warpage of the entire substrate 12 is slight.
  • the inorganic film 27 is separated into a first surface side inorganic film 27a on the first side D1 side and a second surface side inorganic film 27b on the second side D2 side.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the description thereof may be omitted.
  • FIG. 26 is a cross-sectional view showing the through electrode substrate 10 according to the second embodiment.
  • FIG. 27 is an enlarged cross-sectional view of the through electrode substrate 10 of FIG.
  • the inorganic film 27 includes a first surface-side inorganic film 27 a located on the first surface 13 side of the substrate 12 and a second surface-side inorganic film 27 b located on the second surface 14 side of the substrate 12.
  • the first surface side inorganic film 27a at least partially covers the first portion 24 of the through electrode 22 from the first side D1.
  • the first surface side inorganic film 27a may further cover the end surface of the first side D1 of the organic film 26 filled in the through hole 20. Further, the first surface side inorganic film 27 a may further cover the first surface 13 of the substrate 12.
  • the second surface side inorganic film 27b at least partially covers the second portion 25 of the through electrode 22 from the second side D2.
  • the second surface side inorganic film 27 b may further cover the end surface of the second side D ⁇ b> 2 of the organic film 26 filled in the through hole 20.
  • the second surface side inorganic film 27 b may further cover the second surface 14 of the substrate 12.
  • An opening is provided in the first surface side inorganic film 27 a located on the first portion 24 of the through electrode 22, and the conductive layer 38 of the first wiring layer 31 of the first wiring structure portion 30 is provided through this opening. Is connected to the first portion 24 of the through electrode 22. Similarly, an opening may be provided in the second surface side inorganic film 27 b located on the second portion 25 of the through electrode 22.
  • the thickness and layer structure of the first surface side inorganic film 27a and the second surface side inorganic film 27b, and the types of inorganic materials constituting the first surface side inorganic film 27a and the second surface side inorganic film 27b are the first implementation. Since this is the same as the case of the inorganic film 27 in this embodiment, the description thereof is omitted.
  • the through hole 20 is formed in the substrate 12 and the through electrode 22 is formed in the through hole 20 to obtain the substrate 12 shown in FIG.
  • the organic film 26 is filled in the through holes 20.
  • a film including a resin layer for constituting the organic film 26 is pressurized to push the resin layer into the through hole 20 and to be pushed into the through hole 20.
  • the resin layer is cured, and then unnecessary portions of the resin layer are removed.
  • an organic layer 36 provided with an opening 361 located on the first portion 24 of the through electrode 22 is formed.
  • an organic material such as photosensitive polyimide is formed on the substrate 12 by a spin coating method or the like to form the organic layer 36.
  • the organic layer 36 is exposed and developed so that a portion of the organic layer 36 corresponding to the opening 361 is removed.
  • the organic layer 36 is baked to cure the organic layer 36.
  • the firing temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • Etching gas includes, for example, a mixed gas of CF 4 and H 2 , CHF 3 gas, SF 6 gas, CF 4 gas, a mixed gas of CHF 3 and O 2 , a mixed gas of SF 6 and O 2 , CF A mixed gas of 4 and O 2 can be used.
  • the heat treatment temperature of the organic layer 36 is, for example, 200 ° C. or higher.
  • a conductive layer 38 that is connected to the first portion 24 of the through electrode 22 and reaches the first side D1 of the organic layer 36 is formed.
  • the first wiring layer 31 including the organic layer 36, the inorganic layer 37, and the conductive layer 38 can be formed on the first side D1 of the substrate 12.
  • the second wiring layer 32 is formed on the first side D1 side of the first wiring layer 31.
  • the first wiring structure portion 30 having the first wiring layer 31 and the second wiring layer 32 can be provided on the first side D1 of the substrate 12.
  • the first surface side inorganic film 27a at least partially covers the first portion 24 of the through electrode 22. Covering. As a result, residual stress generated in the first portion 24 of the through electrode 22 can be reduced. As a result, a void or the like is formed between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31. The formation of defects can be suppressed. Moreover, the Young's modulus of the inorganic material constituting the first surface side inorganic film 27a is high, for example, 70 GPa or more. This also contributes to reducing the residual stress generated in the first portion 24 of the through electrode 22. For these reasons, it is possible to suppress a poor electrical connection between the first portion 24 of the through electrode 22 and the conductive layer 38 of the first wiring layer 31.
  • the first surface side inorganic film 27a covers the first portion 24 of the through electrode 22, atoms of a metal material such as copper constituting the first portion 24 of the through electrode 22 when the ambient temperature is high. , Molecules, ions, and the like can be prevented from diffusing into the organic layer 36 of the insulating layer 35 of the first wiring layer 31. As a result, it is possible to suppress conduction between the two adjacent conductive layers 38 of the first wiring layer 31 and dielectric breakdown of the organic layer 36. Moreover, the thickness of the 1st part 24 of the penetration electrode 22 reduces by spreading
  • the first surface side inorganic film 27 a further covers the first surface 13 of the substrate 12. For this reason, it is possible to suppress the generation of tensile stress in the substrate 12 due to the thermal expansion of the organic layer 36. As a result, the substrate 12 can be prevented from warping.
  • the first surface side inorganic film 27a further covers the end surface of the first side D1 of the organic film 26 filled in the through hole 20. For this reason, when the ambient temperature is high, atoms, molecules, ions, etc. of a metal material such as copper diffused from the side wall portion 23 of the through electrode 22 into the organic film 26 enter the insulating layer 35 of the first wiring layer 31. Can be suppressed. As a result, it is possible to suppress conduction between the two adjacent conductive layers 38 of the first wiring layer 31 and dielectric breakdown of the organic layer 36 of the insulating layer 35.
  • FIG. 34 is a cross-sectional view showing a through electrode substrate 10 according to a first modification.
  • the first surface-side inorganic film 27a covers the first portion 24 of the through electrode 22 or the end surface of the organic film 26 on the first side D1, but does not cover the first surface 13 of the substrate 12. Also good.
  • the inorganic film 27 covers the first portion 24 of the through electrode 22 and the end surface of the first side D1 of the organic film 26, but the first surface 13 of the substrate 12 may not be covered.
  • the through electrode substrate 10 includes at least a first wiring layer 41 located on the second surface 14 of the substrate 12 and a second wiring layer 42 located on the first wiring layer 41.
  • a wiring structure unit 40 may be further provided.
  • the first wiring layer 41 has an insulating layer 45 and a conductive layer 48.
  • the insulating layer 45 is provided with an opening communicating with the opening of the second surface side inorganic film 27 b located on the second portion 25 of the through electrode 22.
  • the conductive layer 48 is connected to the second portion 25 of the through electrode 22 through the opening of the insulating layer 45 and the opening of the second surface side inorganic film 27b.
  • the number of conductive layers 38 included in the first wiring structure portion 30 located on the first side D1 of the substrate 12 and the second wiring structure located on the second side D2 of the substrate 12 are described.
  • An example in which the number of conductive layers 48 included in the portion 40 is the same is shown.
  • the number of conductive layers 38 included in the first wiring structure unit 30 and the number of conductive layers 48 included in the second wiring structure unit 40 may be different.
  • the number of conductive layers 48 included in the second wiring structure unit 40 may be smaller than the number of conductive layers 38 included in the first wiring structure unit 30.
  • FIG. 49 is a cross-sectional view showing the through electrode substrate 10 according to this modification.
  • the first wiring structure portion 30 of the through electrode substrate 10 includes a first wiring layer 31 and a second wiring layer 32. Therefore, the number of conductive layers 38 included in the first wiring structure portion 30 is two. is there.
  • the second wiring structure portion 40 of the through electrode substrate 10 includes the first wiring layer 41, and therefore, the number of conductive layers 48 included in the second wiring structure portion 40 is one.
  • the second wiring layer 32 of the first wiring structure unit 30 includes an organic layer 36 and an inorganic layer 37. For this reason, it is possible to prevent the substrate 12 from warping due to the first wiring structure portion 30.
  • the first wiring layer 41 of the second wiring structure unit 40 does not include the inorganic layer 47.
  • the organic layer 46 of the first wiring layer 41 of the second wiring structure portion 40 includes a portion that is not covered with the inorganic layer 47.
  • the second wiring structure portion 40 does not include the inorganic layer 47, and therefore the organic layer 46 of the first wiring layer 41 is covered from the second side D2 side by the inorganic layer 47. Absent.
  • the number of conductive layers 48 of the second wiring structure unit 40 is smaller than the number of conductive layers 38 of the first wiring structure unit 30.
  • the total number of organic layers 46 in the second wiring structure unit 40 is also smaller than the number of organic layers 36 in the first wiring structure unit 30. Therefore, the degree of warpage that occurs in the second wiring structure portion 40 due to the thermal expansion of the organic layer is smaller than the degree of warpage that occurs in the first wiring structure portion 30. For this reason, the fact that the organic layer 46 of the first wiring layer 41 of the second wiring structure portion 40 includes a portion that is not covered from the second side D2 by the inorganic layer 47 has an influence on the warpage of the entire substrate 12. Is considered insignificant.
  • the present invention is not limited to this.
  • the organic layer 46 and the conductive layer 48 of the first wiring layer 41 may be partially covered with the inorganic layer 47 from the second side D2 side. In this modification, the ratio of the portion of the organic layer 46 of the first wiring layer 41 that is covered with the inorganic layer 47 is lower than that in the example shown in FIG.
  • the ratio of the portion of the organic layer 46 of the second wiring structure unit 40 covered by the inorganic layer 47 is covered by the inorganic layer 37 of the organic layer 36 of the first wiring structure unit 30. It will be lower than the ratio of the broken part.
  • the ratio of the portion covered by the inorganic layer 47 in the organic layer 46 of the second wiring structure portion 40 is, for example, 1% or more and 20% or less.
  • the thickness of the inorganic layer 47 of the second wiring structure unit 40 may be equal to the thickness of the inorganic layer 37 of the first wiring structure unit 30, but may be smaller than the thickness of the inorganic layer 37 of the first wiring structure unit 30. .
  • the thickness of the inorganic layer 47 of the second wiring structure unit 40 may be at least 30% or more of the thickness of the inorganic layer 37 of the first wiring structure unit 30.
  • the organic layer 46 of the first wiring layer 41 of the second wiring structure unit 40 includes a portion that is not covered from the second side D2 by the inorganic layer 47, the gas generated in the through electrode 22 or the like is generated in the first wiring layer. It becomes easy to pass through the through electrode substrate 10 through the organic layer 46 of 41. For this reason, it can suppress that the conductive layer 48 of the 1st wiring layer 41 is pushed up or blown away.
  • FIG. 49 shows an example in which the number of conductive layers 38 included in the first wiring structure unit 30 is two and the number of conductive layers 48 included in the second wiring structure unit 40 is one.
  • the specific number of layers is arbitrary. For example, as shown in FIG. 50, even if the number of conductive layers 38 included in the first wiring structure unit 30 is three and the number of conductive layers 48 included in the second wiring structure unit 40 is one. Good. Further, as shown in FIG. 51, even if the number of conductive layers 38 included in the first wiring structure unit 30 is three and the number of conductive layers 48 included in the second wiring structure unit 40 is two. Good.
  • FIG. 50 shows an example in which the number of conductive layers 38 included in the first wiring structure unit 30 is two and the number of conductive layers 48 included in the second wiring structure unit 40 is one.
  • the specific number of layers is arbitrary. For example, as shown in FIG. 50, even if the number of conductive layers 38 included in the first wiring structure unit 30 is three and the number of conductive layers 48 included in the
  • the organic layer 46 of the first wiring layer 41 may not be covered from the second side D2 by the inorganic layer 47. .
  • the organic layer 46 of the first wiring layer 41 is partially covered from the second side D2 by the inorganic layer 47, but the ratio of the covered portion is the first wiring structure 30. It may be lower than the organic layer 36.
  • the inorganic film 27 includes the first surface-side inorganic film 27a located on the first surface 13 side of the substrate 12 and the second surface 14 located on the second surface 14 side of the substrate 12.
  • membrane 27b was shown.
  • the present invention is not limited to this, and as shown in FIG. 48, the second portion 25 of the through electrode 22, the end surface of the second side D ⁇ b> 2 of the organic film 26, and the second surface 14 of the substrate 12 are formed of A portion not covered by may be included.
  • the inorganic film 27 may include the first surface side inorganic film 27a but may not include the second surface side inorganic film 27b. That is, the inorganic film 27 may not be provided on the second surface 14 side of the substrate 12.
  • the second surface 14 of the substrate 12 is the same as in the seventh modification of the first embodiment described above.
  • the step of forming the inorganic film 27 on the side can be omitted. For this reason, the man-hour required for preparation of the 2nd wiring structure part 40 can be reduced. Thereby, the manufacturing cost of the through electrode substrate 10 can be reduced.
  • the end surface of the second side D2 of the organic film 26 located inside the through hole 20 includes a portion that is not at least partially covered by the inorganic film 27. For this reason, the gas generated in the through electrode 22 and the like easily escapes to the outside of the through electrode substrate 10 through the organic film 26 and the organic layer 46 of the first wiring layer 41. For this reason, it can suppress that the conductive layer 48 of the 1st wiring layer 41 is pushed up or blown away.
  • the number of conductive layers 48 of the second wiring structure unit 40 may be smaller than the number of conductive layers 38 of the first wiring structure unit 30. Good.
  • the degree of warpage that occurs in the second wiring structure portion 40 due to the thermal expansion of the organic layer is smaller than the degree of warpage that occurs in the first wiring structure portion 30. For this reason, it is considered that the influence that the second surface 14 of the substrate 12 is not covered from the second side D2 by the inorganic film 27 on the warpage of the entire substrate 12 is slight.
  • the through-hole 20 provided in the substrate 12 extends in parallel to the direction perpendicular to the normal direction of the first surface 13 of the substrate 12.
  • the shape of the through hole 20 is not particularly limited.
  • the through hole 20 may have a shape constricted between the first surface 13 and the second surface 14.
  • the through hole 20 may have a tapered shape in which the dimension of the through hole 20 decreases from one side on the first surface 13 side or the second surface 14 side to the other.
  • FIG. 36 or FIG. 37 can be arbitrarily combined with the through electrode 22, the organic film 26, the inorganic film 27, the first wiring structure unit 30, and the second wiring structure unit 40 in each of the above-described embodiments.
  • FIG. 38 shows an example in which the substrate 12 shown in FIG. 36 is combined with the through electrode 22, the organic film 26, the inorganic film 27, and the first wiring structure portion 30 in the first embodiment.
  • FIG. 39 shows the substrate 12 shown in FIG. 36, the through electrode 22, the organic film 26, the first surface side inorganic film 27a, the second surface side inorganic film 27b, and the first wiring structure portion in the second embodiment. An example in which 30 is combined is shown.
  • FIG. 40 shows an example in which the substrate 12 shown in FIG.
  • FIG. 44 is a diagram illustrating an example of a product on which the through electrode substrate 10 according to the embodiment of the present disclosure can be mounted.
  • the through electrode substrate 10 according to the embodiment of the present disclosure can be used in various products. For example, it is mounted on a notebook personal computer 110, a tablet terminal 120, a mobile phone 130, a smartphone 140, a digital video camera 150, a digital camera 160, a digital clock 170, a server 180, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

貫通電極基板は、第1側に位置する第1面及び第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板と、貫通電極とを備える。貫通電極は、貫通孔の側壁に沿って広がる側壁部分と、基板の第1面上に位置するとともに側壁部分に接続された第1部分と、を有する。また、貫通電極基板は、貫通孔の内部に位置する有機膜と、貫通電極の第1部分を第1側から少なくとも部分的に覆うとともに、第1部分上に位置する開口が設けられた無機膜と、無機膜よりも第1側に位置し、無機膜の開口に連通する開口が設けられた有機層を少なくとも含む絶縁層と、無機膜の開口及び絶縁層の開口を介して貫通電極の第1部分に接続された導電層と、を有する第1配線層と、を更に備える。

Description

貫通電極基板、貫通電極基板の製造方法及び実装基板
 本開示の実施形態は、貫通電極基板及び貫通電極基板の製造方法に関する。また、本開示の実施形態は、貫通電極基板を備えた実装基板に関する。
 第1面及び第2面を含む基板と、基板に設けられた複数の貫通孔と、貫通孔の内部に設けられた電極と、を備える部材、いわゆる貫通電極基板が、様々な用途で利用されている。例えば、貫通電極基板は、LSIの実装密度を高めるために複数のLSIチップを積層させる際に2つのLSIチップの間に介在させるインターポーザとして利用される。また、貫通電極基板は、LSIチップなどの素子とマザーボードなどの実装基板との間に介在されることもある。なお、以下の記載において、貫通孔の内部に設けられた電極のことを、貫通電極と称することもある。
 貫通電極基板は、貫通電極に積層された複数の配線層を備える。各配線層は、導電層と、各配線層の導電層の間に位置する絶縁層と、を有する。絶縁層を構成する材料としては、例えば特許文献1に開示されるように、ポリイミドなどの有機材料が用いられる。導電層を構成する材料としては、銅などの金属材料が用いられる。導電層を形成する工程は、めっきによって銅を形成する工程、めっきによって形成された銅をアニールする工程などを含む。
国際公開第2014/69662号パンフレット
 貫通電極基板の製造工程においては、有機材料の焼成工程や銅のアニール工程などにおいて、基板及び貫通電極が繰り返し高温に、例えば200℃以上の温度に曝される。一方、貫通電極を構成する銅などの金属材料の熱膨張率は、基板を構成するガラスやシリコンなどの無機材料の熱膨張率よりも一般に大きい。このため、高温になるたびに貫通電極が基板に比べて大きく熱膨張し、貫通電極に接続されている配線層の導電層に応力が加わることが考えられる。このように配線層の導電層に繰り返し応力が加わると、複数の配線層の導電層が互いに接続される場所において欠陥が生じ、導電層間で接続不良が生じてしまう可能性がある。
 本開示の実施形態は、このような点を考慮してなされたものであり、接続不良の発生を抑制することができる貫通電極基板を提供することを目的とする。
 本開示の一実施形態は、第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板と、前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極と、前記貫通孔の内部に位置する有機膜と、前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆うとともに、前記第1部分上に位置する開口が設けられた無機膜と、前記無機膜よりも前記第1側に位置し、前記無機膜の前記開口に連通する開口が設けられた有機層を少なくとも含む絶縁層と、前記無機膜の前記開口及び前記絶縁層の前記開口を介して前記貫通電極の前記第1部分に接続された導電層と、を有する第1配線層と、を備える、貫通電極基板である。
 本開示の一実施形態による貫通電極基板において、前記無機膜は、前記貫通電極の前記側壁部分を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板において、前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、前記無機膜は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板において、前記無機膜は、前記有機膜の前記第1側の端面を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板において、前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、前記貫通電極基板は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆う第2面側無機膜を更に備えていてもよい。
 本開示の一実施形態による貫通電極基板において、前記第2面側無機膜は、前記有機膜の前記第2側の端面を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板は、前記第1配線層の前記導電層上に位置する開口が設けられた絶縁層と、前記絶縁層の前記開口を介して前記第1配線層の前記導電層に接続された導電層と、を有する第2配線層を更に備え、前記第2配線層の前記絶縁層は、前記第1配線層の前記導電層を前記第1側から少なくとも部分的に覆う無機層を含んでいてもよい。
 本開示の一実施形態による貫通電極基板は、前記基板の前記第2面上に位置する第1配線層を少なくとも含む第2配線構造部を更に備え、前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、前記第2配線構造部の前記第1配線層は、前記貫通電極の前記第2部分上に位置する開口が設けられた絶縁層と、前記絶縁層の前記開口を介して前記貫通電極の前記第2部分に接続された導電層と、を有していてもよい。
 前記第2配線構造部に含まれる前記導電層の層数は、前記基板の前記第1側に位置する導電層の層数よりも少なくてもよい。この場合、前記第2配線構造部の前記第1配線層の前記有機層は、絶縁性を有する無機層によって覆われていない部分を含んでいてもよい。また、前記無機膜は、前記貫通電極の前記側壁部分の前記第2側の端部にまでは広がらないよう、前記側壁部分を部分的に覆っていてもよい。また、前記有機膜の前記第2側の端面は、絶縁性を有する無機膜によって覆われていない部分を少なくとも部分的に含んでいてもよい。
 本開示の一実施形態による貫通電極基板において、前記無機膜は、珪素酸化物又は珪素窒化物を少なくとも含んでいてもよい。
 本開示の一実施形態は、第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板を準備する工程と、前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極を形成する工程と、前記貫通孔の内部に有機膜を形成する工程と、前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆う無機膜を形成する工程と、前記無機膜よりも前記第1側に位置する絶縁層を形成する工程と、前記無機膜及び前記絶縁層を貫通して前記貫通電極の前記第1部分に接続された導電層を形成する工程と、を備える、貫通電極基板の製造方法である。
 本開示の一実施形態による貫通電極基板の製造方法において、前記無機膜は、前記貫通電極の前記側壁部分を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板の製造方法において、前記貫通電極を形成する工程は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に形成し、前記無機膜は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板の製造方法において、前記無機膜は、前記有機膜の前記第1側の端面を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板の製造方法において、前記貫通電極を形成する工程は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に形成し、前記貫通電極基板の製造方法は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆う第2面側無機膜を形成する工程を更に備えていてもよい。
 本開示の一実施形態による貫通電極基板の製造方法において、前記第2面側無機膜は、前記有機膜の前記第2側の端面を少なくとも部分的に覆っていてもよい。
 本開示の一実施形態による貫通電極基板の製造方法において、前記無機膜は、珪素酸化物又は珪素窒化物を少なくとも含んでいてもよい。
 本開示の一実施形態は、貫通電極基板と、前記貫通電極基板に搭載された素子と、を備え、前記貫通電極基板は、第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板と、前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極と、前記貫通孔の内部に位置する有機膜と、前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆うとともに、前記第1部分上に位置する開口が設けられた無機膜と、前記無機膜よりも前記第1側に位置し、前記無機膜の前記開口に連通する開口が設けられた有機層を少なくとも含む絶縁層と、前記無機膜の前記開口及び前記絶縁層の前記開口を介して前記貫通電極の前記第1部分に接続された導電層と、を有する第1配線層と、を備える、実装基板である。
 本開示の実施形態に係る貫通電極基板によれば、接続不良の発生を抑制することができる。
第1の実施の形態に係る貫通電極基板を示す断面図である。 図1の貫通電極基板を拡大して示す断面図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 第1の実施の形態に係る貫通電極基板の製造工程を示す図である。 貫通電極基板を備える実装基板の一例を示す断面図である。 第1の変形例に係る貫通電極基板を示す断面図である。 第2の変形例に係る貫通電極基板を示す断面図である。 第3の変形例に係る貫通電極基板を示す断面図である。 第4の変形例に係る貫通電極基板を示す断面図である。 第5の変形例に係る貫通電極基板を示す断面図である。 第2の実施の形態に係る貫通電極基板を示す断面図である。 図26の貫通電極基板を拡大して示す断面図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態に係る貫通電極基板の製造工程を示す図である。 第2の実施の形態の第1の変形例に係る貫通電極基板を示す断面図である。 第2の実施の形態の第2の変形例に係る貫通電極基板を示す断面図である。 基板の貫通孔の一変形例を示す断面図である。 基板の貫通孔の一変形例を示す断面図である。 図36に示す基板を備えた貫通電極基板の一例を示す断面図である。 図36に示す基板を備えた貫通電極基板の一例を示す断面図である。 図37に示す基板を備えた貫通電極基板の一例を示す断面図である。 図37に示す基板を備えた貫通電極基板の一例を示す断面図である。 貫通孔に充填される有機膜の一変形例を示す断面図である。 貫通孔に充填される有機膜の一変形例を示す断面図である。 貫通電極基板が搭載される製品の例を示す図である。 第1の実施の形態の第6の変形例に係る貫通電極基板の一例を示す断面図である。 第1の実施の形態の第6の変形例に係る貫通電極基板の一例を示す断面図である。 第1の実施の形態の第6の変形例に係る貫通電極基板の一例を示す断面図である。 第1の実施の形態の第7の変形例に係る貫通電極基板の一例を示す断面図である。 第2の実施の形態の第3の変形例に係る貫通電極基板の一例を示す断面図である。 第2の実施の形態の第3の変形例に係る貫通電極基板の一例を示す断面図である。 第2の実施の形態の第3の変形例に係る貫通電極基板の一例を示す断面図である。 第2の実施の形態の第4の変形例に係る貫通電極基板の一例を示す断面図である。
 第1の実施の形態
 以下、本開示の実施形態に係る貫通電極基板の構成及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」や「基材」は、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
 貫通電極基板
 以下、本開示の実施の形態について説明する。まず、図1及び図2を参照して、本実施の形態に係る貫通電極基板10の構成について説明する。図1は、貫通電極基板10を示す断面図である。図2は、図1の貫通電極基板10を拡大して示す断面図である。
 貫通電極基板10は、基板12、貫通電極22、有機膜26、無機膜27及び第1配線構造部30を備える。以下、貫通電極基板10の各構成要素について説明する。
 (基板)
 基板12は、第1側D1に位置する第1面13、及び、第1側D1とは反対の第2側D2に位置する第2面14を含む。また、基板12には、第1面13から第2面14に至る複数の貫通孔20が設けられている。
 基板12は、一定の絶縁性を有する無機材料から構成されている。例えば、基板12は、ガラス基板、石英基板、サファイア基板、樹脂基板、シリコン基板、炭化シリコン基板、アルミナ(Al2O3)基板、窒化アルミ(AlN)基板、酸化ジリコニア(ZrO2)基板など、又は、これらの基板が積層されたものである。基板12は、アルミニウム基板、ステンレス基板など、導電性を有する材料から構成された基板を含んでいてもよい。
 基板12の厚さは特に制限はないが、例えば、100μm以上且つ800μm以下の厚さの基板12を使用することが好ましい。より好ましくは、基板12は、200μm以上且つ600μm以下の厚さを有する。基板12の厚さを100μm以上とすることにより、基板12のたわみが大きくなることを抑制できる。このため、製造工程における基板12のハンドリングが困難になったり、基板12上に形成する薄膜等の内部応力に起因して基板12が反ってしまったりすることを抑制できる。また、基板12の厚さを800μm以下とすることにより、基板12に貫通孔20を形成する工程に要する時間が長くなり、貫通電極基板10の製造コストが上昇してしまうことを抑制できる。
 貫通孔20の側壁21は、図1に示すように基板12の第1面13の法線方向に沿って広がっていてもよい。若しくは、図示はしないが、側壁21が、基板12の第1面13の法線方向からずれた方向で広がっていてもよく、また、側壁21の一部が湾曲していてもよい。
 (貫通電極)
 貫通電極22は、貫通孔20の内部に少なくとも部分的に位置し、且つ導電性を有する部材である。本開示の実施形態において、貫通電極22は、貫通孔20に中空部が残るよう構成されている。すなわち、貫通電極22はコンフォーマルビアである。貫通電極22は、側壁部分23及び第1部分24を少なくとも含む。貫通電極22は、第2部分25を更に含んでいてもよい。
 側壁部分23は、貫通孔20の側壁21に沿って広がっている。第1部分24は、第1側D1から側壁部分23に接続され、且つ、基板12の第1面13上に設けられている。第1部分24が、貫通電極22の第1側D1の端面である第1端面22aを構成している。第2部分25は、第2側D2から側壁部分23に接続され、且つ、基板12の第2面14上に設けられている。第2部分25が、貫通電極22の第2側D2の端面である第2端面22bを構成している。
 貫通電極22が導電性を有する限りにおいて、貫通電極22の形成方法は特には限定されない。例えば、貫通電極22は、蒸着法やスパッタリング法などの物理成膜法で形成されていてもよく、化学成膜法やめっき法で形成されていてもよい。また、貫通電極22は、導電性を有する単一の層から構成されていてもよく、若しくは、導電性を有する複数の層を含んでいてもよい。ここでは、図2に示すように、貫通電極22が、基板12の表面に順に積層されたバリア層221、シード層222及びめっき層223を含む例について説明する。なお、基板12の表面とは、基板12の第1面13、第2面14又は貫通孔20の側壁21である。バリア層221が、最も基板12側に位置している。
 バリア層221は、シード層222やめっき層223などのその他の貫通電極22の構成要素と基板12の表面との間に位置する層である。バリア層221は、シード層222やめっき層223などのその他の貫通電極22の構成要素中の金属元素が基板12の内部に拡散することを抑制するために、必要に応じて設けられる。シード層222又はめっき層223が銅を含む場合、バリア層221の材料として、例えば、チタン、チタン窒化物、モリブデン、モリブデン窒化物、タンタル、タンタル窒化物等、又はこれらを積層したものを用いることができる。また、バリア層221の材料として、基板12に対する高い密着性を有する導電性材料を用いてもよい。例えば、バリア層221の材料として、チタン、モリブデン、タングステン、タンタル、ニッケル、クロム、アルミニウム、これらの化合物、これらの合金など、又はこれらを積層したものを使用することができる。バリア層221の厚みは、例えば10nm以上且つ1μm以下である。バリア層221は、例えば、蒸着法やスパッタリング法などの物理成膜法で形成される。
 シード層222は、めっき処理によってめっき層223を形成する電解めっき工程の際に、めっき液中の金属イオンを析出させてめっき層223を成長させるための土台となる、導電性を有する層である。シード層222の材料としては、例えば、銅などの、めっき層223と同一の金属材料を用いることができる。シード層222の厚みは、例えば100nm以上且つ3μm以下である。シード層222は、例えば、蒸着法やスパッタリング法などの物理成膜法で形成される。
 なお、図示はしないが、基板12の表面とめっき層223との間に、バリア層としての役割及びシード層としての役割の両方を果たすことができる1つの層を設けてもよい。
 めっき層223は、めっき処理によって形成される、導電性を有する層である。めっき層223を構成する材料としては、銅、金、銀、白金、ロジウム、スズ、アルミニウム、ニッケル、クロムなどの金属又はこれらを用いた合金など、あるいはこれらを積層したものを使用することができる。
 (有機膜)
 有機膜26は、貫通電極22の側壁部分23よりも貫通孔20の中心側において貫通孔20の内部に位置する。なお、「中心側」とは、貫通孔20の内部において、有機膜26と側壁21との間の距離が側壁部分23と側壁21との間の距離よりも大きいことを意味する。貫通孔20に有機膜26を設けることにより、言い換えると、貫通孔20の中空部を有機膜26で充填することにより、貫通孔20の内部にめっき液、有機材料、無機材料などの残渣が生じることを抑制することができる。なお、貫通孔20に有機膜26が完全には充填されていなくてもよい。例えば、貫通電極22の側壁部分23と有機膜26との間に部分的に隙間が存在していてもよい。また、有機膜26の第1側D1の端面に、基板12の第1面13の位置よりも第2面14側に少なくとも部分的に至る窪みが形成されていてもよい。同様に、有機膜26の第2側D2の端面に、基板12の第2面14の位置よりも第1面13側に少なくとも部分的に至る窪みが形成されていてもよい。
 有機膜26は、絶縁性を有する有機材料から構成されている。例えば、有機膜26は、ポリイミド、ベンゾシクロブテン等の有機材料を含む。
 (無機膜)
 無機膜27は、無機材料から構成され、貫通電極22の第1部分24を第1側D1から少なくとも部分的に覆う膜である。無機膜27は、貫通電極22の側壁部分23を更に覆っていてもよい。また、無機膜27は、貫通電極22の第2部分25を第2側D2から少なくとも部分的に更に覆っていてもよい。また、無機膜27は、基板12の第1面13や第2面14を更に覆っていてもよい。本実施の形態において、無機膜27は、基板12の第1面13上、貫通電極22の側壁部分23上、第1部分24上、第2部分25上、及び基板12の第2面14上に位置する一連の膜である。
 貫通電極22の第1部分24上に位置する無機膜27には開口が設けられており、この開口を介して、第1配線構造部30の後述する第1配線層31の導電層38が貫通電極22の第1部分24に接続される。同様に、貫通電極22の第2部分25上に位置する無機膜27にも開口が設けられていてもよい。
 無機膜27の無機材料としては、SiOなどの珪素酸化物、SiNなどの珪素窒化物を用いることができる。その他にも、無機膜27の無機材料の例として、SiOC、SiC、SiOF、SiON、SiCNなどを挙げることができる。また、無機膜27は、無機材料を含む複数の膜を有していてもよい。例えば、無機膜27は、第1無機膜と、第1無機膜に積層された第2無機膜とを含む。好ましくは、第1無機層は、第2無機層に比べて、導電層38のめっき層383に対する高い密着性を有する。例えば、第1無機膜は、SiNなどの珪素窒化物を含み、第2無機膜は、SiOなどの珪素酸化物を含む。第1無機膜の厚みは、例えば0.05μm以上且つ0.1μm以下であり、第2無機膜の厚みは、例えば0.5μm以上且つ3μm以下である。好ましくは、第1無機膜の厚みは、第2無機膜の厚みよりも小さい。
 (第1配線構造部)
 図1に示すように、第1配線構造部30は、無機膜27よりも第1側D1側に位置する第1配線層31、及び第1配線層31上に位置する第2配線層32を含む。以下、第1配線層31及び第2配線層32の構成について説明する。
 〔第1配線層〕
 図1に示すように、第1配線層31は、絶縁層35及び導電層38を有する。絶縁層35には、貫通電極22の第1部分24上に位置する無機膜27の開口に連通する開口が設けられている。導電層38は、無機膜27の開口及び絶縁層35の開口を介して貫通電極22の第1部分24に接続されている。例えば、導電層38は、図1に示すように、無機膜27の開口及び絶縁層35の開口の内部に位置し、貫通電極22の第1部分24に接続されている第1部分38a、及び絶縁層35よりも第1側D1に位置する第2部分38bを含む。そして、第2部分38bの一部が第1部分38aに接続されている。
 第1配線層31の絶縁層35は、絶縁性を有する有機材料から構成された有機層36を含む。有機層36は、有機膜26の第1側D1側の端面に接している。有機層36の有機材料としては、例えばポリイミド、エポキシ、アクリルなどを用いることができる。絶縁層35の厚みは、例えば0.5μm以上且つ10μm以下である。
 図2に示すように、導電層38は、絶縁層35の開口の側壁側から開口の中心側へ順に並ぶバリア層381、シード層382、及びめっき層383を含んでいてもよい。バリア層381、シード層382、及びめっき層383の機能及び構成は、上述の貫通電極22のバリア層221、シード層222及びめっき層223の機能及び構成と同様である。
 〔第2配線層〕
 次に、第2配線層32について説明する。なお、第2配線層32の構成要素のうち第1配線層31と共通する構成要素には同一の符号を付し、説明を省略することがある。
 第1配線層31と同様に、第2配線層32も、絶縁層35及び導電層38を有する。絶縁層35には、第1配線層31の導電層38上に位置する開口が設けられている。導電層38は、絶縁層35の開口を介して第1配線層31の導電層38に接続されている。
 第2配線層32の絶縁層35は、第1配線層31の絶縁層35及び導電層38の上に位置する無機層37と、無機層37よりも第1側D1に位置する有機層36と、を有する。無機層37は、第1配線層31の導電層38の第2部分38bを少なくとも部分的に覆っている。ここで「覆う」とは、基板12の第1面13の法線方向に沿って貫通電極基板10を見た場合に、第2配線層32の無機層37と第1配線層31の導電層38の第2部分38bとが少なくとも部分的に重なっていることを意味する。
 無機層37は、絶縁性を有する無機材料から構成された層である。無機層37の無機材料としては、SiOなどの珪素酸化物、SiNなどの珪素窒化物を用いることができる。その他にも、無機層37の無機材料の例として、SiOC、SiC、SiOF、SiON、SiCNなどを挙げることができる。
 図2に示すように、無機層37は、複数の無機層を含んでいてもよい。例えば、無機層37は、第1無機層371と、第1無機層371の第1側D1に位置する第2無機層372と、を含む。好ましくは、第1無機層371は、第2無機層372に比べて、導電層38のめっき層383に対する高い密着性を有する。また、好ましくは、第2無機層372は、第1無機層371よりも低い比誘電率を有する。例えば、第1無機層371は、SiNなどの珪素窒化物を含み、第2無機層372は、SiOなどの珪素酸化物を含む。第1無機層371の厚みは、例えば0.05μm以上且つ5μm以下であり、第2無機層372の厚みは、例えば0.1μm以上且つ10μm以下である。好ましくは、第1無機層371の厚みは、第2無機層372の厚みよりも小さい。
 第2配線層32の有機層36は、絶縁性を有する有機材料から構成される。第2配線層32の有機層36の有機材料としては、上述の第1配線層31の有機層36の場合と同様に、ポリイミド、エポキシ、アクリルなどを用いることができる。
 貫通電極基板の製造方法
 以下、貫通電極基板10の製造方法の一例について、図3乃至図19を参照して説明する。
 (貫通孔の形成工程)
 まず、基板12を準備する。次に、第1面13又は第2面14の少なくともいずれかにレジスト層を設ける。その後、レジスト層のうち貫通孔20に対応する位置に開口を設ける。次に、レジスト層の開口において基板12を加工することにより、図3に示すように、基板12に貫通孔20を形成することができる。貫通孔20の寸法Sは、例えば20μm以上且つ150μm以下である。基板12を加工する方法としては、反応性イオンエッチング法、深掘り反応性イオンエッチング法などのドライエッチング法や、ウェットエッチング法などを用いることができる。
 なお、基板12にレーザを照射することによって基板12に貫通孔20を形成してもよい。この場合、レジスト層は設けられていなくてもよい。レーザ加工のためのレーザとしては、エキシマレーザ、Nd:YAGレーザ、フェムト秒レーザ等を用いることができる。Nd:YAGレーザを採用する場合、波長が1064nmの基本波、波長が532nmの第2高調波、波長が355nmの第3高調波等を用いることができる。
 また、レーザ照射とウェットエッチングを適宜組み合わせることもできる。具体的には、まず、レーザ照射によって基板12のうち貫通孔20が形成されるべき領域に変質層を形成する。続いて、基板12をフッ化水素などに浸漬して、変質層をエッチングする。これによって、基板12に貫通孔20を形成することができる。
 その他にも、基板12に研磨材を吹き付けるブラスト処理によって基板12に貫通孔20を形成してもよい。
 (貫通電極の形成工程)
 次に、基板12の貫通孔20に貫通電極22を形成する。例えば、まず、図4に示すように、基板12の第1面13、第2面14及び側壁21に、蒸着法やスパッタリング法などの物理成膜法によってバリア層221及びシード層222を順に形成する。続いて、図5に示すように、シード層222上に、開口281が設けられたレジスト層28を形成する。続いて、図6に示すように、レジスト層28の開口281にめっき液を供給して、シード層222上に部分的にめっき層223を形成する。その後、レジスト層を除去し、また、バリア層221及びシード層222のうちレジスト層によって覆われていた部分を除去する。このようにして、図7に示すように、側壁部分23、第1部分24及び第2部分25を含む貫通電極22を得ることができる。
 (無機膜の形成工程)
 次に、図8に示すように、プラズマCVDにより、基板12の表面及び貫通電極22を覆う無機膜27を形成する。例えば、まず、基板12の表面及び貫通電極22に、プラズマCVDにより、SiNを含む第1無機膜を形成し、続いて、第1無機膜上に、プラズマCVDにより、SiOを含む第2無機膜を形成する。
 (有機膜の形成工程)
 次に、図9に示すように、貫通孔20に有機膜26を充填する。例えば、まず、有機膜26を構成するための樹脂層を含むフィルムを、基板12の第1側D1側及び第2側D2に配置する。続いて、フィルムを加圧することにより、樹脂層を貫通孔20の内部に押し込む。その後、貫通孔20の内部に押し込まれた樹脂層を、樹脂層に光を照射することなどによって硬化させる。また、樹脂層の不要部分を除去する。このようにして、貫通孔20の内部に有機膜26を設けることができる。
 (第1配線層の有機層の形成工程)
 次に、図10に示すように、貫通電極22の第1部分24上に位置する開口361が設けられた有機層36を形成する。例えば、まず、感光性ポリイミドなどの有機材料を、スピンコート法などによって基板12上に成膜して、有機層36を形成する。続いて、有機層36のうち開口361に対応する部分が除去されるよう、有機層36を露光及び現像する。続いて、有機層36を焼成して有機層36を硬化させる。有機層36の焼成温度は、例えば200℃以上である。
 (無機膜の加工工程)
 次に、有機層36をマスクとして、プラズマエッチングにより、有機層36の開口361に露出している無機膜27をエッチングする。これによって、図11に示すように、有機層36の開口361に連通する開口271を無機膜27に形成する。エッチングガスとしては、例えば、CF4とH2との混合ガスを用いることができる。なお、プラズマエッチングにより有機層36の表面に損傷が生じる場合、有機層36に熱処理を施すことにより、損傷が生じた有機層36の表面を除去してもよい。有機層36の熱処理温度は、例えば200℃以上である。
 (第1配線層の導電層の形成工程)
 次に、図12に示すように、有機層36の表面、並びに、有機層36の開口及び無機膜27の開口の側壁に、物理成膜法によってバリア層381を形成する。また、バリア層381上に、物理成膜法によってシード層382を形成する。
 続いて、図13に示すように、シード層382上に、開口391が設けられたレジスト層39を形成する。続いて、図14に示すように、レジスト層39の開口391にめっき液を供給して、電解めっきにより、シード層382上にめっき層383を形成する。その後、レジスト層39を除去する。続いて、バリア層381及びシード層382のうちレジスト層39によって覆われていた部分を、例えばウェットエッチングにより除去する。このようにして、図15に示すように、バリア層381、シード層382及びめっき層383を含む導電層38を形成することができる。その後、めっき層383をアニールする工程を実施してもよい。めっき層383のアニール温度は、例えば200℃以上である。
 このようにして、有機層36及び導電層38を含む第1配線層31を形成することができる。
 (第2配線層の無機層の形成工程)
 次に、図16に示すように、第1配線層31の有機層36及び導電層38上に、プラズマCVDにより、第1無機層371を形成する。続いて、図16に示すように、第1無機層371上に、プラズマCVDにより、第2無機層372を形成する。
 (第2配線層の有機層の形成工程)
 次に、図17に示すように、基板12の第1面13の法線方向に沿って見た場合に第1配線層31の導電層38と重なる位置に開口361が設けられた有機層36を形成する。例えば、まず、感光性ポリイミドなどの有機材料を、スピンコート法などによって第2無機層372上に成膜して、有機層36を形成する。続いて、有機層36のうち開口361に対応する部分が除去されるよう、有機層36を露光及び現像する。続いて、有機層36を焼成して有機層36を硬化させる。有機層36の焼成温度は、例えば200℃以上である。
 (第2配線層の無機層の加工工程)
 次に、有機層36をマスクとして、プラズマエッチングにより、有機層36の開口361に露出している無機層37の第1無機層371及び第2無機層372をエッチングする。これによって、図18に示すように、有機層36の開口361に連通する開口を無機層37に形成する。エッチングガスとしては、例えば、CF4とH2との混合ガスを用いることができる。なお、プラズマエッチングにより有機層36の表面に損傷が生じる場合、有機層36に熱処理を施すことにより、損傷が生じた有機層36の表面を除去してもよい。有機層36の熱処理温度は、例えば200℃以上である。
 (第2配線層の導電層の形成工程)
 次に、図19に示すように、第1配線層31の導電層38に接続されるとともに有機層36の第1側D1にまで至る導電層38を形成する。このようにして、有機層36、無機層37及び導電層38を含む第2配線層32を、第1配線層31の第1側D1に形成することができる。
 (貫通電極基板の作用)
 以下、本実施の形態による貫通電極基板10の作用について説明する。
 〔貫通電極の残留応力軽減作用〕
 貫通電極22を構成する銅などの金属材料の熱膨張率は、基板12を構成するガラスや珪素などの絶縁性無機材料の熱膨張率に比べて大きい。このため、有機層36の焼成工程や導電層38のアニール工程などにおいて、雰囲気温度が200℃以上になると、貫通電極22が膨張することが考えられる。雰囲気温度が200℃以上になる工程が繰り返し実施されると、貫通電極22の膨張及び収縮も繰り返し発生し、貫通電極22に残留応力が生じてしまう。この場合、機械的な接続強度が比較的に弱い、貫通電極22の第1部分24と第1配線層31の導電層38との間で、ボイドなどの欠陥が形成され得る。この結果、貫通電極22の第1部分24と第1配線層31の導電層38との間で、電気的な接続不良が生じてしまうことが考えられる。
 これに対して、本実施の形態においては、無機膜27が貫通電極22の第1部分24を少なくとも部分的に覆っている。無機膜27を構成する無機材料の熱膨張率は小さく、例えば0.3E-6/K以上且つ10.0E-6/K以下である。これによって、貫通電極22の第1部分24に生じる残留応力を軽減することができ、このことにより、貫通電極22の第1部分24と第1配線層31の導電層38との間にボイドなどの欠陥が形成されることを抑制することができる。また、無機膜27を構成する無機材料のヤング率は高く、例えば70GPa以上である。このことも、貫通電極22の第1部分24に生じる残留応力を軽減することに寄与する。これらのことにより、貫通電極22の第1部分24と第1配線層31の導電層38との間で、電気的な接続不良が生じてしまうことを抑制することができる。
 〔有機層への銅の拡散抑制作用〕
 また、無機膜27が貫通電極22の第1部分24を覆っているので、雰囲気温度が高温の場合に、貫通電極22の第1部分24を構成する銅などの金属材料の原子、分子、イオンなどが、第1配線層31の絶縁層35の有機層36内に拡散することを抑制することができる。これによって、第1配線層31の隣り合う2つの導電層38が導通してしまうことや、有機層36の絶縁破壊が生じてしまうことを抑制することができる。また、金属材料の拡散によって貫通電極22の第1部分24の厚みが低減し、第1部分24の抵抗の増加や断線が生じることを抑制することができる。
 〔有機膜への銅の拡散抑制作用〕
 また、本実施の形態においては、無機膜27が、貫通電極22の側壁部分23を更に覆っている。このため、雰囲気温度が高温の場合に、貫通電極22の側壁部分23を構成する銅などの金属材料の原子、分子、イオンなどが、貫通孔20の内部の有機膜26内に拡散することを抑制することができる。これによって、側壁部分23の厚みが低減し、側壁部分23の抵抗の増加や断線が生じることを抑制することができる。
 〔伝播遅延及びクロストークの抑制作用〕
 また、第1配線層31や第2配線層32などの配線層の絶縁層35は、ポリイミドなどの有機材料から構成され、且つ導電層38に接する有機層36を含む。有機層36の有機材料は、無機層37を構成する無機材料よりも小さい誘電率を有する。例えば、有機層36の有機材料の比誘電率は、2.0以上且つ3.3以下であり、一方、無機層37の無機材料の一例であるP-SiO2の比誘電率は4.1である。このような有機材料から構成される有機層36が、配線層において隣り合う2つの導電層38の間に位置することにより、導電層38の間の配線容量を小さくし、導電層38を伝播する信号の遅延量を小さくすることができる。また、隣り合う2つの導電層38の間におけるクロストークを抑制することができる。伝播遅延及びクロストークの抑制という観点からは、第1配線層31や第2配線層32などの配線層において、絶縁層35全体の厚みに対する有機層36の厚みの比率が、40%以上且つ90%以下であることが好ましい。
 〔反りの抑制作用〕
 ところで、有機層36を構成するポリイミドなどの有機材料の熱膨張率は、基板12や貫通電極22を構成する無機材料の熱膨張率に比べて大きい。例えば、有機層36を構成する有機材料の熱膨張率が50~100E-6/Kであるのに対し、貫通電極22を構成する銅の熱膨張率は約16E-6/Kである。また、基板12の材料の一例であるガラスの熱膨張率は、約3E-6/Kであり、基板12の材料のその他の例である珪素の熱膨張率は、約2.4E-6/Kである。このため、有機層36の焼成工程や導電層38のアニール工程などにおいて、雰囲気温度が200℃以上になると、有機層36の熱膨張に起因して基板12及び貫通電極22に引っ張り応力が発生する。この結果、基板12に反りが生じてしまうことが考えられる。
 ここで本実施の形態においては、無機膜27が、基板12の第1面13を更に覆っている。無機膜27を構成する無機材料の熱膨張率は、有機層36を構成する有機材料の熱膨張率よりも小さく、例えば0.3E-6/K以上且つ10.0E-6/K以下である。このため、有機層36の熱膨張に起因して基板12及び貫通電極22に引っ張り応力が発生することを抑制することができる。これによって、基板12に反りが生じてしまうことを抑制することができる。
 また、本実施の形態においては、第1配線構造部30が有機層36に加えて無機層37を更に含む。例えば、第1配線構造部30の第2配線層32が、第1配線層31の有機層36及び導電層38の上に位置する無機層37を含む。無機層37を構成する無機材料の熱膨張率は、有機層36を構成する有機材料の熱膨張率よりも小さく、例えば0.3E-6/K以上且つ10.0E-6/K以下である。このため、有機層36の熱膨張に起因して基板12に引っ張り応力が発生することを更に抑制することができる。これによって、基板12に反りが生じてしまうことを更に抑制することができる。反りの抑制という観点からは、第1配線層31や第2配線層32などの配線層において、絶縁層35全体の厚みに対する無機層37の厚みの比率が、10%以上且つ60%以下であることが好ましい。
 〔無機層のその他の作用〕
 また、本実施の形態においては、無機層37が、めっき層383と有機層36との間に位置し、SiNなどの珪素窒化物から構成された第1無機層371を含む。このため、雰囲気温度が高温の場合に、めっき層383を構成する銅などの金属材料の原子、分子、イオンなどが有機層36内に拡散することを抑制することができる。これによって、隣り合う2つの導電層38が導通してしまうことや、有機層36の絶縁破壊が生じてしまうことを抑制することができる。
 また、本実施の形態においては、無機層37が、第1配線層31の導電層38の第2部分38bを覆っている。このため、第1配線層31の導電層38に生じる残留応力を軽減することができ、このことにより、第1配線層31の導電層38と第2配線層32の導電層38にボイドなどの欠陥が形成されることを抑制することができる。従って、第1配線層31の導電層38と第2配線層32の導電層38との間で、電気的な接続不良が生じてしまうことを抑制することができる。
 実装基板
 以下、本実施の形態による貫通電極基板10の用途の例について説明する。ここでは、貫通電極基板10に素子61を搭載して実装基板60を構成する例について説明する。
 図20は、実装基板60を示す断面図である。実装基板60は、貫通電極基板10と、基板12の第1面13側において貫通電極基板10に搭載された素子61と、を備える。素子61は、ロジックICやメモリICなどのLSIチップである。また、素子61は、MEMS(Micro Electro Mechanical Systems)チップであってもよい。MEMSチップとは、機械要素部品、センサ、アクチュエータ、電子回路などが1つの基板上に集積化された電子デバイスである。図20に示すように、素子61は、貫通電極基板10の第1配線構造部30の導電層38に接続された端子62を有する。
 なお、上述した第1の実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、第1の実施の形態と同様に構成され得る部分について、第1の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、第1の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
 (第1変形例)
 図21は、第1変形例に係る貫通電極基板10を示す断面図である。図21に示すように、無機膜27は、貫通電極22は覆うが基板12の表面は覆っていなくてもよい。例えば、無機膜27は、貫通電極22の側壁部分23、第1部分24及び第2部分25は覆うが、基板12の第1面13及び第2面14は覆っていなくてもよい。
 (第2変形例)
 図22は、第2変形例に係る貫通電極基板10を示す断面図である。無機膜27は、貫通電極22の一部を覆い、その他の部分を覆っていなくてもよい。例えば、図22に示すように、無機膜27は、貫通電極22の側壁部分23は覆うが、貫通電極22の第1部分24及び第2部分25は覆っていなくてもよい。また、図示はしないが、無機膜27は、貫通電極22の第1部分24は覆うが、貫通電極22の側壁部分23は覆っていなくてもよい。
 (第3変形例)
 図23は、第1変形例に係る貫通電極基板10を示す断面図である。図23に示すように、貫通電極基板10の第1配線構造部30は、第2配線層32上に位置する第3配線層33を更に含んでいてもよい。第3配線層33は、第2配線層32の導電層38上に位置する開口が設けられた絶縁層35と、絶縁層35の開口を介して第2配線層32の導電層38に接続された導電層38と、を有する。第3配線層33の絶縁層35は、無機層37及び無機層37よりも第1側D1側に位置する有機層36を含む。第3配線層33の無機層37は、第2配線層32の導電層38を少なくとも部分的に覆っている。
 (第4変形例)
 図23に示す第1の変形例においては、第2配線層32及び第3配線層33のいずれもが、無機層37を含む例を示したが、これに限られることはなく、第1配線構造部30の複数の配線層の少なくとも1つが無機層37を含んでいればよい。例えば、図24に示すように、第3配線層33の絶縁層35は無機層37を含むが、第2配線層32の絶縁層35は無機層37を含んでいなくてもよい。若しくは、図示はしないが、第2配線層32の絶縁層35は無機層37を含むが、第3配線層33の絶縁層35は無機層37を含んでいなくてもよい。第1配線構造部30の複数の配線層の少なくとも1つが無機層37を含むことにより、基板12に反りが生じてしまうことを抑制することができる。また、無機層37よりも第2側D2側に位置する導電層38に生じる残留応力を軽減することができ、このことにより、導電層38にボイドなどの欠陥が形成されることを抑制することができる。
 (第5変形例)
 図25に示すように、貫通電極基板10は、基板12の第2面14上に位置する第1配線層41、及び第1配線層41上に位置する第2配線層42を少なくとも含む第2配線構造部40を更に備えていてもよい。
 第1配線構造部30の第1配線層31の場合と同様に、第1配線層41は、絶縁層45及び導電層48を有する。絶縁層45には、貫通電極22の第2部分25上に位置する無機膜27の開口に連通する開口が設けられている。導電層48は、絶縁層45の開口及び無機膜27の開口を介して貫通電極22の第2部分25に接続されている。
 第1配線層41の絶縁層45は、第1配線層31の絶縁層35と同様に、絶縁性を有する有機材料から構成された有機層46を含む。有機層46の有機材料としては、例えばポリイミド、エポキシ、アクリルなどを用いることができる。絶縁層45の厚みは、例えば0.5μm以上且つ10μm以下である。
 導電層48は、第1配線層31や第2配線層32の導電層38と同様に、導電性を有する金属材料を含む。導電層48は、導電層38と同様に、基板12の表面側から順に積層されたバリア層、シード層、及びめっき層などの複数の層を含んでいてもよい。
 第1配線層41と同様に、第2配線層42も、絶縁層45及び導電層48を有する。絶縁層45には、第1配線層41の導電層48上に位置する開口が設けられている。導電層48は、絶縁層45の開口を介して第1配線層41の導電層48に接続されている。
 第2配線層42の絶縁層45は、第1配線層41の絶縁層45及び導電層48の上に位置する無機層47と、無機層47よりも第2側D2に位置する有機層46と、を有する。無機層47は、第1配線層41の導電層48を少なくとも部分的に覆っている。ここで「覆う」とは、基板12の第2面14の法線方向に沿って貫通電極基板10を見た場合に、第2配線層42の無機層47と第1配線層41の導電層48とが少なくとも部分的に重なっていることを意味する。無機層47は、第1配線構造部30の無機層37と同様に、絶縁性を有する無機材料から構成された層である。無機層47を構成する無機材料や、無機層47の層構成は、無機層37の場合と同様であるので、説明を省略する。
 第2配線層42の有機層46は、絶縁性を有する有機材料から構成される。第2配線層42の有機層46の有機材料としては、上述の第1配線層41の有機層46の場合と同様に、ポリイミド、エポキシ、アクリルなどを用いることができる。
 (第6変形例)
 上述の第5変形例においては、基板12の第1側D1に位置する第1配線構造部30に含まれる導電層38の層数と、基板12の第2側D2に位置する第2配線構造部40に含まれる導電層48の層数とが同一である例を示した。しかしながら、第1配線構造部30に含まれる導電層38の層数と、第2配線構造部40に含まれる導電層48の層数とが異なっていてもよい。例えば、第2配線構造部40に含まれる導電層48の層数が、第1配線構造部30に含まれる導電層38の層数よりも少なくてもよい。
 図45は、本変形例に係る貫通電極基板10を示す断面図である。貫通電極基板10の第1配線構造部30は、第1配線層31及び第2配線層32を含んでおり、このため、第1配線構造部30に含まれる導電層38の層数は2である。一方、貫通電極基板10の第2配線構造部40は、第1配線層41を含んでおり、このため、第2配線構造部40に含まれる導電層48の層数は1である。
 図45に示すように、第1配線構造部30の第2配線層32は、有機層36及び無機層37を含んでいる。このため、第1配線構造部30に起因して基板12に反りが生じることを抑制することができる。一方、第2配線構造部40の第1配線層41は、無機層47を含んでいない。また、第2配線構造部40の第1配線層41の有機層46は、無機層47によって覆われていない部分を含んでいる。例えば図45に示すように、第2配線構造部40は無機層47を含んでおらず、このため、第1配線層41の有機層46は無機層47によって第2側D2側から覆われていない。
 図45に示す例においては、第2配線構造部40の導電層48の層数が第1配線構造部30の導電層38の層数よりも少ない。このため、第2配線構造部40の有機層46の総数も、第1配線構造部30の有機層36の層数よりも少ない。従って、有機層の熱膨張に起因して第2配線構造部40に生じる反りの程度は、第1配線構造部30に生じる反りの程度よりも小さい。このため、第2配線構造部40の第1配線層41の有機層46が、無機層47によって第2側D2から覆われていない部分を含んでいることが、基板12全体の反りに与える影響は軽微であると考える。
 なお、図45においては、第1配線層41の有機層46及び導電層48は無機層47によって第2側D2側から全く覆われていない例を示したが、これに限られることはない。図示はしないが、第1配線層41の有機層46及び導電層48が無機層47によって第2側D2側から部分的に覆われていてもよい。なお、本変形例においては、第1配線層41の有機層46のうち無機層47によって覆われている部分の比率が、上述の図25に示す例の場合よりも低くなる。
 また、本変形例においては、第2配線構造部40の有機層46のうち無機層47によって覆われている部分の比率が、第1配線構造部30の有機層36のうち無機層37によって覆われている部分の比率よりも低くなる。第2配線構造部40の有機層46のうち無機層47によって覆われている部分の比率は、例えば1%以上且つ20%以下である。
 第2配線構造部40の無機層47の厚みは、第1配線構造部30の無機層37の厚みと同等でもよいが、第1配線構造部30の無機層37の厚みよりも小さくてもよい。例えば、第2配線構造部40の無機層47の厚みは、第1配線構造部30の無機層37の厚みの少なくとも30%以上であればよい。
 第2配線構造部40の第1配線層41の有機層46が、無機層47によって第2側D2から覆われていない部分を含む場合、貫通電極22などで発生したガスが、第1配線層41の有機層46を通って貫通電極基板10の外部へ抜け易くなる。このため、第1配線層41の導電層48が押し上げられたり吹き飛ばされたりすることを抑制することができる。
 また、図45においては、第1配線構造部30に含まれる導電層38の層数が2であり、第2配線構造部40に含まれる導電層48の層数が1である例を示したが、導電層38の層数が導電層48の層数よりも大きい限りにおいて、具体的な層数は任意である。例えば、図46に示すように、第1配線構造部30に含まれる導電層38の層数が3であり、第2配線構造部40に含まれる導電層48の層数が1であってもよい。また、図47に示すように、第1配線構造部30に含まれる導電層38の層数が3であり、第2配線構造部40に含まれる導電層48の層数が2であってもよい。図47に示すように第2配線構造部40が複数の有機層46を含む場合にも、第1配線層41の有機層46が無機層47によって第2側D2から覆われていなくてもよい。若しくは、図示はしないが、第1配線層41の有機層46が無機層47によって第2側D2から部分的に覆われてはいるが、覆われている部分の比率が第1配線構造部30の有機層36に比べて低くなっていてもよい。
 (第7変形例)
 上述の実施の形態及び各変形例においては、無機膜27が、貫通電極22の側壁部分23を側壁部分23の第1側D1の端部から第2側D2の端部に至るまで覆う例を示した。しかしながら、これに限られることはなく、図48に示すように、無機膜27が、側壁部分23の第2側D2の端部にまで広がっていなくてもよい。例えば、無機膜27は、側壁部分23の第1側D1側の部分は覆うが第2側D2側の部分は覆っていなくてもよい。また、図48に示すように、無機膜27は、貫通電極22の第1部分24を第1側D1から少なくとも部分的に覆うが、貫通電極22の第2部分25を第2側D2から覆っていなくてもよい。すなわち、基板12の第2面14側には無機膜27が設けられていなくてもよい。
 以下、基板12の第2面14側に無機膜27を設けないことの利点について説明する。無機膜27の形成方法としては、プラズマCVDなどの化学成膜法や、蒸着法、スパッタリング法などの物理成膜法が用いられる。無機膜27を基板12の第1面13側及び第2面14側の両方に設ける場合、化学成膜法や物理成膜法などの成膜法も、基板12の第1面13側及び第2面14側のそれぞれに対して実施する。ここで本変形例においては、基板12の第2面14側には無機膜27を設けないので、基板12の第2面14側における無機膜27の成膜工程を省略することができる。このため、第2配線構造部40の作製に要する工数を削減することができる。このことにより、貫通電極基板10の製造コストを低減することができる。
 本変形例においても、上述の第6変形例の場合と同様に、第2配線構造部40の導電層48の層数が第1配線構造部30の導電層38の層数よりも少なくてもよい。この場合、有機層の熱膨張に起因して第2配線構造部40に生じる反りの程度は、第1配線構造部30に生じる反りの程度よりも小さい。このため、基板12の第2面14が無機膜27によって第2側D2から覆われていないことが、基板12全体の反りに与える影響は軽微であると考える。
 なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。
 第2の実施の形態
 次に、第2の実施の形態について説明する。第2の実施の形態において、無機膜27は、第1側D1側の第1面側無機膜27a及び第2側D2側の第2面側無機膜27bに分離される。第2の実施の形態において、第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。また、第1の実施の形態において得られる作用効果が本実施の形態においても得られることが明らかである場合、その説明を省略することもある。
 図26は、第2の実施の形態に係る貫通電極基板10を示す断面図である。図27は、図26の貫通電極基板10を拡大して示す断面図である。無機膜27は、基板12の第1面13側に位置する第1面側無機膜27aと、基板12の第2面14側に位置する第2面側無機膜27bと、を含む。
 第1面側無機膜27aは、貫通電極22の第1部分24を第1側D1から少なくとも部分的に覆っている。第1面側無機膜27aは、貫通孔20に充填された有機膜26の第1側D1の端面を更に覆っていてもよい。また、第1面側無機膜27aは、基板12の第1面13を更に覆っていてもよい。
 第2面側無機膜27bは、貫通電極22の第2部分25を第2側D2から少なくとも部分的に覆っている。第2面側無機膜27bは、貫通孔20に充填された有機膜26の第2側D2の端面を更に覆っていてもよい。また、第2面側無機膜27bは、基板12の第2面14を更に覆っていてもよい。
 貫通電極22の第1部分24上に位置する第1面側無機膜27aには開口が設けられており、この開口を介して、第1配線構造部30の第1配線層31の導電層38が貫通電極22の第1部分24に接続される。同様に、貫通電極22の第2部分25上に位置する第2面側無機膜27bには開口が設けられていてもよい。
 第1面側無機膜27a及び第2面側無機膜27bの厚み及び層構成、並びに第1面側無機膜27a及び第2面側無機膜27bを構成する無機材料の種類は、第1の実施の形態における無機膜27の場合と同様であるので、説明を省略する。
 貫通電極基板の製造方法
 以下、貫通電極基板10の製造方法の一例について、図28乃至図33を参照して説明する。
 まず、上述の第1の実施の形態の場合と同様にして、基板12に貫通孔20を形成し、貫通孔20に貫通電極22を形成して、図7に示す基板12を得る。
 (有機膜の形成工程)
 次に、図28に示すように、貫通孔20に有機膜26を充填する。例えば、第1の実施の形態の場合と同様に、有機膜26を構成するための樹脂層を含むフィルムを加圧して樹脂層を貫通孔20の内部に押し込み、貫通孔20の内部に押し込まれた樹脂層を硬化させ、その後、樹脂層の不要部分を除去する。
 (無機膜の形成工程)
 次に、図29に示すように、プラズマCVDにより、基板12の第1面13、貫通電極22の第1部分24及び有機膜26の第1側D1の端面を覆う一連の第1面側無機膜27aを形成する。また、プラズマCVDにより、基板12の第2面14、貫通電極22の第2部分25及び有機膜26の第2側D2の端面を覆う一連の第2面側無機膜27bを形成する。
 (第1配線層の有機層の形成工程)
 次に、図30に示すように、貫通電極22の第1部分24上に位置する開口361が設けられた有機層36を形成する。例えば、まず、感光性ポリイミドなどの有機材料を、スピンコート法などによって基板12上に成膜して、有機層36を形成する。続いて、有機層36のうち開口361に対応する部分が除去されるよう、有機層36を露光及び現像する。続いて、有機層36を焼成して有機層36を硬化させる。有機層36の焼成温度は、例えば200℃以上である。
 (無機膜の加工工程)
 次に、有機層36をマスクとして、プラズマエッチングにより、有機層36の開口361に露出している無機膜27をエッチングする。これによって、図31に示すように、有機層36の開口361に連通する開口271を無機膜27に形成する。エッチングガスとしては、例えば、CF4とH2との混合ガス、CHFガス、SFガス、CFガス、CHFとOとの混合ガス、SFとOとの混合ガス、CFとOとの混合ガスなどを用いることができる。なお、プラズマエッチングにより有機層36の表面に損傷が生じる場合、有機層36に熱処理を施すことにより、損傷が生じた有機層36の表面を除去してもよい。有機層36の熱処理温度は、例えば200℃以上である。
 (第1配線層の導電層の形成工程)
 次に、図32に示すように、貫通電極22の第1部分24に接続されるとともに有機層36の第1側D1にまで至る導電層38を形成する。このようにして、有機層36、無機層37及び導電層38を含む第1配線層31を、基板12の第1側D1に形成することができる。
 (第2配線層の導電層の形成工程)
 次に、第1配線層31の場合と同様にして、図33に示すように、第1配線層31の第1側D1側に第2配線層32を形成する。このようにして、第1配線層31及び第2配線層32を有する第1配線構造部30を基板12の第1側D1に設けることができる。
 上述の第1の実施の形態の場合と同様に、第2の実施の形態に係る貫通電極基板10においても、第1面側無機膜27aが貫通電極22の第1部分24を少なくとも部分的に覆っている。これによって、貫通電極22の第1部分24に生じる残留応力を軽減することができ、このことにより、貫通電極22の第1部分24と第1配線層31の導電層38との間にボイドなどの欠陥が形成されることを抑制することができる。また、第1面側無機膜27aを構成する無機材料のヤング率は高く、例えば70GPa以上である。このことも、貫通電極22の第1部分24に生じる残留応力を軽減することに寄与する。これらのことにより、貫通電極22の第1部分24と第1配線層31の導電層38との間で、電気的な接続不良が生じてしまうことを抑制することができる。
 また、第1面側無機膜27aが貫通電極22の第1部分24を覆っているので、雰囲気温度が高温の場合に、貫通電極22の第1部分24を構成する銅などの金属材料の原子、分子、イオンなどが、第1配線層31の絶縁層35の有機層36内に拡散することを抑制することができる。これによって、第1配線層31の隣り合う2つの導電層38が導通してしまうことや、有機層36の絶縁破壊が生じてしまうことを抑制することができる。また、金属材料の拡散によって貫通電極22の第1部分24の厚みが低減し、第1部分24の抵抗の増加や断線が生じることを抑制することができる。
 また、上述の第1の実施の形態の場合と同様に、第1面側無機膜27aが、基板12の第1面13を更に覆っている。このため、有機層36の熱膨張に起因して基板12に引っ張り応力が発生することを抑制することができる。これによって、基板12に反りが生じてしまうことを抑制することができる。
 また、本実施の形態においては、第1面側無機膜27aが、貫通孔20に充填された有機膜26の第1側D1の端面を更に覆っている。このため、雰囲気温度が高温の場合に、貫通電極22の側壁部分23から有機膜26内に拡散した銅などの金属材料の原子、分子、イオンなどが、第1配線層31の絶縁層35にまで至ることを抑制することができる。これによって、第1配線層31の隣り合う2つの導電層38が導通してしまうことや、絶縁層35の有機層36の絶縁破壊が生じてしまうことを抑制することができる。
 なお、上述した第2の実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、第3の実施の形態と同様に構成され得る部分について、第3の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、第3の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
 (第1変形例)
 図34は、第1変形例に係る貫通電極基板10を示す断面図である。図34に示すように、第1面側無機膜27aは、貫通電極22の第1部分24又は有機膜26の第1側D1の端面は覆うが基板12の第1面13は覆っていなくてもよい。例えば、無機膜27は、貫通電極22の第1部分24及び有機膜26の第1側D1の端面は覆うが、基板12の第1面13は覆っていなくてもよい。
 (第2変形例)
 図35に示すように、貫通電極基板10は、基板12の第2面14上に位置する第1配線層41、及び第1配線層41上に位置する第2配線層42を少なくとも含む第2配線構造部40を更に備えていてもよい。
 第1配線構造部30の第1配線層31の場合と同様に、第1配線層41は、絶縁層45及び導電層48を有する。絶縁層45には、貫通電極22の第2部分25上に位置する第2面側無機膜27bの開口に連通する開口が設けられている。導電層48は、絶縁層45の開口及び第2面側無機膜27bの開口を介して貫通電極22の第2部分25に接続されている。
 (第3変形例)
 上述の第2変形例においては、基板12の第1側D1に位置する第1配線構造部30に含まれる導電層38の層数と、基板12の第2側D2に位置する第2配線構造部40に含まれる導電層48の層数とが同一である例を示した。しかしながら、第1配線構造部30に含まれる導電層38の層数と、第2配線構造部40に含まれる導電層48の層数とが異なっていてもよい。例えば、第2配線構造部40に含まれる導電層48の層数が、第1配線構造部30に含まれる導電層38の層数よりも少なくてもよい。
 図49は、本変形例に係る貫通電極基板10を示す断面図である。貫通電極基板10の第1配線構造部30は、第1配線層31及び第2配線層32を含んでおり、このため、第1配線構造部30に含まれる導電層38の層数は2である。一方、貫通電極基板10の第2配線構造部40は、第1配線層41を含んでおり、このため、第2配線構造部40に含まれる導電層48の層数は1である。
 図49に示すように、第1配線構造部30の第2配線層32は、有機層36及び無機層37を含んでいる。このため、第1配線構造部30に起因して基板12に反りが生じることを抑制することができる。一方、第2配線構造部40の第1配線層41は、無機層47を含んでいない。また、第2配線構造部40の第1配線層41の有機層46は、無機層47によって覆われていない部分を含んでいる。例えば図49に示すように、第2配線構造部40は無機層47を含んでおらず、このため、第1配線層41の有機層46は無機層47によって第2側D2側から覆われていない。
 図49に示す例においては、第2配線構造部40の導電層48の層数が第1配線構造部30の導電層38の層数よりも少ない。このため、第2配線構造部40の有機層46の総数も、第1配線構造部30の有機層36の層数よりも少ない。従って、有機層の熱膨張に起因して第2配線構造部40に生じる反りの程度は、第1配線構造部30に生じる反りの程度よりも小さい。このため、第2配線構造部40の第1配線層41の有機層46が、無機層47によって第2側D2から覆われていない部分を含んでいることが、基板12全体の反りに与える影響は軽微であると考える。
 なお、図49においては、第1配線層41の有機層46及び導電層48は無機層47によって第2側D2側から全く覆われていない例を示したが、これに限られることはない。図示はしないが、第1配線層41の有機層46及び導電層48が無機層47によって第2側D2側から部分的に覆われていてもよい。なお、本変形例においては、第1配線層41の有機層46のうち無機層47によって覆われている部分の比率が、上述の図35に示す例の場合よりも低くなる。
 また、本変形例においては、第2配線構造部40の有機層46のうち無機層47によって覆われている部分の比率が、第1配線構造部30の有機層36のうち無機層37によって覆われている部分の比率よりも低くなる。第2配線構造部40の有機層46のうち無機層47によって覆われている部分の比率は、例えば1%以上且つ20%以下である。
 第2配線構造部40の無機層47の厚みは、第1配線構造部30の無機層37の厚みと同等でもよいが、第1配線構造部30の無機層37の厚みよりも小さくてもよい。例えば、第2配線構造部40の無機層47の厚みは、第1配線構造部30の無機層37の厚みの少なくとも30%以上であればよい。
 第2配線構造部40の第1配線層41の有機層46が、無機層47によって第2側D2から覆われていない部分を含む場合、貫通電極22などで発生したガスが、第1配線層41の有機層46を通って貫通電極基板10の外部へ抜け易くなる。このため、第1配線層41の導電層48が押し上げられたり吹き飛ばされたりすることを抑制することができる。
 また、図49においては、第1配線構造部30に含まれる導電層38の層数が2であり、第2配線構造部40に含まれる導電層48の層数が1である例を示したが、導電層38の層数が導電層48の層数よりも大きい限りにおいて、具体的な層数は任意である。例えば、図50に示すように、第1配線構造部30に含まれる導電層38の層数が3であり、第2配線構造部40に含まれる導電層48の層数が1であってもよい。また、図51に示すように、第1配線構造部30に含まれる導電層38の層数が3であり、第2配線構造部40に含まれる導電層48の層数が2であってもよい。図51に示すように第2配線構造部40が複数の有機層46を含む場合にも、第1配線層41の有機層46が無機層47によって第2側D2から覆われていなくてもよい。若しくは、図示はしないが、第1配線層41の有機層46が無機層47によって第2側D2から部分的に覆われてはいるが、覆われている部分の比率が第1配線構造部30の有機層36に比べて低くなっていてもよい。
 (第4変形例)
 上述の実施の形態及び各変形例においては、無機膜27が、基板12の第1面13側に位置する第1面側無機膜27aと、基板12の第2面14側に位置する第2面側無機膜27bと、を含む例を示した。しかしながら、これに限られることはなく、図48に示すように、貫通電極22の第2部分25、有機膜26の第2側D2の端面、及び基板12の第2面14は、無機膜27によって覆われていない部分を含んでいてもよい。例えば、無機膜27が、第1面側無機膜27aを含むが第2面側無機膜27bを含んでいなくてもよい。すなわち、基板12の第2面14側には無機膜27が設けられていなくてもよい。
 本変形例においても、基板12の第2面14側に無機膜27を設けないことにより、上述の第1の実施の形態の第7変形例の場合と同様に、基板12の第2面14側における無機膜27の成膜工程を省略することができる。このため、第2配線構造部40の作製に要する工数を削減することができる。このことにより、貫通電極基板10の製造コストを低減することができる。
 また、本変形例においては、貫通孔20の内部に位置する有機膜26の第2側D2の端面が、少なくとも部分的に、無機膜27によって覆われていない部分を含む。このため、貫通電極22などで発生したガスが、有機膜26及び第1配線層41の有機層46を通って貫通電極基板10の外部へ抜け易くなる。このため、第1配線層41の導電層48が押し上げられたり吹き飛ばされたりすることを抑制することができる。
 本変形例においても、上述の第3変形例の場合と同様に、第2配線構造部40の導電層48の層数が第1配線構造部30の導電層38の層数よりも少なくてもよい。この場合、有機層の熱膨張に起因して第2配線構造部40に生じる反りの程度は、第1配線構造部30に生じる反りの程度よりも小さい。このため、基板12の第2面14が無機膜27によって第2側D2から覆われていないことが、基板12全体の反りに与える影響は軽微であると考える。
 なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。
 貫通孔の形状の変形例
 上述の各実施の形態においては、基板12に設けられる貫通孔20が、基板12の第1面13の法線方向に直交する方向に平行に延びる例を示したが、貫通孔20の形状は特には限定されない。例えば、図36に示すように、貫通孔20は、第1面13と第2面14との間で括れた形状を有していてもよい。また、図37に示すように、貫通孔20は、第1面13側又は第2面14側の一方から他方に向かうにつれて貫通孔20の寸法が小さくなるテーパー形状を有していてもよい。
 図36又は図37に示す基板12は、上述の各実施の形態における貫通電極22、有機膜26、無機膜27、第1配線構造部30や第2配線構造部40と任意に組み合わせられ得る。図38に、図36に示す基板12と、第1の実施の形態における貫通電極22、有機膜26、無機膜27及び第1配線構造部30とを組み合わせた例を示す。また、図39に、図36に示す基板12と、第2の実施の形態における貫通電極22、有機膜26、第1面側無機膜27a、第2面側無機膜27b及び第1配線構造部30とを組み合わせた例を示す。また、図40に、図37に示す基板12と、第1の実施の形態における貫通電極22、有機膜26、無機膜27及び第1配線構造部30とを組み合わせた例を示す。また、図41に、図37に示す基板12と、第2の実施の形態における貫通電極22、有機膜26、第1面側無機膜27a、第2面側無機膜27b及び第1配線構造部30とを組み合わせた例を示す。
 また、図42又は図43に示すように、貫通孔20に、有機膜26が充填されていない窪みや隙間が存在していてもよい。
 貫通電極基板が搭載される製品の例
 図44は、本開示の実施形態に係る貫通電極基板10が搭載されることができる製品の例を示す図である。本開示の実施形態に係る貫通電極基板10は、様々な製品において利用され得る。例えば、ノート型パーソナルコンピュータ110、タブレット端末120、携帯電話130、スマートフォン140、デジタルビデオカメラ150、デジタルカメラ160、デジタル時計170、サーバ180等に搭載される。
10 貫通電極基板
12 基板
13 第1面
14 第2面
20 貫通孔
21 側壁
22 貫通電極
22a 第1端面
22b 第2端面
221 バリア層
222 シード層
223 めっき層
23 側壁部分
24 第1部分
25 第2部分
26 有機膜
27 無機膜
27a 第1面側無機膜
27b 第2面側無機膜
28 レジスト層
29 レジスト層
30 第1配線構造部
31 第1配線層
32 第2配線層
35 絶縁層
36 有機層
361 開口
37 無機層
371 第1無機層
372 第2無機層
373 開口
38 導電層
381 バリア層
382 シード層
383 めっき層
39 レジスト層
391 開口
40 第2配線構造部
41 第1配線層
42 第2配線層
45 絶縁層
46 有機層
47 無機層
48 導電層
60 実装基板
61 素子
62 端子
D1 第1側
D2 第2側

Claims (20)

  1.  第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板と、
     前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極と、
     前記貫通孔の内部に位置する有機膜と、
     前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆うとともに、前記第1部分上に位置する開口が設けられた無機膜と、
     前記無機膜よりも前記第1側に位置し、前記無機膜の前記開口に連通する開口が設けられた有機層を少なくとも含む絶縁層と、前記無機膜の前記開口及び前記絶縁層の前記開口を介して前記貫通電極の前記第1部分に接続された導電層と、を有する第1配線層と、を備える、貫通電極基板。
  2.  前記無機膜は、前記貫通電極の前記側壁部分を少なくとも部分的に覆っている、請求項1に記載の貫通電極基板。
  3.  前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、
     前記無機膜は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆っている、請求項1又は2に記載の貫通電極基板。
  4.  前記無機膜は、前記有機膜の前記第1側の端面を少なくとも部分的に覆っている、請求項1に記載の貫通電極基板。
  5.  前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、
     前記貫通電極基板は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆う第2面側無機膜を更に備える、請求項1又は4に記載の貫通電極基板。
  6.  前記第2面側無機膜は、前記有機膜の前記第2側の端面を少なくとも部分的に覆っている、請求項5に記載の貫通電極基板。
  7.  前記貫通電極基板は、前記第1配線層の前記導電層上に位置する開口が設けられた絶縁層と、前記絶縁層の前記開口を介して前記第1配線層の前記導電層に接続された導電層と、を有する第2配線層を更に備え、
     前記第2配線層の前記絶縁層は、前記第1配線層の前記導電層を前記第1側から少なくとも部分的に覆う無機層を含む、請求項1乃至6のいずれか一項に記載の貫通電極基板。
  8.  前記貫通電極基板は、前記基板の前記第2面上に位置する第1配線層を少なくとも含む第2配線構造部を更に備え、
     前記貫通電極は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に有し、
     前記第2配線構造部の前記第1配線層は、前記貫通電極の前記第2部分上に位置する開口が設けられた絶縁層と、前記絶縁層の前記開口を介して前記貫通電極の前記第2部分に接続された導電層と、を有する、請求項1、2又は4に記載の貫通電極基板。
  9.  前記第2配線構造部に含まれる前記導電層の層数は、前記基板の前記第1側に位置する導電層の層数よりも少なく、
     前記第2配線構造部の前記第1配線層の前記有機層は、絶縁性を有する無機層によって覆われていない部分を含む、請求項8に記載の貫通電極基板。
  10.  前記第2配線構造部に含まれる前記導電層の層数は、前記基板の前記第1側に位置する導電層の層数よりも少なく、
     前記無機膜は、前記貫通電極の前記側壁部分の前記第2側の端部にまでは広がらないよう、前記側壁部分を部分的に覆っている、請求項8又は9に記載の貫通電極基板。
  11.  前記第2配線構造部に含まれる前記導電層の層数は、前記基板の前記第1側に位置する導電層の層数よりも少なく、
     前記有機膜の前記第2側の端面は、絶縁性を有する無機膜によって覆われていない部分を少なくとも部分的に含む、請求項8又は9に記載の貫通電極基板。
  12.  前記無機膜は、珪素酸化物又は珪素窒化物を少なくとも含む、請求項1乃至11のいずれか一項に記載の貫通電極基板。
  13.  第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板を準備する工程と、
     前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極を形成する工程と、
     前記貫通孔の内部に有機膜を形成する工程と、
     前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆う無機膜を形成する工程と、
     前記無機膜よりも前記第1側に位置する絶縁層を形成する工程と、
     前記無機膜及び前記絶縁層を貫通して前記貫通電極の前記第1部分に接続された導電層を形成する工程と、を備える、貫通電極基板の製造方法。
  14.  前記無機膜は、前記貫通電極の前記側壁部分を少なくとも部分的に覆っている、請求項13に記載の貫通電極基板の製造方法。
  15.  前記貫通電極を形成する工程は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に形成し、
     前記無機膜は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆っている、請求項13又は14に記載の貫通電極基板の製造方法。
  16.  前記無機膜は、前記有機膜の前記第1側の端面を少なくとも部分的に覆っている、請求項13に記載の貫通電極基板の製造方法。
  17.  前記貫通電極を形成する工程は、前記基板の前記第2面上に位置するとともに前記側壁部分に接続された第2部分を更に形成し、
     前記貫通電極基板の製造方法は、前記貫通電極の前記第2部分を前記第2側から少なくとも部分的に覆う第2面側無機膜を形成する工程を更に備える、更に備える、請求項13又は16に記載の貫通電極基板の製造方法。
  18.  前記第2面側無機膜は、前記有機膜の前記第2側の端面を少なくとも部分的に覆っている、請求項17に記載の貫通電極基板の製造方法。
  19.  前記無機膜は、珪素酸化物又は珪素窒化物を少なくとも含む、請求項13乃至18のいずれか一項に記載の貫通電極基板の製造方法。
  20.  貫通電極基板と、
     前記貫通電極基板に搭載された素子と、を備え、
     前記貫通電極基板は、
     第1側に位置する第1面及び前記第1側とは反対の第2側に位置する第2面を含むとともに貫通孔が設けられた基板と、
     前記貫通孔の側壁に沿って広がる側壁部分と、前記基板の前記第1面上に位置するとともに前記側壁部分に接続された第1部分と、を有する貫通電極と、
     前記貫通孔の内部に位置する有機膜と、
     前記貫通電極の前記第1部分を前記第1側から少なくとも部分的に覆うとともに、前記第1部分上に位置する開口が設けられた無機膜と、
     前記無機膜よりも前記第1側に位置し、前記無機膜の前記開口に連通する開口が設けられた有機層を少なくとも含む絶縁層と、前記無機膜の前記開口及び前記絶縁層の前記開口を介して前記貫通電極の前記第1部分に接続された導電層と、を有する第1配線層と、を備える、実装基板。
PCT/JP2017/029819 2016-08-31 2017-08-21 貫通電極基板、貫通電極基板の製造方法及び実装基板 WO2018043184A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/325,911 US10957592B2 (en) 2016-08-31 2017-08-21 Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate
JP2018537143A JP7075625B2 (ja) 2016-08-31 2017-08-21 貫通電極基板、貫通電極基板の製造方法及び実装基板
US17/178,659 US11373906B2 (en) 2016-08-31 2021-02-18 Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate
JP2022079818A JP7400873B2 (ja) 2016-08-31 2022-05-13 貫通電極基板、貫通電極基板の製造方法及び実装基板
US17/752,062 US11810820B2 (en) 2016-08-31 2022-05-24 Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-170015 2016-08-31
JP2016170015 2016-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/325,911 A-371-Of-International US10957592B2 (en) 2016-08-31 2017-08-21 Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate
US17/178,659 Division US11373906B2 (en) 2016-08-31 2021-02-18 Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate

Publications (1)

Publication Number Publication Date
WO2018043184A1 true WO2018043184A1 (ja) 2018-03-08

Family

ID=61300602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029819 WO2018043184A1 (ja) 2016-08-31 2017-08-21 貫通電極基板、貫通電極基板の製造方法及び実装基板

Country Status (4)

Country Link
US (3) US10957592B2 (ja)
JP (2) JP7075625B2 (ja)
TW (2) TWI765595B (ja)
WO (1) WO2018043184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875316A (zh) * 2018-08-31 2020-03-10 华邦电子股份有限公司 存储器装置及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043184A1 (ja) * 2016-08-31 2018-03-08 大日本印刷株式会社 貫通電極基板、貫通電極基板の製造方法及び実装基板
TWI671885B (zh) * 2018-08-16 2019-09-11 華邦電子股份有限公司 記憶體裝置及其製造方法
US11659660B2 (en) 2019-11-01 2023-05-23 Raytheon Company Oxide liner stress buffer
CN114929926A (zh) * 2020-02-28 2022-08-19 株式会社岛津制作所 带金属膜的物体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151819A (ja) * 2000-11-07 2002-05-24 Ngk Spark Plug Co Ltd スルーホール用充填材並びにそれを用いたプリント配線板及びその製造方法
JP2010258320A (ja) * 2009-04-28 2010-11-11 Kyocera Corp 配線基板及びその製造方法
JP2014168007A (ja) * 2013-02-28 2014-09-11 Kyocer Slc Technologies Corp 配線基板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036253A (ja) * 1999-07-26 2001-02-09 Shinko Electric Ind Co Ltd 多層配線回路基板及びその製造方法
JP2002141661A (ja) * 2000-11-02 2002-05-17 Ibiden Co Ltd 多層プリント配線板の製造方法
JP2006216746A (ja) * 2005-02-03 2006-08-17 Sony Corp 半導体装置
US8022552B2 (en) * 2006-06-27 2011-09-20 Megica Corporation Integrated circuit and method for fabricating the same
KR100969412B1 (ko) * 2008-03-18 2010-07-14 삼성전기주식회사 다층 인쇄회로기판 및 그 제조방법
KR101089959B1 (ko) * 2009-09-15 2011-12-05 삼성전기주식회사 인쇄회로기판 및 그의 제조 방법
WO2014069662A1 (ja) 2012-11-05 2014-05-08 大日本印刷株式会社 配線構造体
JP6276151B2 (ja) * 2014-09-17 2018-02-07 東芝メモリ株式会社 半導体装置
WO2018043184A1 (ja) * 2016-08-31 2018-03-08 大日本印刷株式会社 貫通電極基板、貫通電極基板の製造方法及び実装基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151819A (ja) * 2000-11-07 2002-05-24 Ngk Spark Plug Co Ltd スルーホール用充填材並びにそれを用いたプリント配線板及びその製造方法
JP2010258320A (ja) * 2009-04-28 2010-11-11 Kyocera Corp 配線基板及びその製造方法
JP2014168007A (ja) * 2013-02-28 2014-09-11 Kyocer Slc Technologies Corp 配線基板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875316A (zh) * 2018-08-31 2020-03-10 华邦电子股份有限公司 存储器装置及其制造方法
CN110875316B (zh) * 2018-08-31 2023-08-08 华邦电子股份有限公司 存储器装置及其制造方法

Also Published As

Publication number Publication date
US10957592B2 (en) 2021-03-23
JP7400873B2 (ja) 2023-12-19
US20190287853A1 (en) 2019-09-19
TWI765595B (zh) 2022-05-21
JPWO2018043184A1 (ja) 2019-06-24
US11373906B2 (en) 2022-06-28
US20220328353A1 (en) 2022-10-13
TWI724224B (zh) 2021-04-11
US20210175121A1 (en) 2021-06-10
US11810820B2 (en) 2023-11-07
TW202127516A (zh) 2021-07-16
JP2022107008A (ja) 2022-07-20
TW201820414A (zh) 2018-06-01
JP7075625B2 (ja) 2022-05-26

Similar Documents

Publication Publication Date Title
JP7400873B2 (ja) 貫通電極基板、貫通電極基板の製造方法及び実装基板
JP7363972B2 (ja) 貫通電極基板及びその製造方法、並びに実装基板
JP7276403B2 (ja) 貫通電極基板及び実装基板
US20100164120A1 (en) Through-hole electrode substrate and method of manufacturing the same
JP7447982B2 (ja) 貫通電極基板、貫通電極基板を備える実装基板並びに貫通電極基板の製造方法
JP2018160607A (ja) 貫通電極基板、貫通電極基板を備える実装基板並びに貫通電極基板の製造方法
US9917046B2 (en) Manufacturing method of a circuit board having a glass film
JP2018170440A (ja) 貫通電極基板、貫通電極基板を備える実装基板並びに貫通電極基板の製造方法
KR20170001310A (ko) 글라스 코어 기판, 그의 제조 방법 및 그를 이용한 회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846191

Country of ref document: EP

Kind code of ref document: A1