WO2018041620A1 - Trockenverdichtende vakuumpumpe - Google Patents

Trockenverdichtende vakuumpumpe Download PDF

Info

Publication number
WO2018041620A1
WO2018041620A1 PCT/EP2017/070626 EP2017070626W WO2018041620A1 WO 2018041620 A1 WO2018041620 A1 WO 2018041620A1 EP 2017070626 W EP2017070626 W EP 2017070626W WO 2018041620 A1 WO2018041620 A1 WO 2018041620A1
Authority
WO
WIPO (PCT)
Prior art keywords
toothed belt
rotor
vacuum pump
dry
shaft
Prior art date
Application number
PCT/EP2017/070626
Other languages
English (en)
French (fr)
Inventor
Thomas Dreifert
Dirk Schiller
Wolfgang Giebmanns
Roland Müller
Original Assignee
Leybold Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Gmbh filed Critical Leybold Gmbh
Priority to EP17751770.3A priority Critical patent/EP3507496B1/de
Priority to JP2019511755A priority patent/JP2019526738A/ja
Priority to BR112019002903-6A priority patent/BR112019002903A2/pt
Priority to CN201780052596.1A priority patent/CN109642574B/zh
Priority to KR1020197006039A priority patent/KR20190043139A/ko
Priority to CA3034112A priority patent/CA3034112A1/en
Priority to US16/328,581 priority patent/US20190186493A1/en
Publication of WO2018041620A1 publication Critical patent/WO2018041620A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • F05B2260/4021Transmission of power through friction drives through belt drives

Definitions

  • the invention relates to a dry-running vacuum pump, in particular a screw pump.
  • Dry-compressing vacuum pumps such as screw pumps
  • the rotor elements are designed as helical displacement elements. Each rotor element is supported by a rotor shaft.
  • the two rotor elements are arranged in a pump in the pump chamber formed by the pump chamber.
  • the two rotor shafts protrude through a housing wall, which limits the suction space. Toothed wheels are connected to the two shaft ends.
  • the two gears mesh with each other. As a result, on the one hand synchronizing the two counter-rotating shafts, as well as on the other hand, driving the two shafts. By providing the meshing gears, only one of the two shafts needs to be driven.
  • an enlarged effective diameter of typically 0.2 to 0.4 mm would have to be provided with toothed belt wheels. This results in a forced split error that degrades synchronization.
  • increased effective diameter considerably shortens the service life of the toothed belts used. This is not accepted in dry compressing vacuum pumps in the market.
  • the object of the invention is to provide a dry-compressing vacuum pump which is driven by a toothed belt and does not have the above disadvantages.
  • the dry-compressing vacuum pump has a suction chamber formed by a pump housing.
  • two rotor elements are arranged, wherein it is in particular a screw pump in the vacuum pump.
  • Each rotor element is supported by a rotor shaft.
  • the two rotor shafts protrude through a housing wall delimiting the pump chamber so that one shaft end protrudes from the pump chamber per rotor shaft.
  • On the two shaft ends a toothed belt wheel is arranged in each case. Since the drive of the two rotor shafts takes place via a toothed belt, the two toothed belt wheels do not mesh with one another.
  • a drive device such as an electric motor is provided.
  • a pulley is arranged in particular on a drive shaft of the electric motor.
  • the toothed belt is connected to the two toothed belt wheels and the drive device, in particular the pulley of the drive device.
  • a circumferential backlash between the two rotor elements of more than ⁇ 0.75 °, in particular more than ⁇ 1 °, is provided. Only due to the provision of such a large backlash is the use of timing belt possible.
  • the displacers arranged on the rotor shaft are preferred, wherein the displacement elements can of course also be formed integrally with the rotor shaft.
  • the two screw rotors have a plurality of rotor or displacement elements or displacement stages.
  • at least two displacement elements or displacement stages are provided.
  • Such a vacuum pump screw rotor preferably has at least two helical displacement elements arranged on a rotor shaft.
  • the at least two displacement elements preferably have different pitches, wherein the pitch is constant per displacement element.
  • the vacuum pump screw rotor has two displacement elements, wherein a first suction-side displacement element has a larger constant pitch and a second pressure-side displacement element has a smaller constant pitch.
  • each displacement element has at least one helical recess which has the same contour over its entire length.
  • the contours are preferably different per displacement element.
  • the single displacement element thus preferably has a constant pitch and a constant contour. This simplifies the production considerably, so that the production costs can be greatly reduced.
  • the contour of the suction-side displacement element is asymmetrical.
  • the flanks can be configured in such a way that the leakage surfaces, the so-called blow holes, in particular, completely disappear or at least have a small cross section.
  • a particularly suitable asymmetric profile is the so-called "Quirn by profile”. Although such a profile is relatively difficult to manufacture, it has the advantage that there is no continuous blow hole. A short circuit is only given between two adjacent chambers. Since it is an asymmetric profile with different profile flanks, At least two steps are required for the production, since the two flanks must be prepared in different steps due to their asymmetry.
  • the pressure-side displacement element in particular the last displacement element in the pumping direction, is preferably provided with a symmetrical contour.
  • the symmetrical contour has the particular advantage that the production is easier.
  • both flanks can be produced with a symmetrical contour by a rotating end mill or by a rotating side milling cutter in one step.
  • Such symmetrical profiles have only small blowholes, but these are continuous, ie. not just between two adjacent chambers. The size of the blow hole decreases as the slope decreases.
  • such symmetrical profiles can be provided in particular in the pressure-side displacement element, since in a preferred embodiment, this has a smaller pitch than the suction-side displacement element and preferably also as the displacement elements arranged between the suction-side and pressure-side displacement elements.
  • the provision of at least two such displacement elements means that the corresponding screw vacuum pump can generate low inlet pressures with low power consumption.
  • the thermal load is low.
  • Arranging at least two such preferably configured displacement elements with constant pitch and constant contour in a vacuum pump leads to substantially same results as in a vacuum pump with a variable displacement displacement element. At high built volume ratios can be provided per rotor three or four Vedrteilungs institute.
  • a pressure-side that is in particular in the pumping last displacement element on a large number of turns on. Due to a high number of turns, a larger gap between the screw rotor and the housing can be accepted with consistent performance.
  • the gap can have a cold gap width of 0.05-0.3 mm.
  • a large number of outlet turns or number of turns in the pressure-side displacement element is inexpensive to produce, since this displacement element has a constant pitch and in particular a symmetrical contour. As a result, a simple and inexpensive production is possible, so that the provision of a larger number of turns is acceptable.
  • this pressure-side or last displacement element has more than 6, in particular more than 8 and particularly preferably more than 10 turns.
  • the use of symmetrical profiles in a particularly preferred embodiment has the advantage that both flanks of the profile can be cut simultaneously with a milling cutter.
  • the milling cutter is additionally supported by the respectively opposite flank, so that deformation or bending of the milling cutter during the milling process and thus caused inaccuracies are avoided.
  • the displacement elements and the rotor shaft are formed in one piece.
  • the change in pitch between adjacent displacement elements is discontinuous or erratic educated.
  • the two displacement elements are arranged in the longitudinal direction at a distance from each other, so that between two displacement elements, a circumferential cylindrical chamber is formed, which serves as a tool outlet. This is particularly advantageous in integrally formed rotors, since the helix producing tool can be brought out in this area in a simple manner. If the displacement elements are manufactured independently of each other and then mounted on a shaft, the provision of a tool outlet, in particular of such a ring-cylindrical region is not required.
  • no tool outlet is provided between two adjacent displacement elements on the pitch change.
  • both flanks preferably have a defect or recess in order to be able to lead out the tool.
  • Such a defect has no appreciable influence on the compression capacity of the pump, since it is a locally very limited defect or recess.
  • the vacuum pump screw rotor preferably has a plurality of displacement elements. These may each have the same or different diameters. It is preferred here that the pressure-side displacement element has a smaller diameter than the suction-side displacement element.
  • displacement elements which are produced independently of the rotor shaft, they are mounted on the shaft, for example by press fits. In this case, it is preferable to provide elements such as dowel pins for fixing the angular position of the displacement elements to one another.
  • the screw rotor in the one-piece design of the screw rotor but also in a multi-piece configuration, it is preferable to this Aluminum or aluminum alloy. It is particularly preferred to produce the rotor from aluminum or an aluminum alloy, in particular AISi9Mg or AISi 17Cu4Mg.
  • the alloy preferably has a high silicon content of preferably more than 9%, in particular more than 15%, in order to reduce the expansion coefficient.
  • the aluminum used for the rotors has a low expansion coefficient in a further preferred development of the invention. It is preferred if the material has an expansion coefficient of less than 22 * 10 -6 / K, in particular of less than 20 * 10 -6 / K.
  • the surface of the displacement elements is coated, wherein in particular a coating against wear and / or corrosion is provided. In this case, it is preferable to provide an anodic coating or another suitable coating depending on the field of application.
  • the vacuum pump has at least two stages of compression.
  • the vacuum pump has a maximum delivery of at least 75%, in particular at least 85%.
  • the delivery rate is the quotient of the real maximum achieved volume flow and the theoretically possible volume flow in a lossless pump based on the pump chamber geometry and the operating speed.
  • the maximum delivery rate is usually achieved in the range of 1 to 10 mbar.
  • the toothed belt used is preferably not only for driving but also for synchronizing the rotor shafts.
  • the rotor shafts rotate counter-clockwise in screw pumps.
  • the toothed belt is therefore formed in a preferred embodiment as a double-sided toothed belt. In plan view, therefore, the toothed belt preferably extends between the two connected to the shaft ends of the toothed belt wheels.
  • backlashes of the two toothed belt wheels of more than 0.10 mm can be accepted.
  • the gapping is defined here by the combination of the tooth shape of the toothed belt wheels used and the tooth shape and size of the teeth of the toothed belt. Due to the relatively large tooth gap clearance, the service life of the toothed belt is significantly increased.
  • the effective diameter is not increased and thus no forced pitch error arises.
  • a toothed belt for driving and synchronizing the two rotor shafts in particular has the advantage that no oil lubrication must be provided. This has the particular advantage that the sealing of the shaft ends relative to the pump chamber can be designed significantly cheaper. Furthermore, it is possible to provide grease-lubricated bearings.
  • the two shafts are mounted in the housing wall through which the shaft ends are guided, wherein these bearings can be grease-lubricated bearings.
  • the opposite shaft ends, which are arranged in the region of the inlet side, are preferably mounted on grease-lubricated bearings, but also oil-lubricated bearings can be used.
  • a belt tensioning device may be provided to keep the belt constantly tensioned.
  • This is preferably an automatic clamping device, in which the voltage is generated for example by means of a spring or the like, or a fixed bias is applied during assembly. It is also possible to tension the belt by holding the drive motor in a displaceable manner.
  • Another advantage of the drive according to the invention by means of a toothed belt is that it is possible in a simple manner to change the speed of the vacuum pump. For this purpose, only the connected to the drive device toothed belt pulley must be replaced. When replacing the timing belt pulley, the timing belt may need to be replaced.
  • FIG. 3 shows a schematic representation of a combination of toothed belt and toothed belt pulley with tooth space
  • Fig. 5 is a schematic plan view of a first preferred embodiment
  • Fig. 6 is a schematic plan view of a second preferred embodiment
  • Fig. 7 is a schematic sectional view of displacement elements with asymmetric profile
  • Fig. 8 is a schematic sectional view of displacement elements with symmetrical profile.
  • Fig. 1 is greatly simplified schematically a pump housing 10 is shown.
  • a pump chamber is formed in which two rotor elements 14 are arranged.
  • the rotor elements 14 are screw rotors.
  • the screw rotors 14 have helical compression elements that intermesh.
  • the two screw rotors 14 are driven in opposite directions.
  • the two screw rotors 14 have in the illustrated embodiment, two pumping stages 16, 18.
  • the two rotor elements are each arranged on a rotor shaft 22.
  • the two rotor shafts 22 are mounted on the suction side in a housing cover 24 via bearing elements 26.
  • shaft ends 28 protrude through a housing wall 30.
  • the two rotor shafts 22 are mounted on grease-lubricated bearings 32.
  • the dry compacting vacuum pump delivers fluid through an inlet 34 to an outlet 36.
  • the two shaft ends 28 are each connected to a toothed belt wheel 38, wherein the two toothed belt wheels 38 do not mesh with each other.
  • the synchronization is effected by a toothed belt 40, not shown in FIG. 1 (FIG. 2).
  • the toothed belt is designed as a double-sided toothed belt and for the synchronization of the two toothed belt wheels 38 and the two connected to the toothed belt wheels shaft ends 28 passed between them.
  • a drive device 42 is provided, the drive shaft 44 is connected to a toothed belt pulley 46.
  • FIG. 3 schematically shows teeth of a toothed belt pulley 38 or 46 in conjunction with a toothed belt 40.
  • a tooth 48 of a toothed belt 40 is designed in such a way that a gap hatched is formed in relation to a tooth space 50 between two adjacent teeth 52 of the toothed belt wheel 38.
  • the synchronization of the two rotor shafts 22 is somewhat deteriorated, but the life of the toothed belt 48 is increased.
  • a toothed belt as shown schematically in Figure 4, may be provided. This has as a so-called zero gap no distances between the tooth space 50 and the tooth 48 of the belt 40.
  • the rotor has two displacement elements 110, 112, which form the two pump stages 16, 18.
  • a first suction-side displacement element 110 has a large pitch of approximately 50-150 mm / revolution. The slope is constant over the entire displacement element 110. The contour of the helical recess is constant.
  • the second pressure-side displacement element 112 again has a constant pitch over its length and a constant contour of the recess. The pitch of the pressure-side displacement element 112 is preferably in the range of 10 - 30 mm / revolution.
  • a ring-cylindrical recess 114 is provided between the two displacement elements. This serves to realize a tool outlet due to the one-piece design of the screw rotor shown in FIG.
  • the integrally formed screw rotor has two bearing seats 116 and a shaft end 118. With the shaft end 118, for example, a gear is connected to the drive.
  • the two displacement elements 110, 112 are made separately and then fixed on a rotor shaft 120, for example by pressing. Although this production is somewhat more complicated, the cylindrical distance 114 between two adjacent displacement elements 110, 112 is not required as a tool outlet.
  • the bearing seats 116 and the shaft ends 118 may be integral with the shaft 120.
  • a continuous shaft 120 be made of another, different from the displacement elements 110, 112 material.
  • Fig. 7 is a schematic sectional view of an asymmetrical profile (e.g., a Quimby profile).
  • the illustrated asymmetrical profile is a so-called "Quimby profile”.
  • the sectional view shows two screw rotors that mesh with each other and whose longitudinal direction is perpendicular to the plane of the drawing. The opposite rotation of the rotors is indicated by the two arrows 115.
  • the profiles of the flanks 119 and 121 per rotor are configured differently.
  • the opposing edges 119, 121 must therefore be made independently. However, therefore, although somewhat more complex and difficult production has the advantage that no continuous blow hole is present, but only between two adjacent chambers is a short circuit.
  • Such an asymmetrical profile is preferably provided in the suction-side displacement element 110.
  • FIG. 8 again shows a cross section of two displacement elements or two screw rotors, which in turn rotate in opposite directions (arrows 115). Relative to the axis of symmetry 117, the flanks 123 are designed to be symmetrical per displacement element. At the in Fig. 8 illustrated preferred embodiment of a symmetrically designed contour is a cycloid profile.
  • a symmetrical profile, as shown in FIG. 8, is preferably provided at the pressure-side displacement elements 112.
  • displacement elements are provided. These may possibly also have different head diameters and corresponding foot diameters. In this case, it is preferred that a displacement element with a larger head diameter at the inlet, i. is arranged on the suction side in order to realize a greater pumping speed in this area and / or to increase the built-in volume ratio. Furthermore, combinations of the embodiments described above are possible. For example, one or more displacement elements may be made integral with the shaft or an additional displacement element independent of the shaft and then mounted on the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Eine trockenverdichtende Vakuumpumpe, insbesondere eine Schraubenpumpe, weist zwei in einem Schöpfraum (12) angeordnete Rotorelemente (14) auf, die jeweils von einer Rotorwelle (22) getragen sind. Zwei Wellenenden der Rotorwellen (22) ragen durch eine Seitenwand (28) des Pumpengehäuses (10). Auf den beiden Wellenenden (28) ist jeweils ein Zahnriemenrad (38) angeordnet. Ferner sind eine Antriebeinrichtung sowie ein Elektromotor zum Antreiben der Rotorwelle (22) vorgesehen. Der Antrieb der Rotorwellen (22) erfolgt erfindungsgemäß durch einen Zahnriemen (40). Um einen Zahnriemen zum Antrieb verwenden zu können ist ein Verdrehflankenspiel zwischen den beiden Rotorelementen (14) von mehr als ±0,75°, insbesondere mehr als ±1° vorgesehen.

Description

Trockenverdichtende Vakuumpumpe
Die Erfindung betrifft eine trockenlaufende Vakuumpumpe insbesondere eine Schraubenpumpe.
Trockenverdichtende Vakuumpumpen wie beispielsweise Schraubenpumpen weisen zwei in einem Schöpfraum angeordnete Rotorelemente auf. Bei Schraubenpumpen sind die Rotorelemente als schraubenlinienförmige Verdrängerelemente ausgebildet. Jedes Rotorelement ist von einer Rotorwelle getragen. Die beiden Rotorelemente sind bei einer Schraubenpumpe in dem durch das Pumpengehäuse ausgebildeten Schöpfraum angeordnet. Die beiden Rotorwellen ragen durch eine Gehäusewand, die den Schöpfraum begrenzt. Mit den beiden Wellenenden sind Zahnräder verbunden. Bei Schraubenpumpen kämmen die beiden Zahnräder miteinander. Hierdurch erfolgt einerseits ein Synchronisieren der beiden sich gegenläufig drehenden Wellen, sowie andererseits ein Antreiben der beiden Wellen. Durch Vorsehen der kämmenden Zahnräder muss nur eine der beiden Wellen angetrieben werden. Zur Erzielung eines effizienten Verdichtungsprozesses und eines guten Liefergrades sind enge Spalte zwischen den Rotoren notwendig, die eine sehr exakte Synchronisierung notwendig machen. Hierbei sind typischerweise maximal Synchronisationsfehler bzw. Verdrehflankenspiele zwischen den Rotoren von ± 0,25° zulässig. Dies kann bei auf dem Markt befindlichen trockenverdichtenden Vakuumpumpen durch Vorsehen kämmender Zahnräder auf den Wellenenden realisiert werden. Aufgrund der geforderten Präzision und der geringen zulässigen Toleranzen sind die Kosten hoch.
Des Weiteren ist es beim Vorsehen kämmender Zahnräder zur Synchronisation erforderlich eine Ölschmierung vorzugsehen. Dies hat zur Folge, dass eine aufwendige und komplizierte Abdichtung in der Gehäusewand, durch die die Wellenenden ragen, erforderlich ist.
Bekannt ist auch eine elektronische Synchronisation der beiden Rotorwellen. Diese ist allerdings ebenfalls aufwendig und teuer. Zum Antrieb in der Rotorwelle sind Antriebseinrichtungen üblicherweise Elektromotoren vorgesehen. Diese können zur Drehzahlerhöhung der Vakuumpumpe mit einem Frequenzumrichter verbunden sein. Hierbei handelt es sich ebenfalls um ein verhältnismäßig teures Bauteil. Gegebenenfalls sind zwischengeschaltete Getriebe vorgesehen, wobei diese sodann wiederum ölgeschmiert sein müssen.
Des Weiteren ist es beispielsweise aus der DE 38 23 927 bekannt, zwei Rotorwellen einer Schraubenpumpe über einen Zahnriemen zu synchronisieren. Ein entsprechendes Produkt wurde jedoch nicht technisch realisiert und auf dem Markt angeboten. Um mit einem Riementrieb angetriebene Schraubenpumpen zu konstruieren, mit denen beim Pumpen gegen Atmosphäre mindestens ein Vakuum von 200 mbar Absolutdruck erzielt werden kann, müssen entsprechend geringe Synchronisationsfehler zwischen den schraubenförmigen Rotorelementen realisiert werden. Dies wäre beim Einsatz von Zahnriemen nur möglich, wenn die Zahnräder bzw. Zahnriemenscheiben, die von den Zahnriemen angetrieben werden, ein sehr enges Zahnlückenspiel aufweisen. Dies beträgt nach ISO 13050 je nach Profil weniger als 0,1 mm bzw. weniger als 0,2 mm. Alternativ müsste ein vergrößerter Wirkdurchmesser von typischerweise 0,2 bis 0,4 mm bei Zahnriemenrädern vorgesehen werden. Dies führt zu einem erzwungenen Teilungsfehler, der die Synchronisation verschlechtert. Das Vorsehen vergrößerter Wirkdurchmesser verkürzt allerdings die Lebensdauer der eingesetzten Zahnriemen erheblich . Dies ist bei trockenverdichtenden Vakuumpumpen im Markt nicht akzeptiert.
Aufgabe der Erfindung ist es, eine trockenverdichtende Vakuumpumpe zu schaffen, die mit einem Zahnriemen angetrieben wird und die vorstehenden Nachteile nicht aufweist.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Die trockenverdichtende Vakuumpumpe weist einen von einem Pumpengehäuse gebildeten Schöpfraum auf. In dem Schöpfraum sind zwei Rotorelemente angeordnet, wobei es sich bei der Vakuumpumpe insbesondere um eine Schraubenpumpe handelt. Jedes Rotorelement ist von einer Rotorwelle getragen . Die beiden Rotorwellen ragen durch eine den Schöpfraum begrenzende Gehäusewand, so dass je Rotorwelle ein Wellenende aus dem Schöpfraum ragt. Auf den beiden Wellenenden ist jeweils ein Zahnriemenrad angeordnet. Da der Antrieb der beiden Rotorwellen über einen Zahnriemen erfolgt, kämmen die beiden Zahnriemenräder nicht miteinander. Ferner ist eine Antriebseinrichtung wie ein Elektromotor vorgesehen. Hierbei ist insbesondere auf einer Antriebswelle des Elektromotor eine Riemenscheibe angeordnet. Der Zahnriemen ist mit den beiden Zahnriemenrädern und der Antriebseinrichtung, insbesondere der Riemenscheibe der Antriebseinrichtung verbunden. Um zum Antrieb der beiden Rotorwellen einen Zahnriemen vorsehen zu können, ist erfindungsgemäß ein Verdrehflankenspiel zwischen den beiden Rotorelemente von mehr als ± 0,75° insbesondere mehr als ± 1° vorgesehen. Nur aufgrund des Vorsehens eines derart großen Verdrehflankenspiels ist der Einsatz von Zahnriemen möglich.
Um trotz des großen Verdrehflankenspiels bei Verdichtung gegen Atmosphäre ein hohes Vakuum von insbesondere weniger als 200 mbar Absolutdruck erzielen zu können, sind besondere Ausgestaltungen der Verdichtungsstufen, d. h. der auf der Rotorwelle angeordneten Verdrängerelemente bevorzugt, wobei die Verdrängerelemente selbstverständlich auch einstückig mit der Rotorwelle ausgebildet sein können.
Aufgrund des erfindungsgemäß zulässigen großen Verdrehflankenspiels tritt insbesondere bei den saugseitig angeordneten Verdichtungselementen, d.h. bei den auf den Pumpeneinlass folgenden Verdichtungselementen eine vergleichsweise hohe Rückströmung auf.
Bei Schraubenrotoren mit in Förderrichtung veränderlicher Steigung ist der Profileingriffsspalt im Einlassbereich aufgrund der hier vorhandenen großen Steigung der Windung der Verdrängungselemente bestimmend für den maximal zulässigen Synchronisationsfehler. Bereits vergleichsweise kleine Winkelabweichungen führen zu unerwünschten Flankenkontakten bei den saugseitigen Verdrängungselementen. Um dies zu vermeiden, muss ein großes Verdrehflankenspiel gewählt werden. Um trotz des hierdurch entstehenden großen Spalts einen guten Liefergrad der Pumpe zu erzielen, ist es bevorzugt im Einlassbereich die Anzahl der Windungen mit großer Steigung und großem Profilspalt zu erhöhen. Insbesondere sind in diesem Bereich vorzugsweise zwei bis drei Windungen vorgesehen. Zusätzlich oder alternativ kann auch die Anzahl der Windungen im Auslassbereich, d.h. druckseitig erhöht werden. Hierdurch ergibt sich ein geringerer Druckgradient im Einlassbereich und somit ebenfalls eine verringerte Rückströmung. Im Auslassbereich weisen die Windungen eine geringere Steigung auf. Vorzugsweise sind hierbei sechs bis 10 Windungen vorgesehen.
Des Weiteren ist es bei einer alternativen bevorzugten Ausführungsform möglich, dass die beiden Schraubenrotoren mehrere Rotor- bzw. Verdrängungselemente bzw. Verdrängungsstufen aufweisen. Vorzugsweise sind mindestens zwei Verdrängungselemente bzw. Verdrängungsstufen vorgesehen. Ein derartiger Vakuumpumpen-Schraubenrotor weist vorzugsweise mindestens zwei auf einer Rotorwelle angeordnete schraubenlinienförmige Verdrängungselemente auf. Die mindestens zwei Verdrängungselemente weisen vorzugsweise unterschiedliche Steigungen auf, wobei je Verdrängungselement die Steigung konstant ist. Beispielsweise weist der Vakuumpumpen-Schraubenrotor zwei Verdrängungselemente auf, wobei ein erstes saugseitiges Verdrängungselement eine größere konstante Steigung und ein zweites druckseitiges Verdrängungselement eine kleinere konstante Steigung aufweist. Durch das bevorzugte Vorsehen von mehreren Verdrängungselementen, die jeweils eine konstante Steigung aufweisen, ist die Herstellung erheblich vereinfacht.
Vorzugsweise weist jedes Verdrängungselement mindestens eine schraubenlinienförmige Ausnehmung auf, die über ihre gesamte Länge dieselbe Kontur aufweist. Die Konturen sind vorzugsweise je Verdrängungselement unterschiedlich. Das einzelne Verdrängungselement weist somit vorzugsweise eine konstante Steigung und eine gleichbleibende Kontur auf. Dies vereinfacht die Herstellung erheblich, so dass die Herstellungskosten stark gesenkt werden können.
Zur weiteren Verbesserung der Saugleistung ist die Kontur des saugseitigen Verdrängungselements, das heißt insbesondere des in Pumprichtung ersten Verdrängungselements asymmetrisch ausgebildet. Durch die asymmetrische Ausbildung der Kontur bzw. des Profils können die Flanken derart ausgestaltet werden, dass die Leckageflächen, die sogenannten Blaslöcher insbesondere vollständig verschwinden oder zumindest einen geringen Querschnitt aufweisen. Ein besonders geeignetes asymmetrisches Profil ist das sogenannte "Quirn by- Profil". Ein derartiges Profil ist zwar relativ schwierig herzustellen, weist jedoch den Vorteil auf, dass kein durchgehendes Blasloch vorhanden ist. Ein Kurzschluss ist nur zwischen zwei benachbarten Kammern gegeben. Da es sich um ein asymmetrisches Profil mit unterschiedlichen Profilflanken handelt, sind für die Herstellung zumindest zwei Arbeitsschritte erforderlich, da die beiden Flanken aufgrund ihrer Asymmetrie in unterschiedlichen Arbeitsschritten hergestellt werden müssen.
Das druckseitige Verdrängungselement, insbesondere das in Pumprichtung letzte Verdrängungselement, ist vorzugsweise mit einer symmetrischen Kontur versehen. Die symmetrische Kontur hat insbesondere den Vorteil, dass die Herstellung einfacher ist. Insbesondere können beide Flanken mit symmetrischer Kontur durch einen rotierenden Fingerfräser oder durch einen rotierenden Scheibenfräser in einem Arbeitsschritt hergestellt werden. Derartige symmetrische Profile weisen nur kleine Blaslöcher auf, diese sind jedoch durchgehend, d.h . nicht nur zwischen zwei benachbarten Kammern vorgesehen. Die Größe des Blaslochs verringert sich bei Verringerung der Steigung. Insofern können derartige symmetrische Profile insbesondere bei dem druckseitigen Verdrängungselement vorgesehen werden, da diese in bevorzugter Ausführungsform eine kleinere Steigung als das saugseitige Verdrängungselement und vorzugsweise auch als das zwischen dem saugseitigen und dem druckseitigen Verdrängungselement angeordnete Verdrängungselemente aufweist. Wenngleich die Dichtigkeit derartiger symmetrischer Profile etwas geringer ist, weisen diese den Vorteil auf, dass die Herstellung deutlich einfacher ist. Insbesondere ist es möglich, das symmetrische Profil in einem einzigen Arbeitsschritt und vorzugsweise mit einem einfachen Fingerfräser oder Scheibenfräser herzustellen. Dies reduziert die Kosten erheblich. Ein besonders geeignetes symmetrisches Profil ist das sogenannte "Zykloiden-Profil".
Das Vorsehen mindestens zweier derartiger Verdrängungselemente führt dazu, dass die entsprechende Schraubenvakuumpumpe bei geringer Leistungsaufnahme niedrige Einlassdrücke erzeugen kann. Auch ist die thermische Belastung gering. Das Anordnen von mindestens zwei derartig bevorzugt ausgestalteten Verdrängungselementen mit konstanter Steigung und gleichbleibender Kontur in einer Vakuumpumpe führt zu im Wesentlichen gleichen Ergebnissen, wie bei einer Vakuumpumpe mit einem Verdrängungselement mit sich ändernder Steigung. Bei hohen eingebauten Volumenverhältnissen können je Rotor drei oder vier Vedrängungselemente vorgesehen werden.
Zur Verringerung des erzielbaren Einlassdrucks und/oder zur Verringerung der Leistungsaufnahme und/oder der thermischen Belastung weist bei einer besonders bevorzugten Ausführungsform ein druckseitiges, das heißt insbesondere in Pumprichtung letztes Verdrängungselement eine große Anzahl an Windungen auf. Durch eine hohe Anzahl an Windungen kann ein größerer Spalt zwischen dem Schraubenrotor und dem Gehäuse akzeptiert werden bei gleichbleibender Performance. Der Spalt kann hierbei eine Kalt-Spaltweite von 0,05 - 0,3 mm aufweisen. Eine große Anzahl an Auslasswindungen bzw. Anzahl an Windungen bei dem druckseitigen Verdrängungselement ist kostengünstig herstellbar, da dieses Verdrängungselement eine konstante Steigung und insbesondere auch eine symmetrische Kontur aufweist. Hierdurch ist eine einfache und kostengünstige Herstellung möglich, so dass das Vorsehen einer größeren Anzahl an Windungen akzeptabel ist. Vorzugsweise weist dieses druckseitige bzw. letzte Verdrängungselement mehr als 6, insbesondere mehr als 8 und besonders bevorzugt mehr als 10 Windungen auf. Das Verwenden symmetrischer Profile hat in besonders bevorzugter Ausführungsform den Vorteil, dass beide Flanken des Profils mit einem Fräser gleichzeitig geschnitten werden können. Hierbei erfolgt zusätzlich ein Abstützen des Fräsers durch die jeweils gegenüberliegende Flanke, so dass ein Verformen bzw. Verbiegen des Fräsers während des Fräsvorgangs und hierdurch hervorgerufene Ungenauigkeiten vermieden sind.
Zur weiteren Reduzierung der Herstellungskosten ist es besonders bevorzugt, die Verdrängungselemente und die Rotorwelle einstückig auszubilden.
Bei einer weiteren bevorzugten Ausführungsform ist der Steigungswechsel zwischen benachbarten Verdrängungselementen unstetig bzw. sprunghaft ausgebildet. Gegebenenfalls sind die beiden Verdrängungselemente in Längsrichtung in einem Abstand zueinander angeordnet, so dass zwischen zwei Verdrängungselementen eine umlaufende zylinderringförmige Kammer ausgebildet ist, die als Werkzeugauslauf dient. Dies ist insbesondere bei einstückig ausgebildeten Rotoren vorteilhaft, da das die Schraubenlinie herstellende Werkzeug in diesem Bereich auf einfache Weise herausgeführt werden kann. Sofern die Verdrängungselemente unabhängig voneinander hergestellt und sodann auf einer Welle montiert werden, ist das Vorsehen eines Werkzeugauslaufs, insbesondere eines derartigen ringzylindrischen Bereichs nicht erforderlich .
Bei einer bevorzugten Weiterbildung der Erfindung ist zwischen zwei benachbarten Verdrängungselementen am Steigungswechsel kein Werkzeugauslauf vorgesehen. In dem Bereich des Steigungswechsels weisen vorzugsweise beide Flanken eine Fehlstelle bzw. Ausnehmung auf, um das Werkzeug herausführen zu können. Eine derartige Fehlstelle hat keinen nennenswerten Einfluss auf die Verdichtungsleistung der Pumpe, da es sich um eine örtlich stark begrenzte Fehlstelle bzw. Ausnehmung handelt.
Der Vakuumpumpen-Schraubenrotor weist vorzugsweise mehrere Verdrängungselemente auf. Diese können jeweils den gleichen oder unterschiedliche Durchmesser aufweisen. Bevorzugt ist es hierbei, dass das druckseitige Verdrängungselement einen kleineren Durchmesser als das saugseitige Verdrängungselement aufweist.
Bei unabhängig von der Rotorwelle hergestellten Verdrängungselementen werden diese beispielsweise durch Presspassungen auf der Welle montiert. Hierbei ist es bevorzugt, Elemente wie Passstifte zur Festlegung der Winkelposition der Verdrängungselemente zueinander vorzusehen.
Insbesondere bei der einstückigen Ausgestaltung des Schraubenrotors aber auch bei einer mehrstückigen Ausgestaltung ist es bevorzugt, diesen aus Aluminium oder aus einer Aluminiumlegierung herzustellen . Besonders bevorzugt ist es, den Rotor aus Aluminium oder einer Aluminium-Legierung insbesondere AISi9Mg oder AISi l7Cu4Mg herzustellen . Die Legierung hat vorzugsweise einen hohen Silicium-Anteil von vorzugsweise mehr als 9 %, insbesondere mehr als 15 %, um den Ausdehnungskoeffizienten zu verringern .
Das für die Rotoren verwendete Aluminium weist in einer weiteren bevorzugten Weiterbildung der Erfindung einen geringen Ausdehnungskoeffizienten auf. Bevorzugt ist es, wenn das Material einen Ausdehnungskoeffizienten von weniger als 22 * 10~6/K, insbesondere von weniger als 20 * 10~6/K aufweist. In einer weiter bevorzugten Ausführungsform ist die Oberfläche der Verdrängungselemente beschichtet, wobei insbesondere eine Beschichtung gegen Verschleiß und/oder Korrosion vorgesehen ist. Hierbei ist es bevorzugt eine anodische oder eine andere geeignete Beschichtung je nach Anwendungsgebiet vorzusehen .
Die Vakuumpumpe weist mindestens zwei Verdichtungsstufen auf.
Des Weiteren ist es bei der erfindungsgemäßen trockenverdichtenden Vakuumpumpe bevorzugt, dass die Vakuumpumpe einen maximalen Liefergrad von mindestens 75%, insbesondere mindestens 85% aufweist. Der Liefergrad ist der Quotient aus dem real maximal erreichten Volumenstrom und dem theoretisch möglichen Volumenstrom bei einer verlustfreien Pumpe bezogen auf die Schöpfraumgeometrie und die Betriebsdrehzahl . Der maximale Liefergrad wird üblicherweise im Bereich von 1 bis 10 mbar erreicht.
Der verwendete Zahnriemen dient vorzugsweise nicht nur zum Antrieb sondern auch zur Synchronisation der Rotorwellen . Die Rotorwellen drehen bei Schraubenpumpen gegenläufig . Der Zahnriemen ist daher in bevorzugter Ausführungsform als doppelseitiger Zahnriemen ausgebildet. In Draufsicht verläuft der Zahnriemen daher vorzugsweise zwischen den beiden mit den Wellenenden verbundenen Zahnriemenrädern . In einer bevorzugten Ausführungsform, mit dem oben beschriebenen Rotor, können Zahnlückenspiele der beiden Zahnriemenräder von mehr als 0,10 mm akzeptiert werden. Das Zahnlückenspiel ist hierbei durch die Kombination der Zahnform der verwendeten Zahnriemenräder und der Zahnform und -große der Zähne des Zahnriemens definiert. Aufgrund des relativ großen Zahnlückenspiels ist die Lebensdauer der Zahnriemen deutlich vergrößert.
Um eine weitere Vergrößerung der Lebensdauer der Zahnriemen erzielen zu können, ist es des Weiteren bevorzugt, dass der Wirkdurchmesser nicht vergrößert ist und somit kein erzwungener Teilungsfehler entsteht.
Das Vorsehen eines Zahnriemens zum Antreiben und Synchronisieren der beiden Rotorwellen hat insbesondere den Vorteil, dass keine Ölschmierung vorgesehen sein muss. Dies hat insbesondere den Vorteil, dass die Abdichtung der Wellenenden gegenüber dem Schöpfraum deutlich kostengünstiger ausgestaltet sein kann. Des Weiteren ist es möglich, fettgeschmierte Wälzlager vorzusehen. Insbesondere sind die beiden Wellen in der Gehäusewand, durch die die Wellenenden geführt sind, gelagert, wobei es sich bei diesen Lagern um fettgeschmierte Lager handeln kann. Die gegenüberliegenden Wellenenden, die im Bereich der Einlassseite angeordnet sind, sind vorzugsweise über fettgeschmierte Lager gelagert, jedoch können auch ölgeschmierte Lager eingesetzt werden.
Des Weiteren kann eine Riemenspanneinrichtung vorgesehen sein, um den Riemen konstant gespannt zu halten. Hierbei handelt es sich vorzugsweise um eine automatische Spanneinrichtung, bei der die Spannung beispielsweise mittels einer Feder oder dergleichen erzeugt wird, oder eine feste Vorspannung bei der Montage aufgebracht wird. Ebenso ist es möglich, den Riemen dadurch zu spannen, dass der Antriebsmotor verschiebbar gehalten ist. Ein weiterer Vorteil des erfindungsgemäßen Antriebs mittels Zahnriemen besteht darin, dass es auf einfach Weise möglich ist, die Drehzahl der Vakuumpumpe zu verändern. Hierzu muss lediglich die mit der Antriebseinrichtung verbundene Zahnriemenscheibe ausgewechselt werden. Beim Austausch der Zahnriemenscheibe muss gegebenenfalls zusätzlich der Zahnriemen ausgetauscht werden.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
Es zeigen :
Fig. 1 einen schematischen Längsschnitt einer Schrauben-
Vakuumpumpe,
Fig. 2 eine schematische Darstellung des Antriebs der Vakuumpumpe,
Fig. 3 eine schematische Darstellung einer Kombination aus Zahnriemen und Zahnriemenscheibe mit Zahnlücke,
Fig. 4 eine schematische Darstellung einer Kombination aus Zahnriemen und Zahnriemenscheibe ohne Zahnlücke,
Fig. 5 eine schematische Draufsicht einer ersten bevorzugten
Ausführungsform eines Vakuumpumpen-Schraubenrotors,
Fig. 6 eine schematische Draufsicht einer zweiten bevorzugten
Ausführungsform eines Vakuumpumpen-Schraubenrotors,
Fig. 7 eine schematische Schnittansicht von Verdrängungselementen mit asymmetrischem Profil, und Fig. 8 eine schematische Schnittansicht von Verdrängungselementen mit symmetrischem Profil .
In Fig. 1 ist stark vereinfacht schematisch ein Pumpengehäuse 10 dargestellt. Innerhalb des Pumpengehäuses 10 ist ein Schöpfraum ausgebildet, in dem zwei Rotorelemente 14 angeordnet sind. Bei den Rotorelementen 14 handelt es sich im dargestellten Ausführungsbeispiel um Schraubenrotoren. Die Schraubenrotoren 14 weisen schraubenlinienförmige Verdichtungselemente auf, die ineinandergreifen. Die beiden Schraubenrotoren 14 sind hierbei gegenläufig angetrieben. Die beiden Schraubenrotoren 14 weisen im dargestellten Ausführungsbeispiel zwei Pumpstufen 16, 18 auf.
Die beiden Rotorelemente sind jeweils auf einer Rotorwelle 22 angeordnet. Die beiden Rotorwellen 22 sind saugseitig in einem Gehäusedeckel 24 über Lagerelemente 26 gelagert. Auf der gegenüberliegenden Seite ragen Wellenenden 28 durch eine Gehäusewand 30 hindurch. In der Gehäusewand 30 sind die beiden Rotorwellen 22 über fettgeschmierte Lager 32 gelagert.
Die trockenverdichtende Vakuumpumpe fördert Medium durch einen Einlass 34 zu einem Auslass 36.
Zum Antrieb der beiden Rotorelemente 14 sind die beiden Wellenenden 28 jeweils mit einem Zahnriemenrad 38 verbunden, wobei die beiden Zahnriemenräder 38 nicht miteinander kämmen. Die Synchronisation erfolgt durch einen in Fig. 1 nicht dargestellten Zahnriemen 40 (Fig. 2). Der Zahnriemen ist als doppelseitiger Zahnriemen ausgebildet und zur Synchronisation der beiden Zahnriemenräder 38 bzw. der beiden mit den Zahnriemenrädern verbundenen Wellenenden 28 zwischen diesen hindurchgeführt. Ferner ist eine Antriebseinrichtung 42 vorgesehen, deren Antriebswelle 44 mit einer Zahnriemenscheibe 46 verbunden ist. Figur 3 zeigt schematisch Zähne einer Zahnriemenscheibe 38 oder 46 in Verbindung mit einem Zahnriemen 40. Ein Zahn 48 eines Zahnriemens 40 ist derart ausgestaltet, dass gegenüber einem Zahnzwischenraum 50 zweier benachbarter Zähne 52 des Zahnriemenrades 38 eine schraffiert dargestellte Lücke ausgebildet ist. Hierdurch ist ein gewisses Spiel zwischen Zahnriemen 40 und Zahnriemenrad 38 gegeben. Hierdurch ist die Synchronisation der beiden Rotorwellen 22 zwar etwas verschlechtert, jedoch die Lebensdauer des Zahnriemens 48 jedoch vergrößert.
Alternativ kann ein Zahnriemen, wie schematisch in Figur 4 dargestellt, vorgesehen sein. Dieser weist als sogenannte Null-Lücke keine Abstände zwischen dem Zahnzwischenraum 50 und dem Zahn 48 des Riemens 40 auf.
Bei der ersten bevorzugten Ausführungsform (Fig. 5) des Vakuumpumpen- Schraubenrotors weist der Rotor zwei Verdrängungselemente 110, 112 auf, die die beiden Pumpenstufen 16, 18 ausbilden. Ein erstes saugseitiges Verdrängungselement 110 weist eine große Steigung von ca. 50 - 150 mm/Umdrehung auf. Die Steigung ist über das gesamte Verdrängungselement 110 konstant. Auch die Kontur der schraubenlinienförmigen Ausnehmung ist konstant. Das zweite druckseitige Verdrängungselement 112 weist über seine Länge wiederum eine konstante Steigung und eine konstante Kontur der Ausnehmung auf. Die Steigung des druckseitigen Verdrängungselements 112 liegt vorzugsweise im Bereich von 10 - 30 mm/Umdrehung. Zwischen den beiden Verdrängungselementen ist eine ringzylindrische Ausnehmung 114 vorgesehen. Diese dient dazu, das aufgrund der einstückigen Ausgestaltung des in Fig. 5 dargestellten Schraubenrotors ein Werkzeugauslauf realisiert ist.
Ferner weist der einstückig ausgebildete Schraubenrotor zwei Lagersitze 116 und ein Wellenende 118 auf. Mit dem Wellenende 118 wird beispielsweise ein Zahnrad zum Antrieb verbunden. Bei der in Fig. 6 dargestellten zweiten bevorzugten Ausführungsform sind die beiden Verdrängungselemente 110, 112 gesondert hergestellt und sodann auf einer Rotorwelle 120 beispielsweise durch Aufpressen fixiert. Diese Herstellung ist zwar etwas aufwendiger, jedoch ist der zylindrische Abstand 114 zwischen zwei benachbarten Verdrängungselementen 110, 112 als Werkzeugauslauf nicht erforderlich . Die Lagersitze 116 und die Wellenenden 118 können integraler Bestandteil der Welle 120 sein. Eine durchgehende Welle 120, auch aus einem anderen sich von den Verdrängungselementen 110, 112 unterscheidenden Werkstoff, hergestellt sein.
Fig. 7 zeigt eine schematische Schnittansicht eines asymmetrischen Profils (z.B. ein Quimby-Profil). Bei dem dargestellten asymmetrischen Profil handelt es sich um ein sogenanntes "Quimby-Profil". Die Schnittansicht zeigt zwei Schraubenrotoren, die miteinander kämmen und deren Längsrichtung senkrecht zur Zeichenebene ist. Die gegenläufige Drehung der Rotoren ist durch die beiden Pfeile 115 angedeutet. Bezogen auf eine senkrecht zur Längsachse der Verdrängungselemente verlaufenden Ebene 117 sind die Profile der Flanken 119 und 121 je Rotor unterschiedlich ausgestaltet. Die einander gegenüberliegenden Flanken 119, 121 müssen somit unabhängig voneinander hergestellt werden. Die daher zwar etwas aufwändigere und schwierigere Herstellung hat jedoch den Vorteil, dass kein durchgehendes Blasloch vorhanden ist, sondern lediglich zwischen zwei benachbarten Kammern ein Kurzschluss besteht.
Ein derartiges asymmetrisches Profil ist vorzugsweise bei dem saugseitigen Verdrängungselement 110 vorgesehen.
Die schematische Schnittansicht in Fig. 8 zeigt wiederum einen Querschnitt zweier Verdrängungselemente bzw. zweier Schraubenrotoren, die wiederum gegenläufig rotieren (Pfeile 115). Bezogen auf die Symmetrieachse 117 sind die Flanken 123 je Verdrängungselement symmetrisch ausgebildet. Bei dem in Fig. 8 dargestellten bevorzugten Ausführungsbeispiel einer symmetrisch ausgestalteten Kontur handelt es sich um ein Zykloiden-Profil .
Ein symmetrisches Profil, wie in Fig. 8 dargestellt, ist vorzugsweise bei den druckseitigen Verdrängungselementen 112 vorgesehen.
Ferner ist es möglich, dass mehr als zwei Verdrängungselemente vorgesehen sind. Diese können ggf. auch unterschiedliche Kopfdurchmesser und entsprechende Fußdurchmesser aufweisen. Hierbei ist es bevorzugt, dass ein Verdrängungselement mit größerem Kopfdurchmesser am Einlass, d.h. saugseitig angeordnet ist, um in diesem Bereich ein größeres Saugvermögen zu realisieren und/ oder das eingebaute Volumenverhältnis zu vergrößern. Ferner sind Kombinationen der vorstehend beschriebenen Ausführungsformen möglich. Beispielsweise können ein oder mehrere Verdrängungselemente einstückig mit der Welle oder ein zusätzliches Verdrängungselement unabhängig von der Welle hergestellt und sodann auf der Welle montiert werden.

Claims

Ansprüche
1. Trockenverdichtende Vakuumpumpe mit zwei in einem Schöpfraum (12) angeordneten Rotorelementen (14), zwei, jeweils ein Rotorelement (14) tragenden Rotorwellen (22), zwei jeweils auf einem aus dem Schöpfraum (12) ragenden Wellenende (28) angeordneten Zahnriemenrädern (38), einer Antriebseinrichtung (42) zum Antreiben der Rotorwellen (22) und einem mit der Antriebseinrichtung (42) und den Zahnriemenrädern (38) verbundenen Zahnriemen, dadurch gekennzeichnet, dass ein Verdrehflankenspiel zwischen den beiden Rotorelementen von mehr als ± 0,75° insbesondere mehr als ± 1° vorgesehen ist.
2. Trockenverdichtende Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der maximale Liefergrad der Vakuumpumpe bei einem Betriebspunkt, insbesondere zwischen 1 und 10 mbar mindestens 75%, insbesondere mindestens 85% beträgt.
3. Trockenverdichtende Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zahnriemen (40) zur Synchronisation gegenläufiger Rotorwellen (22) als doppelseitiger Zahnriemen ausgebildet ist.
4. Trockenverdichtende Vakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass der Zahnriemen zwischen den beiden Zahnriemenrädern (38) verläuft.
5. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Zahnlückenspiel der beiden Zahnriemenräder größer als 0,15 mm, insbesondere größer als 0,2 mm ist.
6. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rotorwellen (22) durch fettgeschmierten Lagern (32) gelagert sind, wobei vorzugsweise in einer Gehäusewand (30), durch die die Wellenenden (28) geführt sind je Rotorwelle (22) ein Lager (32) angeordnet ist.
7. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Vakuumpumpe gegen Atmosphäre verdichtet und ein Vakuum von mindestens 200 mbar absolut erzeugt.
8. Trockenverdichtende Vakuumpumpe nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine Riemen-Spanneinrichtung, die vorzugsweise an der Gehäusewand (32) angeordnet ist.
PCT/EP2017/070626 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe WO2018041620A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17751770.3A EP3507496B1 (de) 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe
JP2019511755A JP2019526738A (ja) 2016-08-30 2017-08-14 ドライ圧縮真空ポンプ
BR112019002903-6A BR112019002903A2 (pt) 2016-08-30 2017-08-14 bomba de vácuo de compressão a seco
CN201780052596.1A CN109642574B (zh) 2016-08-30 2017-08-14 干压缩式真空泵
KR1020197006039A KR20190043139A (ko) 2016-08-30 2017-08-14 건식 압축 진공 펌프
CA3034112A CA3034112A1 (en) 2016-08-30 2017-08-14 Dry-compressing vacuum pump
US16/328,581 US20190186493A1 (en) 2016-08-30 2017-08-14 Dry-compressing vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202016005208.0U DE202016005208U1 (de) 2016-08-30 2016-08-30 Trockenverdichtende Vakuumpumpe
DE202016005208.0 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018041620A1 true WO2018041620A1 (de) 2018-03-08

Family

ID=59593115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/070626 WO2018041620A1 (de) 2016-08-30 2017-08-14 Trockenverdichtende vakuumpumpe

Country Status (9)

Country Link
US (1) US20190186493A1 (de)
EP (1) EP3507496B1 (de)
JP (1) JP2019526738A (de)
KR (1) KR20190043139A (de)
CN (1) CN109642574B (de)
BR (1) BR112019002903A2 (de)
CA (1) CA3034112A1 (de)
DE (1) DE202016005208U1 (de)
WO (1) WO2018041620A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003046U1 (de) * 2017-06-09 2018-09-14 Leybold Gmbh Trockenverdichtende Vakuumpumpe
EP3499041B1 (de) * 2017-12-15 2020-07-01 Pfeiffer Vacuum Gmbh Schraubenvakuumpumpe
DE202018000178U1 (de) * 2018-01-12 2019-04-15 Leybold Gmbh Kompressor
DE102018210922A1 (de) * 2018-07-03 2020-01-09 Leybold Gmbh Zwei- oder Mehrwellen-Vakuumpumpe
TW202040004A (zh) * 2019-04-19 2020-11-01 亞台富士精機股份有限公司 轉子及螺旋式幫浦
CN111120324A (zh) * 2019-12-30 2020-05-08 浙江思科瑞真空技术有限公司 一种具有多个吸入腔和排气口的螺杆真空泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248801A (ja) * 1986-04-23 1987-10-29 Hitachi Ltd 無給油式スクリユ−流体機械
DE3706588C1 (en) * 1987-02-26 1988-08-18 Mannesmann Ag Drive device for rotary displacement compressors
DE3823927A1 (de) 1987-07-18 1989-01-26 Boc Group Plc Mehrstufige vakuumpumpe
DE10334481A1 (de) * 2003-07-29 2005-03-17 Steffens, Ralf, Dr. Antrieb einer Spindelvakuumpumpe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69132867T2 (de) * 1990-08-01 2002-09-12 Matsushita Electric Ind Co Ltd Drehkolbenanlage für flüssige Medien
JP3074845B2 (ja) * 1991-10-08 2000-08-07 松下電器産業株式会社 流体回転装置
DE4318707A1 (de) * 1993-06-04 1994-12-08 Sihi Gmbh & Co Kg Verdrängermaschine mit elektronischer Motorsynchronisation
SE501889C2 (sv) * 1993-10-18 1995-06-12 Opcon Autorotor Ab Anordning för koppling av en skruvrotormaskin till en drivande eller driven remskiva
CN2363091Y (zh) * 1998-03-19 2000-02-09 机械工业部郑州机械研究所 圆弧及修正渐开线齿形高粘度齿轮泵
JP2000161277A (ja) * 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd ポンプ装置
CN2397284Y (zh) * 1999-07-16 2000-09-20 大连理工大学 双螺杆压缩机螺杆转子新齿形
JP2003336656A (ja) * 2002-05-20 2003-11-28 Teijin Seiki Co Ltd 回転軸固定機構
DE202009003981U1 (de) * 2009-03-24 2010-08-19 Vacuubrand Gmbh + Co Kg Antrieb für eine Vakuumpumpe
US20100322806A1 (en) * 2009-06-18 2010-12-23 Aregger Markus Arrangement including a gear pump
JP6079052B2 (ja) * 2012-08-24 2017-02-15 株式会社島津製作所 真空ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248801A (ja) * 1986-04-23 1987-10-29 Hitachi Ltd 無給油式スクリユ−流体機械
DE3706588C1 (en) * 1987-02-26 1988-08-18 Mannesmann Ag Drive device for rotary displacement compressors
DE3823927A1 (de) 1987-07-18 1989-01-26 Boc Group Plc Mehrstufige vakuumpumpe
DE10334481A1 (de) * 2003-07-29 2005-03-17 Steffens, Ralf, Dr. Antrieb einer Spindelvakuumpumpe

Also Published As

Publication number Publication date
KR20190043139A (ko) 2019-04-25
US20190186493A1 (en) 2019-06-20
EP3507496A1 (de) 2019-07-10
BR112019002903A2 (pt) 2019-05-21
CN109642574A (zh) 2019-04-16
EP3507496B1 (de) 2020-07-15
CN109642574B (zh) 2020-08-04
CA3034112A1 (en) 2018-03-08
JP2019526738A (ja) 2019-09-19
DE202016005208U1 (de) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3507496B1 (de) Trockenverdichtende vakuumpumpe
EP0552443B1 (de) Zahnradmaschine
WO2007065484A1 (de) Schraubenkompressor
CH495509A (de) Schneckenmaschine
DE10208408A1 (de) Zahnradverzahnung
DE3911020C2 (de) Schmierungsfreie Rotationskolbenmaschine in Schraubenbauweise
EP3507497B1 (de) Vakuumpumpen-schraubenrotor
DE3938346C1 (de)
EP1252444B1 (de) Antrieb einer schraubenspindelpumpe
DE69928172T2 (de) Vacuumpumpe
WO2018224409A1 (de) Trockenverdichtende vakuumpumpe
WO2014001089A1 (de) Schraubenpumpe
EP3507495B1 (de) Schraubenvakuumpumpe
EP0607497B1 (de) Sichellose Innenzahnradpumpe mit in die Zahnköpfe eingesetzten Dichtelementen
DE4134965A1 (de) Spiralverdichter mit modifizierter kopfnut
DE1428270C3 (de)
DE2134241C3 (de) Zweistufige außenachsige Rotationskolbenmaschine
DE4403649A1 (de) Lagerung und Antrieb der Rotoren eines Schraubenrotorverdichters
EP1722104B1 (de) Rotorpaar für Schraubenverdichter
WO2019137852A1 (de) Kompressor
DE19717697B4 (de) Innenzahnradmaschine
EP1437512A2 (de) Zweiwellenvakuumpumpe
DE2308195A1 (de) Drehkolbenmaschine, insbesondere schraubenkompressor, mit einzelnen rotorabschnitten
EP2690252A1 (de) Trochoiden-Innenzahnradmaschine
DE60223388T2 (de) Verdrängerpumpe mit gegendruckverhinderung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17751770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3034112

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197006039

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019511755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002903

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017751770

Country of ref document: EP

Effective date: 20190401

ENP Entry into the national phase

Ref document number: 112019002903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190212