WO2018041143A1 - 自行走式集装箱和/或车辆检查设备 - Google Patents

自行走式集装箱和/或车辆检查设备 Download PDF

Info

Publication number
WO2018041143A1
WO2018041143A1 PCT/CN2017/099693 CN2017099693W WO2018041143A1 WO 2018041143 A1 WO2018041143 A1 WO 2018041143A1 CN 2017099693 W CN2017099693 W CN 2017099693W WO 2018041143 A1 WO2018041143 A1 WO 2018041143A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
self
vertical
controller
power supply
Prior art date
Application number
PCT/CN2017/099693
Other languages
English (en)
French (fr)
Inventor
曲海波
赵杰
Original Assignee
北京华力兴科技发展有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华力兴科技发展有限责任公司 filed Critical 北京华力兴科技发展有限责任公司
Priority to EP17845445.0A priority Critical patent/EP3508888B1/en
Priority to US16/329,128 priority patent/US10761236B2/en
Publication of WO2018041143A1 publication Critical patent/WO2018041143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission

Definitions

  • the present invention relates to the field of radiation scanning inspection equipment, and more particularly to a self-propelled container and/or vehicle inspection apparatus.
  • mobile container and/or vehicle inspection equipment usually has a cab, which requires workers to drive inspection equipment to travel, but the staff generally believe that they are too close to the radiation source in the cab, fearing that they will be exposed to radiation, so the driving inspection equipment More disgusting.
  • the existing mobile container and/or vehicle inspection equipment usually has four wheels, which travel through four wheels, but three points determine one plane, and the design of the four wheels has a problem of positioning, and the road surface is slightly uneven. When a wheel is lifted, the force of the frame of the device is severely uneven. Due to the large weight of the device, the above situation may easily cause the frame to be distorted and deform, affecting the relative position of the detector and the radiation source, resulting in poor scanning and imaging of the device.
  • the present invention is directed to solving at least one of the technical problems existing in the prior art.
  • a self-propelled container and/or vehicle inspection apparatus including: a frame including a gantry, a fixed beam, and a swing beam, the gantry including a beam and a setting a first vertical beam and a second vertical beam at the left and right ends of the beam, the fixed beam is disposed in the front-rear direction and fixedly connected to the first vertical beam, and the first wheel and the front and the ends of the fixed beam are respectively installed a second wheel, the swing beam being disposed in a front-rear direction and rotatably coupled to the second vertical beam, the swing beam being rotatable in a vertical direction relative to the second vertical beam, and the swinging beam a third wheel and a fourth wheel are respectively mounted on the front and rear ends; a power supply device is mounted on the frame; a radiation source is mounted on the first vertical beam and connected to the power supply device for generating a beam a detector chamber comprising a horizontal detector chamber mounted on the beam and a vertical detector chamber mounted on
  • the self-propelled container and/or vehicle inspection device comprises: a frame, a power supply device, a radiation source, a detector cabin, at least two drive motors and a controller.
  • the power supply device is used for powering each electric device
  • the detector cabin includes a horizontal detector chamber and a vertical detector chamber.
  • the detector chambers are equipped with detector arrays, and the detectors are respectively aligned with the radiation emitted by the radiation source. At the center of the beam, the detector array is used to receive the beam of radiation and convert it into a radiation scanned image.
  • the fixed beam of the frame, the first vertical beam, the beam and the second vertical beam are fixed, and one wheel is installed at each of the front and rear ends of the fixed beam, the two wheels are always close to the ground, and the bottom of the second vertical beam is rotatably mounted
  • the oscillating beam constitutes a balanced suspension, and one wheel is installed at each of the front and rear ends of the oscillating beam.
  • the oscillating beam will rotate relative to the second vertical beam, so that the two wheels on the oscillating beam are always close to the bottom surface.
  • the frame is evenly stressed to prevent the frame from being twisted and deformed, and the relative positions of the first vertical beam, the beam and the second vertical beam are kept unchanged, so as to ensure the accuracy of the relative position of the detector and the radiation source, thereby ensuring the accuracy.
  • the solution removes the cab of the inspection device, and the drive motor of the wheel is connected with the controller.
  • the controller controls the operation of the drive motor according to the setting program, and drives the wheel to rotate, thereby controlling the inspection device to automatically travel, so that the worker is not required to be in the cab. Driving, relieved the staff's concerns.
  • the first vertical beam is detachably hinged to the beam by a first hinge shaft; the second vertical beam is detachably hinged to the beam by a second hinge shaft.
  • the beam and the two vertical beams are usually transported in the disassembled state, and then assembled at the scanning work site.
  • the two vertical beams need to be lifted to keep the vertical beams vertical. Lift the beam horizontally so that the left and right ends of the beam are aligned with the tops of the two vertical beams, and then fix the two vertical beams to the beam.
  • this assembly method is very difficult to operate, and the beam and the two vertical beams are in a hoisting state during assembly, and the alignment work is difficult to complete, so the assembly work takes a long time.
  • the beam and the vertical beam are hingedly assembled.
  • the two vertical beams When assembling on the job site, the two vertical beams are aligned with the beam on the ground, and then the vertical beams are respectively hinged to the beam through the hinged shaft, and then the horizontal beam is lifted horizontally.
  • the two vertical beams are rotated relative to the beam under the action of their own gravity. After the vertical beam is rotated to the preset assembly position, the vertical beam and the beam are fixed, and the assembly work of the gantry is completed, which greatly reduces the assembly of the gantry.
  • the difficulty of operation can greatly reduce the time required for assembly work.
  • the first wheel and the second wheel are respectively rotatable relative to the first vertical beam in a horizontal direction to an axis thereof extending in a front-rear direction; the third wheel and the The fourth wheel is respectively rotatable in the horizontal direction relative to the second vertical beam to extend its axis in the front-rear direction.
  • the first vertical beam is assembled with the fixed beam
  • the second vertical beam is assembled with the swing beam.
  • the two vertical beams are respectively hinged to the beam, and the orientation of the wheel is adjusted so that the wheel axis is in the front-rear direction.
  • the wheel rolls with the vertical beam movement avoiding mopping the bottom of the vertical beam, making the assembly work easier to complete and preventing the vertical beam and the ground from being damaged.
  • a first centering protrusion is disposed on a front surface and a rear surface of the left end of the beam, and a second centering protrusion is disposed on the first vertical beam,
  • the first centering protrusion and the second centering block are in contact with each other to form a limit in the front-rear direction;
  • the front surface of the right end of the beam and the rear a third pair of middle protrusions is disposed on the surface
  • a fourth centering protrusion is disposed on the second vertical beam, and the third pair of middle protrusions is rotated when the second vertical beam is rotated to the assembly position
  • the block collides with the fourth pair of middle bumps to form a limit in the front-rear direction.
  • the centering protrusions correspondingly interfere to form a limit in the front-rear direction to control the relative position of the vertical beam and the beam in the front-rear direction (ie, the position of the vertical beam on the hinge axis) ) ensuring the accuracy of the relative position of the radiation source mounted on the first vertical beam, the vertical detector chamber mounted on the second vertical beam and the horizontal detector compartment mounted on the beam, thereby ensuring that the inspection device scans the image. effect.
  • the surface in which the first pair of middle bumps and the second pair of middle bumps oppose each other is a matching inclined surface, and the distance from the inclined surface to the first vertical beam gradually increases from top to bottom.
  • the surface of the third pair of middle bumps and the fourth pair of middle bumps is a matching inclined surface, and the distance from the inclined surface to the second vertical beam gradually increases from top to bottom.
  • the horizontal detector compartment and the vertical detector compartment are detachably connected to the beam and the second vertical beam, respectively, and the vertical detector compartment The horizontal detector compartment is rotatably connected.
  • the radiation scanning inspection device has a horizontal detector chamber and a vertical detector chamber.
  • the horizontal detector chamber and the vertical detector chamber are perpendicular to each other, and the space occupied in the horizontal and vertical directions is relatively large, resulting in equipment switching. Inconvenient transportation.
  • the vertical detector compartment and the horizontal detector compartment can be rotatably connected, and when the vehicle is transported or changed, the vertical detector compartment and the horizontal detector compartment can be rotated by rotating the vertical detector compartment or the horizontal detector compartment. Folding together to reduce the length of space occupied by the two detector chambers in the lateral and/or longitudinal direction, thereby facilitating equipment exchange or transportation.
  • the radiation source comprises: a shielding container comprising a container body and a collimator, the container body being mounted on the first vertical beam, the container body being provided with the mounting a cavity and a ray outlet in communication with the mounting cavity, the collimator is fixedly mounted on the container body, and a slit of the collimator is aligned with the ray exit; a radiation source body is mounted on the The chamber is mounted and the outlet of the source body is aligned with the ray outlet.
  • the shielding container and the collimator are two separate components that are respectively mounted on the frame of the device, so that the accuracy of the relative position of the shielding container and the collimator is difficult to ensure, which may affect the scanning imaging effect of the device.
  • the solution integrates the shielding container and the collimator, and the shielding container provided includes the capacity
  • the collimator and the collimator are fixedly mounted on the container body to ensure the accuracy of the relative position of the collimator and the container body, so that the slit of the collimator is aligned with the ray outlet on the container body to pass
  • the beam of the collimator conforms to the design criteria to ensure the quality of the scanned image of the self-propelled container and/or vehicle inspection equipment.
  • the radiation source body is generally selected from an electronic induction reducer, an electron linear accelerator or an isotope radiation source.
  • the accelerator is connected with the control device and the power supply device, and the operating state of the accelerator is controlled by the controller to control the start and end of the scan.
  • cobalt isotope radiation source such as 60
  • the electric control door is connected with the power supply device and the controller, and the electronic control door is controlled to open and close by the controller to control The start and end of the scan.
  • the power supply device comprises a cable reel and/or a fuel generator.
  • the cable When the scanning work site has an external power supply, the cable is connected to the external power supply for power supply. When the scanning work site has no external power supply, the power is supplied through the fuel generator.
  • the cable reel power supply mode and the fuel generator power supply mode can be switched by a manual switch, or the controller can be automatically switched, that is, when the cable reel is powered off, the fuel generator power supply mode is automatically turned on, and when the cable reel receives current, , automatically switches to cable reel power mode.
  • the self-propelled container and/or vehicle inspection device further includes: two steering motors respectively connected to the first wheel and the third wheel or respectively a second wheel coupled to the fourth wheel, the steering motor for urging the wheel to rotate in a horizontal direction relative to the gantry, and each of the steering motors being respectively coupled to the power supply device and the controller .
  • the two steering motors can push the two front wheels or the two rear wheels of the inspection device to perform horizontal rotation to control the traveling direction of the device or to steer the device, thereby more flexibly targeting different vehicles or containers.
  • the self-propelled container and/or vehicle inspection apparatus further includes: a radiation shielding assembly mounted on the gantry for blocking unwanted rays; wherein the radiation shielding The assembly includes: a first shield mounted on the second vertical beam and located on a side of the vertical detector compartment facing away from the radiation source; and a second shield mounted on the first vertical beam And located between the radiation source and the vertical detector chamber, the second shield body is provided with a slit extending in the up and down direction, and the slit is aligned with the radiation exit of the radiation source; vertical rays a trap mounted on the second vertical beam, the vertical ray trap being located on a side of the vertical detector chamber facing away from the radiation source and facing the vertical detector chamber; horizontal ray a trap mounted on the beam, the horizontal ray trap being located above the horizontal detector compartment and facing the horizontal detector compartment; a first protective layer disposed on the front bulkhead and the rear bulkhead of the vertical detector compartment; and a second protective layer disposed on the front bulkhead and
  • the radiation shielding assembly is disposed on the self-propelled container and/or the vehicle inspection device, and does not need to occupy the space of the scanning inspection field, so that the device meets the requirements of small field operations. Moreover, the radiation shielding assembly is disposed on the self-propelled container and/or the vehicle inspection device, and moves with the self-propelled container and/or the vehicle inspection device, so the inspection device replacement work site does not need to rebuild the radiation shielding wall or other radiation shielding. Facilities reduce the cost of inspection equipment, which can enhance the market competitiveness of products.
  • the first shielding body and the second shielding body are generally selected from steel plates or lead plates, and the materials of the horizontal ray trap, the vertical ray trap, the first protective layer and the second protective layer are preferably lead.
  • the rack has a passage for the container to be tested or the vehicle to be tested to pass
  • the self-propelled container and/or the vehicle inspection device further includes an anti-collision device
  • the anti-collision device includes: a channel detecting component installed in the channel and connected to the power supply device and the controller for detecting whether the container to be tested and/or the vehicle to be detected are biased to the channel, and detecting signals Transmitting to the controller; an obstacle detecting component mounted at an edge of the rack and connected to the power supply device and the controller for detecting a traveling direction of the self-propelled container and/or the vehicle inspection device Whether there is an obstacle in the preset range, and transmitting a detection signal to the controller; four guard door assemblies, four of the anti-collision devices are respectively installed on the front end and the left and right sides of the left and right sides of the rack a rear end and each located within the channel, each of the protective door assemblies including a trigger door hinged to the frame and
  • the solution realizes active collision avoidance through the channel detecting component and the obstacle detecting component, and realizes passive collision avoidance through the protective door component.
  • the detecting component is configured to detect whether the object to be tested is aligned with the detecting channel, and avoid the object to be tested colliding with the device.
  • the obstacle detection component is configured to detect whether there is an obstacle on the route of the device, and avoid collision of the device with the obstacle.
  • the protective door assembly is installed in the detection channel. If there is a problem in the direction of relative movement of the inspection device and the container and/or the vehicle during the inspection, the container and/or the vehicle will first hit before the collision between the container and/or the vehicle and the inspection device. Triggering the door to cause the trigger door to rotate.
  • the detector When the trigger door is turned to or exceeds the preset angle and/or the preset position, the detector sends a trigger signal to the controller, and when the controller receives the trigger signal, the corresponding program is triggered, for example, control Check that the device stops moving forward, issues an alarm, etc., so as to avoid collision between the inspection device and the object to be tested, and prevent damage to the inspection device and the object to be tested.
  • the detection device can be selected by a travel switch.
  • the self-propelled container and/or vehicle inspection device further includes: a plurality of signal acquisition cameras respectively mounted on the frame, and each of the signal acquisition cameras respectively It is connected with the power supply device and the controller for collecting the box number of the container to be tested and/or the license plate number of the vehicle to be tested.
  • the self-propelled container and/or vehicle inspection device further includes: a plurality of monitors respectively installed on the front, rear, left, and right sides of the rack, and each of the monitors is respectively connected to the power supply device and the controller for monitoring the self-propelled container and/or Or the vehicle checks the condition around the equipment. To ensure the safety of the device when it is used.
  • the self-propelled container and/or the vehicle inspection device further includes: a data transmission device, configured to connect to the remote console and perform data transmission with the remote console;
  • the data transmission device comprises a transmission fiber and/or a wireless transmission device.
  • data transmission is performed between the data transmission device and the remote console to transmit the inspection scan pattern of the container and/or the vehicle and the data collected by the signal acquisition camera and the monitor to the remote console for review by the staff.
  • the remote console can send a control signal to the self-propelled container and/or the vehicle inspection device through the data transmission device to control the working state of the device to implement remote control.
  • the self-propelled container and/or vehicle inspection device further includes: a fuselage control box mounted on the frame and connected to the controller and the power supply device And for transmitting a control command to the controller and/or controlling start and stop of the power supply device; and/or a wireless control device capable of wirelessly transmitting with the controller for transmitting a control command to the controller And/or controlling the start and stop of the power supply device.
  • the access trough needs to be monitored by the staff on site.
  • the on-site staff can use the fuselage control box and / Or the wireless control device controls the device to cope with unexpected situations.
  • the control device of the wireless control device opens the distance between the field staff and the inspection equipment, which can reduce the risk of on-site work.
  • the self-propelled container and/or vehicle inspection device further includes: a temperature control device, the temperature control device includes: a detector cabin air conditioning system, and the controller and the The power supply unit is connected and connected to the vertical detector chamber and the horizontal detector chamber for controlling the temperature in the vertical detector chamber and the horizontal detector chamber.
  • a radiation source air conditioning system the first vertical beam is provided with a mounting compartment for mounting the radiation source, the radiation source air conditioning system is connected to the controller and the power supply device, and is connected to the installation compartment Inside, used to control the temperature inside the installation compartment.
  • the radiation source air conditioning system is used to control the temperature of the radiation source installation cabin within a preset range
  • the detector cabin air conditioning system is used to control the temperature of the two detector cabins within a preset range to enable the self-propelled container and/or Vehicle inspection equipment can work in hot and cold natural environments.
  • the self-propelled container and/or vehicle inspection device further includes: an automatic navigation device coupled to the power supply device and the controller for setting the self-propelled Predetermined travel route of the container and/or vehicle inspection device, and detecting whether the self-propelled container and/or the vehicle inspection device deviate from the preset travel route while transmitting a detection signal
  • the controller is provided to cause the controller to control a traveling direction of the self-propelled container and/or the vehicle inspection device according to the detection signal.
  • the automatic navigation device generally includes a device positioning device for determining a position coordinate of the inspection device, and a detection object position detecting device for detecting a position of the container to be inspected and/or the vehicle.
  • the device positioning device may select GPS
  • the detection object position detecting device may select a photoelectric distance measuring sensor
  • the GPS detects the current position coordinate of the device, and transmits the coordinate information of the inspection device to the controller
  • the photoelectric distance measuring sensor measures the detection object.
  • the distance from the inspection device is transmitted to the controller, and the controller calculates the position coordinates of the detection object according to the coordinate information of the inspection device and the distance information, and sets the position coordinates of the inspection device and the position coordinates of the detection object.
  • the preset route is determined, and then the control device is controlled to travel along the preset route.
  • the GPS detects and checks the position coordinates of the device in real time and sends it to the controller.
  • the controller finds that the position coordinates of the inspection device deviate from the preset route, the device can be driven by adjusting the difference between the left and right drive motors or controlling the steering motor. Turn to correct the route of the inspection equipment.
  • the automatic navigation device can also cooperate with the obstacle detecting component.
  • the obstacle detecting component finds an obstacle on the traveling route of the device, the detecting object position detecting device and the controller obtain the position of the obstacle according to the above detection principle. Coordinates, the controller resets the preset route according to the coordinates of the inspection device, the obstacle, and the container to be inspected and/or the vehicle, so that the inspection device can automatically bypass the obstacle during the process.
  • the self-propelled container and/or vehicle inspection device further includes: a car position detecting device connected to the power supply device and the controller for detecting a vehicle to be inspected Car location.
  • the equipment When the equipment checks the vehicle, it has a quick check working mode. When the vehicle is inspected quickly, the inspection equipment is stationary. Each vehicle to be tested passes through the detection channel of the equipment in turn. To prevent the beam from being irradiated to the driver of the vehicle, the inspection device is installed in the detection channel.
  • Car position detection device The vehicles to be tested are all trucks, and there is a gap between the front and the car.
  • the position detection device of the car usually uses photoelectric sensors. The position of the sensor is in the vertical plane where the beam is located. When the detection light of the sensor is irradiated into the gap, it is proved that the head has passed.
  • the ray exit position at which point the sensor sends a signal to the controller that causes the controller to control the radiation source to emit a ray and begin scanning.
  • the detected light of the sensor is no longer blocked by the car.
  • the sensor sends a signal to the controller, so that the controller controls the radiation source to stop emitting radiation and stops the scanning work.
  • the self-propelled container and/or vehicle inspection device further includes: a radioactive substance detecting device connected to the power supply device and the controller, configured to detect the container to be tested and/or Whether there is radioactive material in the vehicle to be tested.
  • the self-propelled container and/or the vehicle inspection device further includes: an infrared thermal scanning device, connected to the power supply device and the controller, for detecting the The container and/or the vehicle to be tested are subjected to thermal scanning.
  • the self-propelled container and/or vehicle inspection device further includes: a biohazardous dangerous goods detecting device connected to the power supply device and the controller for detecting the container to be tested and/or Or whether there is a biohazard in the vehicle to be tested.
  • biochemical dangerous goods detection device In the gas collecting device in the channel, when the detection object passes through the detection channel, the gas collecting device performs gas production, and the biochemical dangerous goods detecting device performs inspection and analysis on the gas sample to determine whether the biochemical dangerous goods are contained in the container and/or the vehicle.
  • the self-propelled container and/or vehicle inspection device further includes: a multi-information integration device connected to the power supply device and the controller for detecting images of the detection devices Integration with radiation scanning images.
  • the multi-information integration device can integrate the radiation scanning image, the infrared thermal scanning image, the radioactive material inspection information, and the biochemical dangerous goods detection into one image for the staff to review.
  • FIG. 1 is a schematic structural view of a self-propelled container and/or vehicle inspection apparatus according to an embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of the self-propelled container and/or the vehicle inspection device shown in Figure 1 at another angle;
  • Figure 3 is a right side structural view of the self-propelled container and/or vehicle inspection apparatus shown in Figure 2;
  • Figure 4 is a bottom plan view of the self-propelled container and/or vehicle inspection apparatus shown in Figure 2;
  • FIG. 5 is a schematic structural diagram of a shielding container according to an embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of the horizontal detector compartment and the vertical detector compartment shown in Figure 1 in an unfolded state;
  • Figure 7 is a schematic view showing the structure of the horizontal detector compartment and the vertical detector compartment shown in Figure 6 in a folded state.
  • an embodiment of the present invention provides a self-propelled container and/or vehicle inspection device, including a frame, a power supply device, a radiation source, a detector cabin, at least two drive motors 8 and Controller.
  • the frame comprises a gantry, a fixed beam 4 and a swing beam 5.
  • the gantry comprises a beam 1 and a first vertical beam 2 and a second vertical beam 3 disposed at the left and right ends of the beam 1.
  • the fixed beam 4 is arranged in the front-rear direction and is first
  • the vertical beam 2 is fixedly connected, and the front and rear ends of the fixed beam 4 are respectively mounted with a first wheel and a second wheel.
  • the swing beam 5 is disposed in the front-rear direction and rotatably connected with the second vertical beam 3, so that the swing beam 5 can be oppositely
  • the second vertical beam 3 is rotated in the vertical direction, and the front and rear ends of the swing beam 5 are respectively mounted with the third wheel and the fourth wheel.
  • the power supply unit is mounted on the rack.
  • a radiation source is mounted on the first vertical beam 2 and connected to the power supply for generating a beam of radiation.
  • the detector compartment comprises a horizontal detector compartment 6 mounted on the beam 1 and a vertical detector compartment 7 mounted on the second vertical beam 3, with a detector array mounted in the horizontal detector compartment 6 and the vertical detector compartment 7
  • Each detector is connected to a power supply device, and each detector is respectively aligned with the center of the beam.
  • At least two drive motors 8 are respectively connected to the power supply device.
  • Each of the drive motors 8 is connected to one wheel, and the wheels connected to the drive motors 8 are different.
  • the drive motor 8 is used to drive the wheels around and rotate the axis.
  • the controller is connected to the power supply device, the radiation source, the detectors, and the respective drive motors 8.
  • the self-propelled container and/or vehicle inspection device comprises: a frame, a power supply device, a radiation source, a detector cabin, at least two drive motors 8 and a controller.
  • the power supply device is used for powering each electric device
  • the detector cabin includes a horizontal detector chamber 6 and a vertical detector chamber 7, and detector arrays are installed in the two detector chambers, and the detectors are respectively aligned with the radiation source.
  • the detector array is used to receive the beam and convert it into a radiation scanned image.
  • the fixed beam 4 of the frame, the first vertical beam 2, the cross beam 1 and the second vertical beam 3 are fixed, and one wheel is installed at each of the front and rear ends of the fixed beam 4, and the two wheels are always in close contact with the ground, and the second vertical beam 3
  • a swinging beam 5 is rotatably mounted on the bottom to form a balanced suspension.
  • One wheel is mounted on each of the front and rear ends of the swinging beam 5, and the road surface under the equipment is uneven.
  • the swinging beam 5 will rotate correspondingly with respect to the second vertical beam 3, so that the two wheels on the swinging beam 5 are always close to the bottom surface, so that the frame is evenly stressed, so as to prevent distortion of the frame and ensure the first
  • the relative positions of the vertical beam 2, the beam 1 and the second vertical beam 3 are unchanged to ensure the accuracy of the relative position of the detector and the radiation source, thereby ensuring the scanning imaging effect of the self-propelled container and/or the vehicle inspection device.
  • the beam 1 and the vertical beam generally adopt a rectangular frame structure including at least two main beams parallel to each other and a support beam supported between the main beams.
  • the solution removes the cab of the inspection device, and the drive motor 8 of the wheel is connected with the controller.
  • the controller controls the operation of the drive motor 8 according to the setting program, and drives the wheel to rotate, thereby controlling the inspection device to automatically travel, so that the worker is not required to Driving in the cab relieved the staff's concerns.
  • the first vertical beam 2 is detachably hinged to the beam 1 through the first hinge shaft 14; the second vertical beam 3 passes through the second hinge shaft 15 and the beam 1 detachably hinged.
  • the beam 1 and the two vertical beams are usually transported in the disassembled state and assembled at the scanning work site.
  • the two vertical beams need to be lifted during assembly to keep the vertical beams vertical. And horizontally lifting the beam 1 so that the left and right ends of the beam 1 are respectively aligned with the tops of the two vertical beams, and then the two vertical beams are fixed to the beam 1.
  • this assembly method is very difficult to operate, and the beam 1 and the two vertical beams are in a hoisting state during assembly, and the alignment work is difficult to complete, so the assembly work takes a long time.
  • the beam 1 and the vertical beam are hingedly assembled.
  • the two vertical beams When assembling on the job site, the two vertical beams are aligned with the beam 1 on the ground, and then the vertical beams are respectively hinged to the beam 1 through the hinged shaft, and then horizontally Lifting the beam 1 so that the two vertical beams rotate relative to the beam 1 under the action of their own gravity.
  • the vertical beam After the vertical beam is rotated to the preset assembly position, the vertical beam and the beam 1 are fixed, and the assembly work of the gantry is completed.
  • the operation difficulty of the gantry assembly is greatly reduced, and the time required for assembly work can be greatly shortened.
  • the first wheel and the second wheel are respectively rotatable in a horizontal direction relative to the first vertical beam 2 to extend in a front-rear direction thereof; the third wheel and the fourth wheel are respectively capable of being opposite to the second wheel
  • the vertical beam 3 is rotated in the horizontal direction to its axis extending in the front-rear direction.
  • the first vertical beam 2 is first assembled with the fixed beam 4, and the second vertical beam 3 is assembled with the swing beam 5, and then the two vertical beams are respectively hinged to the beam 1 and the orientation of the wheel is adjusted.
  • the wheel axis extends in the front-rear direction, and then the horizontal beam 1 is lifted horizontally, so that the vertical beam rotates around the hinge axis.
  • the wheel rolls with the vertical beam movement, avoiding mopping the bottom of the vertical beam, making the assembly work easier and preventing the vertical beam. And the ground is damaged.
  • the first centering protrusion 16 is disposed on the front surface and the rear surface of the left end of the beam 1, and the first vertical beam 2 is provided with a first
  • the first pair of middle protrusions 16 and the second centering protrusion 17 are in contact with each other to form a limit in the front-rear direction
  • the right end of the beam 1 is Third on the front and rear surfaces
  • the second vertical beam 3 is provided with a fourth centering convex block 19, and when the second vertical beam 3 is rotated relative to the beam 1 to the assembled position, the third centering convex block 18 and the fourth centering middle convex block 19 contradicts the formation of the limit in the front and rear direction.
  • the centering protrusions correspondingly interfere to form a limit in the front-rear direction to control the relative position of the vertical beam and the beam 1 in the front-rear direction (ie, the vertical beam is on the hinge axis) Position) ensuring the accuracy of the relative position of the radiation source mounted on the first vertical beam 2, the vertical detector chamber 7 mounted on the second vertical beam 3, and the horizontal detector chamber 6 mounted on the beam 1. Thereby ensuring the effect of the inspection device scanning imaging.
  • the surfaces of the first pair of middle bumps 16 and the second pair of centering bumps 17 that are in contact with each other are matched slopes, and the distance from the slopes to the first vertical beam 2 gradually increases from top to bottom.
  • the surface on which the third pair of middle bumps 18 and the fourth pair of middle bumps 19 oppose each other is a matching inclined surface, and the distance from the inclined surface to the second vertical beam 3 gradually increases from top to bottom.
  • the horizontal detector chamber 6 and the vertical detector chamber 7 are detachably connected to the beam 1 and the second vertical beam 3, respectively, and vertically.
  • the detector chamber 7 is rotatably connected to the horizontal detector chamber 6.
  • the radiation scanning inspection apparatus has a horizontal detector chamber 6 and a vertical detector chamber 7, and the horizontal detector chamber 6 and the vertical detector chamber 7 are perpendicular to each other, and the space occupied in the lateral direction and the longitudinal direction is relatively large.
  • the equipment is changed and the transportation is inconvenient.
  • the vertical detector chamber 7 and the horizontal detector chamber 6 are rotatably connected, and when the vehicle is transported or changed, the vertical detector chamber 7 can be rotated by rotating the vertical detector chamber 7 or the horizontal detector chamber 6.
  • the horizontal detector compartment 6 is folded together to reduce the length of space occupied by the two detector compartments in the lateral and/or longitudinal direction, thereby facilitating equipment exchange or transportation.
  • the radiation source comprises a shielding container and a radiation source body.
  • the shielding container comprises a container body 20 and a collimator 21 mounted on the first vertical beam 2, the container body 20 is provided with a mounting cavity and a radiation outlet communicating with the mounting cavity, and the collimator 21 is fixedly mounted on the container body 20, and the slit of the collimator 21 is aligned with the ray exit.
  • the radiation source body is mounted within the mounting cavity and the exit of the radiation source body is aligned with the ray exit.
  • the shielding container and the collimator 21 are two separate components that are respectively mounted on the frame of the device, so that the accuracy of the relative position of the shielding container and the collimator 21 is difficult to ensure, which may affect the scanning imaging effect of the device.
  • the solution integrates the shielding container and the collimator 21, and the shielding container comprises a container body 20 and a collimator 21, and the collimator 21 is fixedly mounted on the container body 20 to ensure the collimator 21 and the container body 20
  • the accuracy of the relative position causes the slit of the collimator 21 to align with the ray exit on the container body 20 so that the beam passing through the collimator 21 meets design criteria, thereby ensuring self-propelled container and/or vehicle inspection equipment.
  • the quality of the scanned image is a container body 20 and a collimator 21, and the collimator 21 is fixedly mounted on the container body 20 to ensure the collimator 21 and the container body 20.
  • the radiation source body is generally selected from an electronic induction reducer, an electron linear accelerator or an isotope radiation source.
  • the accelerator is connected with the control device and the power supply device, and the operating state of the accelerator is controlled by the controller to control the start and end of the scan.
  • cobalt isotope radiation source such as 60
  • the electric control door is connected with the power supply device and the controller, and the electronic control door is controlled to open and close by the controller to control The start and end of the scan.
  • the power supply device comprises a cable reel and/or a fuel generator.
  • the cable When the scanning work site has an external power supply, the cable is connected to the external power supply for power supply. When the scanning work site has no external power supply, the power is supplied through the fuel generator.
  • the cable reel power supply mode and the fuel generator power supply mode can be switched by a manual switch, or the controller can be automatically switched, that is, when the cable reel is powered off, the fuel generator power supply mode is automatically turned on, and when the cable reel receives current, , automatically switches to cable reel power mode.
  • the self-propelled container and/or the vehicle inspection device further includes: two steering motors 9 respectively connected to the first wheel and the third wheel or Connected to the second wheel and the fourth wheel, respectively, the steering motor 9 is used to push the wheel to rotate in the horizontal direction with respect to the gantry, and each of the steering motors 9 is connected to the power supply device and the controller, respectively.
  • the two steering motors 9 can push the two front wheels or the two rear wheels of the inspection device to perform horizontal rotation to control the traveling direction of the device or to steer the device, thereby more flexibly targeting different vehicles or
  • the container uses inspection equipment, or controls the self-propelled container and/or vehicle inspection equipment to replace the work site.
  • the self-propelled container and/or vehicle inspection apparatus further includes a radiation shielding assembly.
  • the radiation shield assembly is mounted on the gantry to block unwanted rays.
  • the radiation shielding assembly comprises a first shielding body 10, a second shielding body 11, a vertical ray trap, a horizontal ray trap, a first shielding layer and a second shielding layer.
  • the first shield 10 is mounted on the second vertical beam 3 and on the side of the vertical detector chamber 7 facing away from the radiation source.
  • the second shield 11 is mounted on the first vertical beam 2 and between the radiation source and the vertical detector chamber 7.
  • the second shield 11 is provided with a slit extending in the up and down direction, and the gap and the radiation exit of the radiation source. Align.
  • a vertical ray trap is mounted on the second vertical beam 3, the vertical ray trap being located on the side of the vertical detector chamber 7 facing away from the source of radiation and facing the vertical detector chamber 7.
  • the horizontal ray trap is mounted on the beam 1 and the horizontal ray trap is located above the horizontal detector compartment 6 and opposite the horizontal detector compartment 6.
  • the first protective layer is provided on the front bulkhead and the rear bulkhead of the vertical detector compartment 7.
  • the second protective layer is disposed on the front bulkhead and the rear bulkhead of the horizontal detector compartment 6.
  • the radiation shielding assembly is disposed on the self-propelled container and/or the vehicle inspection device, and does not need to occupy the space of the scanning inspection field, so that the device meets the requirements of small field operations.
  • radiation The shielding component is disposed on the self-propelled container and/or vehicle inspection equipment, and moves with the self-propelled container and/or the vehicle inspection equipment, so the inspection equipment replacement work site does not need to re-build the radiation shielding wall or other radiation shielding facilities, thereby reducing Check the cost of using the equipment, which can enhance the market competitiveness of the product.
  • the first shielding body 10 and the second shielding body 11 are generally selected from steel plates or lead plates, and the materials of the horizontal ray trap, the vertical ray trap, the first protective layer and the second protective layer are preferably lead.
  • the rack has a passage for the container to be tested or the vehicle to be tested to pass, and the self-propelled container and/or the vehicle inspection device further includes an anti-collision.
  • the anti-collision device comprises a channel detecting component, an obstacle detecting component and four guard door assemblies: the channel detecting component is installed in the channel and connected with the power supply device and the controller, and is used for detecting whether the container to be tested and/or the vehicle to be detected is The channel is biased and the detection signal is transmitted to the controller.
  • the obstacle detecting component is installed at an edge of the rack and connected with the power supply device and the controller for detecting whether there is an obstacle within a preset range of the traveling direction of the self-propelled container and/or the vehicle inspection device, and transmitting the detection signal to the control Device.
  • Four guard door assemblies are respectively mounted on the front end on the left and right sides of the rack and the rear end on the left and right sides and are located in the passage, and each guard door assembly includes a trigger door 13 hinged to the rack and a detection cooperated with the trigger door 13
  • the detector is configured to send a trigger signal to the controller when the container to be tested and/or the vehicle to be detected hits the trigger door 13.
  • the solution realizes active collision avoidance through the channel detecting component and the obstacle detecting component, and realizes passive collision avoidance through the protective door component.
  • the detecting component is configured to detect whether the object to be tested is aligned with the detecting channel, and avoid the object to be tested colliding with the device.
  • the obstacle detection component is configured to detect whether there is an obstacle on the route of the device, and avoid collision of the device with the obstacle.
  • the protective door assembly is installed in the detection channel. If there is a problem in the direction of relative movement of the inspection device and the container and/or the vehicle during the inspection, the container and/or the vehicle will first hit before the collision between the container and/or the vehicle and the inspection device. Triggering the door 13 to cause the triggering door 13 to rotate.
  • the detector When the triggering door 13 is turned to or exceeds a preset angle and/or a preset position, the detector sends a trigger signal to the controller, and when the controller receives the trigger signal, the corresponding program is triggered.
  • the control inspection device stops moving forward, issues an alarm, and the like, thereby avoiding collision between the inspection device and the object to be tested, and preventing the inspection device and the object to be tested from being damaged.
  • the detection device can be selected by a travel switch.
  • the self-propelled container and/or the vehicle inspection device further includes a plurality of signal acquisition cameras respectively mounted on the frame, and each of the signal acquisition cameras respectively It is connected with the power supply device and the controller for collecting the box number of the container to be tested and/or the license plate number of the vehicle to be tested.
  • the self-propelled container and/or the vehicle inspection device further includes a plurality of monitors 12 respectively mounted on the front, rear, left, and right sides of the rack, and each of the monitors 12 and the power supply device It is connected to the controller to monitor the situation around the self-propelled container and/or vehicle inspection equipment to ensure the safety of the equipment during use.
  • the self-propelled container and/or the vehicle inspection device further The method includes: a data transmission device, configured to connect to a remote console and perform data transmission with the remote console; wherein the data transmission device comprises a transmission optical fiber and/or a wireless transmission device.
  • the data transmission device and the remote console perform data transmission to transmit the inspection scan pattern of the container and/or the vehicle and the data collected by the signal acquisition camera and the monitor 12 to the remote console for the staff.
  • the remote console can send control signals to the self-propelled container and/or vehicle inspection device through the data transmission device to control the working state of the device to achieve remote control.
  • the self-propelled container and/or vehicle inspection device further includes a body control box and/or a wireless control device.
  • the fuselage control box is mounted on the frame and coupled to the controller and the power supply for transmitting control commands to the controller and/or controlling the start and stop of the power supply.
  • the wireless control device can be wirelessly transmitted with the controller for transmitting control commands to the controller and/or controlling the start and stop of the power supply device.
  • the access trough needs to be monitored by the staff on site.
  • the on-site staff can use the fuselage control box and / Or the wireless control device controls the device to cope with unexpected situations.
  • the control device of the wireless control device opens the distance between the field staff and the inspection equipment, which can reduce the risk of on-site work.
  • the self-propelled container and/or the vehicle inspection device further includes a temperature control device.
  • the temperature control device includes a detector cabin air conditioning system and a radiation source air conditioning system.
  • the detector cabin air conditioning system is coupled to the controller and the power supply and is coupled to the vertical detector compartment 7 and the horizontal detector compartment 6 for controlling the temperature within the vertical detector compartment 7 and the horizontal detector compartment 6.
  • the first vertical beam 2 is provided with a mounting bay for mounting a radiation source, and the radiation source air conditioning system is connected to the controller and the power supply device, and is connected to the installation cabin for controlling the temperature in the installation cabin.
  • the radiation source air conditioning system is used to control the temperature of the radiation source installation cabin within a preset range
  • the detector cabin air conditioning system is used to control the temperature of the two detector cabins within a preset range to enable the self-propelled container and/or Vehicle inspection equipment can work in hot and cold natural environments.
  • the self-propelled container and/or the vehicle inspection device further includes an automatic navigation device connected to the power supply device and the controller for setting the self-propelled container and/or the vehicle inspection device. Presetting the travel route and detecting whether the self-propelled container and/or the vehicle inspection device deviate from the preset travel route, and transmitting a detection signal to the controller to enable the controller to control the self-propelled container and/or the vehicle according to the detection signal Check the direction of travel of the device.
  • the automatic navigation device generally includes a device positioning device for determining a position coordinate of the inspection device, and a detection object position detecting device for detecting a position of the container to be inspected and/or the vehicle.
  • the device positioning device may select a GPS
  • the detection object position detecting device may select a photoelectric ranging sensor
  • the GPS detects the current position coordinate of the device
  • the coordinate information of the inspection device is sent to the controller, and the photoelectric distance measuring sensor measures the distance between the detection object and the inspection device, and transmits the distance information to the controller, so that the controller calculates the detection object according to the coordinate information of the inspection device and the distance information.
  • Position coordinates and setting a preset route according to the position coordinates of the inspection device and the position coordinates of the detection object, and then controlling the inspection device to travel along the preset route.
  • the GPS detects and checks the position coordinates of the device in real time and sends it to the controller.
  • the controller finds that the position coordinates of the inspection device deviate from the preset route, the device can be driven by adjusting the difference between the left and right drive motors or controlling the steering motor. Turn to correct the route of the inspection equipment.
  • the automatic navigation device can also cooperate with the obstacle detecting component.
  • the obstacle detecting component finds an obstacle on the traveling route of the device, the detecting object position detecting device and the controller obtain the position of the obstacle according to the above detection principle. Coordinates, the controller resets the preset route according to the coordinates of the inspection device, the obstacle, and the container to be inspected and/or the vehicle, so that the inspection device can automatically bypass the obstacle during the process.
  • the self-propelled container and/or vehicle inspection apparatus further includes a vehicle compartment position detecting device coupled to the power supply device and the controller for detecting a vehicle position of the vehicle to be inspected.
  • the equipment When the equipment checks the vehicle, it has a quick check working mode. When the vehicle is inspected quickly, the inspection equipment is stationary. Each vehicle to be tested passes through the detection channel of the equipment in turn. To prevent the beam from being irradiated to the driver of the vehicle, the inspection device is installed in the detection channel.
  • Car position detection device The vehicles to be tested are all trucks, and there is a gap between the front and the car.
  • the position detection device of the car usually uses photoelectric sensors. The position of the sensor is in the vertical plane where the beam is located. When the detection light of the sensor is irradiated into the gap, it is proved that the head has passed.
  • the ray exit position at which point the sensor sends a signal to the controller that causes the controller to control the radiation source to emit a ray and begin scanning.
  • the detected light of the sensor is no longer blocked by the car.
  • the sensor sends a signal to the controller, so that the controller controls the radiation source to stop emitting radiation and stops the scanning work.
  • the self-propelled container and/or the vehicle inspection device further includes a radioactive substance detecting device connected to the power supply device and the controller for detecting the container to be tested and/or the vehicle to be tested. Whether there is radioactive material.
  • the self-propelled container and/or the vehicle inspection device further includes an infrared thermal scanning device connected to the power supply device and the controller for detecting the container to be tested and/or the vehicle to be tested Perform a thermal scan.
  • the self-propelled container and/or the vehicle inspection device further includes a biohazardous dangerous goods detecting device connected to the power supply device and the controller for detecting the container to be tested and/or the vehicle to be tested Whether there are biochemical dangerous goods inside.
  • the device comprises a gas collecting device arranged in the detecting channel.
  • the gas collecting device performs gas collecting
  • the biochemical dangerous goods detecting device performs inspection and analysis on the gas sample to determine whether the container and/or the vehicle are equipped with biochemicals. Dangerous goods.
  • the self-propelled container and/or the vehicle inspection device further includes a multi-information integration device connected to the power supply device and the controller for detecting the detection image of each detection device and the radiation scan image. Integration.
  • the multi-information integration device can integrate the radiation scanning image, the infrared thermal scanning image, the radioactive material inspection information, and the biochemical dangerous goods detection into one image for the staff to review.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种自行走式集装箱和/或车辆检查设备,包括:机架、供电装置、辐射源、探测器舱、至少两个驱动电机(8)和控制器。机架的固定梁(4)、第一竖梁(2)、横梁(1)及第二竖梁(3)相固定,第二竖梁(3)底部可转动地安装有摆动梁(5),构成平衡悬挂,当设备下方路面不平整时,摆动梁(5)会相应地相对第二竖梁(2)转动,使摆动梁(5)上的两个车轮始终紧贴底面,从而使机架均匀受力,以防止机架产生扭曲变形,保证第一竖梁(2)、横梁(1)及第二竖梁(3)的相对位置不变。该设备去除了检查设备的驾驶室,车轮的驱动电机(8)与控制器连接,控制器根据设定程序控制驱动电机(8)工作,带动车轮转动,从而控制检查设备自动行走,这样便不需要工作人员在驾驶室内驾驶,解除了工作人员的担忧。

Description

自行走式集装箱和/或车辆检查设备 技术领域
本发明涉及射线扫瞄检查设备领域,更具体而言,涉及一种自行走式集装箱和/或车辆检查设备。
背景技术
目前,移动式集装箱和/或车辆检查设备通常具有驾驶室,需要工作人员驾驶检查设备行进,但工作人员普遍认为在驾驶室内离辐射源过近,担心自己会受到辐射伤害,因此对驾驶检查设备比较反感。并且,现有移动式集装箱和/或车辆检查设备通常具有四个车轮,通过四个车轮行进,但三点确定一个平面,四个车轮的设计存在过定位的问题,路面稍有不平就会有一个车轮翘起,导致设备的机架受力严重不均,由于设备自重很大,上述情况容易导致机架扭曲变形,影响探测器与辐射源的相对位置,致使设备扫描成像的效果不佳。
发明内容
本发明旨在解决现有技术中存在的技术问题至少之一。
为此,本发明的目的在于,提供一种自行走式集装箱和/或车辆检查设备。
为实现上述目的,本发明的实施例提供了一种自行走式集装箱和/或车辆检查设备,包括:机架,包括龙门架、固定梁和摆动梁,所述龙门架包括横梁和设置在所述横梁左右两端的第一竖梁和第二竖梁,所述固定梁沿前后方向设置并与所述第一竖梁固定连接,且所述固定梁的前后两端分别安装有第一车轮和第二车轮,所述摆动梁沿前后方向设置并与所述第二竖梁能够转动地连接,使所述摆动梁能够相对所述第二竖梁沿竖直方向转动,且所述摆动梁的前后两端分别安装有第三车轮和第四车轮;供电装置,安装在所述机架上;辐射源,安装在所述第一竖梁上并与所述供电装置连接,用于产生射线束;探测器舱,包括安装在所述横梁上的水平探测器舱和安装在所述第二竖梁上的竖直探测器舱,所述水平探测器舱和所述竖直探测器舱内安装有探测器阵列,各所述探测器分别与所述供电装置连接,各所述探测器分别对准所述射线束的中心;至少两个驱动电机,分别与所述供电装置连接,每个所述驱动电机分别与一个车轮连接,且各所述驱动电机所连接的车轮均不相同,所述驱动电机用于驱动车轮绕且轴线转动;控制器,与所述供电装置、所述辐射源、各所述探测器及各所述驱动电机连接。
本方案提供的自行走式集装箱和/或车辆检查设备包括:机架、供电装置、辐射源、探测器舱、至少两个驱动电机和控制器。供电装置用于为各用电装置供电,探测器舱包括安装水平探测器舱和竖直探测器舱,两探测器舱内安装有探测器阵列,各探测器分别对准辐射源所发出的射线束的中心,探测器阵列用于接收射线束并将其转化为辐射扫描图像。机架的固定梁、第一竖梁、横梁及第二竖梁相固定,固定梁的前后两端各安装一个车轮,这两个车轮始终贴紧地面,第二竖梁底部可转动地安装有摆动梁,构成平衡悬挂,摆动梁的前后两端各安装一个车轮,当设备下方路面不平整时,摆动梁会相应地相对第二竖梁转动,使摆动梁上的两个车轮始终紧贴底面,从而使机架均匀受力,以防止机架产生扭曲变形,保证第一竖梁、横梁及第二竖梁的相对位置不变,以保证探测器和辐射源相对位置的准确性,从而保证自行走式集装箱和/或车辆检查设备扫描成像的效果。
本方案去除了检查设备的驾驶室,车轮的驱动电机与控制器连接,控制器根据设定程序控制驱动电机工作,带动车轮转动,从而控制检查设备自动行走,这样便不需要工作人员在驾驶室内驾驶,解除了工作人员的担忧。
在上述技术方案中,优选地,所述第一竖梁通过第一铰接轴与所述横梁能够拆卸地铰接;所述第二竖梁通过第二铰接轴与所述横梁能够拆卸地铰接。
目前,由于龙门架的体积很大,通常将横梁和两竖梁在拆解状态下进行运输,到扫描作业现场再进行组装,组装时需要将两竖梁吊起使两竖梁保持竖直,并将横梁水平吊升,使横梁左右两端分别与两竖梁顶部对齐,然后将两竖梁与横梁固定。但这种装配方式操作难度很高,装配时横梁和两竖梁都处于吊起状态,对准工作很难完成,因此装配工作需要耗费很长时间。本方案中,横梁和竖梁采用铰接的装配方式,在作业现场装配时,将两竖梁与横梁在地面上对准,然后通过铰接轴分别将各竖梁与横梁铰接,之后水平吊升横梁,使得两竖梁在自身重力作用下相对横梁转动,待竖梁转动至预设的装配位置后,将竖梁与横梁固定,便完成了龙门架的装配工作,这样设计大大降低了龙门架装配的操作难度,可大幅缩短装配工作所需的时间。
在上述任一技术方案中,优选地,所述第一车轮和所述第二车轮分别能够相对所述第一竖梁沿水平方向转动至其轴线沿前后方向延伸;所述第三车轮和所述第四车轮分别能够相对所述第二竖梁沿水平方向转动至其轴线沿前后方向延伸。
机架装配时,先将第一竖梁与固定梁装配、并将第二竖梁与摆动梁装配,接着将两竖梁分分别与横梁铰接,并调整车轮的朝向,使车轮轴线沿前后方向延伸,随后水平吊升横梁,使竖梁绕铰接轴转动,此时车轮随竖梁运动而滚动,避免竖梁底部拖地,使装配工作更容易完成,并防止竖梁及地面受损。
在上述任一技术方案中,优选地,所述横梁的左端的前表面和后表面上设有第一对中凸块,所述第一竖梁上设有第二对中凸块,所述第一竖梁相对所述横梁转动至装配位置时,所述第一对中凸块与所述第二对中凸块抵触形成前后方向上的限位;所述横梁的右端的前表面和后表面上设有第三对中凸块,所述第二竖梁上设有第四对中凸块,所述第二竖梁相对所述横梁转动至装配位置时,所述第三对中凸块与所述第四对中凸块抵触形成前后方向上的限位。
本方案中,竖梁和横梁到达装配位置时,对中凸块相应抵触,构成前后方向上的限位,以控制竖梁与横梁前后方向上的相对位置(即竖梁在铰接轴上的位置),保证安装在第一竖梁上的辐射源、安装在第二竖梁上的竖直探测器舱及安装在横梁上的水平探测器舱相对位置的准确性,从而保证检查设备扫描成像的效果。
具体地,第一对中凸块及第二对中凸块相抵触的表面为相适配的斜面,该斜面到第一竖梁的距离由上至下逐渐增大。第三对中凸块及第四对中凸块相抵触的表面为相适配的斜面,该斜面到第二竖梁的距离由上至下逐渐增大。在装配时,竖梁相对横梁转动,当相配合的两对中凸块接触时,斜面相互抵触起到导向作用,使竖梁沿铰接轴向铰接轴中部滑动,从而完成竖梁的对中工作。
在上述任一技术方案中,优选地,所述水平探测器舱和所述竖直探测器舱分别与所述横梁和所述第二竖梁能够拆卸地连接,且所述竖直探测器舱与所述水平探测器舱能够转动地连接。
目前,辐射扫描检查设备具有水平探测器舱和竖直探测器舱,水平探测器舱和竖直探测器舱相互垂直,在横向和纵向上所占据的空间长度都要比较大,导致设备换场、运输不便。本方案中,竖直探测器舱与水平探测器舱能够转动地连接,运输或换场时,通过转动竖直探测器舱或水平探测器舱,可将竖直探测器舱和水平探测器舱向一起折叠,以减小两探测器舱在横向和/或纵向上所占据的空间长度,从而方便设备换场或运输。
在上述任一技术方案中,优选地,所述辐射源包括:屏蔽容器,包括容器本体和准直器,所述容器本体安装在所述第一竖梁上,所述容器本体上设有安装腔和与所述安装腔连通的射线出口,所述准直器固定安装在所述容器本体上,且所述准直器的狭缝对准所述射线出口;辐射源本体,安装在所述安装腔内,且所述辐射源本体的出口对准所述射线出口。
目前,屏蔽容器和准直器是两个独立的部件,分别安装在设备的机架上,使得屏蔽容器和准直器相对位置的准确性难以保证,这样会影响设备的扫描成像效果。本方案将屏蔽容器和准直器集成一体,所提供的屏蔽容器包括容 器本体和准直器,准直器固定安装在容器本体上,以保证准直器与容器本体相对位置的准确性,使准直器的狭缝对准容器本体上的射线出口,以使通过准直器的射线束符合设计标准,从而保证自行走式集装箱和/或车辆检查设备的扫描成像质量。
具体的,辐射源本体通常选用电子感应减速器、电子直线加速器或同位素辐射源。辐射源本体选用电子感应减速器或电子直线加速器时,加速器与控制装置及供电装置连接,通过控制器控制加速器的工作状态,以控制扫描的起止。辐射源选用钴60等同位素辐射源时,需要在屏蔽容器或辐射源安装舱上安装电控门,电控门与供电装置及控制器连接,通过控制器控制电控门的开闭,以控制扫描的起止。
在上述任一技术方案中,优选地,所述供电装置包括电缆卷筒和/或燃油发电机。
当扫描作业场地具有外接电源时,通过电缆卷筒与外接电源连接进行供电,当扫描作业场地无外接电源时,则通过燃油发电机进行供电。电缆卷筒供电模式和燃油发电机供电模式可通过手动开关进行切换,也可控制器自动切换,即在电缆卷筒断电情况下,自动开启燃油发电机供电模式,在电缆卷筒获得电流时,自动切换至电缆卷筒供电模式。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:两个转向电机,分别与所述第一车轮和所述第三车轮连接或分别与所述第二车轮和所述第四车轮连接,所述转向电机用于推动所述车轮相对所述龙门架沿水平方向转动,且每个所述转向电机分别与所述供电装置和所述控制器连接。
在该实施例中,两个转向电机可以推动检查设备的两前轮或两后轮进行水平方向的转动,以控制设备的行进方向或使设备进行转向,从而更灵活的针对不同的车辆或者集装箱使用检查设备,或操控自行走式集装箱和/或车辆检查设备更换作业场地。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:辐射屏蔽组件,安装在所述龙门架上,用于阻挡无用射线;其中,所述辐射屏蔽组件包括:第一屏蔽体,安装在所述第二竖梁上且位于所述竖直探测器舱背向所述辐射源的一侧;第二屏蔽体,安装在所述第一竖梁上且位于所述辐射源与所述竖直探测器舱之间,所述第二屏蔽体上设有沿上下方向延伸的缝隙,且所述缝隙与所述辐射源的射线出口对齐;竖直射线捕集器,安装在所述第二竖梁上,竖直射线捕集器位于所述竖直探测器舱背向所述辐射源的一侧且正对所述竖直探测器舱;水平射线捕集器,安装在所述横梁上,所述水平射线捕集器位于所述水平探测器舱上方且正对所述水平探测器舱; 第一防护层,设置所述竖直探测器舱的前舱壁和后舱壁上;第二防护层,设置所述水平探测器舱的前舱壁和后舱壁上。
该方案中,辐射屏蔽组件设置在自行走式集装箱和/或车辆检查设备上,不需要占据扫瞄检查场的空间,使设备满足小场地作业的需求。并且,辐射屏蔽组件设置在自行走式集装箱和/或车辆检查设备上,随自行走式集装箱和/或车辆检查设备移动,因此检查设备更换作业场地也不需要重新建造辐射屏蔽墙或其他辐射屏蔽设施,降低了检查设备的使用成本,从而可提升产品的市场竞争力。其中,第一屏蔽体和第二屏蔽体通常选用钢板或铅板,水平射线捕集器、竖直射线捕集器、第一防护层及第二防护层的材料优选铅。
在上述任一技术方案中,优选地,所述机架内具有供待测集装箱或待测车辆通过的通道,自行走式集装箱和/或车辆检查设备还包括防撞装置;其中,所述防撞装置包括:通道检测组件,安装在所述通道内并与所述供电装置和所述控制器连接,用于检测待测集装箱和/或待检测车辆是否偏了所述通道,并将检测信号传输给所述控制器;障碍物检测组件,安装在所述机架的边缘并与所述供电装置和所述控制器连接,用于检测所述自行走式集装箱和/或车辆检查设备行进方向预设范围内是否存在障碍物,并将检测信号传输给所述控制器;四个防护门组件,四个所述防撞装置分别安装在所述机架左右两侧的前端和左右两侧的后端且均位于所述通道内,每个所述防护门组件包括与所述机架铰接的触发门和与所述触发门配合的检测器,所述检测器用于在待测集装箱和/或待检测车辆撞到所述触发门时向所述控制器发送触发信号。
本方案通过通道检测组件和障碍物检测组件实现主动防撞,通过防护门组件实现被动防撞。检测组件用于检测待测对象是否对准检测通道,避免待测对象与设备相撞。障碍物检测组件用于检测出设备行进路线上是否存在障碍物,避免设备与障碍物相撞。防护门组件安装在检测通道内,检测时,若检查设备与集装箱和/或车辆的相对运动方向出现问题,在集装箱和/或车辆与检查设备发生碰撞前,集装箱和/或车辆会先撞到触发门,使触发门发生转动,当触发门转到或超过预设角度和/或预设位置时,检测器向控制器发送触发信号,控制器接到触发信号时会触发相应程序,例如控制检查设备停止前进、发出警报等,从而避免检查设备与待测对象发生碰撞,防止检查设备与待测对象受损。其中,检测装置可选用行程开关。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:多个信号采集摄像头,分别安装在所述机架上,且每个所述信号采集摄像头分别与供电装置和所述控制器连接,用于采集待测集装箱的箱号和/或待测车辆的车牌号。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设 备还包括:多个监控器,分别安装在所述机架的前后左右四面,且每个所述监控器分别与供电装置和所述控制器连接,用于监控所述自行走式集装箱和/或车辆检查设备四周的情况。以保证设备使用时的安全性。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:数据传输装置,用于连接远程控制台并与所述远程控制台进行数据传输;其中,所述数据传输装置包括传输光纤和/或无线传输装置。
本方案中,通过数据传输装置与远程控制台进行数据传输,以将对集装箱和/或车辆的检查扫面图形及信号采集摄像头、监控器采集的数据传输至远程控制台,以供工作人员审查,且远程控制台可通过数据传输装置向自行走式集装箱和/或车辆检查设备发送控制信号,控制设备的工作状态,以实现远程控制。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:机身操控箱,安装在所述机架上并与所述控制器和所述供电装置连接,用于向所述控制器发送控制指令和/或控制所述供电装置的起停;和/或无线操控装置,能够与所述控制器进行无线传输,用于向所述控制器发送控制指令和/或控制所述供电装置的起停。
自行走式集装箱和/或车辆检查设备作业时,为保证安全,通槽需要工作人员在现场监控,在设备有发生碰撞的危险或其他意外情况时,现场工作人员可通过机身操控箱和/或无线操控装置对设备进行控制,以应付意外情况。其中,通过无线操控装置控制设备拉开了现场工作人员与检查设备的距离,可降低现场工作的危险性。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:温控装置,所述温控装置包括:探测器舱空调系统,与所述控制器和所述供电装置连接,并接通至所述竖直探测器舱和所述水平探测器舱内,用于控制所述竖直探测器舱和所述水平探测器舱内的温度。辐射源空调系统,所述第一竖梁上设有用于安装所述辐射源的安装舱,所述辐射源空调系统与所述控制器和所述供电装置连接,并接通至所述安装舱内,用于控制所述安装舱内的温度。
辐射源空调系统用于将辐射源安装舱的温度控制在预设范围内,探测器舱空调系统用于将两探测器舱的温度控制在预设范围内,以使自行走式集装箱和/或车辆检查设备可在炎热和寒冷的自然环境下作业。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:自动导航装置,与所述供电装置和所述控制器连接,用于设定所述自行走式集装箱和/或车辆检查设备的预设行进路线,并检测所述自行走式集装箱和/或车辆检查设备是否偏离所述预设行进路线,同时将检测信号发送 给所述控制器,以使所述控制器根据所述检测信号控制所述自行走式集装箱和/或车辆检查设备的行进方向。
自动导航装置通常包括设备定位装置和检测对象位置检测装置,设备定位装置用于确定检查设备的位置坐标,检测对象位置检测装置用于检测待检测集装箱和/或车辆的位置。具体地,设备定位装置可选用GPS,检测对象位置检测装置可选用光电测距传感器,GPS检测出设备的当前位置坐标,并将检查设备的坐标信息输送给控制器,光电测距传感器测量检测对象与检查设备的距离,并将距离信息输送给控制器,使控制器根据检查设备的坐标信息及上述距离信息计算出检测对象的位置坐标,并根据检查设备的位置坐标和检测对象的位置坐标设定预设路线,随后控制检查设备沿预设路线行进。行进过程中,GPS实时检测检查设备的位置坐标并将其发送给控制器,当控制器发现检查设备的位置坐标偏离预设路线时,可通过调节左右驱动电机的转速差或控制转向电机驱使设备转向以纠正检查设备的行进路线。在此基础上,自动导航装置还可与障碍物检测组件配合,当障碍物检测组件当发现设备行进路线上有障碍物时,检测对象位置检测装置和控制器根据上述检测原理得到障碍物的位置坐标,控制器根据检查设备、障碍物及待检测集装箱和/或车辆三者的坐标重新设定预设路线,以使检查设备自动进行过程中可绕开障碍物。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:车箱位置检测装置,与所述供电装置和所述控制器连接,用于检测待检测车辆的车箱位置。
设备对车辆进行检查时具有快速检查工作模式,快速检查时,检查设备静止,各待测车辆依次驶过设备的检测通道,为防止射线束照射到车辆驾驶员,检查设备在检测通道内安装了车箱位置检测装置。待检测车辆均为货车,车头与车箱间具有间隙,车箱位置检测装置通常选用光电传感器,传感器位置在射线束所处的竖直平面内,传感器的检测光线照射进上述间隙时,证明车头已通过射线出口位置,此时传感器向控制器发送信号,使控制器控制辐射源发出射线,开始进行扫描。当车箱完全通过射线出口位置时,传感器的检测光线也不再受车箱遮挡,此时传感器向控制器发送信号,使控制器控制辐射源停止发射射线,停止扫描工作。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:放射性物质检测装置,与供电装置和所述控制器连接,用于检测待测集装箱和/或待测车辆内是否存在放射性物质。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:红外热扫描装置,与供电装置和所述控制器连接,用于对检测待 测集装箱和/或待测车辆进行热扫描。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:生化危险品检测装置,与供电装置和所述控制器连接,用于检测待测集装箱和/或待测车辆内是否存在生化危险品。
若检测对象内具有生物危险品(生物毒气等)和化学危险品(易燃易爆物,化学毒气等)时,这些危险品会挥发出一定量的气体,生化危险品检测装置包括设置在检测通道内的采气装置,检测对象通过检测通道时,采气装置进行采气,生化危险品检测装置对气体样本进行检验分析,以判断集装箱和/或车辆内是否装有生化危险品。
在上述任一技术方案中,优选地,所述自行走式集装箱和/或车辆检查设备还包括:多信息整合装置,与供电装置和所述控制器连接,用于将各检测装置的检测图像与辐射扫描图像整合。
本方案中,多信息整合装置可将辐射扫描图像、红外热扫描图像、放射性物质检信息、生化危险品检测整合到一张图像中,以便工作人员审查。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提供的自行走式集装箱和/或车辆检查设备的结构示意图;
图2是图1中所示自行走式集装箱和/或车辆检查设备另一角度的结构示意图;
图3是图2中所示自行走式集装箱和/或车辆检查设备的右视结构示意图;
图4是图2中所示自行走式集装箱和/或车辆检查设备的仰视结构示意图;
图5是本发明一实施例提供的屏蔽容器的结构示意图;
图6是图1中所示水平探测器舱和竖直探测器舱处于展开状态的结构示意图;
图7是图6中所示水平探测器舱和竖直探测器舱处于折叠状态的结构示意图。
其中,图1至图7中的附图标记与部件名称之间的对应关系为:
1横梁,2第一竖梁,3第二竖梁,4固定梁,5摆动梁,6水平探测器舱,7竖直探测器舱,8驱动电机,9转向电机,10第一屏蔽体,11第二屏蔽体,12监控器,13触发门,14第一铰接轴,15第二铰接轴,16第一对中凸块, 17第二对中凸块,18第三对中凸块,19第四对中凸块,20容器本体,21准直器。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图1至图4所示,本发明的实施例提供了一种自行走式集装箱和/或车辆检查设备,包括机架、供电装置、辐射源、探测器舱、至少两个驱动电机8及控制器。
机架包括龙门架、固定梁4和摆动梁5,龙门架包括横梁1和设置在横梁1左右两端的第一竖梁2和第二竖梁3,固定梁4沿前后方向设置并与第一竖梁2固定连接,且固定梁4的前后两端分别安装有第一车轮和第二车轮,摆动梁5沿前后方向设置并与第二竖梁3能够转动地连接,使摆动梁5能够相对第二竖梁3沿竖直方向转动,且摆动梁5的前后两端分别安装有第三车轮和第四车轮。供电装置安装在机架上。辐射源安装在第一竖梁2上并与供电装置连接,用于产生射线束。探测器舱包括安装在横梁1上的水平探测器舱6和安装在第二竖梁3上的竖直探测器舱7,水平探测器舱6和竖直探测器舱7内安装有探测器阵列,各探测器分别与供电装置连接,各探测器分别对准射线束的中心。至少两个驱动电机8分别与供电装置连接,每个驱动电机8分别与一个车轮连接,且各驱动电机8所连接的车轮均不相同,驱动电机8用于驱动车轮绕且轴线转动。控制器与供电装置、辐射源、各探测器及各驱动电机8连接。
本方案提供的自行走式集装箱和/或车辆检查设备包括:机架、供电装置、辐射源、探测器舱、至少两个驱动电机8和控制器。供电装置用于为各用电装置供电,探测器舱包括安装水平探测器舱6和竖直探测器舱7,两探测器舱内安装有探测器阵列,各探测器分别对准辐射源所发出的射线束的中心,探测器阵列用于接收射线束并将其转化为辐射扫描图像。机架的固定梁4、第一竖梁2、横梁1及第二竖梁3相固定,固定梁4的前后两端各安装一个车轮,这两个车轮始终贴紧地面,第二竖梁3底部可转动地安装有摆动梁5,构成平衡悬挂,摆动梁5的前后两端各安装一个车轮,当设备下方路面不平 整时,摆动梁5会相应地相对第二竖梁3转动,使摆动梁5上的两个车轮始终紧贴底面,从而使机架均匀受力,以防止机架产生扭曲变形,保证第一竖梁2、横梁1及第二竖梁3的相对位置不变,以保证探测器和辐射源相对位置的准确性,从而保证自行走式集装箱和/或车辆检查设备扫描成像的效果。具体地,横梁1和竖梁通常采用矩形框架结构,矩形框架包括至少两根相互平行的主梁和支撑至各主梁之间的支撑梁。
本方案去除了检查设备的驾驶室,车轮的驱动电机8与控制器连接,控制器根据设定程序控制驱动电机8工作,带动车轮转动,从而控制检查设备自动行走,这样便不需要工作人员在驾驶室内驾驶,解除了工作人员的担忧。
如图2和图3所示,在上述技术方案中,优选地,第一竖梁2通过第一铰接轴14与横梁1能够拆卸地铰接;第二竖梁3通过第二铰接轴15与横梁1能够拆卸地铰接。
目前,由于龙门架的体积很大,通常将横梁1和两竖梁在拆解状态下进行运输,到扫描作业现场再进行组装,组装时需要将两竖梁吊起使两竖梁保持竖直,并将横梁1水平吊升,使横梁1左右两端分别与两竖梁顶部对齐,然后将两竖梁与横梁1固定。但这种装配方式操作难度很高,装配时横梁1和两竖梁都处于吊起状态,对准工作很难完成,因此装配工作需要耗费很长时间。本方案中,横梁1和竖梁采用铰接的装配方式,在作业现场装配时,将两竖梁与横梁1在地面上对准,然后通过铰接轴分别将各竖梁与横梁1铰接,之后水平吊升横梁1,使得两竖梁在自身重力作用下相对横梁1转动,待竖梁转动至预设的装配位置后,将竖梁与横梁1固定,便完成了龙门架的装配工作,这样设计大大降低了龙门架装配的操作难度,可大幅缩短装配工作所需的时间。
在上述任一技术方案中,优选地,第一车轮和第二车轮分别能够相对第一竖梁2沿水平方向转动至其轴线沿前后方向延伸;第三车轮和第四车轮分别能够相对第二竖梁3沿水平方向转动至其轴线沿前后方向延伸。
机架装配时,先将第一竖梁2与固定梁4装配、并将第二竖梁3与摆动梁5装配,接着将两竖梁分分别与横梁1铰接,并调整车轮的朝向,使车轮轴线沿前后方向延伸,随后水平吊升横梁1,使竖梁绕铰接轴转动,此时车轮随竖梁运动而滚动,避免竖梁底部拖地,使装配工作更容易完成,并防止竖梁及地面受损。
如图2和图3所示,在上述任一技术方案中,优选地,横梁1的左端的前表面和后表面上设有第一对中凸块16,第一竖梁2上设有第二对中凸块17,第一竖梁2相对横梁1转动至装配位置时,第一对中凸块16与第二对中凸块17抵触形成前后方向上的限位;横梁1的右端的前表面和后表面上设有第三 对中凸块18,第二竖梁3上设有第四对中凸块19,第二竖梁3相对横梁1转动至装配位置时,第三对中凸块18与第四对中凸块19抵触形成前后方向上的限位。
本方案中,竖梁和横梁1到达装配位置时,对中凸块相应抵触,构成前后方向上的限位,以控制竖梁与横梁1前后方向上的相对位置(即竖梁在铰接轴上的位置),保证安装在第一竖梁2上的辐射源、安装在第二竖梁3上的竖直探测器舱7及安装在横梁1上的水平探测器舱6相对位置的准确性,从而保证检查设备扫描成像的效果。
具体地,第一对中凸块16及第二对中凸块17相抵触的表面为相适配的斜面,该斜面到第一竖梁2的距离由上至下逐渐增大。第三对中凸块18及第四对中凸块19相抵触的表面为相适配的斜面,该斜面到第二竖梁3的距离由上至下逐渐增大。在装配时,竖梁相对横梁1转动,当相配合的两对中凸块接触时,斜面相互抵触起到导向作用,使竖梁沿铰接轴向铰接轴中部滑动,从而完成竖梁的对中工作。
如图6和图7所示,在上述任一技术方案中,优选地,水平探测器舱6和竖直探测器舱7分别与横梁1和第二竖梁3能够拆卸地连接,且竖直探测器舱7与水平探测器舱6能够转动地连接。
目前,辐射扫描检查设备具有水平探测器舱6和竖直探测器舱7,水平探测器舱6和竖直探测器舱7相互垂直,在横向和纵向上所占据的空间长度都要比较大,导致设备换场、运输不便。本方案中,竖直探测器舱7与水平探测器舱6能够转动地连接,运输或换场时,通过转动竖直探测器舱7或水平探测器舱6,可将竖直探测器舱7和水平探测器舱6向一起折叠,以减小两探测器舱在横向和/或纵向上所占据的空间长度,从而方便设备换场或运输。
如图5所示,在上述任一技术方案中,优选地,辐射源包括屏蔽容器和辐射源本体。屏蔽容器包括容器本体20和准直器21,容器本体20安装在第一竖梁2上,容器本体20上设有安装腔和与安装腔连通的射线出口,准直器21固定安装在容器本体20上,且准直器21的狭缝对准射线出口。辐射源本体安装在安装腔内,且辐射源本体的出口对准射线出口。
目前,屏蔽容器和准直器21是两个独立的部件,分别安装在设备的机架上,使得屏蔽容器和准直器21相对位置的准确性难以保证,这样会影响设备的扫描成像效果。本方案将屏蔽容器和准直器21集成一体,所提供的屏蔽容器包括容器本体20和准直器21,准直器21固定安装在容器本体20上,以保证准直器21与容器本体20相对位置的准确性,使准直器21的狭缝对准容器本体20上的射线出口,以使通过准直器21的射线束符合设计标准,从而保证自行走式集装箱和/或车辆检查设备的扫描成像质量。
具体的,辐射源本体通常选用电子感应减速器、电子直线加速器或同位素辐射源。辐射源本体选用电子感应减速器或电子直线加速器时,加速器与控制装置及供电装置连接,通过控制器控制加速器的工作状态,以控制扫描的起止。辐射源选用钴60等同位素辐射源时,需要在屏蔽容器或辐射源安装舱上安装电控门,电控门与供电装置及控制器连接,通过控制器控制电控门的开闭,以控制扫描的起止。
在上述任一技术方案中,优选地,供电装置包括电缆卷筒和/或燃油发电机。
当扫描作业场地具有外接电源时,通过电缆卷筒与外接电源连接进行供电,当扫描作业场地无外接电源时,则通过燃油发电机进行供电。电缆卷筒供电模式和燃油发电机供电模式可通过手动开关进行切换,也可控制器自动切换,即在电缆卷筒断电情况下,自动开启燃油发电机供电模式,在电缆卷筒获得电流时,自动切换至电缆卷筒供电模式。
如图1和图4所示,在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括:两个转向电机9,分别与第一车轮和第三车轮连接或分别与第二车轮和第四车轮连接,转向电机9用于推动车轮相对龙门架沿水平方向转动,且每个转向电机9分别与供电装置和控制器连接。
在该实施例中,两个转向电机9可以推动检查设备的两前轮或两后轮进行水平方向的转动,以控制设备的行进方向或使设备进行转向,从而更灵活的针对不同的车辆或者集装箱使用检查设备,或操控自行走式集装箱和/或车辆检查设备更换作业场地。
如图1至图3所示,在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括辐射屏蔽组件。辐射屏蔽组件安装在龙门架上,用于阻挡无用射线。其中,辐射屏蔽组件包括第一屏蔽体10、第二屏蔽体11、竖直射线捕集器、水平射线捕集器、第一防护层及第二防护层。第一屏蔽体10安装在第二竖梁3上且位于竖直探测器舱7背向辐射源的一侧。第二屏蔽体11安装在第一竖梁2上且位于辐射源与竖直探测器舱7之间,第二屏蔽体11上设有沿上下方向延伸的缝隙,且缝隙与辐射源的射线出口对齐。竖直射线捕集器安装在第二竖梁3上,竖直射线捕集器位于竖直探测器舱7背向辐射源的一侧且正对竖直探测器舱7。水平射线捕集器安装在横梁1上,水平射线捕集器位于水平探测器舱6上方且正对水平探测器舱6。第一防护层设置竖直探测器舱7的前舱壁和后舱壁上。第二防护层设置水平探测器舱6的前舱壁和后舱壁上。
该方案中,辐射屏蔽组件设置在自行走式集装箱和/或车辆检查设备上,不需要占据扫瞄检查场的空间,使设备满足小场地作业的需求。并且,辐射 屏蔽组件设置在自行走式集装箱和/或车辆检查设备上,随自行走式集装箱和/或车辆检查设备移动,因此检查设备更换作业场地也不需要重新建造辐射屏蔽墙或其他辐射屏蔽设施,降低了检查设备的使用成本,从而可提升产品的市场竞争力。其中,第一屏蔽体10和第二屏蔽体11通常选用钢板或铅板,水平射线捕集器、竖直射线捕集器、第一防护层及第二防护层的材料优选铅。
如图1至图4所示,在上述任一技术方案中,优选地,机架内具有供待测集装箱或待测车辆通过的通道,自行走式集装箱和/或车辆检查设备还包括防撞装置。其中,防撞装置包括通道检测组件、障碍物检测组件及四个防护门组件:通道检测组件安装在通道内并与供电装置和控制器连接,用于检测待测集装箱和/或待检测车辆是否偏了通道,并将检测信号传输给控制器。障碍物检测组件安装在机架的边缘并与供电装置和控制器连接,用于检测自行走式集装箱和/或车辆检查设备行进方向预设范围内是否存在障碍物,并将检测信号传输给控制器。四个防护门组件分别安装在机架左右两侧的前端和左右两侧的后端且均位于通道内,每个防护门组件包括与机架铰接的触发门13和与触发门13配合的检测器,检测器用于在待测集装箱和/或待检测车辆撞到触发门13时向控制器发送触发信号。
本方案通过通道检测组件和障碍物检测组件实现主动防撞,通过防护门组件实现被动防撞。检测组件用于检测待测对象是否对准检测通道,避免待测对象与设备相撞。障碍物检测组件用于检测出设备行进路线上是否存在障碍物,避免设备与障碍物相撞。防护门组件安装在检测通道内,检测时,若检查设备与集装箱和/或车辆的相对运动方向出现问题,在集装箱和/或车辆与检查设备发生碰撞前,集装箱和/或车辆会先撞到触发门13,使触发门13发生转动,当触发门13转到或超过预设角度和/或预设位置时,检测器向控制器发送触发信号,控制器接到触发信号时会触发相应程序,例如控制检查设备停止前进、发出警报等,从而避免检查设备与待测对象发生碰撞,防止检查设备与待测对象受损。其中,检测装置可选用行程开关。
如图1所示,在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括多个信号采集摄像头,其分别安装在机架上,且每个信号采集摄像头分别与供电装置和控制器连接,用于采集待测集装箱的箱号和/或待测车辆的车牌号。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括多个监控器12,其分别安装在机架的前后左右四面,且每个监控器12分别与供电装置和控制器连接,用于监控自行走式集装箱和/或车辆检查设备四周的情况,以保证设备使用时的安全性。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还 包括:数据传输装置,用于连接远程控制台并与远程控制台进行数据传输;其中,数据传输装置包括传输光纤和/或无线传输装置。
本方案中,通过数据传输装置与远程控制台进行数据传输,以将对集装箱和/或车辆的检查扫面图形及信号采集摄像头、监控器12采集的数据传输至远程控制台,以供工作人员审查,且远程控制台可通过数据传输装置向自行走式集装箱和/或车辆检查设备发送控制信号,控制设备的工作状态,以实现远程控制。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括机身操控箱和/或无线操控装置。机身操控箱安装在机架上并与控制器和供电装置连接,用于向控制器发送控制指令和/或控制供电装置的起停。无线操控装置能够与控制器进行无线传输,用于向控制器发送控制指令和/或控制供电装置的起停。
自行走式集装箱和/或车辆检查设备作业时,为保证安全,通槽需要工作人员在现场监控,在设备有发生碰撞的危险或其他意外情况时,现场工作人员可通过机身操控箱和/或无线操控装置对设备进行控制,以应付意外情况。其中,通过无线操控装置控制设备拉开了现场工作人员与检查设备的距离,可降低现场工作的危险性。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括温控装置。温控装置包括探测器舱空调系统和辐射源空调系统。探测器舱空调系统与控制器和供电装置连接,并接通至竖直探测器舱7和水平探测器舱6内,用于控制竖直探测器舱7和水平探测器舱6内的温度。第一竖梁2上设有用于安装辐射源的安装舱,辐射源空调系统与控制器和供电装置连接,并接通至安装舱内,用于控制安装舱内的温度。
辐射源空调系统用于将辐射源安装舱的温度控制在预设范围内,探测器舱空调系统用于将两探测器舱的温度控制在预设范围内,以使自行走式集装箱和/或车辆检查设备可在炎热和寒冷的自然环境下作业。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括自动导航装置,其与供电装置和控制器连接,用于设定自行走式集装箱和/或车辆检查设备的预设行进路线,并检测自行走式集装箱和/或车辆检查设备是否偏离预设行进路线,同时将检测信号发送给控制器,以使控制器根据检测信号控制自行走式集装箱和/或车辆检查设备的行进方向。
自动导航装置通常包括设备定位装置和检测对象位置检测装置,设备定位装置用于确定检查设备的位置坐标,检测对象位置检测装置用于检测待检测集装箱和/或车辆的位置。具体地,设备定位装置可选用GPS,检测对象位置检测装置可选用光电测距传感器,GPS检测出设备的当前位置坐标,并将 检查设备的坐标信息输送给控制器,光电测距传感器测量检测对象与检查设备的距离,并将距离信息输送给控制器,使控制器根据检查设备的坐标信息及上述距离信息计算出检测对象的位置坐标,并根据检查设备的位置坐标和检测对象的位置坐标设定预设路线,随后控制检查设备沿预设路线行进。行进过程中,GPS实时检测检查设备的位置坐标并将其发送给控制器,当控制器发现检查设备的位置坐标偏离预设路线时,可通过调节左右驱动电机的转速差或控制转向电机驱使设备转向以纠正检查设备的行进路线。在此基础上,自动导航装置还可与障碍物检测组件配合,当障碍物检测组件当发现设备行进路线上有障碍物时,检测对象位置检测装置和控制器根据上述检测原理得到障碍物的位置坐标,控制器根据检查设备、障碍物及待检测集装箱和/或车辆三者的坐标重新设定预设路线,以使检查设备自动进行过程中可绕开障碍物。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括车箱位置检测装置,其与供电装置和控制器连接,用于检测待检测车辆的车箱位置。
设备对车辆进行检查时具有快速检查工作模式,快速检查时,检查设备静止,各待测车辆依次驶过设备的检测通道,为防止射线束照射到车辆驾驶员,检查设备在检测通道内安装了车箱位置检测装置。待检测车辆均为货车,车头与车箱间具有间隙,车箱位置检测装置通常选用光电传感器,传感器位置在射线束所处的竖直平面内,传感器的检测光线照射进上述间隙时,证明车头已通过射线出口位置,此时传感器向控制器发送信号,使控制器控制辐射源发出射线,开始进行扫描。当车箱完全通过射线出口位置时,传感器的检测光线也不再受车箱遮挡,此时传感器向控制器发送信号,使控制器控制辐射源停止发射射线,停止扫描工作。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括放射性物质检测装置,其与供电装置和控制器连接,用于检测待测集装箱和/或待测车辆内是否存在放射性物质。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括红外热扫描装置,其与供电装置和控制器连接,用于对检测待测集装箱和/或待测车辆进行热扫描。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括生化危险品检测装置,其与供电装置和控制器连接,用于检测待测集装箱和/或待测车辆内是否存在生化危险品。
若检测对象内具有生物危险品(生物毒气等)和化学危险品(易燃易爆物,化学毒气等)时,这些危险品会挥发出一定量的气体,生化危险品检测 装置包括设置在检测通道内的采气装置,检测对象通过检测通道时,采气装置进行采气,生化危险品检测装置对气体样本进行检验分析,以判断集装箱和/或车辆内是否装有生化危险品。
在上述任一技术方案中,优选地,自行走式集装箱和/或车辆检查设备还包括多信息整合装置,其与供电装置和控制器连接,用于将各检测装置的检测图像与辐射扫描图像整合。
本方案中,多信息整合装置可将辐射扫描图像、红外热扫描图像、放射性物质检信息、生化危险品检测整合到一张图像中,以便工作人员审查。
在本发明的描述中,需要理解的是,术语“顶”、“底”、“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“第一”、“第二”、“第三”、“第四”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种自行走式集装箱和/或车辆检查设备,其特征在于,包括:
    机架,包括龙门架、固定梁和摆动梁,所述龙门架包括横梁和设置在所述横梁左右两端的第一竖梁和第二竖梁,所述固定梁沿前后方向设置并与所述第一竖梁固定连接,且所述固定梁的前后两端分别安装有第一车轮和第二车轮,所述摆动梁沿前后方向设置并与所述第二竖梁能够转动地连接,使所述摆动梁能够相对所述第二竖梁沿竖直方向转动,且所述摆动梁的前后两端分别安装有第三车轮和第四车轮;
    供电装置,安装在所述机架上;
    辐射源,安装在所述第一竖梁上并与所述供电装置连接,用于产生射线束;
    探测器舱,包括安装在所述横梁上的水平探测器舱和安装在所述第二竖梁上的竖直探测器舱,所述水平探测器舱和所述竖直探测器舱内安装有探测器阵列,各所述探测器分别与所述供电装置连接,各所述探测器分别对准所述射线束的中心;
    至少两个驱动电机,分别与所述供电装置连接,每个所述驱动电机分别与一个车轮连接,且各所述驱动电机所连接的车轮均不相同,所述驱动电机用于驱动车轮绕且轴线转动;及
    控制器,与所述供电装置、所述辐射源、各所述探测器及各所述驱动电机连接。
  2. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述第一竖梁通过第一铰接轴与所述横梁能够拆卸地铰接;
    所述第二竖梁通过第二铰接轴与所述横梁能够拆卸地铰接。
  3. 根据权利要求2所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述第一车轮和所述第二车轮分别能够相对所述第一竖梁沿水平方向转动至其轴线沿前后方向延伸;
    所述第三车轮和所述第四车轮分别能够相对所述第二竖梁沿水平方向转动至其轴线沿前后方向延伸。
  4. 根据权利要求2所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述横梁的左端的前表面和后表面上设有第一对中凸块,所述第一竖梁上设有第二对中凸块,所述第一竖梁相对所述横梁转动至装配位置时,所述第一对中凸块与所述第二对中凸块抵触形成前后方向上的限位;
    所述横梁的右端的前表面和后表面上设有第三对中凸块,所述第二竖梁上设有第四对中凸块,所述第二竖梁相对所述横梁转动至装配位置时,所述第三对中凸块与所述第四对中凸块抵触形成前后方向上的限位。
  5. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述水平探测器舱和所述竖直探测器舱分别与所述横梁和所述第二竖梁能够拆卸地连接,且所述竖直探测器舱与所述水平探测器舱能够转动地连接。
  6. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,所述辐射源包括:
    屏蔽容器,包括容器本体和准直器,所述容器本体安装在所述第一竖梁上,所述容器本体上设有安装腔和与所述安装腔连通的射线出口,所述准直器固定安装在所述容器本体上,且所述准直器的狭缝对准所述射线出口;及
    辐射源本体,安装在所述安装腔内,且所述辐射源本体的出口对准所述射线出口。
  7. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述供电装置包括电缆卷筒和/或燃油发电机。
  8. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    两个转向电机,分别与所述第一车轮和所述第三车轮连接或分别与所述第二车轮和所述第四车轮连接,所述转向电机用于推动所述车轮相对所述龙门架沿水平方向转动,且每个所述转向电机分别与所述供电装置和所述控制器连接。
  9. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    辐射屏蔽组件,安装在所述龙门架上,用于阻挡无用射线;
    其中,所述辐射屏蔽组件包括:
    第一屏蔽体,安装在所述第二竖梁上且位于所述竖直探测器舱背向所述辐射源的一侧;
    第二屏蔽体,安装在所述第一竖梁上且位于所述辐射源与所述竖直探测器舱之间,所述第二屏蔽体上设有沿上下方向延伸的缝隙,且所述缝隙与所述辐射源的射线出口对齐;
    竖直射线捕集器,安装在所述第二竖梁上,竖直射线捕集器位于所述竖直探测器舱背向所述辐射源的一侧且正对所述竖直探测器舱;
    水平射线捕集器,安装在所述横梁上,所述水平射线捕集器位于所述水 平探测器舱上方且正对所述水平探测器舱;
    第一防护层,设置所述竖直探测器舱的前舱壁和后舱壁上;及
    第二防护层,设置所述水平探测器舱的前舱壁和后舱壁上。
  10. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,
    所述机架内具有供待测集装箱或待测车辆通过的通道,自行走式集装箱和/或车辆检查设备还包括防撞装置;
    其中,所述防撞装置包括:
    通道检测组件,安装在所述通道内并与所述供电装置和所述控制器连接,用于检测待测集装箱和/或待检测车辆是否偏了所述通道,并将检测信号传输给所述控制器;
    障碍物检测组件,安装在所述机架的边缘并与所述供电装置和所述控制器连接,用于检测所述自行走式集装箱和/或车辆检查设备行进方向预设范围内是否存在障碍物,并将检测信号传输给所述控制器;及
    四个防护门组件,分别安装在所述机架左右两侧的前端和左右两侧的后端且均位于所述通道内,每个所述防护门组件包括与所述机架铰接的触发门和与所述触发门配合的检测器,所述检测器用于在待测集装箱和/或待检测车辆撞到所述触发门时向所述控制器发送触发信号。
  11. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    多个信号采集摄像头,分别安装在所述机架上,且每个所述信号采集摄像头分别与供电装置和所述控制器连接,用于采集待测集装箱的箱号和/或待测车辆的车牌号。
  12. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    多个监控器,分别安装在所述机架的前后左右四面,且每个所述监控器分别与供电装置和所述控制器连接,用于监控所述自行走式集装箱和/或车辆检查设备四周的情况。
  13. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    数据传输装置,用于连接远程控制台并与所述远程控制台进行数据传输;
    其中,所述数据传输装置包括传输光纤和/或无线传输装置。
  14. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    机身操控箱,安装在所述机架上并与所述控制器和所述供电装置连接, 用于向所述控制器发送控制指令和/或控制所述供电装置的起停;和/或
    无线操控装置,能够与所述控制器进行无线传输,用于向所述控制器发送控制指令和/或控制所述供电装置的起停。
  15. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括
    温控装置,所述温控装置包括:
    探测器舱空调系统,与所述控制器和所述供电装置连接,并接通至所述竖直探测器舱和所述水平探测器舱内,用于控制所述竖直探测器舱和所述水平探测器舱内的温度;及
    辐射源空调系统,所述第一竖梁上设有用于安装所述辐射源的安装舱,所述辐射源空调系统与所述控制器和所述供电装置连接,并接通至所述安装舱内,用于控制所述安装舱内的温度。
  16. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    自动导航装置,与供电装置和所述控制器连接,用于设定所述自行走式集装箱和/或车辆检查设备的预设行进路线,并检测所述自行走式集装箱和/或车辆检查设备是否偏离所述预设行进路线,同时将检测信号发送给所述控制器,以使所述控制器根据所述检测信号控制所述自行走式集装箱和/或车辆检查设备的行进方向。
  17. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    车箱位置检测装置,与供电装置和所述控制器连接,用于检测待检测车辆的车箱位置。
  18. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    放射性物质检测装置,与供电装置和所述控制器连接,用于检测待测集装箱和/或待测车辆内是否存在放射性物质。
  19. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    红外热扫描装置,与供电装置和所述控制器连接,用于对检测待测集装箱和/或待测车辆进行热扫描。
  20. 根据权利要求1所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    生化危险品检测装置,与供电装置和所述控制器连接,用于检测待测集装箱和/或待测车辆内是否存在生化危险品。
  21. 根据权利要求18至20中任一项所述的自行走式集装箱和/或车辆检查设备,其特征在于,还包括:
    多信息整合装置,与供电装置和所述控制器连接,用于将各检测装置的检测图像与辐射扫描图像整合。
PCT/CN2017/099693 2016-08-30 2017-08-30 自行走式集装箱和/或车辆检查设备 WO2018041143A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17845445.0A EP3508888B1 (en) 2016-08-30 2017-08-30 Self-propelled container and/or vehicle inspection device
US16/329,128 US10761236B2 (en) 2016-08-30 2017-08-30 Self-propelled container and/or vehicle inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621015520.0U CN206074828U (zh) 2016-08-30 2016-08-30 自行走式集装箱/车辆检查设备
CN201621015520.0 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018041143A1 true WO2018041143A1 (zh) 2018-03-08

Family

ID=58435318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099693 WO2018041143A1 (zh) 2016-08-30 2017-08-30 自行走式集装箱和/或车辆检查设备

Country Status (4)

Country Link
US (1) US10761236B2 (zh)
EP (1) EP3508888B1 (zh)
CN (1) CN206074828U (zh)
WO (1) WO2018041143A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521485A (zh) * 2019-01-04 2019-03-26 同方威视技术股份有限公司 扫描装置及其转场方法
GB2595080B (en) * 2019-01-04 2022-12-28 Nuctech Co Ltd Security inspection device and transfer method therefor
GB2594653B (en) * 2019-01-04 2022-12-28 Nuctech Co Ltd Security check device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206074828U (zh) 2016-08-30 2017-04-05 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN106324693B (zh) * 2016-08-30 2019-04-19 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN107861166A (zh) * 2017-11-21 2018-03-30 同方威视技术股份有限公司 扫描装置以及车载式辐射检查系统
CN108227027B (zh) 2017-12-29 2020-12-01 同方威视技术股份有限公司 车载背散射检查系统
CN112666188A (zh) * 2019-10-16 2021-04-16 同方威视技术股份有限公司 辐射扫描检查设备
GB202012182D0 (en) * 2020-08-05 2020-09-16 2Xsystems Ltd Boom apparatus and an article scanning system
CN112130218B (zh) * 2020-08-11 2024-04-26 浙江大华技术股份有限公司 探测盒组件
CN114202853A (zh) * 2020-09-16 2022-03-18 宝能汽车集团有限公司 共享汽车的验车系统和验车方法
CN114764073B (zh) * 2020-12-31 2024-03-15 同方威视科技(北京)有限公司 车辆辐射检查设备和车辆辐射检查系统
CN113370187B (zh) * 2021-07-07 2022-12-13 成都圭目机器人有限公司 一种双探测器悬挂机构及探测机器人
CN114280270B (zh) * 2021-12-22 2024-03-15 山西三合盛智慧科技股份有限公司 一种基于图像识别的智能煤矿用瓦斯气检测机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201077958Y (zh) * 2007-09-10 2008-06-25 中铁八局集团第一工程有限公司 一种路桥施工用运梁小车
JP4274981B2 (ja) * 2004-03-10 2009-06-10 三井造船株式会社 コンテナ内貨物の検査装置
DE202009015830U1 (de) * 2009-11-20 2010-03-11 Noell Mobile Systems Gmbh Modulares verfahrbares Meßportal
CN103529060A (zh) * 2012-07-04 2014-01-22 同方威视技术股份有限公司 用于组合移动式辐射检查系统的龙门结构
CN106324693A (zh) * 2016-08-30 2017-01-11 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN206074828U (zh) * 2016-08-30 2017-04-05 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39396E1 (en) * 1996-02-12 2006-11-14 American Science And Engineering, Inc. Mobile x-ray inspection system for large objects
US5638420A (en) * 1996-07-03 1997-06-10 Advanced Research And Applications Corporation Straddle inspection system
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
US20120199753A1 (en) 2009-07-21 2012-08-09 Clear Path Technologies, Inc. Portable Detection Apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274981B2 (ja) * 2004-03-10 2009-06-10 三井造船株式会社 コンテナ内貨物の検査装置
CN201077958Y (zh) * 2007-09-10 2008-06-25 中铁八局集团第一工程有限公司 一种路桥施工用运梁小车
DE202009015830U1 (de) * 2009-11-20 2010-03-11 Noell Mobile Systems Gmbh Modulares verfahrbares Meßportal
CN103529060A (zh) * 2012-07-04 2014-01-22 同方威视技术股份有限公司 用于组合移动式辐射检查系统的龙门结构
CN106324693A (zh) * 2016-08-30 2017-01-11 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN206074828U (zh) * 2016-08-30 2017-04-05 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508888A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521485A (zh) * 2019-01-04 2019-03-26 同方威视技术股份有限公司 扫描装置及其转场方法
US20220082723A1 (en) * 2019-01-04 2022-03-17 Nuctech Company Limited Security inspection device and transfer method therefor
GB2595080B (en) * 2019-01-04 2022-12-28 Nuctech Co Ltd Security inspection device and transfer method therefor
GB2594201B (en) * 2019-01-04 2022-12-28 Nuctech Co Ltd Security inspection device and transfer method therefor
GB2594653B (en) * 2019-01-04 2022-12-28 Nuctech Co Ltd Security check device
US11747510B2 (en) 2019-01-04 2023-09-05 Nuctech Company Limited Security inspection device
US11768312B2 (en) 2019-01-04 2023-09-26 Nuctech Company Limited Security inspection device and transfer method therefor
US11933934B2 (en) 2019-01-04 2024-03-19 Nuctech Company Limited Security inspection device and transfer method therefor

Also Published As

Publication number Publication date
EP3508888A4 (en) 2020-04-22
EP3508888B1 (en) 2022-01-12
US20190250302A1 (en) 2019-08-15
EP3508888A1 (en) 2019-07-10
CN206074828U (zh) 2017-04-05
US10761236B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2018041143A1 (zh) 自行走式集装箱和/或车辆检查设备
CN106324693B (zh) 自行走式集装箱/车辆检查设备
EP3290963B1 (en) Movable divided inspection system and method
US10151712B2 (en) Vehicle-carried quick inspection system
RU2251683C2 (ru) Устройство для осмотра контейнеров
WO2016034101A2 (zh) 车载式检查系统
WO2018041037A1 (zh) 集装箱检查系统和港口设施
KR102061770B1 (ko) 검사 및 보수 모듈
WO2009106847A2 (en) Mobile scanning systems
CN213499234U (zh) 一种轮式智能巡检机器人
KR102010495B1 (ko) 다관절로 연결된 상태에서 자율주행이 가능한 검사센서 이송장치 시스템
JP7157478B2 (ja) ドローンシステム、ドローン、移動体、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
CN108008458B (zh) 车载背散射检查系统
KR102178918B1 (ko) 레일 이동형 구조물 검사 장치
CN107991324A (zh) 双视角乘用车扫描检查设备
CN1188695C (zh) 车载式钴-60集装箱检查系统
CN101329285A (zh) 一种钴-60集装箱的车载检查系统
WO2020224546A1 (zh) 喷涂机器人
WO2020116443A1 (ja) 移動体
WO2021185239A1 (zh) 背散射扫描系统
JP7140417B2 (ja) ドローンシステム
JP7329858B2 (ja) ドローンシステム
WO2020116494A1 (ja) ドローンシステム
WO2020116496A1 (ja) ドローンシステム
JP6765736B1 (ja) 無人飛行体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845445

Country of ref document: EP

Effective date: 20190401