WO2018042777A1 - 電池、蓄電装置および電動車両 - Google Patents

電池、蓄電装置および電動車両 Download PDF

Info

Publication number
WO2018042777A1
WO2018042777A1 PCT/JP2017/019335 JP2017019335W WO2018042777A1 WO 2018042777 A1 WO2018042777 A1 WO 2018042777A1 JP 2017019335 W JP2017019335 W JP 2017019335W WO 2018042777 A1 WO2018042777 A1 WO 2018042777A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusions
battery
protrusion
circumference
battery according
Prior art date
Application number
PCT/JP2017/019335
Other languages
English (en)
French (fr)
Inventor
鈴木 和彦
範昭 國分
袖山 国雄
森 敬郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018536939A priority Critical patent/JP6699736B2/ja
Priority to CN201780039389.2A priority patent/CN109417143B/zh
Publication of WO2018042777A1 publication Critical patent/WO2018042777A1/ja
Priority to US16/210,575 priority patent/US10897031B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery, a power storage device, and an electric vehicle.
  • Secondary batteries can be charged and discharged repeatedly, unlike dry batteries (primary batteries).
  • the secondary battery since the secondary battery can be increased in capacity, its application range has been expanded in recent years, such as portable electronic devices, hybrid cars, electric tools, and the like.
  • lithium ion secondary batteries are widely used because of their high operating voltage and high energy density per unit mass.
  • the lithium ion secondary battery is divided into a can shape and a pouch shape according to the shape of the exterior material, and the can shape is divided into a cylindrical shape and a square shape according to the shape of the battery can.
  • a lithium ion secondary battery is provided with a safety mechanism that operates when the internal pressure of the battery exceeds a predetermined level.
  • Patent Document 1 below describes a safety mechanism provided in a cylindrical lithium ion secondary battery.
  • Safety mechanisms are usually composed of multiple parts. If variations occur in the combination of a plurality of parts, the configuration and operation of the safety mechanism may vary.
  • an object of the present disclosure is to provide a battery, a power storage device, and an electric vehicle in which the configuration and operation of the safety mechanism are minimized.
  • the present disclosure provides, for example, A safety valve that deforms due to an increase in battery internal pressure, A restraining portion having a plurality of first protrusions formed along the first circumference, which serves as a restraint for the lead portion when the safety valve and the lead portion are cut off due to the deformation of the safety valve; An insulating holder that insulates the safety valve and the holding portion and has a plurality of second protrusions formed along the second circumference, In the battery, the number of first protrusions and second protrusions disposed on a diagonal line including the first circumference and the second circumference is three or less.
  • the present disclosure may be a power storage device having this battery.
  • the present disclosure may be an electric vehicle having this battery.
  • FIG. 1 is a diagram illustrating a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a part of the battery according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram for describing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining components constituting a safety mechanism according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram for explaining the first circumference, the second circumference, and the like.
  • FIG. 6 is a diagram for explaining the positional relationship between the first protrusion and the second protrusion corresponding to the comparative example.
  • 7A to 7D are diagrams for explaining the positional relationship between the first protrusion and the second protrusion corresponding to the embodiment.
  • 8A to 8D are diagrams for explaining the positional relationship between the first protrusion and the second protrusion corresponding to the embodiment.
  • FIG. 9 is a diagram for explaining an application example.
  • FIG. 1 is an overall view for explaining a configuration example of a non-aqueous electrolyte secondary battery
  • FIG. 2 is an enlarged view showing a part (near the positive electrode side) of FIG. 1 in an enlarged manner.
  • the nonaqueous electrolyte secondary battery is a so-called lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to insertion and extraction of lithium (Li) as an electrode reactant.
  • the non-aqueous electrolyte secondary battery is, for example, a so-called cylindrical type, and a pair of strip-shaped positive electrode 21 and strip-shaped negative electrode 22 are laminated via a separator 23 inside a substantially hollow cylindrical battery can 11.
  • a spirally wound electrode body 20 is provided.
  • the battery can 11 is made of nickel (Ni) plated iron (Fe), and one end is closed and the other end is opened. Inside the battery can 11, an electrolytic solution as a liquid electrolyte is injected and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23. In addition, a pair of insulating plates 12 and 13 are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.
  • nickel (Ni), stainless steel (SUS), aluminum (Al), titanium (Ti), or the like may be used as the material for the battery can 11 .
  • the battery can 11 may be plated with, for example, nickel or the like in order to prevent corrosion due to an electrochemical non-aqueous electrolyte accompanying charging / discharging of the non-aqueous electrolyte battery.
  • a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety mechanism 15 and a thermal resistance element (PTC element: Positive ⁇ Temperature Coefficient) 16 provided inside the battery lid 14 are gaskets for insulating sealing. It is attached by caulking through 17. Thereby, the inside of the battery can 11 is sealed.
  • 1 and 2 show an example of a battery that does not include the thermal resistor 16.
  • the battery lid 14 is made of, for example, the same material as that of the battery can 11 and is provided with an opening for discharging gas generated inside the battery.
  • a disk plate 15A as a safety valve, a disk holder 15B as an insulating holder, and a shut-off disk 15C as a restraining portion are sequentially stacked.
  • the protruding portion 18 of the disk plate 15A is connected to the positive electrode lead 25A led out from the wound electrode body 20 via a sub disk 25B arranged so as to cover the hole 19 provided at the center of the blocking disk 15C. Has been.
  • the positive electrode lead 25A is prevented from being drawn from the hole 19 when the disk plate 15A is reversed.
  • the disk holder 15B is made of an insulating material and insulates the disk plate 15A and the blocking disk 15C.
  • the safety mechanism 15 When the internal pressure of the nonaqueous electrolyte battery exceeds a certain level due to internal short circuit or heating from the outside of the battery, the safety mechanism 15 reverses and deforms the disk plate 15A, and the protrusion 18 and the battery lid 14 are wound. The electrical connection with the rotating electrode body 20 is cut off. That is, when the disk plate 15A is inverted, the sub disk 25B is suppressed by the blocking disk 15C, and the connection between the disk plate 15A and the sub disk 25B is released and blocked.
  • a plurality of gas vent holes are provided around the hole 19 of the shut-off disk 15C, and when gas is generated from the wound electrode body 20, the gas is effective.
  • the battery can be discharged to the battery lid 14 side.
  • the resistance element 16 increases in resistance when the temperature rises, interrupts the current by disconnecting the electrical connection between the battery lid 14 and the wound electrode body 20, and generates abnormal heat due to an excessive current. To prevent.
  • the safety mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16. In particular, a battery corresponding to a large current discharge may not include the heat-sensitive resistor element 16. In that case, the safety mechanism 15 is directly electrically connected to the battery lid 14.
  • the gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.
  • the wound electrode body 20 accommodated in the nonaqueous electrolyte battery is wound around the center pin 24.
  • the wound electrode body 20 is formed by sequentially laminating a positive electrode 21 and a negative electrode 22 with a separator 23 interposed therebetween, and is wound in the longitudinal direction.
  • a positive electrode lead 25 A is connected to the positive electrode 21, and a negative electrode lead 26 is connected to the negative electrode 22.
  • the positive electrode lead 25 ⁇ / b> A is welded to the sub disk 25 ⁇ / b> B and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
  • the lead portion is constituted by the positive electrode lead 25A and the sub disk 25B.
  • the sub disk 25B may be omitted, and the positive electrode lead 25A may be directly connected to the disk plate 15A. Good.
  • the positive electrode 21 has, for example, a structure in which a positive electrode active material layer 21B is provided on both surfaces of a positive electrode current collector 21A. Although not shown, the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B includes, for example, a positive electrode active material that can occlude and release lithium as an electrode reactant.
  • the positive electrode active material layer 21B may further contain an additive as necessary. As the additive, for example, at least one of a conductive agent and a binder can be used.
  • lithium-containing compounds such as lithium oxide, lithium phosphorous oxide, lithium sulfide, or an intercalation compound containing lithium are suitable. May be used in combination.
  • a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable.
  • examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt structure shown in Formula (A) and a lithium composite phosphate having an olivine structure shown in Formula (B).
  • the lithium-containing compound includes at least one selected from the group consisting of cobalt (Co), nickel, manganese (Mn), and iron as a transition metal element.
  • lithium-containing compound examples include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), formula (D), or formula (E), and a spinel type compound represented by the formula (F).
  • examples thereof include a lithium composite oxide having a structure, or a lithium composite phosphate having an olivine structure shown in the formula (G).
  • LiNi 0.50 Co 0.20 Mn 0.30 O 2 Li a CoO 2 (A ⁇ 1), Li b NiO 2 (b ⁇ 1), Li c1 Ni c2 Co 1-c2 O 2 (c1 ⁇ 1, 0 ⁇ c2 ⁇ 1), Li d Mn 2 O 4 (d ⁇ 1) or Li e FePO 4 (e ⁇ 1).
  • M1 represents at least one element selected from Groups 2 to 15 excluding nickel and manganese.
  • X represents at least one of Group 16 and Group 17 elements other than oxygen.
  • P, q, y, z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0.20, 0 ⁇ (The value is within the range of z ⁇ 0.2.)
  • M2 represents at least one element selected from Group 2 to Group 15.
  • a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range.
  • Li f Mn (1-gh) Ni g M3 h O (2-j) F k (C) (However, in Formula (C), M3 is cobalt, magnesium (Mg), aluminum, boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron, copper (Cu), zinc ( Zn, Zr, Mo (Mo), Tin (Sn), Calcium (Ca), Strontium (Sr), and Tungsten (W) are represented by at least one of f, g, h, j and k are 0.8 ⁇ f ⁇ 1.2, 0 ⁇ g ⁇ 0.5, 0 ⁇ h ⁇ 0.5, g + h ⁇ 1, ⁇ 0.1 ⁇ j ⁇ 0.2, 0 ⁇ k ⁇ (The value is in the range of 0.1. Note that the composition of lithium varies depending on the state of charge and discharge, and the value of f represents a value in a fully discharged state.)
  • M4 is at least one selected from the group consisting of cobalt, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • M, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ 0. (The value is within a range of 1.
  • the composition of lithium varies depending on the state of charge and discharge, and the value of m represents a value in a fully discharged state.
  • M5 is at least one selected from the group consisting of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • Represents one, r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1 (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of r represents the value in a fully discharged state.)
  • M6 is at least one selected from the group consisting of cobalt, nickel, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • V, w, x, and y are 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, and 0 ⁇ y ⁇ 0.1. (Note that the lithium composition varies depending on the state of charge and discharge, and the value of v represents a value in a fully discharged state.)
  • Li z M7PO 4 (G) (In the formula (G), M7 is composed of cobalt, manganese, iron, nickel, magnesium, aluminum, boron, titanium, vanadium, niobium (Nb), copper, zinc, molybdenum, calcium, strontium, tungsten and zirconium. Represents at least one member of the group, z is a value in the range of 0.9 ⁇ z ⁇ 1.1, wherein the composition of lithium varies depending on the state of charge and discharge, and the value of z is a fully discharged state Represents the value at.)
  • examples of the positive electrode material capable of inserting and extracting lithium include inorganic compounds not containing lithium, such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MOS.
  • the positive electrode material capable of inserting and extracting lithium may be other than the above.
  • the positive electrode material illustrated above may be mixed 2 or more types by arbitrary combinations.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive agent examples include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination.
  • a metal material or a conductive polymer material may be used as long as it is a conductive material.
  • the negative electrode 22 has, for example, a structure in which a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A. Although not shown, the negative electrode active material layer 22B may be provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode active material layer 22B contains one or more negative electrode active materials capable of inserting and extracting lithium.
  • the negative electrode active material layer 22B may further contain additives such as a binder and a conductive agent as necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, so that theoretically lithium metal does not deposit on the negative electrode 22 during charging. It is preferable that
  • Examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned.
  • examples of coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • a material containing at least one of a metal element and a metalloid element as a constituent element for example, an alloy, a compound, or a mixture
  • a high energy density can be obtained by using such a material.
  • the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to the alloy including two or more metal elements.
  • the nonmetallic element may be included.
  • Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium.
  • a metal element or a metalloid element capable of forming an alloy with lithium.
  • magnesium, boron, aluminum, titanium, gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin, lead (Pb), bismuth (Bi), cadmium (Cd), Silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), or platinum (Pt) can be used. These may be crystalline or amorphous.
  • the negative electrode active material preferably contains a group 4B metal element or metalloid element in the short-period periodic table as a constituent element, and more preferably contains at least one of silicon and tin as a constituent element. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • Examples of such a negative electrode active material include a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or a material having one or more phases thereof at least in part.
  • Examples of the silicon alloy include, as the second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb), and chromium.
  • the thing containing at least 1 sort (s) of a group is mentioned.
  • As an alloy of tin for example, as a second constituent element other than tin, among the group consisting of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium The thing containing at least 1 sort (s) of these is mentioned.
  • tin compound or the silicon compound examples include those containing oxygen or carbon, and may contain the second constituent element described above in addition to tin or silicon.
  • the Sn-based negative electrode active material cobalt, tin, and carbon are included as constituent elements, the carbon content is 9.9 mass% or more and 29.7 mass% or less, and tin and cobalt A SnCoC-containing material in which the proportion of cobalt with respect to the total is 30% by mass to 70% by mass is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
  • This SnCoC-containing material may further contain other constituent elements as necessary.
  • other constituent elements for example, silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus (P), gallium, or bismuth are preferable, and two or more kinds may be included. This is because the capacity or cycle characteristics can be further improved.
  • This SnCoC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure.
  • this SnCoC-containing material it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element.
  • the decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .
  • XPS X-ray photoelectron spectroscopy
  • the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
  • Au4f gold atom 4f orbital
  • it will appear at 284.8 eV.
  • the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
  • the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
  • at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
  • the C1s peak is used to correct the energy axis of the spectrum.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
  • the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • Examples of other negative electrode active materials include metal oxides or polymer compounds that can occlude and release lithium.
  • Examples of the metal oxide include lithium titanium oxide containing titanium and lithium, such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
  • Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • binder examples include at least one selected from resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
  • resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
  • the conductive agent the same carbon material as that of the positive electrode active material layer 21B can be used.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, a porous film made of a resin such as polytetrafluoroethylene, polypropylene, or polyethylene, and may have a structure in which two or more kinds of these porous films are laminated.
  • a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C.
  • the porous film may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • the separator 23 may be provided with a resin layer on one side or both sides of a porous film as a base material.
  • the resin layer is a porous matrix resin layer on which an inorganic substance is supported. Thereby, oxidation resistance can be obtained and deterioration of the separator 23 can be suppressed.
  • the matrix resin for example, polyvinylidene fluoride, hexafluoropropylene (HFP), polytetrafluoroethylene, or the like can be used, and a copolymer thereof can also be used.
  • the inorganic substance a metal, a semiconductor, or an oxide or nitride thereof can be given.
  • the metal include aluminum and titanium
  • examples of the semiconductor include silicon and boron.
  • a thing with substantially no electroconductivity and a large heat capacity is preferable. This is because a large heat capacity is useful as a heat sink during heat generation of the current, and the thermal runaway of the battery can be further suppressed.
  • inorganic substances examples include alumina (Al 2 O 3 ), boehmite (alumina monohydrate), talc, boron nitride (BN), aluminum nitride (AlN), titanium dioxide (TiO 2 ), and silicon oxide (SiOx). ) And the like.
  • the particle size of the inorganic substance is preferably in the range of 1 nm to 10 ⁇ m. If it is smaller than 1 nm, it is difficult to obtain, and even if it can be obtained, it is not worth the cost. If it is larger than 10 ⁇ m, the distance between the electrodes becomes large, and a sufficient amount of active material cannot be obtained in a limited space, resulting in a low battery capacity.
  • a slurry composed of a matrix resin, a solvent, and an inorganic substance is applied on a base material (porous film), and is passed through a poor solvent for the matrix resin and a parent solvent bath for the solvent. It can be formed by separating and then drying.
  • the puncture strength of the separator 23 is preferably within a range of 100 gf to 1000 gf. More preferably, it is 100 gf to 480 gf. This is because if the piercing strength is low, a short circuit may occur, and if the piercing strength is high, the ionic conductivity decreases.
  • the air permeability of the separator 23 is preferably in the range of 30 sec / 100 cc to 1000 sec / 100 cc. More preferably, it is 30 sec / 100 cc to 680 sec / 100 cc. This is because when the air permeability is low, a short circuit may occur, and when the air permeability is high, the ion conductivity decreases.
  • the inorganic substance mentioned above may be contained in the porous membrane as a base material.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics.
  • cyclic carbonates such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be improved.
  • the solvent in addition to these cyclic carbonates, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate. This is because high ionic conductivity can be obtained.
  • the solvent preferably further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
  • examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
  • a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
  • lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
  • Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
  • This nonaqueous electrolyte battery has an open circuit voltage (that is, a battery voltage) at the time of full charge of, for example, 2.80 V or more and 6.00 V or less, or 3.60 V or more and 6.00 V or less, preferably 4.25 V or more and 6. It may be designed to be within a range of 00V or less or 4.20V to 4.50V, more preferably 4.30V to 4.55V.
  • the open circuit voltage at the time of full charge is 4.25 V or more in a battery using, for example, a layered rock salt type lithium composite oxide as a positive electrode active material, the same positive electrode active voltage as compared with a 4.20 V battery. Even if it is a substance, since the amount of lithium released per unit mass increases, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly, and a high energy density can be obtained.
  • the secondary battery mentioned above is manufactured as follows, for example.
  • a positive electrode material that can be doped and dedoped with lithium, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a mixed solvent to obtain a positive electrode mixture slurry.
  • the positive electrode mixture slurry is applied to the positive electrode current collector 21A, dried, and then compression molded to produce the positive electrode 21.
  • the positive electrode lead 25A is connected to the positive electrode current collector 21A by ultrasonic welding or spot welding.
  • a negative electrode material that can be doped and dedoped with lithium and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a mixed solvent to form a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to the negative electrode current collector 22A, dried, and then compression molded to produce the negative electrode 22.
  • the negative electrode lead 26 is connected to the negative electrode current collector 22A by ultrasonic welding or spot welding.
  • the positive electrode 21 and the negative electrode 22 are wound many times through the separator 23 to produce a wound electrode body. Thereafter, the wound electrode body is sandwiched between the pair of insulating plates 12 and 13 and accommodated in the battery can 11, and the positive electrode lead 25A is electrically connected to the protruding portion 18 of the disk plate 15A via the sub disk 25B.
  • the negative electrode lead 26 is electrically connected to the battery can 11.
  • an electrolyte is prepared by dissolving an electrolyte salt in a solvent. Thereafter, the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23. Subsequently, the safety mechanism 15 and the battery lid 14 are fixed to the open portion of the battery can 11 by caulking through the gasket 17. In this way, a lithium ion battery is completed. Although omitted in the above description, actually, a resin ring washer is attached to the battery lid 14, and the entire battery is covered with a resin tube.
  • FIG. 4A to 4C are perspective views of the half of the parts constituting the safety mechanism 15, FIG. 4A is a perspective view of the half of the disk plate 15A, and FIG. 4B is a perspective view of the half of the disk holder 15B. FIG. 4C is a perspective view of a half portion of the blocking disk 15C.
  • the disk plate 15A has, for example, a dish-like shape as a whole, and includes a circular bottom 31A and a flange 31B that is slightly planted from the periphery of the bottom 31A and extends outward. A projecting portion 18 projecting downward is formed at the approximate center of the bottom portion 31A.
  • the disc holder 15B includes a ring-shaped bottom portion 32A, a wall portion 32B that is planted upward from the outer peripheral edge of the bottom portion 32A, and a flange portion 32C that extends outward from the tip of the wall portion 32B. .
  • the blocking disc 15C has a circular bottom 33A, a wall 33B planted upward from the periphery of the bottom 33A, and a flange 33C extending outward from the tip of the wall 33B.
  • the disc plate 15A and the shut-off disc 15C are fitted via the disc holder 15B.
  • a protrusion is formed on the disk holder 15B and the blocking disk 15C in the present embodiment.
  • a plurality of first protrusions 41 are formed on the inner surface side of the wall portion 33B of the blocking disk 15C.
  • the plurality of first protrusions 41 are preferably formed so as to be substantially equally spaced in consideration of convenience in the manufacturing process, for example.
  • a plurality of second protrusions 42 are formed on the inner surface side of the wall 32B of the disc holder 15B.
  • the plurality of second protrusions 42 be formed at substantially equal intervals in consideration of convenience in the manufacturing process.
  • the plurality of first protrusions 41 are formed so as to have substantially equal intervals.
  • the plurality of second protrusions 42 are formed at substantially equal intervals.
  • the protrusion may be a protrusion or an elastically deformable claw, and is not limited to a specific shape.
  • the first protrusion 41 is a claw, The description will be made assuming that the two protrusions 42 are protrusions.
  • each component is brought into point contact instead of surface contact when the components are fitted, and the resistance in assembly can be reduced. For this reason, the dispersion
  • a pressure buffering band for releasing excess pressure during fitting (variation in the dimensions of each component) Can not ensure escape). For this reason, in some cases, poor fitting may occur, and the height dimension of the safety mechanism 15 may vary. Due to the variation in dimensions, there is a possibility that the operation of the safety mechanism 15 may vary.
  • the portions of the wall 33B and the wall 32B can be regarded as concentric circumferences.
  • the location of the wall portion 33B can be taken as the first circumference CL1
  • the location of the wall portion 32B can be taken as the second circumference CL2.
  • the circumference does not necessarily have to be a strict circle, and there may be some distortion, and the center of the first circumference CL1 and the center of the second circumference CL2 may be slightly shifted.
  • FIG. 5 shows the first circumference CL1 and the second circumference CL2 apart from each other. They are close to each other.
  • the first protrusions 41 formed on the wall 33B are located at substantially equal intervals along the first circumference CL1.
  • On the first circumference for example, means that at least a part of the first protrusion 41 is in contact with the first circumference CL1.
  • the 2nd protrusion 42 formed in the wall part 32B is located in the substantially equal space
  • On the second circumference for example, means that at least a part of the second protrusion 42 is in contact with the second circumference CL2.
  • four first protrusions 41 are formed, and each first protrusion is indicated by a rectangular mark.
  • four second protrusions 42 are formed, and each second protrusion is indicated by a circle mark.
  • a diagonal line passing through the center of the circle and including the first circumference CL1 and the second circumference CL2 is defined.
  • two diagonal lines DL1 and DL2 are shown.
  • the height (total height) of the safety mechanism 15 may be larger than the standard value.
  • the number of the first protrusions 41 and the second protrusions 42 located (existing) on the diagonal line including the first circumference CL1 and the second circumference CL2 is three or less (in this case, 0). It may be included). If the maximum number is 3, a pressure buffering zone can be secured.
  • the number of first protrusions 41 and second protrusions 42 located on the diagonal line is preferably 3 or less. Even in this case, since the total number of the first protrusions 41 and the second protrusions 42 located on the diagonal line is three or less at the maximum, a pressure buffering zone can be secured.
  • first protrusion 41 and the second protrusion 42 may be positioned on one side of the diagonal line, and the first protrusion 41 and the second protrusion 42 may not exist on the other side of the diagonal line.
  • first protrusion 41 and the second protrusion 42 may be positioned on one side of the diagonal line, and the first protrusion 41 or the second protrusion 42 may be positioned on the other side of the diagonal line.
  • At least one of the number of the first protrusions 41 and the number of the second protrusions 42 may be an odd number. Further, the number of the first protrusions 41 and the number of the second protrusions 42 may be odd numbers. For example, when the first protrusions 41 are positioned at substantially equal intervals along the first circumference CL1, and the second protrusions 42 are positioned at approximately equal intervals along the second circumference CL2, a certain diagonal line is obtained. Suppose that the 1st protrusion 41 and the 2nd protrusion 42 are located in the upper one side along the said diagonal line.
  • the first protrusions 41 and the number of the second protrusions 42 are both even, there is 2 as the greatest common divisor, so the first protrusions 41 are also provided every 180 degrees, that is, on the opposite side on the diagonal line. And the 2nd protrusion 42 is located, and the number of the 1st protrusion 41 and the 2nd protrusion 42 which are located on the said diagonal line will be four. For this reason, it becomes impossible to secure a pressure buffer zone. Therefore, it is preferable that at least one of the number of the first protrusions 41 and the number of the second protrusions 42 is an odd number.
  • a 18650 type (diameter 18 mm, height 65 mm) cylindrical lithium ion secondary battery was used.
  • the diameter (for example, the diameter of the bottom 31A) of the disk plate 15A fitted inside the disk holder 15B (inside the wall 32B) is set to + 5% from the standard value, and disadvantageous conditions (fitting Experiments were performed under conditions that were difficult to match.
  • the diameter of the blocking disk 15C (for example, the diameter of the bottom 33A) to which the disk holder 15B is fitted is set to ⁇ 5% from the standard value, and the disadvantageous condition (condition that makes it difficult to fit) Experimented.
  • the plurality of first protrusions 41 were formed on the inner surface side of the wall portion 33B so as to be substantially equidistant.
  • the plurality of second protrusions 42 were formed on the inner surface side of the wall portion 32B so as to be substantially equidistant.
  • the number of samples in the comparative example and each example was 50.
  • a process capability index in this embodiment, a Cpk value (described later) (Also called process capability values).
  • the process capability refers to the capability related to the quality of the process, which is also referred to as the process quality achievement capability, and indicates the capability of realizing the degree of variation in the process in the stable state.
  • the ability to produce products that meet quality standards is called process capability.
  • a numerical value for evaluating process capability is a process capability index.
  • a Cp value or a Cpk value (Process Capability Index) is used as the process capability index.
  • the Cp value is obtained by the following formula (1).
  • Cp (standard upper limit ⁇ standard lower limit) / 6 ⁇ (where ⁇ is a standard deviation) (1)
  • the Cpk value is obtained as numerical data in consideration of the average value when the distribution data at the time of inspection is a normal distribution graph and the distribution is out of the average value.
  • the Cpk value is obtained by the following equation (2).
  • Cpk (1 ⁇ k) * Cp (where k is a degree from the side) (2)
  • Comparative example 1 is an example in which the number of first protrusions 41 and the number of second protrusions 42 are both an even number, specifically, the number of first protrusions 41 is six, and the second protrusions In this example, the number of units 42 is 16.
  • the first protrusion 41 and the second protrusion 42 are positioned along the diagonal line DL3 on one side of the predetermined diagonal line DL3 (a part denoted by reference numeral AA). In this case, the first protrusion 41 and the second protrusion 42 are also located on the other side of the diagonal line DL3 (the part to which the reference symbol BB is attached).
  • the number of the first protrusions 41 and the second protrusions 42 on the diagonal line DL3 is four. Can be avoided. However, since the first protrusion 41 and the second protrusion 42 are extremely small in size, in such a case, the positions of the first protrusion 41 and the second protrusion 42 are visually confirmed. Thus, assembling the safety mechanism 15 is practically difficult and not practical.
  • Example 1 is an example in which the number of first protrusions 41 is an even number and the number of second protrusions 42 is an odd number. Specifically, the number of first protrusions 41 is six, This is an example in which the number of two protrusions is fifteen. As shown in FIG. 7A, in this example, when the first protrusion 41 and the second protrusion 42 are located along the diagonal line DL1a on one side of the predetermined diagonal line DL1a, the other side of the diagonal line DL1a is Only the first protrusion 41 is located. The same applies to the other diagonal lines DL1b and DL1c.
  • Example 1 Even when the number of the first protrusions 41 and the second protrusions 42 located on the diagonal line DL1a is the largest, the number is three, and a pressure buffering zone can be secured. It was confirmed that the process capability index in Example 1 was “ ⁇ ” for the total height and “ ⁇ ”for the cutoff pressure.
  • Example 2 is an example in which the number of first protrusions 41 is an even number and the number of second protrusions 42 is an odd number. Specifically, the number of first protrusions 41 is six, In this example, the number of two protrusions is thirteen. As shown in FIG. 7B, in this example, when the first protrusion 41 and the second protrusion 42 are located along the diagonal line DL2a on one side of the predetermined diagonal line DL2a, the other side of the diagonal line DL2a is Only the first protrusion 41 is located. That is, even when the number of the first protrusions 41 and the second protrusions 42 located on the diagonal line DL2a is the largest, the number is three and a pressure buffering zone can be secured. Further, the diagonal line with three first protrusions 41 and second protrusions 42 is only the diagonal line DL2a. It was confirmed that the process capability index in Example 2 was “ ⁇ ” for both the total height and the cutoff pressure.
  • the third embodiment is an example in which the number of the first protrusions 41 is an even number and the number of the second protrusions 42 is an odd number. Specifically, the number of the first protrusions 41 is six, In this example, the number of two protrusions is eleven. As shown in FIG. 7C, in this example, when the first protrusion 41 and the second protrusion 42 are positioned along the diagonal line DL3a on one side of the predetermined diagonal line DL3a, the other side of the diagonal line DL3a is Only the first protrusion 41 is located. That is, even when the number of the first protrusions 41 and the second protrusions 42 on the diagonal line DL3a is the largest, the number is three and a pressure buffering zone can be secured. Furthermore, the diagonal line with three first protrusions 41 and second protrusions 42 is only the diagonal line DL3a. It was confirmed that the process capability index in Example 3 was “ ⁇ ” for both the total height and the cutoff pressure.
  • the fourth embodiment is an example in which the number of the first protrusions 41 is an even number and the number of the second protrusions 42 is an odd number. Specifically, the number of the first protrusions 41 is six, This is an example in which the number of two protrusions is nine. As shown in FIG. 7D, in this example, the first protrusion 41 and the second protrusion 42 are diagonal lines (DL4a, DL4b, DL4c) every 120 degrees corresponding to 3, which is the greatest common divisor of each protrusion. Although there is a portion located on one side, only the first protrusion 41 is located on the other side of the diagonal line.
  • Example 4 Even when the number of the first protrusions 41 and the second protrusions 42 located on the diagonal lines of the diagonal lines DL4a, 4b, and 4c is the largest, the number is three and a pressure buffering zone can be secured. It was confirmed that the process capability index in Example 4 was “ ⁇ ” for both the total height and the cutoff pressure.
  • the fifth embodiment is an example in which the number of the first protrusions 41 is an even number and the number of the second protrusions 42 is an odd number. Specifically, the number of the first protrusions 41 is six. In this example, the number of the two protrusions 42 is seven. As shown in FIG. 8A, in this example, when the first protrusion 41 and the second protrusion 42 are positioned along the diagonal line DL5a on one side of the predetermined diagonal line DL5a, the other side of the diagonal line DL5a is Only the first protrusion 41 is located.
  • the sixth embodiment is an example in which the number of the first protrusions 41 is an odd number and the number of the second protrusions 42 is an even number. Specifically, the number of the first protrusions 41 is five. In this example, the number of two protrusions is 16. As shown in FIG. 8B, in this example, when the first protrusion 41 and the second protrusion 42 are positioned along the diagonal line DL6a on one side of the predetermined diagonal line DL6a, the other side of the diagonal line DL6a is Only the second protrusion 42 is located. That is, even when the number of the first protrusions 41 and the second protrusions 42 on the diagonal line DL6a is the largest, the number is three and a pressure buffering zone can be secured. Further, the diagonal line with three first protrusions 41 and second protrusions 42 is only the diagonal line DL6a. It was confirmed that the process capability index in Example 6 was “ ⁇ ” for both the total height and the cutoff pressure.
  • the seventh embodiment is an example in which the number of the first protrusions 41 is an odd number, and the number of the second protrusions 42 is an even number. Specifically, the number of the first protrusions 41 is three, In this example, the number of two protrusions is 16. As shown in FIG. 8C, in this example, when the first protrusion 41 and the second protrusion 42 are located along the diagonal line DL7a on one side of the predetermined diagonal line DL7a, the other side of the diagonal line DL7a is Only the second protrusion 42 is located. That is, even when the number of the first protrusions 41 and the second protrusions 42 located on the diagonal line DL7a is the largest, the number is three and a pressure buffering zone can be secured. Furthermore, the diagonal line in which the number of the first protrusions 41 and the second protrusions 42 is three is only the diagonal line DL7a. It was confirmed that the process capability index in Example 7 was “ ⁇ ” for both the total height and the cutoff pressure
  • the eighth embodiment is an example in which the number of the first protrusions 41 and the number of the second protrusions 42 are both odd numbers. Specifically, the number of the first protrusions 41 is five, and the second protrusions This is an example of 13 parts. As shown in FIG. 8D, in this example, when the first protrusion 41 and the second protrusion 42 are located along the diagonal line DL8a on one side of the predetermined diagonal line DL8a, the other side of the diagonal line DL8a is The 1st protrusion 41 and the 2nd protrusion 42 do not exist.
  • Examples 1 to 8 were able to confirm the superiority of the present disclosure because the total height of the safety mechanism 15 and the variation in the cutoff pressure were suppressed. Further, it was confirmed that the number of the second protrusions 42 is preferably 11 or more. This is considered because the restraining force tends to decrease when the number of the second protrusions 42 becomes a predetermined number (for example, 10 or less), and the variation in the total height and the cutoff pressure becomes slightly large.
  • FIG. 9 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed.
  • the battery according to the embodiment of the present disclosure described above is applied to the battery 7208.
  • Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source.
  • An example of the power driving force conversion device 7203 is a motor.
  • the electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b.
  • the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary.
  • Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown).
  • Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
  • the battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
  • an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
  • a series hybrid vehicle that runs on a motor using electric power generated by a generator driven by an engine or electric power stored once in a battery has been described as an example.
  • the present disclosure is also effective for a parallel hybrid vehicle that uses both the engine and motor outputs as the drive source, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable.
  • the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • the technology according to the present disclosure can be suitably applied to, for example, the battery 7208 among the configurations described above.
  • the battery according to one embodiment is applied to the battery 7208.
  • Storage system in a house as an application example An example in which the present disclosure is applied to a residential power storage system will be described with reference to FIG.
  • a power storage system 9100 for a house 9001 power is stored from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c through a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like. Supplied to the device 9003.
  • power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004.
  • the electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003.
  • the same power storage system can be used not only for the house 9001 but also for buildings.
  • the house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information.
  • Each device is connected by a power network 9009 and an information network 9012.
  • a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003.
  • the power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like.
  • the electric power consumption device 9005 includes an electric vehicle 9006.
  • the electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
  • the battery which concerns on one Embodiment of this indication mentioned above with respect to the electrical storage apparatus 9003 is applied.
  • the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • Various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information on the house 9001 to an external power company or the like via the Internet.
  • the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
  • Communication methods of the information network 9012 connected to the control device 9010 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4).
  • IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 9010 is connected to an external server 9013.
  • the server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider.
  • Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • a control device 9010 that controls each unit is configured by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example.
  • the control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, the various sensors 9011, the server 9013, and the information network 9012.
  • the control device 9010 functions to adjust the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
  • control device 9010 is stored in the power storage device 9003.
  • control device 9010 may be stored in the smart meter 9007, or may be configured independently.
  • the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the technology according to the present disclosure can be preferably applied to the power storage device 9003 among the configurations described above.
  • the battery according to one embodiment can be applied to the power storage device 9003.
  • the present disclosure is applicable not only to large-sized electric vehicles and aircraft, but also to electric motorcycles, electric bicycles, electric tricycles, electric small aircrafts (also referred to as drones), and the like.
  • the present disclosure can also be applied to electronic devices (PCs, smartphones, mobile phones, electric tools, toys, etc.) in which secondary batteries can be used, and the present disclosure is an electronic device that receives power supply from the battery device described above. Disclosure can also be realized.
  • this indication can also take the following structures.
  • a safety valve that deforms due to an increase in battery internal pressure A restraining portion having a plurality of first protrusions formed along the first circumference, which serves as a restraint for the lead portion when the safety valve and the lead portion are interrupted with the deformation of the safety valve;
  • An insulation holder having a plurality of second protrusions formed along a second circumference for insulating the safety valve and the restraining portion; The number of the first protrusions and the second protrusions disposed on a diagonal line including the first circumference and the second circumference is 3 or less.
  • the number of the first protrusions and the second protrusions arranged on the diagonal line is 3 or less.
  • the lead portion includes a sub disk, The battery according to (9), wherein the safety valve and the positive electrode lead are connected via the sub disk.
  • (12) (1) The electrical storage apparatus which has a battery in any one of (12).
  • (13) (1) The electric vehicle which has a battery in any one of (12).
  • the present disclosure can also be applied to a battery having only one of the first protrusion and the second protrusion.
  • a battery in which the number of first protrusions (may be second protrusions) on a certain diagonal line is 1 or less may be used.
  • the present disclosure can also be applied to secondary batteries other than lithium ion secondary batteries and primary batteries. It can also be applied to a square battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

電池内圧の上昇により変形を生じる安全弁と、安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1円周上に沿って形成される複数の第1突部を有する抑え部と、安全弁と抑え部とを絶縁し、第2円周上に沿って形成される複数の第2突部を有する絶縁ホルダとを有し、第1円周および第2円周を含む対角線上に配置される第1突部および第2突部の数が3以下である電池である。

Description

電池、蓄電装置および電動車両
 本開示は、電池、蓄電装置および電動車両に関する。
 二次電池は、乾電池(一次電池)とは異なって繰り返しの充放電が可能である。また、二次電池は大容量化が可能であることから、携帯電子機器、ハイブリット自動車、電動工具等、近年、その適用範囲が拡大している。このような二次電池のうち、リチウムイオン二次電池は動作電圧が高く、単位質量当たりのエネルギー密度が高いため、広く用いられている。リチウムイオン二次電池は外装材の形状により缶状とパウチ状とに区分され、缶状は電池缶の形状により円筒状と角状とに区分される。リチウムイオン二次電池には、電池内部の圧力が所定以上になると動作する安全機構が設けられることが一般的である。例えば、下記特許文献1には、円筒状のリチウムイオン二次電池に設けられる安全機構が記載されている。
特開2009-252409号公報
 安全機構は通常、複数の部品により構成される。複数の部品間の組合せにばらつきが生じると、安全機構の構成や動作にばらつきが生じるおそれがある。
 したがって、本開示は、安全機構の構成や動作に極力ばらつきが生じないようにした電池、蓄電装置および電動車両を提供することを目的の一つとする。
 上述の課題を解決するために、本開示は、例えば、
 電池内圧の上昇により変形を生じる安全弁と、
 安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1円周上に沿って形成される複数の第1突部を有する抑え部と、
 安全弁と抑え部とを絶縁し、第2円周上に沿って形成される複数の第2突部を有する絶縁ホルダと
 を有し、
 第1円周および第2円周を含む対角線上に配置される第1突部および第2突部の数が3以下である
 電池である。
 本開示は、この電池を有する蓄電装置でもよい。
 本開示は、この電池を有する電動車両でもよい。
 本開示の少なくとも一の実施形態によれば、安全機構の構成や動作に極力ばらつきが生じないようにすることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。また、例示された効果により本開示の内容が限定して解釈されるものではない。
図1は、本開示の一実施形態に係る電池の構成例を示す図である。 図2は、本開示の一実施形態に係る電池の一部を拡大した拡大図である。 図3は、本開示の一実施形態に係る電池の構成例を説明するための図である。 図4は、本開示の一実施形態に係る安全機構を構成する部品を説明するための図である。 図5は、第1円周、第2円周等を説明するための図である。 図6は、比較例に対応する第1突部および第2突部の位置関係を説明するための図である。 図7A乃至図7Dは、実施例に対応する第1突部および第2突部の位置関係を説明するための図である。 図8A乃至図8Dは、実施例に対応する第1突部および第2突部の位置関係を説明するための図である。 図9は、応用例を説明するための図である。 図10は、応用例を説明するための図である。
 以下、本開示の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.一実施形態>
<2.応用例>
<3.変形例>
 以下に説明する実施形態等は本開示の好適な具体例であり、本開示の内容がこれらの実施形態等に限定されるものではない。
<1.一実施形態>
[電池の構成例]
 以下、本開示の一実施形態に係る二次電池(非水電解質二次電池)の構成例について説明する。図1は、非水電解質二次電池の構成例を説明するための全体図であり、図2は、図1の一部(正極側付近)を拡大して示した拡大図である。非水電解質二次電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。非水電解質二次電池は、例えば、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層し巻回された巻回電極体20を有している。
 電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
 電池缶11の材料として、ニッケル(Ni)、ステンレス(SUS)、アルミニウム(Al)、チタン(Ti)等が使用されてもよい。この電池缶11には、非水電解質電池の充放電に伴う電気化学的な非水電解液による腐食を防止するために、例えばニッケル等のメッキが施されていてもよい。電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全機構15および熱感抵抗素子(PTC素子:Positive Temperature Coefficient)16が、絶縁封口のためのガスケット17を介してかしめられることにより取り付けられている。これにより電池缶11の内部が密閉されている。なお、図1、図2では熱感抵抗素子16を備えない電池の例が示されている。
 電池蓋14は、例えば電池缶11と同様の材料により構成されており、電池内部で発生したガスを排出するための開口部が設けられている。安全機構15は、安全弁としてのディスク板15Aと、絶縁ホルダとしてのディスクホルダ15Bと、抑え部としての遮断ディスク15Cとが順に重ねられている。ディスク板15Aの突出部18は、遮断ディスク15Cの中心部に設けられた孔部19を覆うように配置されたサブディスク25Bを介して、巻回電極体20から導出された正極リード25Aと接続されている。サブディスク25Bを介してディスク板15Aと正極リード25Aとが接続されることにより、ディスク板15Aの反転時に正極リード25Aが孔部19から引き込まれることを防止する。
 ディスクホルダ15Bは絶縁性材料からなり、ディスク板15Aと遮断ディスク15Cとを絶縁するものである。
 安全機構15は、電池内部短絡あるいは電池外部からの加熱等により非水電解質電池の内圧が一定以上となった場合に、ディスク板15Aが反転して変形し、突出部18と電池蓋14と巻回電極体20との電気的接続を切断するものである。すなわち、ディスク板15Aが反転した際には、遮断ディスク15Cによりサブディスク25Bが抑えられてディスク板15Aとサブディスク25Bとの接続が解除され遮断される。
 また、電池内部でさらにガスが発生し、電池内圧がさらに上昇した場合には、ディスク板15Aの一部が裂壊してガスを電池蓋14側に排出可能としている。
 また、遮断ディスク15Cの孔部19の周囲には例えば複数のガス抜き孔(図示は省略している)が設けられており、巻回電極体20からガスが発生した場合にはガスを効果的に電池蓋14側に排出可能な構成としている。
 熱感抵抗素子16は、温度が上昇した際に抵抗値が増大し、電池蓋14と巻回電極体20との電気的接続を切断することによって電流を遮断し、過大電流による異常な発熱を防止する。この熱感抵抗素子16を介して、安全機構15が電池蓋14に電気的に接続されている。特に大電流放電に対応した電池においては熱感抵抗素子16を備えない場合がある。その場合には安全機構15が電池蓋14に直に電気的に接続されている。ガスケット17は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。
 非水電解質電池内に収容される巻回電極体20は、センターピン24を中心に巻回されている。巻回電極体20は、正極21および負極22がセパレータ23を介して順に積層され、長手方向に巻回されてなる。正極21には正極リード25Aが接続されており、負極22には負極リード26が接続されている。正極リード25Aは、上述したように、サブディスク25Bに溶接されて電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接されて電気的に接続されている。
 なお、上述した電池の構成例では、正極リード25Aおよびサブディスク25Bによりリード部が構成されているが、サブディスク25Bがなくてもよく、正極リード25Aがディスク板15Aに直接接続されていてもよい。
 次に、図3を参照しながら、非水電解質二次電池を構成する正極21、負極22、セパレータ23、および電解液について順次説明する。
(正極)
 正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、電極反応物質であるリチウムを吸蔵および放出することが可能な正極活物質を含んでいる。正極活物質層21Bは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル、マンガン(Mn)および鉄からなる群のうちの少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられ、具体的には、LiNi0.50Co0.20Mn0.302、LiaCoO2(a≒1)、LibNiO2(b≒1)、Lic1Nic2Co1-c22(c1≒1,0<c2<1)、LidMn24(d≒1)あるいはLieFePO4(e≒1)などがある。
 LipNi(1-q-r)MnqM1r(2-y)z ・・・(A)
(但し、式(A)中、M1は、ニッケル、マンガンを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
 LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
 LifMn(1-g-h)NigM3h(2-j)k ・・・(C)
(但し、式(C)中、M3は、コバルト、マグネシウム(Mg)、アルミニウム、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
 LimNi(1-n)M4n(2-p)q ・・・(D)
(但し、式(D)中、M4は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
 LirCo(1-s)M5s(2-t)u ・・・(E)
(但し、式(E)中、M5は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
 LivMn2-wM6wxy ・・・(F)
(但し、式(F)中、M6は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
 LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムからなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
 リチウムを吸蔵および放出することが可能な正極材料としては、これらの他にも、MnO2、V25、V613、NiS、MOSなどのリチウムを含まない無機化合物も挙げられる。
 リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記で例示した正極材料は、任意の組み合わせで2種以上混合されてもよい。
 結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
 導電剤としては、例えば、黒鉛、カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。
(負極)
 負極22は、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
 負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。負極活物質層22Bは、必要に応じて結着剤や導電剤などの添加剤をさらに含んでいてもよい。
 なお、この非水電解質電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本開示において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム、ホウ素、アルミニウム、チタン、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 負極活物質としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
 スズの化合物あるいはケイ素の化合物としては、例えば、酸素あるいは炭素を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
 中でも、Sn系の負極活物質としては、コバルトと、スズと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
 このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン(P)、ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
 なお、このSnCoC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。
 元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
 なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物なども挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)などのチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどが挙げられる。
 結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。導電剤としては、正極活物質層21Bと同様の炭素材料などを用いることができる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの樹脂製の多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。他にも、化学的安定性を備えた樹脂を、ポリエチレンあるいはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層とを順次に積層した3層以上の構造を有していてもよい。
 また、セパレータ23は、基材である多孔質膜の片面または両面に樹脂層が設けられていてもよい。樹脂層は、無機物が担持された多孔性のマトリックス樹脂層である。これにより、耐酸化性を得ることができ、セパレータ23の劣化を抑制できる。マトリックス樹脂としては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレンなどを用いることができ、また、これらの共重合体を用いることも可能である。
 無機物としては、金属、半導体、またはこれらの酸化物、窒化物を挙げることができる。例えば、金属としては、アルミニウム、チタンなど、半導体としては、ケイ素、ホウ素などを挙げることができる。また、無機物としては、実質的に導電性がなく、熱容量の大きいものが好ましい。熱容量が大きいと、電流発熱時のヒートシンクとして有用であり、電池の熱暴走をより抑制することが可能になるからである。このような無機物としては、アルミナ(Al23)、ベーマイト(アルミナの一水和物)、タルク、窒化ホウ素(BN)、窒化アルミニウム(AlN)、二酸化チタン(TiO2)、酸化ケイ素(SiOx)などの酸化物または窒化物が挙げられる。
 無機物の粒径としては、1nm~10μmの範囲内が好ましい。1nmより小さいと、入手が困難であり、また入手できたとしてもコスト的に見合わない。10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低くなるからである。
 樹脂層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させることで形成できる。
 また、セパレータ23の突き刺し強度としては、100gf~1000gfの範囲内であることが好ましい。さらに好ましくは、100gf~480gfである。突き刺し強度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
 また、セパレータ23の透気度としては、30sec/100cc~1000sec/100ccの範囲内であることが好ましい。さらに好ましくは、30sec/100cc~680sec/100ccである。透気度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
 なお、上述した無機物は、基材としての多孔質膜に含有されていてもよい。
(電解液)
 セパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
 溶媒としては、炭酸エチレンあるいは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
 溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 溶媒としては、さらにまた、2,4-ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
 これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどが挙げられる。
 なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
[電池電圧]
 この非水電解質電池は、完全充電時における開回路電圧(すなわち電池電圧)が、例えば、例えば2.80V以上6.00V以下または3.60V以上6.00V以下、好ましくは4.25V以上6.00V以下または4.20V以上4.50V以下、さらに好ましくは4.30V以上4.55V以下の範囲内になるように設計されていてもよい。完全充電時における開回路電圧が、例えば正極活物質として層状岩塩型リチウム複合酸化物などを用いた電池において4.25V以上とされる場合は、4.20Vの電池と比較して、同じ正極活物質であっても単位質量当たりのリチウムの放出量が多くなるので、それに応じて正極活物質と負極活物質との量が調整され、高いエネルギー密度が得られるようになっている。
[電池の動作]
 上述の構成を有する非水電解質二次電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[電池の製造方法]
 上述した2次電池は、例えば以下のように製造される。
 まず、リチウムをドープおよび脱ドープ可能な正極材料と導電剤と結着剤とを混合して正極合剤を調製し、この正極合剤を混合溶媒に分散させて正極合剤スラリーとする。次に、正極合剤スラリーを正極集電体21Aに塗布して乾燥させた後圧縮成型して正極21を作製する。その後、正極集電体21Aに超音波溶接あるいはスポット溶接等により正極リード25Aを接続する。
 また、リチウムをドープおよび脱ドープ可能な負極材料と結着剤とを混合して負極合剤を調製し、この負極合剤を混合溶媒に分散させて負極合剤スラリーとする。次に、負極合剤スラリーを負極集電体22Aに塗布して乾燥させた後圧縮成型して負極22を作製する。その後、負極集電体22Aに超音波溶接あるいはスポット溶接等により負極リード26を接続する。
 そして、正極21と負極22とをセパレータ23を介して多数回巻回し、巻回電極体を作製する。その後、巻回電極体を一対の絶縁板12,13で挟み、電池缶11の内部に収納し、正極リード25Aをディスク板15Aの突出部18にサブディスク25Bを介して電気的に接続すると共に、負極リード26を電池缶11に電気的に接続する。
 また、溶媒に電解質塩を溶解させて電解液を調製する。その後、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。続いて、電池缶11の開放部に安全機構15および電池蓋14を、ガスケット17を介してかしめることによって固定する。このようにしてリチウムイオン電池が完成する。なお、上述した説明では省略したが、実際には、電池蓋14に対して樹脂製のリングワッシャが装着され、そして、電池全体が樹脂チューブで被覆される。
[安全機構について]
 次に、上述した安全機構15について、より詳細に説明する。図4A乃至図4Cは、安全機構15を構成する部品の半部の斜視図であり、図4Aはディスク板15Aの半部の斜視図であり、図4Bはディスクホルダ15Bの半部の斜視図であり、図4Cは遮断ディスク15Cの半部の斜視図である。
 ディスク板15Aは、例えば全体として皿形状であり、円形状の底部31Aと、底部31Aの周縁からやや植立して外側に延在する鍔部31Bとを有している。底部31Aの略中央には下方に突出する突出部18が形成されている。
 ディスクホルダ15Bは、リング状の底部32Aと、底部32Aの外側周縁から上方に植立する壁部32Bと、壁部32Bの先端から外側に向かって延在する鍔部32Cとを有している。
 遮断ディスク15Cは、円形状の底部33Aと、底部33Aの周縁から上方に植立する壁部33Bと、壁部33Bの先端から外側に向かって延在する鍔部33Cとを有している。ディスク板15Aと遮断ディスク15Cとが、ディスクホルダ15Bを介して嵌合される。
[突部および突部の形成位置について]
 上述したように、ディスクホルダ15Bを介してディスク板15Aと遮断ディスク15Cとが嵌合された状態が維持される。しかしながら、各部品には寸法のばらつきが存在し得るため、寸法のばらつきに起因して各部品が嵌合した状態が安定しないおそれがある。そこで、本実施形態におけるディスクホルダ15Bおよび遮断ディスク15Cには、突部が形成されている。例えば、遮断ディスク15Cの壁部33Bの内面側には、複数の第1突部41が形成されている。複数の第1突部41は、例えば、製造工程における便宜を考慮して略等間隔となるように形成されることが好ましい。また、例えば、ディスクホルダ15Bの壁部32Bの内面側には、複数の第2突部42が形成されている。複数の第2突部42は、例えば、製造工程における便宜を考慮して略等間隔となるように形成されることが好ましい。以下の説明では、複数の第1突部41が略等間隔となるように形成されているものとして説明する。同様に、複数の第2突部42が略等間隔となるように形成されているものとして説明する。
 なお、突部とは、突起でもよいし、弾性変形可能な爪部でもよく、特定の形状等に限定されるものではない、本実施形態では、第1突部41が爪部であり、第2突部42が突起であるものとして説明する。
 第1突部41および第2突部42を設けることにより、各部品が嵌合する際に各部品が面接触ではなく点接触することになり、組立における抵抗を小さくすることができる。このため、各部品の寸法のばらつきを吸収して安定した嵌合状態を保つことができる。しかしながら、一対の第1突部41および一対の第2突部42が一直線状に配列された場合には、嵌合時における余分な圧力を逃がすための圧力の緩衝帯(各部品の寸法のばらつきを吸収する逃げ)を確保することができない。このため、場合によっては嵌合不良が生じ、安全機構15の高さ寸法にばらつきが生じてしまうおそれがあった。この寸法のばらつきに起因して、安全機構15の動作にばらつきが生じてしまうおそれがあった。
 この点について、図5を参照して説明する。遮断ディスク15Cおよびディスクホルダ15Bが嵌合した状態で上面視すると、壁部33Bおよび壁部32Bの箇所については互いに同心状の円周として捉えることができる。例えば、壁部33Bの箇所については、第1円周CL1として捉えることができ、壁部32Bの箇所については、第2円周CL2として捉えることができる。なお、円周とは必ずしも厳密な円である必要はなく、多少のゆがみがあってもよいし、第1円周CL1の中心と第2円周CL2の中心とが多少ずれていてもよい。また、説明の便宜を考慮して、図5(図6~図8についても同じ)では、第1円周CL1および第2円周CL2を離して図示しているが、実際には当該円周同士は近接している。
 壁部33Bに形成された第1突部41が、第1円周CL1上に沿って略等間隔に位置する。第1円周上とは、例えば、第1突部41の少なくとも一部が第1円周CL1に接していることを意味する。また、壁部32Bに形成された第2突部42が、第2円周CL2上に沿って略等間隔に位置する。第2円周上とは、例えば、第2突部42の少なくとも一部が第2円周CL2に接していることを意味する。図5に示す例では、第1突部41が4個形成されており、それぞれの第1突部が矩形のマークにより示されている。また、第2突部42が4個形成されており、それぞれの第2突部が円のマークにより示されている。
 ここで、円の中心を通り、第1円周CL1および第2円周CL2を含む対角線を規定する。図5では、2つの対角線DL1、DL2が示されている。図5に示すように、例えば、対角線DL1上に4個の突部(2個の第1突部41と2個の第2突部42)が位置する場合には、上述したような圧力の緩衝帯を確保することができない。このため、安全機構の15の組立時に嵌合不良が生じ、例えば安全機構15の高さ(総高)が規格値より大きくなってしまうおそれがある。
 このため、第1円周CL1上および第2円周CL2上を含む対角線上に位置する(存在する)第1突部41および第2突部42の数が3個以下(この場合は0を含んでもよい)であることが好ましい。最大数が3個であれば、圧力の緩衝帯を確保することができる。
 より具体的には、少なくとも1個の第1突部41または少なくとも1個の第2突部42を通る対角線上において、当該対角線上に位置する第1突部41および第2突部42の数が3個以下であることが好ましい。この場合でも、対角線上に位置する第1突部41および第2突部42の合計数が最大でも3個以下となるため、圧力の緩衝帯を確保することができる。
 また、対角線の一方側に第1突部41および第2突部42が位置し、当該対角線の他方側に第1突部41および第2突部42が存在しないようにしてもよい。
 また、対角線の一方側に第1突部41および第2突部42が位置し、対角線の他方側に第1突部41または第2突部42が位置する構成でもよい。
 また、第1突部41の数および第2突部42の数の少なくとも一方が奇数個であってもよい。さらに、第1突部41の数および第2突部42の数の両方が奇数個であってもよい。例えば、第1突部41が第1円周CL1上に沿って略等間隔に位置し、第2突部42が第2円周CL2上に沿って略等間隔に位置する場合に、ある対角線上の一方側に、当該対角線上に沿って第1突部41および第2突部42が位置しているとする。
 第1突部41の数と第2突部42の数とがともに偶数であると最大公約数として2があるので180度毎、すなわち、上述した対角線上における反対側にも第1突部41および第2突部42が位置し、当該対角線上に位置する第1突部41、第2突部42の数が4個になる。このため、圧力の緩衝帯を確保できなくなってしまう。したがって、第1突部41の数および第2突部42の数の少なくとも一方が奇数個であることが好ましい。
 以上説明した一実施形態によれば、電池の構成における圧力の緩衝帯を確保できる。したがって、安全機構15の各部品を嵌合させた際に嵌合不良が生じることを防止できるので、安全機構15の寸法にばらつきが生じてしまうことを防止できる。また、安全機構15の各部品を高さ方向の寸法が所定値以内となるように確実に嵌合できるので、安全機構15が安定して動作することでき、安全動作にばらつきが生じてしまうことを防止できる。
 次に、本開示の実施例について説明するが、本開示は、下記の実施例に限定されるものではない。
 本実施例では、18650型(直径18mm、高さ65mm)の円筒型のリチウムイオン二次電池を使用した。
 本実施例では、ディスクホルダ15Bの内側(壁部32Bの内側)に嵌合されるディスク板15Aの径(例えば、底部31Aの径)を規格値より+5%に設定し、不利な条件(嵌合しづらい条件)で実験した。また、本実施例では、ディスクホルダ15Bが嵌合される遮断ディスク15Cの径(例えば、底部33Aの径)を規格値より-5%に設定し、不利な条件(嵌合しづらい条件)で実験した。
 複数の第1突部41は、壁部33Bの内面側に略等間隔となるように形成した。複数の第2突部42は、壁部32Bの内面側に略等間隔となるように形成した。比較例および各実施例におけるサンプル数は50個とした。
 遮断ディスク15Cの第1突部41の数とディスクホルダ15Bの第2突部42の数とを変化させた場合において、下記の評価項目に関して工程能力指数(本実施例では、後述するCpk値(工程能力値とも称される)を使用して評価した。
[評価項目]
・安全機構15の高さ(総高)
・安全機構15の遮断圧力(ディスク板15Aの突出部18とサブディスク25Bとが遮断される際の圧力)
[工程能力について]
 ここで、工程能力について補足して説明する。工程能力とは、工程の品質に関する能力のことで、工程の品質達成能力ともいわれ、安定状態にある工程において、どの程度のばらつきで品質を実現し得るかの能力を示すものである。品質基準を満たした製品を生産できる能力のことを工程能力という。工程能力を評価するための数値が工程能力指数である。
 工程能力指数としては、Cp値あるいはCpk値(Process Capability Index)が用いられる。Cp値は、下記の式(1)により得られる。
Cp=(規格の上限-規格の下限)/6σ(但し、σは標準偏差である) ・・(1)
 Cpk値は、検査時のばらつきデータを正規分布グラフにした場合、分布が平均値より外れている場合に平均値を考慮した数値データとして求められる。Cpk値は、下記の式(2)により得られる。
Cpk=(1-k)*Cp(但し、kはかたより度である) ・・(2)
 Cp、Cpkを数値データとして求めることにより、規格に対する工程指数を確認することができる。
 工程能力指数の値に応じて、一般に以下の判断が行われる。なお、以下の例ではCp値を例にして説明するが、Cpk値でも同じである。
Cp≧1.67・・・工程能力は十分すぎる。
1.67>Cp≧1.33・・・工程能力は十分である。
1.33>Cp・・・工程能力は十分とは言えないもしくは不足している。
 そこで、本実施例でもこれにならい、それぞれ規格値に対し、工程能力が1.33未満のものに「×」、1.33~1.67未満のものに「○」、1.67を満足するもの(1.67以上のもの)に「◎」を付すこととした。
 下記の表1に結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1における比較例1および実施例1~8に対応する第1突部41および第2突部42の位置関係が、図6、図7A~図7Dおよび図8A~図8Dにそれぞれ示されている。
 比較例1は、第1突部41の数および第2突部42の数がともに偶数個の例であり、具体的には、第1突部41の数が6個であり、第2突部42の数が16個の例である。図6に示すように、この例では、所定の対角線DL3の一方側(参照符号AAが付されている箇所)に当該対角線DL3上に沿って第1突部41および第2突部42が位置する場合に、対角線DL3の他方側(参照符号BBが付されている箇所)にも第1突部41および第2突部42が位置する。すなわち、対角線DL3上に位置する第1突部41および第2突部42の数が4個となり圧力の緩衝帯を確保できない。比較例1における工程能力指数が総高および遮断圧力ともに「×」になることが確認された。
 なお、この例でも対角線DL3の一方側に第1突部41および第2突部42を位置しないようにすれば、対角線DL3上の第1突部41および第2突部42の数が4個になってしまうことを回避し得る。しかしながら、第1突部41および第2突部42は、その大きさが極めて小さいものもあるので、このような場合には、第1突部41および第2突部42の位置を目視で確認して安全機構15を組み立てることは実際上、困難であり現実的ではない。
 実施例1は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が15個の例である。図7Aに示すように、この例では、所定の対角線DL1aの一方側に当該対角線DL1a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL1aの他方側には第1突部41のみが位置する。他の対角線DL1b、DL1cについても同様である。すなわち、対角線DL1a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例1における工程能力指数が総高に関しては「○」となり、遮断圧力に関しては「◎」になることが確認された。
 実施例2は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が13個の例である。図7Bに示すように、この例では、所定の対角線DL2aの一方側に当該対角線DL2a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL2aの他方側には第1突部41のみが位置する。すなわち、対角線DL2a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL2aのみである。実施例2における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
 実施例3は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が11個の例である。図7Cに示すように、この例では、所定の対角線DL3aの一方側に当該対角線DL3a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL3aの他方側には第1突部41のみが位置する。すなわち、対角線DL3a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL3aのみである。実施例3における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
 実施例4は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部の数が9個の例である。図7Dに示すように、この例では、各突部の最大公約数である3に対応する120度毎に、第1突部41および第2突部42が対角線(DL4a、DL4b、DL4c)の一方側に位置する箇所が存在するものの、当該対角線の他方側には第1突部41のみが位置する。すなわち、対角線DL4a、4b、4cのそれぞれの対角線上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例4における工程能力指数が総高、遮断圧力ともに「○」となることが確認された。
 実施例5は、第1突部41の数が偶数個、第2突部42の数が奇数個の例であり、具体的には、第1突部41の数が6個であり、第2突部42の数が7個の例である。図8Aに示すように、この例では、所定の対角線DL5aの一方側に当該対角線DL5a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL5aの他方側には第1突部41のみが位置する。すなわち、対角線DL5a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。実施例5における工程能力指数が総高、遮断圧力ともに「○」となることが確認された。
 実施例6は、第1突部41の数が奇数個、第2突部42の数が偶数個の例であり、具体的には、第1突部41の数が5個であり、第2突部の数が16個の例である。図8Bに示すように、この例では、所定の対角線DL6aの一方側に当該対角線DL6a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL6aの他方側には第2突部42のみが位置する。すなわち、対角線DL6a上の第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL6aのみである。実施例6における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
 実施例7は、第1突部41の数が奇数個、第2突部42の数が偶数個の例であり、具体的には、第1突部41の数が3個であり、第2突部の数が16個の例である。図8Cに示すように、この例では、所定の対角線DL7aの一方側に当該対角線DL7a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL7aの他方側には第2突部42のみが位置する。すなわち、対角線DL7a上に位置する第1突部41および第2突部42の数が最も多い場合でも3個となり圧力の緩衝帯を確保できる。さらに、第1突部41および第2突部42の数が3個となる対角線は対角線DL7aのみである。実施例7における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
 実施例8は、第1突部41の数および第2突部42の数がともに奇数個の例であり、具体的には、第1突部41の数が5個であり、第2突部の数が13個の例である。図8Dに示すように、この例では、所定の対角線DL8aの一方側に当該対角線DL8a上に沿って第1突部41および第2突部42が位置する場合に、対角線DL8aの他方側には第1突部41および第2突部42が存在しない。すなわち、対角線上における第1突部41および第2突部42の数が最も多い場合でも2個となり、より効果的に余分な圧力を逃がすことができる。さらに、第1突部41および第2突部42の数が2個となる対角線は対角線DL8aのみである。実施例8における工程能力指数が総高、遮断圧力ともに「◎」となることが確認された。
 以上から、比較例1に対して、実施例1~8は安全機構15の総高、遮断圧力のばらつきが抑制され、本開示の優位性を確認することができた。また、第2突部42の個数は、11個以上が好ましいことが確認された。これは、第2突部42の個数が所定個数(例えば10個以下)になることで、拘束力が低下する傾向になり総高、遮断圧力のばらつきとしてはやや大きくなるため考えられる。
<2.応用例>
 次に、本開示の応用例について説明する。
「応用例としての車両における蓄電システム」
 本開示を車両用の蓄電システムに適用した例について、図9を参照して説明する。図9に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。バッテリー7208に対して、上述した本開示の一実施形態に係る電池が適用される。
 ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モーターである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モーターでも直流モーターでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。
 バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力がいずれも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。
 以上、本開示に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、バッテリー7208に好適に適用され得る。具体的には、一実施形態に係る電池をバッテリー7208に適用する。
 「応用例としての住宅における蓄電システム」
 本開示を住宅用の蓄電システムに適用した例について、図10を参照して説明する。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサ9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。
 蓄電装置9003に対して、上述した本開示の一実施形態に係る電池が適用される。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。
 各種のセンサ9011は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種センサ9011により取得された情報は、制御装置9010に送信される。センサ9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。
 パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fi等の無線通信規格によるセンサネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
 各部を制御する制御装置9010は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサ9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
 以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
 以上、本開示に係る技術が適用され得る蓄電システム9100の一例について説明した。本開示に係る技術は、以上説明した構成のうち、蓄電装置9003に好適に適用され得る。具体的には、一実施形態に係る電池を蓄電装置9003に適用することができる。
「その他の応用例」
 本開示は、大型の電動車両や航空機に限らず、電動バイク、電動自転車、電動三輪車、電動小型飛行体(ドローン等とも称される)等にも応用可能である。また、本開示は、二次電池が使用され得る電子機器(PC、スマートフォン、携帯電話、電動工具、おもちゃ等)にも応用可能であり、上述した電池装置から電力の供給を受ける電子機器として本開示を実現することも可能である。
<3.変形例>
 なお、本開示は、以下のような構成も取ることができる。
(1)
 電池内圧の上昇により変形を生じる安全弁と、
 前記安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1円周上に沿って形成される複数の第1突部を有する抑え部と、
 前記安全弁と前記抑え部とを絶縁し、第2円周上に沿って形成される複数の第2突部を有する絶縁ホルダと
 を有し、
 前記第1円周および前記第2円周を含む対角線上に配置される前記第1突部および前記第2突部の数が3以下である
 電池。
(2)
 少なくとも1個の前記第1突部または少なくとも1個の前記第2突部を通る対角線上において、当該対角線上に配置される前記第1突部および前記第2突部の数が3以下である
 (1)に記載の電池。
(3)
 前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部および前記第2突部が存在しない
 (2)に記載の電池。
(4)
 前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部または前記第2突部が位置する
 (2)に記載の電池。
(5)
 前記第1突部の数および前記第2突部の数の少なくとも一方が奇数個である
 (1)乃至(4)のいずれかに記載の電池。
(6)
 前記第1突部の数および前記第2突部の数がそれぞれ奇数個である
 (5)に記載の電池。
(7)
 前記第1突部が前記第1円周上に沿って略等間隔に位置する
 (1)乃至(6)のいずれかに記載の電池。
(8)
 前記第2突部が前記第2円周上に沿って略等間隔に位置する
 (1)乃至(7)のいずれかに記載の電池。
(9)
 前記リード部は、正極側から導出される正極リードを含む
 (1)乃至(8)のいずれかに記載の電池。
(10)
 前記リード部は、サブディスクを含み、
 前記安全弁と前記正極リードとが前記サブディスクを介して接続される
 (9)に記載の電池。
(11)
 円筒形状のリチウムイオン二次電池である
 (1)乃至(10)のいずれかに記載の電池。
(12)
 (1)乃至(12)のいずれかに記載の電池を有する蓄電装置。
(13)
 (1)乃至(12)のいずれかに記載の電池を有する電動車両。
 本開示は、第1突部および第2突部のいずれかのみを有する電池にも適用することができる。例えば、ある対角線上における第1突部(第2突部でもよい)の数が1個以下とされる電池でもよい。
 本開示は、リチウムイオン二次電池以外の二次電池や、一次電池に対しても適用することができる。また、角型の電池に対しても適用することができる。
 以上、本開示の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
15・・・安全機構
15A・・・ディスク板
15B・・・ディスクホルダ
15C・・・遮断ディスク
25A・・・正極リード
25B・・・サブディスク
41・・・第1突部
42・・・第2突部
CL1・・・第1円周
CL2・・・第2円周

Claims (13)

  1.  電池内圧の上昇により変形を生じる安全弁と、
     前記安全弁の変形に伴う当該安全弁とリード部との遮断時に当該リード部に対する抑えとなり、第1円周上に沿って形成される複数の第1突部を有する抑え部と、
     前記安全弁と前記抑え部とを絶縁し、第2円周上に沿って形成される複数の第2突部を有する絶縁ホルダと
     を有し、
     前記第1円周および前記第2円周を含む対角線上に配置される前記第1突部および前記第2突部の数が3以下である
     電池。
  2.  少なくとも1個の前記第1突部または少なくとも1個の前記第2突部を通る対角線上において、当該対角線上に配置される前記第1突部および前記第2突部の数が3以下である
     請求項1に記載の電池。
  3.  前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部および前記第2突部が存在しない
     請求項2に記載の電池。
  4.  前記対角線の一方側に前記第1突部および前記第2突部が位置し、前記対角線の他方側に前記第1突部または前記第2突部が位置する
     請求項2に記載の電池。
  5.  前記第1突部の数および前記第2突部の数の少なくとも一方が奇数個である
     請求項1に記載の電池。
  6.  前記第1突部の数および前記第2突部の数がそれぞれ奇数個である
     請求項5に記載の電池。
  7.  前記第1突部が前記第1円周上に沿って略等間隔に位置する
     請求項1に記載の電池。
  8.  前記第2突部が前記第2円周上に沿って略等間隔に位置する
     請求項1に記載の電池。
  9.  前記リード部は、正極側から導出される正極リードを含む
     請求項1に記載の電池。
  10.  前記リード部は、サブディスクを含み、
     前記安全弁と前記正極リードとが前記サブディスクを介して接続される
     請求項9に記載の電池。
  11.  円筒形状のリチウムイオン二次電池である
     請求項1に記載の電池。
  12.  請求項1に記載の電池を有する蓄電装置。
  13.  請求項1に記載の電池を有する電動車両。
PCT/JP2017/019335 2016-08-30 2017-05-24 電池、蓄電装置および電動車両 WO2018042777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018536939A JP6699736B2 (ja) 2016-08-30 2017-05-24 電池、蓄電装置および電動車両
CN201780039389.2A CN109417143B (zh) 2016-08-30 2017-05-24 电池、蓄电装置以及电动车辆
US16/210,575 US10897031B2 (en) 2016-08-30 2018-12-05 Battery, electric storage device, electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-168142 2016-08-30
JP2016168142 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/210,575 Continuation US10897031B2 (en) 2016-08-30 2018-12-05 Battery, electric storage device, electric vehicle

Publications (1)

Publication Number Publication Date
WO2018042777A1 true WO2018042777A1 (ja) 2018-03-08

Family

ID=61300509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019335 WO2018042777A1 (ja) 2016-08-30 2017-05-24 電池、蓄電装置および電動車両

Country Status (4)

Country Link
US (1) US10897031B2 (ja)
JP (1) JP6699736B2 (ja)
CN (1) CN109417143B (ja)
WO (1) WO2018042777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026976A1 (ja) * 2021-08-26 2023-03-02 株式会社村田製作所 円筒型電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891955B2 (ja) * 2017-06-15 2021-06-18 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR20220055972A (ko) * 2020-10-27 2022-05-04 주식회사 엘지에너지솔루션 부식방지층이 전지케이스의 내면에 형성되어 있는 이차전지
CN115136393A (zh) * 2020-10-27 2022-09-30 株式会社Lg新能源 具有在电池壳体的内表面上的导电层的硬币型二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261392A (ja) * 1997-03-17 1998-09-29 Housen Kk 電池の密閉構造
JP2001307706A (ja) * 2000-04-26 2001-11-02 Sony Corp 非水電解液二次電池及びその安全弁
US20030013005A1 (en) * 2001-07-09 2003-01-16 Chin Lung Chang Explosion-proof safety structure for column shape lithium battery
JP2007200755A (ja) * 2006-01-27 2007-08-09 Sony Corp 電池
US8962167B2 (en) * 2007-08-27 2015-02-24 Samsung Sdi Co., Ltd. Secondary battery having an insulator with protrusions
JP2016146357A (ja) * 2015-08-05 2016-08-12 ソニー株式会社 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701375B2 (ja) * 1988-10-21 1998-01-21 ソニー株式会社 防爆型密閉電池
CA2000873C (en) * 1988-10-21 1999-12-14 Shigeru Oishi Cell having current cutoff valve
KR100300405B1 (ko) * 1998-09-10 2002-06-20 김순택 이차전지의캡어셈블리
CN101083313B (zh) * 2000-09-01 2010-12-01 日立马库塞鲁株式会社 碱性干电池
KR100938062B1 (ko) * 2007-09-20 2010-01-21 삼성에스디아이 주식회사 이차 전지 및 그 제조방법
JP2009252409A (ja) 2008-04-02 2009-10-29 Komatsulite Mfg Co Ltd 電池蓋と一体化された安全装置
KR101094937B1 (ko) * 2009-02-16 2011-12-15 삼성에스디아이 주식회사 원통형 이차전지
CN101764200A (zh) * 2010-01-20 2010-06-30 张力 一种电池电容包装壳体
JP6208687B2 (ja) * 2012-12-19 2017-10-04 三洋電機株式会社 円筒形二次電池及びその製造方法
KR101744092B1 (ko) * 2013-04-18 2017-06-20 삼성에스디아이 주식회사 미세전류 전달부재를 갖는 이차 전지
CN203812982U (zh) * 2014-04-16 2014-09-03 浙江兴海能源科技有限公司 一种有自我保护装置的高倍率锂离子电池
KR102601641B1 (ko) * 2016-01-20 2023-11-13 삼성에스디아이 주식회사 이차 전지용 캡 조립체 및 이를 포함하는 이차 전지
KR102606637B1 (ko) * 2016-04-22 2023-11-27 삼성에스디아이 주식회사 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261392A (ja) * 1997-03-17 1998-09-29 Housen Kk 電池の密閉構造
JP2001307706A (ja) * 2000-04-26 2001-11-02 Sony Corp 非水電解液二次電池及びその安全弁
US20030013005A1 (en) * 2001-07-09 2003-01-16 Chin Lung Chang Explosion-proof safety structure for column shape lithium battery
JP2007200755A (ja) * 2006-01-27 2007-08-09 Sony Corp 電池
US8962167B2 (en) * 2007-08-27 2015-02-24 Samsung Sdi Co., Ltd. Secondary battery having an insulator with protrusions
JP2016146357A (ja) * 2015-08-05 2016-08-12 ソニー株式会社 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026976A1 (ja) * 2021-08-26 2023-03-02 株式会社村田製作所 円筒型電池

Also Published As

Publication number Publication date
US10897031B2 (en) 2021-01-19
JP6699736B2 (ja) 2020-05-27
CN109417143B (zh) 2021-12-17
CN109417143A (zh) 2019-03-01
JPWO2018042777A1 (ja) 2018-12-20
US20190109303A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2018042842A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US11631901B2 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
JP6823925B2 (ja) 電池、電池パックおよび電子機器
US10897031B2 (en) Battery, electric storage device, electric vehicle
US11038193B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US10790490B2 (en) Battery, battery can, battery pack, electronic device, electric vehicle, electricity storage device, and electric power system
WO2018142690A1 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6729575B2 (ja) 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013222502A (ja) 正極活物質およびその製造方法、正極、電池、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
CN108352460B (zh) 电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
KR102160332B1 (ko) 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
JP6652201B2 (ja) 電池および電子機器
JP2015156307A (ja) 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両
JP6973489B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018135061A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2019044526A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018536939

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845788

Country of ref document: EP

Kind code of ref document: A1