WO2018042842A1 - 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム - Google Patents

電池、電池パック、電子機器、電動車両、蓄電装置および電力システム Download PDF

Info

Publication number
WO2018042842A1
WO2018042842A1 PCT/JP2017/023068 JP2017023068W WO2018042842A1 WO 2018042842 A1 WO2018042842 A1 WO 2018042842A1 JP 2017023068 W JP2017023068 W JP 2017023068W WO 2018042842 A1 WO2018042842 A1 WO 2018042842A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
region
active material
battery
material layer
Prior art date
Application number
PCT/JP2017/023068
Other languages
English (en)
French (fr)
Inventor
智也 佐々木
古川 真
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780050044.7A priority Critical patent/CN109565033A/zh
Priority to JP2018536975A priority patent/JPWO2018042842A1/ja
Publication of WO2018042842A1 publication Critical patent/WO2018042842A1/ja
Priority to US16/287,595 priority patent/US10985409B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present technology relates to a battery including a strip-shaped electrode wound in a flat shape, a battery pack including the electrode, an electronic device, an electric vehicle, a power storage device, and a power system.
  • a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on a negative electrode current collector include an electrode body wound in a flat shape with a separator interposed therebetween.
  • a wound battery is known. In this wound battery, it has been studied to further increase the capacity of the battery by improving the area density of the active material layer.
  • the positive electrode current collector and the negative electrode current collector are formed at the rewind portion of the positive electrode and the negative electrode. Cracks or breaks (hereinafter referred to as “cracks”) are likely to occur. This crack or the like is particularly likely to occur in the positive electrode among the positive electrode and the negative electrode. Further, among the positive electrodes, cracks and the like are particularly likely to occur at the first turn-up portion of the positive electrode active material layer provided on the inner surface of the positive electrode current collector.
  • Patent Document 1 proposes a battery that suppresses breakage of an electrode plate and separation / detachment of an active material layer when a cross-section composed of a strip-like positive electrode, a negative electrode, and a separator constitutes an oval electrode group.
  • a streak-shaped recess is previously formed in a region having a predetermined width centered on a fold line on the active material layer on the inner surface.
  • the width of the streak-shaped recess is in the range of 1.0 mm or more and 2.0 mm or less on the left and right sides with respect to the folding line, and the depth of the streak-shaped recess is 25.0% or more of the thickness of the active material layer on one side
  • the pitch between the streaks of the streak-shaped recess is in the range of 0.75 mm to 2.0 mm, and the angle of the streak-shaped recess with respect to the fold line is in the range of 45 ° to 90 °.
  • Patent Document 1 the recess formed on the inner surface of the folded portion is a streak-like cut having a predetermined depth, and the amount of the active material layer is not substantially reduced. There is a possibility that the effect of suppressing the occurrence of cracks or the like is reduced.
  • An object of the present technology is to provide a battery that can suppress the occurrence of cracks or the like in an electrode, a battery pack including the battery, an electronic device, an electric vehicle, a power storage device, and a power system.
  • the battery of the present technology includes a strip-shaped electrode wound in a flat shape, and the electrode includes a current collector and an active material layer provided on an inner surface of the current collector.
  • the active material layer has a first region and a second region having an area density lower than that of the first region, and the second region is provided in the winding portion of the active material layer.
  • the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
  • FIG. 1 is an exploded perspective view illustrating an example of a configuration of a battery according to an embodiment of the present technology.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3A is a perspective view illustrating an example of the configuration of the positive electrode.
  • FIG. 3B is a cross-sectional view showing an example of the configuration of the recess.
  • FIG. 4A is a cross-sectional view for explaining the stress acting on the rewinding portion of the positive electrode that does not have a recess.
  • FIG. 4B is a cross-sectional view for explaining the stress acting on the rewinding portion of the positive electrode having a recess.
  • FIG. 5 is a block diagram illustrating an example of a configuration of an electronic device as an application example.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a power storage system in a vehicle as an application example.
  • FIG. 7 is a schematic diagram illustrating an example of a configuration of a power storage system in a house as an application example.
  • FIG. 8 is a perspective view showing the configuration of the instrument used for the fracture gap evaluation.
  • FIG. 9 is a graph showing the relationship between the area density ratio and the breakage gap.
  • Embodiments of the present technology will be described in the following order. 1 One Embodiment (Laminated Film Type Battery) 2 Application 1 (battery pack and electronic equipment) 3 Application Example 2 (Power Storage System in Vehicle) 4 Application example 3 (electric storage system in a house)
  • a nonaqueous electrolyte secondary battery (hereinafter simply referred to as “battery”) 10 is a so-called laminated film type battery, to which a positive electrode lead 11 and a negative electrode lead 12 are attached.
  • the obtained flat wound electrode body 20 is accommodated inside the film-shaped exterior member 30 and can be reduced in size, weight, and thickness.
  • the positive electrode lead 11 and the negative electrode lead 12 are led out from the inside of the exterior member 30 to the outside, for example, in the same direction.
  • the positive electrode lead 11 and the negative electrode lead 12 are made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel, respectively, and each have a thin plate shape or a mesh shape.
  • the exterior member 30 is made of, for example, a flexible laminate film.
  • the exterior member 30 has a configuration in which, for example, a heat sealing resin layer, a metal layer, and a surface protective layer are sequentially laminated.
  • the surface on the heat sealing resin layer side is a surface on the side where the wound electrode body 20 is accommodated.
  • the material for the heat-sealing resin layer include polypropylene (PP) and polyethylene (PE).
  • the material for the metal layer include aluminum.
  • Examples of the material for the surface protective layer include nylon (Ny).
  • the exterior member 30 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order.
  • the exterior member 30 is disposed so that the heat-sealing resin layer side and the wound electrode body 20 face each other, and the outer edge portions are in close contact with each other by fusion or an adhesive.
  • An adhesion film 31 is inserted between the exterior member 30 and the positive electrode lead 11 and the negative electrode lead 12 to prevent intrusion of outside air.
  • the adhesion film 31 is made of a material having adhesion to the positive electrode lead 11 and the negative electrode lead 12, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • the exterior member 30 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described laminated film.
  • a laminate film in which an aluminum film is used as a core and a polymer film is laminated on one or both sides thereof may be used.
  • a coloring material is included in the thing further provided with a colored layer and / or at least 1 type of layer chosen from a heat-fusion resin layer and a surface protective layer.
  • a thing may be used.
  • the adhesive layer may include a coloring material.
  • a wound electrode body 20 as a battery element is formed by laminating a positive electrode 21 having a long shape (band shape) and a negative electrode 22 through a separator 23 having a long shape (band shape). It is wound in a flat and spiral shape.
  • the positive electrode 21 and the negative electrode 22 wound in a flat shape usually have a flat portion 25 and a curved portion 26.
  • An electrolyte solution as an electrolyte is injected into the exterior member 30 and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23.
  • FIG. 2 shows the wound electrode body 20 wound so that the positive electrode 21 becomes the innermost peripheral electrode and the negative electrode 22 becomes the outermost peripheral electrode, the negative electrode 22 becomes the innermost peripheral electrode, and the positive electrode 21 May be wound so as to be the outermost peripheral electrode.
  • the outermost peripheral end of the negative electrode 22 is fixed by a winding tab (not shown).
  • the positive electrode 21 is provided on the positive electrode current collector 21A, the first positive electrode active material layer 21B provided on the inner surface of the positive electrode current collector 21A, and the outer surface of the positive electrode current collector 21A. And a second positive electrode active material layer 21C.
  • “inside” and “outside” mean inside and outside of the positive electrode current collector 21A in a wound state.
  • the positive electrode 21 has a positive electrode current collector exposed portion (not shown) in which the both surfaces of the positive electrode current collector 21A are exposed without being covered with the first and second positive electrode active material layers 21B and 21C at the innermost periphery. is doing.
  • a positive electrode lead 11 is connected to the exposed portion of the positive electrode current collector.
  • the positive electrode current collector 21A includes, for example, a metal material such as aluminum, an aluminum alloy, nickel, or stainless steel, and among these metals, it is preferable that aluminum or an aluminum alloy is included.
  • a metal material such as aluminum, an aluminum alloy, nickel, or stainless steel
  • aluminum or an aluminum alloy is included.
  • As the shape of the positive electrode current collector 21A for example, a foil shape, a plate shape, a mesh shape, or the like can be used.
  • the thickness of the positive electrode current collector 21A is preferably 5 ⁇ m or more and 20 ⁇ m or less, more preferably 8 ⁇ m or more and 15 ⁇ m or less. If the thickness is less than 5 ⁇ m, the thickness of the first and second positive electrode active material layers 21B and 21C can be increased. However, since the positive electrode current collector 21A is too thin, the positive electrode 21 may be cracked in the pressing step. is there. Further, there is a possibility that a crack or the like may occur in the positive electrode 21 after winding.
  • the thickness of the positive electrode current collector 21A is a value measured by a micrometer.
  • the first positive electrode active material layer 21B includes a first region R1 and a second region R2 having an area density lower than that of the first region R1.
  • the first and second regions R ⁇ b> 1 and R ⁇ b> 2 are provided side by side in the longitudinal direction of the positive electrode 21.
  • FIG. 3A shows a configuration in which the first positive electrode active material layer 21B has only one second region R2, but it may have two or more second regions R2.
  • the first region R1 extends while maintaining a uniform width in the width direction (short direction) of the positive electrode 21, and is continuously provided from one long side of the positive electrode 21 to the other long side. Yes.
  • the second region R2 is provided in the winding portion of the first positive electrode active material layer 21B, as shown in FIG. This is because stress tends to concentrate on the rewinding portion of the first positive electrode active material layer 21B, and the positive electrode 21 may be easily broken if the second region R2 is not provided.
  • the thickness of the second region R2 is usually smaller than the thickness of the first region R1
  • whether or not the first positive electrode active material layer 21B has the second region R2 is determined.
  • a shape measuring instrument for example, a laser displacement meter
  • SEM Sccanning Electron
  • region R2 is the first winding part of the innermost periphery of the 1st positive electrode active material layer 21B, and is both the winding parts of the innermost periphery of the 1st positive electrode active material layer 21B. More preferably.
  • stress is particularly concentrated at the first (first) turn-up portion of the innermost circumference of the first positive electrode active material layer 21B. Therefore, if the second region R2 is not provided, the positive electrode 21 is particularly easily broken. This is because there is a fear.
  • the second region R2 includes the first positive electrode active material layer 21B in addition to the innermost (first turn) winding portion of the first positive electrode active material layer 21B. It is preferable to be further provided in the second turn-up portion. Since stress is likely to concentrate next to the innermost winding portion of the first positive electrode active material layer 21B in the second winding portion of the first positive electrode active material layer 21B, if the second region R2 is not provided, This is because the positive electrode 21 may be easily broken.
  • the turned-up portion means a top portion of the curved portion 26 of the first positive electrode active material layer 21B wound in a flat shape and a spiral shape so that the first positive electrode active material layer 21B is bent. When it is rewound, it means the bent portion.
  • region R2 may be provided locally in the rewinding part of the 1st positive electrode active material layer 21B, as shown with a continuous line in FIG. 2, and as shown with a dashed-two dotted line in FIG.
  • the first positive electrode active material layer 21 ⁇ / b> B may be provided so as to extend to the outside of the winding portion.
  • the second region R2 is provided so as to extend to the outside of the winding portion of the first positive electrode active material layer 21B.
  • the second region R2 may extend to the outside of the winding portion of the first positive electrode active material layer 21B and may be provided within the range of the bending portion 26, or may be provided to the outside of the bending portion 26. From the viewpoint of suppressing a decrease in battery capacity, it is preferable that the first positive electrode active material layer 21 ⁇ / b> B extends to the outside of the winding portion and is provided within the range of the curved portion 26.
  • the thickness of the second region R2 is smaller than the thickness of the first region R1, as shown in FIGS. 3A and 3B. More specifically, the second region R2 is a recess 24 that is recessed with respect to the first region R1.
  • the recess 24 extends while maintaining a uniform width in the width direction of the positive electrode 21, and is continuously provided from one long side of the positive electrode 21 to the other long side.
  • the recess 24 preferably has a bottom surface such as a flat shape or a curved shape. If the concave portion 24 does not have a bottom surface (specifically, for example, the concave portion 24 has a V-shaped cross-sectional shape), when the positive electrode 21 is wound, the side surfaces of the concave portion 24 hit each other. This is because the first positive electrode active material layer 21B may be peeled off or dropped off.
  • the cross-sectional shape of the recess 24 include a trapezoidal shape, a polygonal shape of a quadrangle or more, a partial circular shape, a partial elliptical shape, and an indefinite shape, but are not limited thereto.
  • the cross-sectional shape of the recess 24 is a recess when the positive electrode 21 is cut in a direction perpendicular to the width direction of the positive electrode 21 in a state where the positive electrode 21 is taken out after being completely discharged after the battery is completely discharged and flattened. 24 cross-sectional shapes are meant.
  • the recess 24 is preferably open when the positive electrode 21 is wound. This is because when the concave portion 24 is closed when the positive electrode 21 is wound, the side surfaces of the concave portion 24 may come into contact with each other and the first positive electrode active material layer 21B may be peeled off or dropped off.
  • the width W of the second region R2 in the longitudinal direction of the positive electrode 21 is preferably 1 mm to 20 mm, more preferably 5 mm to 20 mm, even more preferably 10 mm to 20 mm, and most preferably 15 mm to 18 mm.
  • production of a crack etc. can be improved more as the width W of 2nd area
  • the width W of the second region R2 is 5 mm or more, even if a winding deviation occurs when the wound electrode body 20 is produced using a general battery winding machine, the second region R2 is used as the rewinding portion. Can be positioned.
  • the width W of the second region R2 is 20 mm or less, a decrease in battery capacity can be suppressed.
  • the width W of the second region R2 is a value obtained as follows. After the battery is completely discharged, it is disassembled and the positive electrode 21 is taken out, washed with a solvent (for example, DMC (dimethyl carbonate), etc.) and then sufficiently dried. Next, in a state where the positive electrode 21 is flat, the width of the second region R2 is measured by a shape measuring instrument (laser displacement meter).
  • a shape measuring instrument laser displacement meter.
  • the width W of the widest portion of the width of the recess 24 that is displaced in the thickness direction of the positive electrode 21 is defined as the width W of the second region R2.
  • the width W on the opening side of the recess 24 is defined as the width of the second region R2.
  • the average area density D1 (mg / cm 2 ) of the first positive electrode active material layer 21B in the first region R1 is preferably 12.5 mg / cm 2 or more, more preferably 19.5 mg / cm 2 from the viewpoint of increasing the capacity. 2 or more.
  • the average area density D1 (mg / cm 2 ) of the first positive electrode active material layer 21B is increased in this way, the weight of the active material packed in the unit area of the positive electrode 21 increases, and the positive electrode 21 tends to be cured.
  • the average area density D1 (mg / cm 2 ) of the first positive electrode active material layer 21B in the first region R1 is preferably 32.5 mg / cm 2 or less, more preferably 30 mg / cm. 2 or less.
  • the average area density of the second positive electrode active material layer 21C in the entire positive electrode 21 is substantially uniform, and is set to a value similar to the average area density D1 of the first positive electrode active material layer 21B in the first region R1. Preferably it is.
  • the average area density D1 of the first positive electrode active material layer in the first region R1 is a value obtained as follows. First, the battery is completely discharged and then disassembled, and the positive electrode 21 is taken out, washed with a solvent (for example, DMC), and then sufficiently dried. Thereafter, the first positive electrode active material layer 21B coming to the outer side during winding is peeled off with a cloth soaked with a solvent (for example, NMP (N-methylethylpyrrolidone)), NMP is wiped off with alcohol, and then at room temperature. dry. Thereby, the positive electrode 21 having only the first positive electrode active material layer 21B on the inner surface of the positive electrode current collector 21A is obtained.
  • a solvent for example, DMC
  • NMP N-methylethylpyrrolidone
  • the above measurement is performed on 10 batteries selected at random, and the area density d1 of the 10 batteries obtained is simply averaged (arithmetic average) to calculate the average area density D1.
  • the area density ratio D2 / D1 between the average area density D1 of the first region R1 and the average area density D2 of the second region R2 is preferably 0 ⁇ D2 / D1 ⁇ 0.9, more preferably 0 ⁇ D2 / D1 ⁇ It is preferable that the relationship of 0.8 is satisfied.
  • the area density ratio D2 / D1 is a value obtained as follows. First, the average area density D1 of the first positive electrode active material layer 21B in the first region R1 is obtained in the same manner as in the “method for measuring the average area density D1 of the first positive electrode active material layer”. Further, except for punching out the first positive electrode active material layer 21B in the second region R2 in a circular shape, in the second region R2 in the same manner as the “measurement method of the average area density D1 of the first positive electrode active material layer”. The average area density D2 of the first positive electrode active material layer 21B is obtained.
  • the width of the second region R2 is 5 mm or less (that is, when it is not punched out in a circular shape of ⁇ 5 mm)
  • the entire second region R2 is cut out and the positive electrode current collector 21A has a shape similar to this. Both-side exposed portions are also punched out to obtain the average area density D2.
  • the area density ratio D2 / D1 is obtained using the average area densities D1 and D2 obtained as described above.
  • the average thickness difference ⁇ T is 6 ⁇ m or more, it is possible to further suppress the occurrence of cracks or the like in the rewinding portion of the first positive electrode active material layer 21B.
  • the first and second positive electrode active material layers 21 ⁇ / b> B and 21 ⁇ / b> C contain, for example, a positive electrode active material capable of inserting and extracting lithium as an electrode reactant.
  • the first and second positive electrode active material layers 21B and 21C may further contain an additive as necessary.
  • the additive for example, at least one of a conductive agent and a binder can be used.
  • lithium-containing compounds such as lithium oxide, lithium phosphorous oxide, lithium sulfide, or an intercalation compound containing lithium are suitable. May be used in combination.
  • a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable.
  • lithium-containing compounds include lithium composite oxides having a layered rock salt type structure shown in Formula (A), lithium composite phosphates having an olivine type structure shown in Formula (B), and the like. Can be mentioned.
  • the lithium-containing compound is more preferably one containing at least one member selected from the group consisting of cobalt (Co), nickel, manganese (Mn), and iron (Fe) as a transition metal element.
  • Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), formula (D), or formula (E), and a spinel type compound represented by the formula (F). Examples thereof include a lithium composite oxide having a structure, or a lithium composite phosphate having an olivine structure shown in the formula (G).
  • LiNi 0.50 Co 0.20 Mn 0.30 O 2 Li a CoO 2 (A ⁇ 1), Li b NiO 2 (b ⁇ 1), Li c1 Ni c2 Co 1-c2 O 2 (c1 ⁇ 1, 0 ⁇ c2 ⁇ 1), Li d Mn 2 O 4 (d ⁇ 1) or Li e FePO 4 (e ⁇ 1) and the like.
  • M1 represents at least one element selected from Groups 2 to 15 excluding nickel and manganese.
  • X represents at least one of Group 16 and Group 17 elements other than oxygen.
  • P, q, y, z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0.20, 0 ⁇ (The value is within the range of z ⁇ 0.2.)
  • M2 represents at least one element selected from Group 2 to Group 15.
  • a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range.
  • M3 is cobalt, magnesium (Mg), aluminum, boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron, copper, zinc (Zn), It represents at least one member selected from the group consisting of zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), f, g, h, j, and k.
  • M4 is at least one selected from the group consisting of cobalt, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • M, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ 0. (The value is within a range of 1.
  • the composition of lithium varies depending on the state of charge and discharge, and the value of m represents a value in a fully discharged state.
  • M5 is at least one selected from the group consisting of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • Represents one, r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1 (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of r represents the value in a fully discharged state.)
  • M6 is at least one selected from the group consisting of cobalt, nickel, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • V, w, x, and y are 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, and 0 ⁇ y ⁇ 0.1. (Note that the lithium composition varies depending on the state of charge and discharge, and the value of v represents a value in a fully discharged state.)
  • Li z M7PO 4 (G) (In the formula (G), M7 is composed of cobalt, manganese, iron, nickel, magnesium, aluminum, boron, titanium, vanadium, niobium (Nb), copper, zinc, molybdenum, calcium, strontium, tungsten and zirconium. Represents at least one member of the group, z is a value in the range of 0.9 ⁇ z ⁇ 1.1, wherein the composition of lithium varies depending on the state of charge and discharge, and the value of z is a fully discharged state Represents the value at.)
  • examples of the positive electrode material capable of inserting and extracting lithium include inorganic compounds not containing lithium, such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS.
  • the positive electrode material capable of inserting and extracting lithium may be other than the above.
  • the positive electrode material illustrated above may be mixed 2 or more types by arbitrary combinations.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from a copolymer or the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive agent examples include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination.
  • a metal material or a conductive polymer material may be used as long as it is a conductive material.
  • the negative electrode 22 is provided on the negative electrode current collector 22A, the first negative electrode active material layer 22B provided on the inner surface of the negative electrode current collector 22A, and the outer surface of the negative electrode current collector 22A. And a second negative electrode active material layer 22C.
  • the positive electrode 21 and the negative electrode 22 are disposed so that the second positive electrode active material layer 21C and the first negative electrode active material layer 22B face each other.
  • the negative electrode 22 has a negative electrode current collector exposed portion (not shown) in which the both surfaces of the negative electrode current collector 22A are exposed without being covered with the first and second negative electrode active material layers 22B and 22C at the innermost periphery. is doing.
  • a negative electrode lead 12 is connected to the negative electrode current collector exposed portion.
  • the negative electrode current collector 22A includes, for example, a metal such as copper, nickel, or stainless steel.
  • a metal such as copper, nickel, or stainless steel.
  • As the shape of the negative electrode current collector 22A for example, a foil shape, a plate shape, a mesh shape, or the like can be used.
  • the first and second negative electrode active material layers 22B and 22C include one or more negative electrode active materials capable of inserting and extracting lithium.
  • the first and second negative electrode active material layers 22B and 22C may further contain additives such as a binder and a conductive agent as necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, so that theoretically lithium metal does not deposit on the negative electrode 22 during charging. It is preferable that
  • Examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned.
  • examples of the coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body is a carbonized material obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • a material containing at least one of a metal element and a metalloid element as a constituent element for example, an alloy, a compound, or a mixture
  • a material containing at least one of a metal element and a metalloid element as a constituent element for example, an alloy, a compound, or a mixture
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included.
  • Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium.
  • a metal element or a metalloid element capable of forming an alloy with lithium.
  • magnesium, boron, aluminum, titanium, gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin, lead (Pb), bismuth (Bi), cadmium (Cd), Silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), or platinum (Pt) can be used. These may be crystalline or amorphous.
  • the negative electrode active material those containing a 4B group metal element or semi-metal element in the short-period type periodic table as a constituent element are preferable, and more preferable are those containing at least one of silicon and tin as a constituent element. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • Examples of such a negative electrode active material include a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or a material having one or more phases thereof at least in part.
  • Examples of the silicon alloy include, as the second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb), and chromium.
  • the thing containing at least 1 sort (s) of a group is mentioned.
  • As an alloy of tin for example, as a second constituent element other than tin, among the group consisting of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium The thing containing at least 1 sort (s) of these is mentioned.
  • tin compound or silicon compound examples include those containing oxygen or carbon, and may contain the second constituent element described above in addition to tin or silicon.
  • the Sn-based negative electrode active material cobalt, tin, and carbon are included as constituent elements, the carbon content is 9.9 mass% or more and 29.7 mass% or less, and tin and cobalt A SnCoC-containing material in which the proportion of cobalt with respect to the total is 30% by mass to 70% by mass is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
  • This SnCoC-containing material may further contain other constituent elements as necessary.
  • other constituent elements for example, silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus (P), gallium, or bismuth are preferable, and two or more kinds may be included. This is because the capacity or cycle characteristics can be further improved.
  • This SnCoC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure.
  • this SnCoC-containing material it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element.
  • the decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .
  • XPS X-ray photoelectron spectroscopy
  • the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
  • Au4f gold atom 4f orbital
  • it will appear at 284.8 eV.
  • the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
  • the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
  • at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
  • the C1s peak is used to correct the energy axis of the spectrum.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
  • the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • Examples of other negative electrode active materials include metal oxides or polymer compounds that can occlude and release lithium.
  • Examples of the metal oxide include lithium titanium oxide containing titanium and lithium such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
  • Examples of the polymer compound include polyacetylene, polyaniline, polypyrrole, and the like.
  • the binder for example, at least one selected from resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
  • the conductive agent the same carbon material as the first and second positive electrode active material layers 21B and 21C can be used.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, a porous film made of a resin such as polytetrafluoroethylene, polypropylene, or polyethylene, and may have a structure in which two or more kinds of these porous films are laminated.
  • a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C.
  • the porous film may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • the separator 23 may be provided with a resin layer on one side or both sides of a porous film as a base material.
  • the resin layer is a porous matrix resin layer on which an inorganic substance is supported. Thereby, oxidation resistance can be obtained and deterioration of the separator 23 can be suppressed.
  • the matrix resin for example, polyvinylidene fluoride, hexafluoropropylene (HFP), polytetrafluoroethylene, or the like can be used, and a copolymer thereof can also be used.
  • the inorganic substance a metal, a semiconductor, or an oxide or nitride thereof can be given.
  • the metal include aluminum and titanium
  • examples of the semiconductor include silicon and boron.
  • a thing with substantially no electroconductivity and a large heat capacity is preferable. This is because a large heat capacity is useful as a heat sink during heat generation of the current, and the thermal runaway of the battery can be further suppressed.
  • inorganic substances examples include alumina (Al 2 O 3 ), boehmite (alumina monohydrate), talc, boron nitride (BN), aluminum nitride (AlN), titanium dioxide (TiO 2 ), and silicon oxide (SiOx). ) Or the like.
  • the inorganic substance mentioned above may be contained in the porous membrane as a base material.
  • the particle size of the inorganic substance is preferably in the range of 1 nm to 10 ⁇ m. If it is smaller than 1 nm, it is difficult to obtain, and even if it can be obtained, it is not worth the cost. If it is larger than 10 ⁇ m, the distance between the electrodes becomes large, and a sufficient amount of active material cannot be obtained in a limited space, resulting in a low battery capacity.
  • the resin layer can be formed as follows, for example. That is, a slurry composed of a matrix resin, a solvent, and an inorganic substance is applied onto a base material (porous membrane), passed through a poor solvent of the matrix resin and a parent solvent bath of the solvent, phase-separated, and then dried.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are impregnated with an electrolytic solution that is a liquid electrolyte.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics.
  • cyclic carbonate such as ethylene carbonate or propylene carbonate
  • the solvent in addition to these cyclic carbonates, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate. This is because high ionic conductivity can be obtained.
  • the solvent preferably further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
  • examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
  • a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
  • lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
  • Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
  • the neutral point moves to the inner side of the center point 21P of the positive electrode 21, so that a tensile stress acts on the positive electrode current collector 21A.
  • a crack or the like may occur in the positive electrode current collector 21A.
  • the stress that acts on the positive electrode 21 provided with the first positive electrode active material layer 21B having the recess 24 at the time of winding will be described.
  • the neutral point is shifted from the center point 21P of the positive electrode 21 to the second positive electrode active material layer 21C side.
  • the neutral point moves inward from the center point 21P and is located at or near the position of the positive electrode current collector 21A. Stress does not work or hardly works. Therefore, the occurrence of cracks or the like in the positive electrode current collector 21A is suppressed.
  • the positive electrode 21 is produced as follows. First, for example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP). A paste-like positive electrode mixture slurry is prepared. Next, this positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A. At this time, on one surface of the positive electrode current collector 21A, the coating thickness of the portion that becomes the second region R2 is applied thinner than the coating thickness of the portion that becomes the first region R1.
  • NMP N-methyl-2-pyrrolidone
  • the coating thickness is preferably adjusted so as to obtain a range of the above preferable area density ratio D2 / D1 and average thickness difference ⁇ T.
  • the solvent contained in the coating film is dried and compression-molded with a roll press or the like to form the first and second positive electrode active material layers 21B and 21C. Thereby, the positive electrode 21 which has 1st, 2nd area
  • the negative electrode 22 is produced as follows. First, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry Is made. Next, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A, the solvent is dried, and the first and second negative electrode active material layers 22B and 22C are formed by compression molding using a roll press machine or the like, The negative electrode 22 is produced.
  • a solvent such as N-methyl-2-pyrrolidone
  • the positive electrode lead 11 is attached to one end portion of the positive electrode current collector 21A by welding
  • the negative electrode lead 12 is attached to one end portion of the negative electrode current collector 22A by welding.
  • the positive electrode 21 and the negative electrode 22 are wound around the flat core via the separator 23 and wound many times in the longitudinal direction to produce the wound electrode body 20.
  • the directions of the main surfaces of the positive electrode 21 and the negative electrode 22 are set so that the first positive electrode active material layer 21B and the first negative electrode active material layer are located on the inner side surfaces of the positive electrode current collector 21A and the negative electrode current collector 22A, respectively. Set.
  • the winding position of the positive electrode 21 with respect to the flat core is adjusted so that the second region R2 is positioned at the rewind portion of the first positive electrode active material layer 21B.
  • the outer peripheral side end of the negative electrode 22 as the outermost peripheral electrode is fixed by a winding tape (not shown).
  • the wound electrode body 20 is sandwiched between flexible exterior members 30, and the outer peripheral edge except one side is heat-sealed into a bag shape and stored in the exterior member 30.
  • the adhesion film 31 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior member 30.
  • an electrolytic solution is prepared and injected into the exterior member 30 from one side that is not thermally fused.
  • the wound electrode body 20 is sealed by heat-sealing the one side in a vacuum atmosphere. Thereby, the battery 10 sheathed by the exterior member 30 is obtained.
  • the battery 10 is molded by heat pressing as necessary. More specifically, the battery 10 is heated at a temperature higher than normal temperature while being pressurized. Next, if necessary, a pressure plate or the like is pressed against the main surface of the battery 10 to press the battery 10 uniaxially.
  • the positive electrode 21 includes a positive electrode current collector 21A and a first positive electrode active material layer 21B provided on the inner surface of the positive electrode current collector 21A.
  • the first positive electrode active material layer 21B includes a first region R1 and a second region R2 having a lower area density than the first region R1, and the second region R2 is a rewind of the first positive electrode active material layer 21B.
  • the recess 24 is formed by adjusting the coating thickness of the positive electrode mixture slurry in the coating process. For this reason, it is suppressed that the 1st positive electrode active material layer 21B rises in the both sides of the recessed part 24.
  • the first positive electrode active material layer 21 ⁇ / b> B may be raised on both sides of the recess 24. When such a swell occurs, the thickness of the positive electrode 21 increases and the capacity density of the battery may decrease.
  • the present technology is applicable to any battery including a wound electrode body including an electrode wound in a flat shape.
  • the present technology can also be applied to a rectangular battery that accommodates a flat wound electrode body in a rectangular battery can.
  • the present technology is applied to a lithium ion secondary battery.
  • the present technology can also be applied to a secondary battery other than a lithium ion secondary battery and a primary battery.
  • the present technology is particularly effective when applied to a lithium ion secondary battery.
  • An electrolyte layer may be provided between the positive electrode 21 and the separator 23, and an electrolyte layer may be provided between the negative electrode 22 and the separator 23.
  • These electrolyte layers include an electrolytic solution and a polymer compound serving as a holding body that holds the electrolytic solution, and the polymer compound is swollen by the electrolytic solution.
  • the content ratio of the polymer compound can be adjusted as appropriate.
  • a gel electrolyte is preferable because high ion conductivity can be obtained and leakage of the battery 10 can be suppressed.
  • the electrolytic solution is the same as the electrolytic solution in one embodiment.
  • the polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, and polysiloxane.
  • polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable from the viewpoint of electrochemical stability.
  • the same inorganic substance as described in the description of the resin layer of the separator 23 in one embodiment may be included in the electrolyte layer. In this case, the heat resistance can be further improved.
  • the first negative electrode active material layer 22B has a first region and a second region having a lower area density than the first region.
  • the second region has the first negative electrode active material layer 22B.
  • the material layer 22B may be provided at the winding portion.
  • the average thickness difference ⁇ T between the average thickness T1 and the average thickness T2 of the negative electrode 22 in the second region can be the same as that in the positive electrode 21 in one embodiment.
  • the configuration in which the thickness of the first positive electrode active material layer 21B in the second region R2 is made thinner than the thickness of the first positive electrode active material layer 21B in the first region R1 has been described as an example.
  • the thicknesses of the first positive electrode active material layers 21B in the regions R1 and R2 may be equal or substantially equal, and only the area densities of the first positive electrode active material layers 21B in the first and second regions R1 and R2 may be different. Also in this case, it is possible to suppress the occurrence of cracks or the like in the winding portion of the positive electrode 21 during and after the positive electrode 21 is wound.
  • the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
  • the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
  • the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
  • the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
  • the electronic device 400 for example, a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistant: PDA), a display device (LCD, EL display, electronic paper, etc.), imaging Devices (eg, digital still cameras, digital video cameras, etc.), audio devices (eg, portable audio players), game devices, cordless phones, electronic books, electronic dictionaries, radios, headphones, navigation systems, memory cards, pacemakers, hearing aids, Electric tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights, etc. It is, but not such limited thereto.
  • the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
  • FIG. 5 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
  • As the secondary battery 301a a battery according to an embodiment or a modification thereof is used.
  • the battery pack 300 includes the assembled battery 301 including a plurality of secondary batteries 301 a
  • the battery pack 300 includes a single secondary battery 301 a instead of the assembled battery 301. It may be adopted.
  • the charging / discharging circuit 302 is a control unit that controls charging / discharging of the assembled battery 301. Specifically, during charging, the charging / discharging circuit 302 controls charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charging / discharging circuit 302 controls the discharging of the electronic device 400.
  • FIG. 6 schematically illustrates an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed.
  • the above-described power storage device of the present disclosure is applied to the battery 7208.
  • Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source.
  • An example of the power driving force conversion device 7203 is a motor.
  • the electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b.
  • the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary.
  • Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown).
  • Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
  • the battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
  • a series hybrid vehicle that runs on a motor using electric power generated by a generator driven by an engine or electric power stored once in a battery has been described as an example.
  • the present disclosure is also effective for a parallel hybrid vehicle that uses both the engine and motor outputs as the drive source, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable.
  • the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • the house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information.
  • Each device is connected by a power network 9009 and an information network 9012.
  • a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003.
  • the power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like.
  • the electric power consumption device 9005 includes an electric vehicle 9006.
  • the electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
  • the battery unit of the present disclosure described above is applied to the power storage device 9003.
  • the power storage device 9003 is composed of a secondary battery or a capacitor.
  • a lithium ion battery is used.
  • the lithium ion battery may be a stationary type or used in the electric vehicle 9006.
  • the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information on the house 9001 to an external power company or the like via the Internet.
  • the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
  • a communication method of the information network 9012 connected to the control device 9010 a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark), or the like.
  • a sensor network based on a wireless communication standard such as Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee (registered trademark) uses a physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 9010 is connected to an external server 9013.
  • the server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider.
  • Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • a control device 9010 that controls each unit is configured by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example.
  • the control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, various sensors 9011, the server 9013 and the information network 9012, for example, a function of adjusting the amount of commercial power used and the amount of power generation have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
  • control device 9010 is stored in the power storage device 9003.
  • control device 9010 may be stored in the smart meter 9007, or may be configured independently.
  • the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the positive electrode was produced as follows. First, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at a molar ratio of 0.5: 1, and then calcined in air at 900 ° C. for 5 hours, whereby lithium as a positive electrode active material. A cobalt composite oxide (LiCoO 2 ) was obtained.
  • a positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil (12 ⁇ m thick) and dried.
  • the average area density of the low area density region (second region R2) of the first positive electrode active material layer and the other normal area density region (first region R1) of the first positive electrode active material layer becomes the values shown in Table 1, respectively.
  • the coating thicknesses of the portions that become the low area density region and the normal area density region were adjusted.
  • a positive electrode current collector having a dried positive electrode mixture on both sides is compression-molded with a roll press so that the thickness of the first positive electrode active material layer in the normal area density region is a value shown in Table 1.
  • Example 1 The positive electrode mixture slurry was uniformly applied to the positive electrode current collector so that the entire first positive electrode active material layer became a normal area density region (first region R1) having an average area density shown in Table 1.
  • first region R1 a normal area density region having an average area density shown in Table 1.
  • a positive electrode current collector having a dried positive electrode mixture on both surfaces was compression-molded with a roll press so that the thickness of the first positive electrode active material layer was a value shown in Table 1. Except for this, a positive electrode was obtained in the same manner as in Example 1.
  • EC ethylene carbonate
  • PC propylene carbonate
  • Example 2 Ten positive electrodes of Examples 1 to 8 and Comparative Example 1 were prepared and tested according to the following procedure. First, a negative electrode in which a first negative electrode active material layer and a second negative electrode active material layer were formed on both surfaces of a negative electrode current collector was prepared. Next, the positive electrode of Examples 1 to 8 and Comparative Example 1 and the prepared negative electrode were wound around a flat core through a separator made of a porous polyethylene film having a thickness of 12 ⁇ m, and wound in the longitudinal direction. A flat wound electrode body was produced by attaching a winding tape to the outer periphery.
  • the wound electrode body was impregnated with the electrolytic solution, and after 30 minutes from the impregnation, the wound electrode body was disassembled, and the positive electrode was taken out. Then, after wiping the positive electrode with a waste cloth and allowing it to dry naturally for about 2 to 10 minutes, it is visually checked whether or not a crack or the like has occurred in the rewinding portion of the positive electrode. It was counted whether cracks or the like occurred in the positive electrode. The results are shown in Table 1.
  • Table 1 shows the configurations and evaluation results of the positive electrodes of Examples 1 to 8 and Comparative Example 1.
  • D1 Average area density of normal area density region (first region R1)
  • D2 Average area density of low area density region (second region R2)
  • D2 / D1 Area density ratio
  • T1 Normal area density region (first region R1)
  • T2 Average thickness of the positive electrode in the low area density region (second region R2)
  • T1-T2 Average thickness difference of the positive electrode
  • W Low area density region in the longitudinal direction of the positive electrode (second Width of region R2)
  • the area density ratio D2 / D1 between the average area density D1 of the normal area density region and the average area density D2 of the low area density region is set to less than 1, that is, the low area density region is used as the rewinding portion of the first positive electrode active material layer.
  • the gap By providing the gap, a gap where a crack or the like occurs in the positive electrode can be made narrower. Further, the smaller the area density ratio D2 / D1, the narrower the gap where cracks or the like occur in the positive electrode.
  • the area density ratio D2 / D1 is set to D2 / D1 ⁇ 0.8, the fracture gap can be particularly narrowed.
  • the present technology can also employ the following configurations.
  • (1) It has a strip-shaped electrode wound in a flat shape,
  • the electrode includes a current collector and an active material layer provided on an inner surface of the current collector,
  • the active material layer has a first region and a second region having a lower area density than the first region,
  • (2) The battery according to (1), wherein the thickness of the active material layer in the second region is thinner than the thickness of the active material layer in the first region.
  • (3) The battery according to (1) or (2), wherein the winding part provided with the second region is the first winding part on the innermost periphery of the active material layer.
  • the area density ratio D2 / D1 between the average area density D1 of the active material layer in the first region and the average area density D2 of the active material layer in the second region is such that 0 ⁇ D2 / D1 ⁇ 0.9.
  • a control device that performs information processing related to vehicle control based on information related to the battery.
  • An electric power system that receives supply of electric power from the battery.

Abstract

電池は、扁平状に巻回された帯状の電極を備える。電極は、集電体と、集電体の内側面に設けられた活物質層とを備える。活物質層は、第1領域と、この第1領域よりも面積密度が低い第2領域とを有し、第2領域は、活物質層の巻き返し部に設けられている。

Description

電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
 本技術は、扁平状に巻回された帯状の電極を備える電池、それを備える電池パック、電子機器、電動車両、蓄電装置および電力システムに関する。
 正極集電体上に正極活物質層が形成された正極と、負極集電体上に負極活物質層が形成された負極とが、セパレータを介して扁平状に巻回された電極体を備える巻回型電池が知られている。この巻回型電池では、活物質層の面積密度を向上することで、さらに電池を高容量化することが検討されている。
 しかしながら、活物質層の面積密度を向上すると、正極、負極およびセパレータを扁平状に巻回して電極体を作製する際に、正極および負極の巻き返し部にて正極集電体および負極集電体に亀裂または破断(以下「亀裂等」という。)が発生しやすくなる。この亀裂等は、正極および負極のうちでも、特に正極に発生しやすい。また、正極のうちでも、正極集電体の内側面に設けられた正極活物質層の最初の巻き返し部において、特に亀裂等が発生しやすい。
 特許文献1では、帯状の正極、負極およびセパレータからなる断面が小判状の電極群を構成するときの、極板の折損や活物質層の剥離・脱落を抑制する電池が提案されている。かかる電池では、内側面の活物質層上の折り畳み線を中心とする所定幅の領域に、筋状凹部が予め形成されている。また、筋状凹部の幅が折り畳み線を中心として左右それぞれ1.0mm以上、2.0mm以下の範囲であり、筋状凹部の深さが片面の活物質層の厚さの25.0%以上、62.5%以下の範囲であり、筋状凹部が60°以上、100°以下の範囲の断面がV字状の筋によって形成される。更に、筋状凹部の筋と筋との間のピッチが0.75mm以上、2.0mm以下の範囲であり、筋状凹部の折り畳み線に対する角度が45°以上、90°以下の範囲である。
特許3763233号公報
 しかしながら、特許文献1では、折り畳み部の内側面に形成される凹部は所定の深さの筋状の切り込みであり、活物質層の量は実質的に減っていないため、電極群の作製工程において亀裂等の発生を抑制する効果が低下する虞がある。
 本技術の目的は、電極に亀裂等が発生することを抑制できる電池、それを備える電池パック、電子機器、電動車両、蓄電装置および電力システムを提供することにある。
 上述の課題を解決するために、本技術の電池は、扁平状に巻回された帯状の電極を備え、電極は、集電体と、集電体の内側面に設けられた活物質層とを備え、活物質層は、第1領域と、この第1領域よりも面積密度が低い第2領域とを有し、第2領域は、活物質層の巻き返し部に設けられている。
 本技術の電池パック、電子機器、電動車両、蓄電装置および電力システムは、上述の電池を備えるものである。
 本技術によれば、電極に亀裂等が発生することを抑制できる。
図1は、本技術の一実施形態に係る電池の構成の一例を示す分解斜視図である。 図2は、図1のII線-II線に沿った断面図である。 図3Aは、正極の構成の一例を示す斜視図である。図3Bは、凹部の構成の一例を示す断面図である。 図4Aは、凹部を有していない正極の巻き返し部に作用する応力を説明するための断面図である。図4Bは、凹部を有する正極の巻き返し部に作用する応力を説明するための断面図である。 図5は、応用例としての電子機器の構成の一例を示すブロック図である。 図6は、応用例としての車両における蓄電システムの構成の一例を示す概略図である。 図7は、応用例としての住宅における蓄電システムの構成の一例を示す概略図である。 図8は、破損ギャップ評価に使用した器具の構成を示す斜視図である。 図9は、面積密度比と破損ギャップとの関係を示すグラフである。
 本技術の実施形態について以下の順序で説明する。
1 一実施形態(ラミネートフィルム型電池)
2 応用例1(電池パックおよび電子機器)
3 応用例2(車両における蓄電システム)
4 応用例3(住宅における蓄電システム)
<1 一実施形態>
[電池の構成]
 図1に示すように、本技術の一実施形態に係る非水電解質二次電池(以下単に「電池」という。)10は、いわゆるラミネートフィルム型電池であり、正極リード11および負極リード12が取り付けられた扁平状の巻回電極体20をフィルム状の外装部材30の内部に収容したものであり、小型化、軽量化および薄型化が可能となっている。
 正極リード11および負極リード12は、それぞれ、外装部材30の内部から外部に向かい例えば同一方向に導出されている。正極リード11および負極リード12は、例えば、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)またはステンレス等の金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
 外装部材30は、例えば、柔軟性を有するラミネートフィルムからなる。外装部材30は、例えば、熱融着樹脂層、金属層、表面保護層を順次積層した構成を有する。なお、熱融着樹脂層側の面が、巻回電極体20を収容する側の面となる。この熱融着樹脂層の材料としては、例えばポリプロピレン(PP)、ポリエチレン(PE)が挙げられる。金属層の材料としては、例えばアルミニウムが挙げられる。表面保護層の材料としては、例えばナイロン(Ny)が挙げられる。具体的には例えば、外装部材30は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材30は、例えば、熱融着樹脂層側と巻回電極体20とが対向するように配設され、各外縁部が融着または接着剤により互いに密着されている。外装部材30と正極リード11および負極リード12との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、正極リード11および負極リード12に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂により構成されている。
 なお、外装部材30は、上述したラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレン等の高分子フィルムまたは金属フィルムにより構成するようにしてもよい。あるいは、アルミニウム製フィルムを心材として、その片面または両面に高分子フィルムを積層したラミネートフィルムを用いてもよい。
 また、外装部材30としては、外観の美しさの点から、有色層をさらに備えるもの、および/または、熱融着樹脂層および表面保護層のうちから選ばれる少なくとも一種の層に着色材を含むものを用いてもよい。熱融着樹脂層と金属層との間、および表面保護層と金属層との間の少なくとも一方に接着層が設けられている場合には、その接着層が着色材を含むようにしてもよい。
 図2に示すように、電池素子としての巻回電極体20は、長尺状(帯状)を有する正極21と負極22とを同様に長尺状(帯状)を有するセパレータ23を介して積層し、扁平状かつ渦巻状に巻回したものである。扁平状に巻回された正極21および負極22は、通常、平坦部25と湾曲部26とを有している。外装部材30の内部には、電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。図2では、正極21が最内周電極となり、負極22が最外周電極となるように巻回された巻回電極体20が示されているが、負極22が最内周電極となり、正極21が最外周電極となるように巻回されていてもよい。負極22の最外周端部は、巻止テーブ(図示せず)により固定されている。
 以下、電池を構成する正極21、負極22、セパレータ23および電解液について順次説明する。
(正極)
 正極21は、図2に示すように、正極集電体21Aと、正極集電体21Aの内側面に設けられた第1正極活物質層21Bと、正極集電体21Aの外側面に設けられた第2正極活物質層21Cとを備える。ここで、内側、外側とは、巻回された状態にある正極集電体21Aにおいて内側、外側であることを意味している。正極21は、その最内周部に正極集電体21Aの両面が第1、第2正極活物質層21B、21Cに覆われずに露出した正極集電体露出部(図示せず)を有している。この正極集電体露出部に正極リード11が接続されている。
(正極集電体)
 正極集電体21Aは、例えば、アルミニウム、アルミニウム合金、ニッケルまたはステンレスなどの金属材料を含み、それらの金属のうちでもアルミニウムまたはアルミニウム合金を含んでいることが好ましい。正極集電体21Aの形状としては、例えば、箔状、板状またはメッシュ状等を用いることができる。
 正極集電体21Aの厚みは、好ましくは5μm以上20μm以下、より好ましくは8μm以上15μm以下である。厚みが5μm未満であると、第1、第2正極活物質層21B、21Cの厚みをより厚くできるが、正極集電体21Aが薄すぎるため、プレス工程にて正極21に亀裂が入る虞がある。また、巻回後に正極21に亀裂などが発生する虞もある。なお、上記正極集電体21Aの厚みは、マイクロメータにより測定された値である。
(正極活物質層)
 第1正極活物質層21Bは、図3Aに示すように、第1領域R1と、この第1領域R1よりも面積密度が低い第2領域R2とを有している。第1、第2領域R1、R2は、正極21の長手方向に並んで設けられている。図3Aでは、第1正極活物質層21Bが、1つの第2領域R2のみを有している構成が示されているが、2つ以上の第2領域R2を有していてもよい。
 第1領域R1は、正極21の幅方向(短手方向)に一様な幅を保持しつつ伸びており、正極21の一方の長辺から他方の長辺に渡って連続的に設けられている。正極21を巻回した状態において、第2領域R2は、図2に示すように、第1正極活物質層21Bの巻き返し部に設けられている。第1正極活物質層21Bの巻き返し部には応力が集中しやすいため、第2領域R2が設けられていないと、正極21が破断しやすくなる虞があるからである。
 後述するように、通常、第2領域R2の厚みは第1領域R1の厚みに比して薄くなっているため、第1正極活物質層21Bが第2領域R2を有しているか否かは、例えば以下のようにして確認することができる。まず、電池を完全放電させてから解体して正極21を取り出し、平坦状にした状態において、巻回電極体20の巻き返し部に相当する部分の第1正極活物質層21Bの厚みと、巻回電極体20の平坦部25に相当する部分の第1正極活物質層21Bの厚みとを形状測定器(例えばレーザー変位計)またはSEM(Scanning Electron Microscope)等により測定する。次に、両測定厚みに違いがあるか否かを確認することで、第1正極活物質層21Bが第2領域R2を有しているか否かを確認できる。
 第2領域R2が設けられる巻き返し部は、第1正極活物質層21Bの最内周の最初の巻き返し部であることが好ましく、第1正極活物質層21Bの最内周の両方の巻き返し部であることがより好ましい。第1正極活物質層21Bの最内周の最初(1番目)の巻き返し部には特に応力が特に集中しやすいため、第2領域R2が設けられていないと、正極21が特に破断しやすくなる虞があるからである。また、第1正極活物質層21Bの最内周の2番目の巻き返し部には、第1正極活物質層21Bの最内周の最初の巻き返し部に次いで応力が集中しやすいため、第2領域R2が設けられていないと、正極21が破断しやすくなる虞があるからである。
 第2領域R2は、図2中に二点鎖線にて示すように、第1正極活物質層21Bの最内周(1周目)の巻き返し部に加えて、第1正極活物質層21Bの2周目の巻き返し部にさらに設けられていることが好ましい。第1正極活物質層21Bの2周目の巻き返し部には第1正極活物質層21Bの最内周の巻き返し部に次いで応力が集中しやすいため、第2領域R2が設けられていないと、正極21が破断しやすくなる虞があるからである。
 ここで、巻き返し部とは、扁平状かつ渦巻状に巻回された第1正極活物質層21Bの湾曲部26のうちの頂部を意味し、第1正極活物質層21Bが折り曲げられるようにして巻き返されている場合には、その折り曲げ部分を意味する。
 第2領域R2は、図2中に実線にて示すように、第1正極活物質層21Bの巻き返し部に局所的に設けられていてもよいし、図2中に二点鎖線にて示すように、第1正極活物質層21Bの巻き返し部の外側まで広がって設けられていてもよい。但し、一般的な電池巻回機にて生じる巻きズレを考慮すると、第2領域R2は、第1正極活物質層21Bの巻き返し部の外側まで広がって設けられていることが好ましい。
 第2領域R2は、第1正極活物質層21Bの巻き返し部の外側まで広がり、かつ湾曲部26の範囲内に設けられていてもよいし、湾曲部26の外側まで設けられていてもよい。電池容量の低下を抑制する観点からすると、第1正極活物質層21Bの巻き返し部の外側まで広がり、かつ湾曲部26の範囲内に設けられていることが好ましい。
 第2領域R2の厚みは、図3A、図3Bに示すように、第1領域R1の厚みに比して薄くなっている。より具体的には、第2領域R2は、第1領域R1に対して窪んだ凹部24となっている。凹部24は、正極21の幅方向に一様な幅を保持しつつ伸びており、正極21の一方の長辺から他方の長辺に渡って連続的に設けられている。凹部24は、平坦状または曲面状などの底面を有していることが好ましい。凹部24が底面を有していないと(具体的には例えば凹部24がV字状の断面形状を有していると)、正極21を巻回した際に、凹部24の側面同士が当たって第1正極活物質層21Bが剥離または脱落する虞があるからである。
 凹部24の具体的な断面形状としては、台形状、四角形以上の多角形状、部分円形状、部分楕円形状、不定形状等が挙げられるが、これに限定されるものではない。ここで、凹部24の断面形状は、電池を完全放電させてから解体して正極21を取り出し、平坦状にした状態において、正極21の幅方向に垂直な方向に正極21を切断したときの凹部24の断面形状を意味する。
 凹部24は、正極21が巻回された状態において開いていることが好ましい。正極21を巻回した際に、凹部24が閉じると、凹部24の側面同士が当たって第1正極活物質層21Bが剥離または脱落する虞があるからである。
(第2領域の幅)
 正極21の長手方向における第2領域R2の幅Wは、好ましくは1mm以上20mm以下、より好ましくは5mm以上20mm以下、更により好ましくは10mm以上20mm以下、最も好ましくは15mm以上18mm以下である。第2領域R2の幅Wが1mm以上であると、亀裂等の発生を抑制する効果をより向上できる。第2領域R2の幅Wが5mm以上であると、一般的な電池巻回機を使用して巻回電極体20を作製した際に巻きズレが生じても、第2領域R2を巻き返し部に位置させることができる。一方、第2領域R2の幅Wが20mm以下であると、電池容量の低下を抑制できる。
(第2領域の幅の測定方法)
 第2領域R2の幅Wは、以下のようにして求められる値である。電池を完全放電させてから解体して正極21を取り出し、溶剤(例えばDMC(ジメチルカーボネート)等)で洗浄した後、充分に乾燥させる。次に、正極21を平坦状にした状態において、第2領域R2の幅を形状測定器(レーザー変位計)により測定する。なお、凹部24の側面が斜面や湾曲面等である場合には、正極21の厚さ方向に変位する凹部24の幅のうち最も広い部分の幅Wを第2領域R2の幅Wとして定義する。例えば、凹部24が図3Bに示すような台形状を有する場合には、凹部24の開口側の幅Wを第2領域R2の幅として定義する。
(第1領域の平均面積密度)
 第1領域R1における第1正極活物質層21Bの平均面積密度D1(mg/cm2)は、高容量化の観点から、好ましくは12.5mg/cm2以上、より好ましくは19.5mg/cm2以上である。このように第1正極活物質層21Bの平均面積密度D1(mg/cm2)を大きくすると、正極21の単位面積に詰め込まれる活物質重量が増大し、正極21が硬化する傾向にある。このため、上述のように第2領域R2が第1正極活物質層21Bの巻き返し部に設けられていないと、巻回電極体20の作製時に正極21の巻返し部分において亀裂などが特に発生しやすく、電池10の電池としての機能が損なわれる可能性が特に高くなる。また、正極21のうちでも、第1正極活物質層21Bの最内周の巻き返し部において亀裂や破断が発生することが特に多くなる。
 第1領域R1における第1正極活物質層21Bの平均面積密度D1(mg/cm2)は、電池10の薄型化の観点から、好ましくは32.5mg/cm2以下、より好ましくは30mg/cm2以下である。
 一方、正極21全体における第2正極活物質層21Cの平均面積密度は、ほぼ一様であり、第1領域R1における第1正極活物質層21Bの平均面積密度D1と同様の値に設定されていることが好ましい。
(第1領域の平均面積密度の測定方法)
 第1領域R1における第1正極活物質層の平均面積密度D1は、以下のようにして求められる値である。まず、電池を完全放電させてから解体して正極21を取り出し、溶剤(例えばDMC等)で洗浄した後、充分に乾燥させる。その後、巻回時に巻外側に来る第1正極活物質層21Bを溶剤(たとえばNMP(N-メチルエチルピロリドン))を染み込ませたウエス等ではがし取り、アルコールでNMPを拭き取った後、室温で乾燥させる。これにより、正極集電体21Aの内側面に第1正極活物質層21Bのみを有する正極21が得られる。
 次に、上述のようにして得られた正極21のうち第1領域R1に相当する部分をφ(直径)5mmの円形状に打ち抜き、質量(mg)(以下「質量A1」という。)を測定する。続いて、第1、第2正極活物質層21B、21Cが設けられておらず、両面とも正極集電体21Aの表面が露出した部分を、上記と同様にして打ち抜き、質量(mg)(以下「質量B」という。)を測定する。そして、下記の式により面積密度d1を算出する。
 面積密度d1(mg/cm2)=(質量A1-質量B)÷打ち抜き面積
 上記の測定を無作為に選び出された10個の電池に対して行い、得られた10個の電池の面積密度d1を単純に平均(算術平均)して、平均面積密度D1を算出する。
(面積密度比)
 第1領域R1の平均面積密度D1と第2領域R2の平均面積密度D2との面積密度比D2/D1が、好ましくは0<D2/D1≦0.9、より好ましくは0<D2/D1≦0.8の関係を満たしていることが好ましい。面積密度比D2/D1がD2/D1≦0.9のであると、第1正極活物質層21Bの巻き返し部において、亀裂等が発生することを更に抑制できる。面積密度比D2/D1=0であると、正極集電体21Aが露出するため、電池10の安全性が低下する。
(面積密度比の測定方法)
 面積密度比D2/D1は、以下のようにして求められる値である。まず、“第1正極活物質層の平均面積密度D1の測定方法”と同様にして、第1領域R1における第1正極活物質層21Bの平均面積密度D1を求める。また、第2領域R2の第1正極活物質層21Bを円形状に打ち抜く以外のことは、“第1正極活物質層の平均面積密度D1の測定方法”と同様にして、第2領域R2における第1正極活物質層21Bの平均面積密度D2を求める。但し、第2領域R2の幅が5mm以下の場合(すなわちφ5mmの円形状で打ち抜けない場合)には、第2領域R2の全体を切り抜くと共に、これと同様の形状に正極集電体21Aの両面露出部分も打ち抜いて、平均面積密度D2を求めるものとする。次に、上述のようにして求めた平均面積密度D1、D2を用いて、面積密度比D2/D1を求める。
(正極の平均厚み差)
 第1領域R1における正極21の平均厚みT1と第2領域R2における正極21の平均厚みT2との平均厚み差ΔT(=T1-T2)(図3参照)は、好ましくは6μm以上、より好ましくは9μm以上であることが好ましい。平均厚み差ΔTが6μm以上であると、第1正極活物質層21Bの巻き返し部において、亀裂等が発生することを更に抑制できる。
(正極の平均厚み差の測定方法)
 平均厚み差ΔTは、以下のようにして求められる値である。まず、無作為に選び出された10個の電池について第1領域R1における正極21の厚みt1をマイクロメータにより測定し、それらの測定値を単純に平均(算術平均)して、平均厚みT1を求める。次に、無作為に選び出された10個の電池について第2領域R2における正極21の厚みt2をマイクロメータにより測定し、それらの測定値を単純に平均(算術平均)して、平均厚みT2を求める。上述のようにして求めた平均厚みT1、T2を用いて正極21の平均厚み差ΔT(=T1-T2)を求める。
(材料)
 第1、第2正極活物質層21B、21Cは、例えば、電極反応物質であるリチウムを吸蔵および放出することが可能な正極活物質を含んでいる。第1、第2正極活物質層21B、21Cは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物またはリチウムを含む層間化合物等のリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられ、具体的には、LiNi0.50Co0.20Mn0.302、LiaCoO2(a≒1)、LibNiO2(b≒1)、Lic1Nic2Co1-c22(c1≒1,0<c2<1)、LidMn24(d≒1)またはLieFePO4(e≒1)等がある。
 LipNi(1-q-r)MnqM1r(2-y)z ・・・(A)
(但し、式(A)中、M1は、ニッケル、マンガンを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
 LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
 LifMn(1-g-h)NigM3h(2-j)k ・・・(C)
(但し、式(C)中、M3は、コバルト、マグネシウム(Mg)、アルミニウム、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄、銅、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
 LimNi(1-n)M4n(2-p)q ・・・(D)
(但し、式(D)中、M4は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
 LirCo(1-s)M5s(2-t)u ・・・(E)
(但し、式(E)中、M5は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
 LivMn2-wM6wxy ・・・(F)
(但し、式(F)中、M6は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
 LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムからなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
 リチウムを吸蔵および放出することが可能な正極材料としては、これらの他にも、MnO2、V25、V613、NiS、MoS等のリチウムを含まない無機化合物も挙げられる。
 リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記で例示した正極材料は、任意の組み合わせで2種以上混合されてもよい。
 結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、ならびにこれら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
 導電剤としては、例えば、黒鉛、カーボンブラックまたはケッチェンブラック等の炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料または導電性高分子材料等を用いるようにしてもよい。
(負極)
 負極22は、図2に示すように、負極集電体22Aと、負極集電体22Aの内側面に設けられた第1負極活物質層22Bと、負極集電体22Aの外側面に設けられた第2負極活物質層22Cとを備える。正極21および負極22は、第2正極活物質層21Cと第1負極活物質層22Bとが対向するように配置されている。負極22は、その最内周部に負極集電体22Aの両面が第1、第2負極活物質層22B、22Cに覆われずに露出した負極集電体露出部(図示せず)を有している。この負極集電体露出部に負極リード12が接続されている。
(負極集電体)
 負極集電体22Aは、例えば、銅、ニッケルまたはステンレス等の金属を含んでいる。負極集電体22Aの形状としては、例えば、箔状、板状またはメッシュ状等を用いることができる。
(負極活物質層)
 第1、第2負極活物質層22B、22Cは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。第1、第2負極活物質層22B、22Cは、必要に応じて結着剤や導電剤等の添加剤をさらに含んでいてもよい。
 なお、この非水電解質電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークス等がある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム、ホウ素、アルミニウム、チタン、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)または白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 負極活物質としては、短周期型周期表における4B族の金属元素または半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
 スズの化合物またはケイ素の化合物としては、例えば、酸素または炭素を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
 中でも、Sn系の負極活物質としては、コバルトと、スズと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
 このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン(P)、ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
 なお、このSnCoC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズ等が凝集または結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集または結晶化を抑制することができるからである。
 元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
 なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物等も挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)等のチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデン等が挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等が挙げられる。
 結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロース等の樹脂材料、ならびにこれら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。導電剤としては、第1、第2正極活物質層21B、21Cと同様の炭素材料等を用いることができる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレン等の樹脂製の多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。他にも、化学的安定性を備えた樹脂を、ポリエチレンあるいはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層とを順次に積層した3層以上の構造を有していてもよい。
 また、セパレータ23は、基材である多孔質膜の片面または両面に樹脂層が設けられていてもよい。樹脂層は、無機物が担持された多孔性のマトリックス樹脂層である。これにより、耐酸化性を得ることができ、セパレータ23の劣化を抑制できる。マトリックス樹脂としては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレン等を用いることができ、また、これらの共重合体を用いることも可能である。
 無機物としては、金属、半導体、またはこれらの酸化物、窒化物を挙げることができる。例えば、金属としては、アルミニウム、チタン等を挙げることができ、半導体としては、ケイ素、ホウ素等を挙げることができる。また、無機物としては、実質的に導電性がなく、熱容量の大きいものが好ましい。熱容量が大きいと、電流発熱時のヒートシンクとして有用であり、電池の熱暴走をより抑制することが可能になるからである。このような無機物としては、アルミナ(Al23)、ベーマイト(アルミナの一水和物)、タルク、窒化ホウ素(BN)、窒化アルミニウム(AlN)、二酸化チタン(TiO2)、酸化ケイ素(SiOx)等の酸化物または窒化物が挙げられる。なお、上述した無機物は、基材としての多孔質膜に含有されていてもよい。
 無機物の粒径としては、1nm~10μmの範囲内が好ましい。1nmより小さいと、入手が困難であり、また入手できたとしてもコスト的に見合わない。10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低くなる。
 樹脂層は、例えば、次のようにして形成することができる。すなわち、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させる。
(電解液)
 正極21、負極22およびセパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
 溶媒としては、炭酸エチレンあるいは炭酸プロピレン等の環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
 溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピル等の鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 溶媒としては、さらにまた、2,4-ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
 これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチル等が挙げられる。
 なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBr等が挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
[電池の充放電時の動作]
 上述の構成を有する電池10では、充電を行うと、例えば、第1、第2正極活物質層21B、21Cからリチウムイオンが放出され、電解液を介して第1、第2負極活物質層22B、22Cに吸蔵される。また、放電を行うと、例えば、第1、第2負極活物質層22B、22Cからリチウムイオンが放出され、電解液を介して第1、第2正極活物質層21B、21Cに吸蔵される。
[巻回時に作用する応力]
 まず、図4Aを参照して、凹部24を有していない第1正極活物質層27Bが設けられた正極27に巻回時に作用する応力について説明する。正極21が平坦な状態(正極21に応力が作用しない状態)では、中立点は正極21の中心点21Pに位置している。一方、正極27が巻き返された状態では、正極21の巻き返し部において、第1正極活物質層27Bは圧縮応力を受けるのに対して、正極集電体21Aの外周面に設けられた第2正極活物質層21Cは引っ張り応力を受ける。この状態の場合、中立点は正極21の中心点21Pよりも内側に移動するため、正極集電体21Aには引っ張り応力が作用する。この応力の大きさによっては、正極集電体21Aに亀裂等が発生することがある。
 次に、図4Bを参照して、凹部24を有する第1正極活物質層21Bが設けられた正極21に巻回時に作用する応力について説明する。正極21が平坦な状態(正極21に応力がない状態)では、中立点は正極21の中心点21Pより第2正極活物質層21C側にずれて位置している。一方、正極21が巻き返された状態では、中立点は上記の中心点21Pよりも内側に移動し、正極集電体21Aの位置またはその近傍に位置するため、正極集電体21Aには引っ張り応力が作用しないか、もしくはほとんど作用しない。したがって、正極集電体21Aに亀裂等が発生することが抑制される。
[電池の製造方法]
 次に、本技術の一実施形態に係る電池の製造方法の一例について説明する。
(正極の作製工程)
 正極21を次にようにして作製する。まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aの両面に塗布する。この際、正極集電体21Aの一方の面において、第2領域R2となる部分の塗布厚を第1領域R1となる部分の塗布厚に比べて薄く塗布する。塗布厚は、上記の好ましい面積密度比D2/D1および平均厚み差ΔTの範囲が得られるように調製されることが好ましい。次いで、塗膜中に含まれる溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより第1、第2正極活物質層21B、21Cを形成する。これにより、第1、第2領域R1、R2を第1正極活物質層21Bに有する正極21が作製される。
(負極の作製工程)
 負極22を次にようにして作製する。まず、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aの両面に塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより第1、第2負極活物質層22B、22Cを形成し、負極22を作製する。
(巻回工程)
 次に、正極集電体21Aの一方の端部に正極リード11を溶接により取り付けると共に、負極集電体22Aの一方の端部に負極リード12を溶接により取り付ける。次に、正極21と負極22とをセパレータ23を介して扁平状の巻芯の周囲に巻き付けて、長手方向に多数回巻回して巻回電極体20を作製する。この際、第1正極活物質層21B、第1負極活物質層がそれぞれ正極集電体21A、負極集電体22Aの内側面に位置するように、正極21および負極22の主面の方向を設定する。また、第1正極活物質層21Bの巻き返し部に第2領域R2が位置するように、扁平状の巻芯に対する正極21の巻き付け位置を調整する。次に、巻止テーブ(図示せず)により最外周電極としての負極22の外周側端部を固定する。
(封止工程)
 次に、例えば、柔軟性を有する外装部材30の間に巻回電極体20を挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材30の内部に収納する。その際、正極リード11および負極リード12と外装部材30との間には密着フィルム31を挿入する。次に、電解液を用意し、熱融着していない一辺から外装部材30の内部に注入する。次に、上記一辺を真空雰囲気下で熱融着して巻回電極体20を密封する。これにより、外装部材30により外装された電池10が得られる。
(プレス工程)
 次に、必要に応じて、ヒートプレスにより電池10を成型する。より具体的には、電池10を加圧しながら、常温より高い温度で加熱する。次に、必要に応じて、電池10の主面に加圧板等を押しつけて、電池10を一軸加圧する。
[効果]
 一実施形態に係る電池10では、正極21は、正極集電体21Aと、正極集電体21Aの内側面に設けられた第1正極活物質層21Bとを備える。第1正極活物質層21Bは、第1領域R1と、この第1領域R1よりも面積密度が低い第2領域R2とを有し、第2領域R2は、第1正極活物質層21Bの巻き返し部に設けられている。これにより、正極21の巻回時および巻回後(例えば電池10のプレス時等)に正極21の巻き返し部に亀裂等が発生することを抑制できる。
 一実施形態に係る電池の製造方法では、塗布工程において正極合剤スラリーの塗布厚を調整することで、凹部24を形成している。このため、凹部24の両サイドにおいて第1正極活物質層21Bが盛り上がりってしまうことが抑制される。これに対して、プレス工程にて凹部24を形成した場合には、凹部24の両サイドにおいて第1正極活物質層21Bが盛り上がってしまう虞がある。このような盛り上がりが発生すると、正極21の厚みが増加して電池の容量密度が低下してしまう虞がある。
[変形例]
 一実施形態では、ラミネートフィルム型電池に本技術を適用する例について説明したが、本技術は扁平状に巻回された電極を備える巻回電極体を備える電池であれば適用可能である。例えば、扁平状の巻回電極体を角型電池缶に収容する角型電池等に対しても本技術を適用可能である。
 一実施形態では、リチウムイオン二次電池に対して本技術を適用した例について説明したが、本技術はリチウムイオン二次電池以外の二次電池、および一次電池に対しても適用可能である。但し、本技術はリチウムイオン二次電池に適用することが特に有効である。
 正極21とセパレータ23との間に電解質層が設けられていると共に、負極22とセパレータ23との間に電解質層が設けられていてもよい。これらの電解質層は、電解液と、この電解液を保持する保持体となる高分子化合物とを含み、高分子化合物は電解液により膨潤されている。高分子化合物の含有比率は適宜調整可能である。特にゲル状の電解質とする場合には、高いイオン伝導率を得ることができると共に、電池10の漏液を抑制することができるので好ましい。
 電解液は、一実施形態における電解液と同様である。高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンまたはポリカーボネートが挙げられる。特に電気化学的な安定性の点からはポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドが好ましい。なお、一実施形態にてセパレータ23の樹脂層の説明で述べたのと同様の無機物が、電解質層に含まれていてもよい。この場合、より耐熱性を向上できる。
 第1負極活物質層22Bは、第1領域と、この第1領域よりも面積密度が低い第2領域とを有し、負極22を巻回した状態において、第2領域が、第1負極活物質層22Bの巻き返し部に設けられていてもよい。この場合、第2領域を設ける位置、第2領域の構成、第1領域の平均面積密度D1と第2領域の平均面積密度D2との面積密度比D2/D1、および第1領域における負極22の平均厚みT1と第2領域における負極22の平均厚みT2との平均厚み差ΔT等は、一実施形態における正極21におけるものと同様とすることができる。
 一実施形態では、第2領域R2の第1正極活物質層21Bの厚みを第1領域R1の第1正極活物質層21Bの厚みより薄くする構成を例として説明したが、第1、第2領域R1、R2の第1正極活物質層21Bの厚みが等しくまたはほぼ等しく、第1、第2領域R1、R2の第1正極活物質層21Bの面積密度のみが異なるようにしてもよい。この場合にも、正極21の巻回時および巻回後に正極21の巻き返し部に亀裂等が発生することを抑制できる。
<2 応用例1>
「応用例としての電池パックおよび電子機器」
 応用例1では、一実施形態またはその変形例に係る電池を備える電池パックおよび電子機器について説明する。
[電池パックおよび電子機器の構成]
 以下、図5を参照して、応用例としての電池パック300および電子機器400の一構成例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
 電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD、ELディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられるが、これに限定されるものでなない。
(電子回路)
 電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部等を備え、電子機器400の全体を制御する。
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図5では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、一実施形態またはその変形例に係る電池が用いられる。
 ここでは、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合について説明するが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。
 充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
<3.応用例2>
「応用例としての車両における蓄電システム」
 本開示を車両用の蓄電システムに適用した例について、図6を参照して説明する。図6に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。バッテリー7208に対して、上述した本開示の蓄電装置が適用される。
 ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モータである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モータでも直流モータでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。
 バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、二次電池に関する情報に基いて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力がいずれも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。
 以上、本開示に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本開示に係る技術は、以上説明した構成のうち、バッテリー7208に好適に適用され得る。
<4.応用例3>
「応用例としての住宅における蓄電システム」
 本開示を住宅用の蓄電システムに適用した例について、図7を参照して説明する。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサー9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。
 蓄電装置9003に対して、上述した本開示のバッテリユニットが適用される。蓄電装置9003は、二次電池又はキャパシタから構成されている。例えば、リチウムイオン電池によって構成されている。リチウムイオン電池は、定置型であっても、電動車両9006で使用されるものでも良い。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。
 各種のセンサー9011は、例えば人感センサー、照度センサー、物体検知センサー、消費電力センサー、振動センサー、接触センサー、温度センサー、赤外線センサー等である。各種センサー9011により取得された情報は、制御装置9010に送信される。センサー9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。
 パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBee(登録商標)は、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
 各部を制御する制御装置9010は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサー9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
 以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
 以上、本開示に係る技術が適用され得る蓄電システム9100の一例について説明した。本開示に係る技術は、以上説明した構成のうち、蓄電装置9003が有する二次電池に好適に適用され得る。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
 本実施例において、平均面積密度D1、D2、面積密度比D2/D1、平均厚みT1、T2、平均厚み差ΔT(=T1-T2)および幅Wは、上述の一実施形態にて説明した測定方法により求められた値である。
[実施例1~8]
 正極を次にようにして作製した。まず、炭酸リチウム(Li2CO3)と炭酸コバルト(CoCO3)とを0.5:1のモル比で混合したのち、空気中において900℃で5時間焼成することにより、正極活物質としてリチウムコバルト複合酸化物(LiCoO2)を得た。次に、上述のようにして得られたリチウムコバルト複合酸化物91質量部と、導電剤としてグラファイト6質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合することにより正極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。
 次に、帯状のアルミニウム箔(12μm厚)からなる正極集電体の両面に正極合剤スラリーを塗布して乾燥させた。この際、第1正極活物質層の低面積密度領域(第2領域R2)、およびそれ以外の通常面積密度領域(第1領域R1)の平均面積密度がそれぞれ表1に示す値となるように、低面積密度領域、および通常面積密度領域となる部分の塗布厚を調整した。その後、乾燥した正極合剤を両面に有する正極集電体を、通常面積密度領域の第1正極活物質層の厚みが表1に示す値となるように、ロールプレス機で圧縮成型することにより、第1、第2正極活物質層を形成して正極を得たのち、それを所定の幅にスリットした。以上により、目的とする正極が得られた。
[比較例1]
 第1正極活物質層の全体が表1に示す平均面積密度を有する通常面積密度領域(第1領域R1)となるように、正極合剤スラリーを正極集電体に一様に塗布した。また、乾燥した正極合剤を両面に有する正極集電体を、第1正極活物質層の厚みが表1に示す値となるように、ロールプレス機で圧縮成型した。これ以外のことは実施例1と同様にして正極を得た。
[評価]
 上述のようにして得られた実施例1~8、比較例1の正極を使用して、下記の2通りの試験を実施して、巻回電極体にしたときの巻き返し部(湾曲部分)の耐破損性を評価した。
(試験1)
 低面積密度領域を有する実施例1~8の正極を使用して以下の手順で試験を行った。まず、実施例1~8の帯状の正極を、第1正極活物質層の低面積密度領域が中心にくるように1.5cm×5.5cmの矩形状にカットして試験サンプルを作製した。次に、作製した試験サンプルを溶媒に30分浸漬させたのち、ウエスで拭き取り2~10分間程度、自然乾燥させた。なお、溶媒としては、炭酸エチレン(EC)と炭酸プロピレン(PC)とを、質量比がEC:PC=1:1となるようにして混合した混合溶媒を用いた。
 次に、図8に示す器具を用いて以下のようにして試験を行った。まず、低面積密度領域が内側となり、かつ低面積密度領域で試験サンプル40が巻き返されるようにして、2枚のガラス板41、42で挟み込んだのち、一方のガラス板42上にローラーを押し付けた。この際、シム43、44の厚みにより2枚のガラス板41、42間のギャップを所定値に設定した。その後、試験サンプル40の巻き返し部に亀裂等が発生しているか否かを目視により確認した。この試験をガラス板41、42間のギャップ(すなわちシム43、44の厚み)を変更して繰り返し行い、試験サンプル40の巻き返し部に亀裂等が発生するギャップを求めた。その結果を表1および図9に示す。なお、表1および図9中、“破損ギャップ”とは、亀裂等が発生するギャップを意味する。
 低面積密度領域を有していない比較例1の正極については、帯状の正極を任意の位置で1.5cm×5.5cmの矩形状にカットする以外は、上記の実施例1~8と同様の手順にて試験を行い、試験サンプル40の巻き返し部に亀裂等が発生するギャップを求めた。
(試験2)
 実施例1~8、比較例1の正極をそれぞれ10個準備し、以下の手順で試験を行った。まず、負極集電体の両面にそれぞれ第1負極活物質層、第2負極活物質層が形成された負極を準備した。次に、実施例1~8、比較例1の正極と準備した負極とを、厚み12μmの多孔質ポリエチレンフィルムよりなるセパレータを介して扁平状の巻芯に巻き付け、長手方向に巻回して、最外周部に巻止テープを貼り付けることにより、扁平形状の巻回電極体を作製した。続いて、巻回電極体に電解液を含浸させ、含浸から30分経過後に巻回電極体を解体し、正極を取り出した。そして、正極をウエスで拭き取り2~10分間程度、自然乾燥させたのち、正極の巻き返し部で亀裂等が発生しているか否かを目視により確認し、同一構成の10個の正極のうち、いくつの正極に亀裂等が発生しているかをカウントした。その結果を表1に示す。
(試験結果)
 表1は、実施例1~8、比較例1の正極の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 D1:通常面積密度領域(第1領域R1)の平均面積密度
 D2:低面積密度領域(第2領域R2)の平均面積密度
 D2/D1:面積密度比
 T1:通常面積密度領域(第1領域R1)の正極の平均厚み
 T2:低面積密度領域(第2領域R2)の正極の平均厚み
 ΔT(=T1-T2):正極の平均厚み差
 W:正極の長手方向における低面積密度領域(第2領域R2)の幅
 試験1の結果(表1、図9)から以下のことがわかる。通常面積密度領域の平均面積密度D1と低面積密度領域の平均面積密度D2との面積密度比D2/D1を1未満にすること、すなわち低面積密度領域を第1正極活物質層の巻き返し部に設けることにより、正極に亀裂等が発生するギャップをより狭くできる。また、面積密度比D2/D1を小さくするほど、正極に亀裂等が発生するギャップをより狭くできる。面積密度比D2/D1をD2/D1≦0.8とした場合に、破断ギャップを特に狭くできる。
 試験2の結果(表1)から以下のことがわかる。第1正極活物質層の最初の巻き返し部に低面積密度領域を設けることで、巻回電極体を実際に作製した場合にも、正極の最初の巻き返し部分に亀裂等が発生することを抑制できる。面積密度比D2/D1をD2/D1≦0.9とした場合に、亀裂等の発生数を更に低減できる。面積密度比D2/D1をD2/D1≦0.8とした場合に、亀裂等の発生数が0となり、亀裂等の発生を抑制する効果が特に顕著に発現する。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 扁平状に巻回された帯状の電極を備え、
 前記電極は、集電体と、前記集電体の内側面に設けられた活物質層とを備え、
 前記活物質層は、第1領域と、該第1領域よりも面積密度が低い第2領域とを有し、
 前記第2領域は、前記活物質層の巻き返し部に設けられている電池。
(2)
 前記第2領域の活物質層の厚みは、前記第1領域の活物質層の厚みに比して薄い(1)に記載の電池。
(3)
 前記第2領域が設けられる巻き返し部は、前記活物質層の最内周の最初の巻き返し部である(1)または(2)に電池。
(4)
 前記第2領域が設けられる巻き返し部は、前記活物質層の最内周の両方の巻き返し部である(1)または(2)に記載の電池。
(5)
 前記第2領域が設けられる巻き返し部は、前記活物質層の1周目および2周目の巻き返し部である(1)または(2)に記載の電池。
(6)
 前記第1領域における前記活物質層の平均面積密度D1と前記第2領域における前記活物質層の平均面積密度D2との面積密度比D2/D1が、0<D2/D1≦0.9の関係を満たす(1)から(5)のいずれかに記載の電池。
(7)
 前記電極の長手方向における前記第2領域の幅は、1mm以上20mm以下である(1)から(6)のいずれかに記載の電池。
(8)
 前記電極の長手方向における前記第2領域の幅は、5mm以上20mm以下である(1)から(7)のいずれかに記載の電池。
(9)
 前記電極は、正極である(1)から(8)のいずれかに記載の電池。
(10)
 前記集電体は、アルミニウムまたはアルミニウム合金を含み、
 前記集電体の厚みは、8μm以上15μm以下である(9)に記載の電池。
(11)
 前記第1領域R1における前記活物質層の平均面積密度は、12.5mg/cm2以上である(9)または(10)に記載の電池。
(12)
 前記第2領域は、底面を有する凹部である(1)から(11)のいずれかに記載の電池。
(13)
 前記第2領域は、凹部であり、
 前記凹部は、前記正極が巻回された状態において開いている(1)から(11)のいずれかに記載の電池。
(14)
 (1)から(13)のいずれかに記載の電池と、
 前記電池を制御する制御部と、
 を備える電池パック。
(15)
 (1)から(13)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電子機器。
(16)
 (1)から(13)のいずれかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
 を備える電動車両。
(17)
 (1)から(13)のいずれかに記載の電池を備え、
 前記電池に接続される電子機器に電力を供給する蓄電装置。
(18)
 (1)から(13)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電力システム。
 10  電池
 11  正極リード
 12  負極リード
 20  巻回電極体
 21  正極
 21A  正極集電体
 21B  第1正極活物質層
 21C  第2正極活物質層
 22  負極
 22A  負極集電体
 22B  第1負極活物質層
 22C  第2負極活物質層
 23  セパレータ
 24  凹部
 25  平坦部
 26  湾曲部
 30  外装部材
 31  密着フィルム
 R1  第1領域
 R2  第2領域

Claims (18)

  1.  扁平状に巻回された帯状の電極を備え、
     前記電極は、集電体と、前記集電体の内側面に設けられた活物質層とを備え、
     前記活物質層は、第1領域と、該第1領域よりも面積密度が低い第2領域とを有し、
     前記第2領域は、前記活物質層の巻き返し部に設けられている電池。
  2.  前記第2領域の活物質層の厚みは、前記第1領域の活物質層の厚みに比して薄い請求項1に記載の電池。
  3.  前記第2領域が設けられる巻き返し部は、前記活物質層の最内周の最初の巻き返し部である請求項1に電池。
  4.  前記第2領域が設けられる巻き返し部は、前記活物質層の最内周の両方の巻き返し部である請求項1に記載の電池。
  5.  前記第2領域が設けられる巻き返し部は、前記活物質層の1周目および2周目の巻き返し部である請求項1に記載の電池。
  6.  前記第1領域における前記活物質層の平均面積密度D1と前記第2領域における前記活物質層の平均面積密度D2との面積密度比D2/D1が、0<D2/D1≦0.9の関係を満たす請求項1に記載の電池。
  7.  前記電極の長手方向における前記第2領域の幅は、1mm以上20mm以下である請求項1に記載の電池。
  8.  前記電極の長手方向における前記第2領域の幅は、5mm以上20mm以下である請求項1に記載の電池。
  9.  前記電極は、正極である請求項1に記載の電池。
  10.  前記集電体は、アルミニウムまたはアルミニウム合金を含み、
     前記集電体の厚みは、8μm以上15μm以下である請求項9に記載の電池。
  11.  前記第1領域R1における前記活物質層の平均面積密度は、12.5mg/cm2以上である請求項9に記載の電池。
  12.  前記第2領域は、底面を有する凹部である請求項1に記載の電池。
  13.  前記第2領域は、凹部であり、
     前記凹部は、前記正極が巻回された状態において開いている請求項1に記載の電池。
  14.  請求項1に記載の電池と、
     前記電池を制御する制御部と、
     を備える電池パック。
  15.  請求項1に記載の電池を備え、
     前記電池から電力の供給を受ける電子機器。
  16.  請求項1に記載の電池と、
     前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
     を備える電動車両。
  17.  請求項1に記載の電池を備え、
     前記電池に接続される電子機器に電力を供給する蓄電装置。
  18.  請求項1に記載の電池を備え、
     前記電池から電力の供給を受ける電力システム。
PCT/JP2017/023068 2016-08-31 2017-06-22 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム WO2018042842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780050044.7A CN109565033A (zh) 2016-08-31 2017-06-22 电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
JP2018536975A JPWO2018042842A1 (ja) 2016-08-31 2017-06-22 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US16/287,595 US10985409B2 (en) 2016-08-31 2019-02-27 Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169674 2016-08-31
JP2016169674 2016-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/287,595 Continuation US10985409B2 (en) 2016-08-31 2019-02-27 Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system

Publications (1)

Publication Number Publication Date
WO2018042842A1 true WO2018042842A1 (ja) 2018-03-08

Family

ID=61301034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023068 WO2018042842A1 (ja) 2016-08-31 2017-06-22 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Country Status (4)

Country Link
US (1) US10985409B2 (ja)
JP (1) JPWO2018042842A1 (ja)
CN (1) CN109565033A (ja)
WO (1) WO2018042842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044085A (ja) * 2019-09-06 2021-03-18 株式会社Gsユアサ 蓄電素子
WO2023063008A1 (ja) * 2021-10-11 2023-04-20 株式会社村田製作所 二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676506B (zh) * 2019-10-23 2020-10-09 中兴高能技术有限责任公司 电芯的制作方法、电芯和电池
CN112750977B (zh) * 2020-12-30 2022-04-15 宁德新能源科技有限公司 电极极片、电极组件、电化学装置、电子装置及制备方法
EP4283701A1 (en) * 2021-01-22 2023-11-29 Ningde Amperex Technology Limited Pole piece, secondary battery, and electronic device
CN115210925A (zh) * 2021-02-04 2022-10-18 宁德时代新能源科技股份有限公司 电极组件及其制造方法和制造系统、电池单体以及电池
EP4343917A1 (en) * 2021-05-25 2024-03-27 Ningde Amperex Technology Ltd. Battery and electronic device
CN114784230B (zh) * 2022-03-29 2023-12-12 东莞锂威能源科技有限公司 一种改善软包方形电池析锂的方法
CN114613935A (zh) * 2022-03-31 2022-06-10 珠海冠宇电池股份有限公司 一种锂离子电池
CN114583289A (zh) * 2022-03-31 2022-06-03 珠海冠宇电池股份有限公司 一种锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130035A (ja) * 1994-09-07 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JP2003045474A (ja) * 2001-08-03 2003-02-14 Nec Mobile Energy Kk 密閉型電池
JP2010080427A (ja) * 2008-05-22 2010-04-08 Panasonic Corp 二次電池用電極群およびこれを用いた二次電池
JP2013171669A (ja) * 2012-02-20 2013-09-02 Toyota Industries Corp 蓄電装置及び車両
WO2014024425A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電池パックとその製造方法、及びこれを備える電動車両並びに蓄電装置
JP2016181443A (ja) * 2015-03-24 2016-10-13 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037171A2 (en) * 2010-09-13 2012-03-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP5708934B2 (ja) * 2011-09-27 2015-04-30 三菱自動車工業株式会社 二次電池
JP6095961B2 (ja) * 2011-12-06 2017-03-15 株式会社半導体エネルギー研究所 角形リチウム二次電池
JPWO2013108510A1 (ja) * 2012-01-18 2015-05-11 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130035A (ja) * 1994-09-07 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JP2003045474A (ja) * 2001-08-03 2003-02-14 Nec Mobile Energy Kk 密閉型電池
JP2010080427A (ja) * 2008-05-22 2010-04-08 Panasonic Corp 二次電池用電極群およびこれを用いた二次電池
JP2013171669A (ja) * 2012-02-20 2013-09-02 Toyota Industries Corp 蓄電装置及び車両
WO2014024425A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電池パックとその製造方法、及びこれを備える電動車両並びに蓄電装置
JP2016181443A (ja) * 2015-03-24 2016-10-13 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044085A (ja) * 2019-09-06 2021-03-18 株式会社Gsユアサ 蓄電素子
JP7352857B2 (ja) 2019-09-06 2023-09-29 株式会社Gsユアサ 蓄電素子
WO2023063008A1 (ja) * 2021-10-11 2023-04-20 株式会社村田製作所 二次電池

Also Published As

Publication number Publication date
JPWO2018042842A1 (ja) 2019-03-14
CN109565033A (zh) 2019-04-02
US20190198935A1 (en) 2019-06-27
US10985409B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
KR102170005B1 (ko) 전지, 전지 팩, 전자기기, 전동차량, 축전장치 및 전력 시스템
US10985409B2 (en) Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system
JP6015676B2 (ja) セパレータ、非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102105718B1 (ko) 전지, 전극, 전지 팩, 전자 기기, 전동 차량, 축전 장치, 및 전력 시스템
JP5915804B2 (ja) 二次電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5915806B2 (ja) 二次電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013137984A (ja) セパレータおよび非水電解質電池
US11631901B2 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
WO2018168075A1 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018012528A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2017195480A1 (ja) フィルム外装型電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6554978B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US11764408B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US11335958B2 (en) Battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2018198967A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2020013798A (ja) 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845852

Country of ref document: EP

Kind code of ref document: A1