WO2018041037A1 - 集装箱检查系统和港口设施 - Google Patents

集装箱检查系统和港口设施 Download PDF

Info

Publication number
WO2018041037A1
WO2018041037A1 PCT/CN2017/099045 CN2017099045W WO2018041037A1 WO 2018041037 A1 WO2018041037 A1 WO 2018041037A1 CN 2017099045 W CN2017099045 W CN 2017099045W WO 2018041037 A1 WO2018041037 A1 WO 2018041037A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
inspection system
transport vehicle
shore bridge
radiation
Prior art date
Application number
PCT/CN2017/099045
Other languages
English (en)
French (fr)
Inventor
陈志强
李元景
孙尚民
胡煜
马媛
王强强
杜龙
李伟
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2018041037A1 publication Critical patent/WO2018041037A1/zh

Links

Images

Classifications

    • G01V5/232
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/002Container cranes
    • G01V5/20
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor

Definitions

  • the invention relates to the technical field of safety inspection, in particular to a container inspection system and a port facility.
  • the container inspection system of the fixed gantry type is fixed on one channel, the inspection object moves through the scanning channel to complete the scanning inspection mode, and the mobile gantry type and the vehicle-mounted type are the movement of the ray source and the detector, and the scanned object Fixed scan check method.
  • the inspection system is carried by a general truck chassis, and the movement of the chassis is used to realize the mobility of the entire inspection system.
  • the mobile gantry class uses a track device to achieve the mobility of the entire inspection system on the track by the drive device.
  • the vehicle-mounted category is subject to chassis emissions, left rudder/right rudder and other related road regulations, while mobile gantry is used at fixed sites. And subject to corresponding restrictions.
  • AGV Automated Guided Vehicles
  • AGV sports often need to change lanes and turn at any position according to the control of the control system, and there is no fixed path.
  • the equipment magnetic core guiding the AGV is full of the entire AGV travel site, so the second civil construction based on the container inspection system is very difficult, and it is also difficult to find a fixed area to achieve the passage of all AGV equipment.
  • the object of the present invention is to propose a container inspection system and a port facility, which can facilitate the scanning inspection of containers.
  • the present invention provides a container inspection system including a radiation source, a radiation detecting mechanism and a shore bridge for lifting a container onto an automated guided transport vehicle, the radiation source and the radiation detecting a mechanism mounted on the shore bridge for scanning a container loaded on the automated guided transport vehicle check.
  • the shore bridge is movable such that the ray source and the ray detecting mechanism move together to the shore bridge to hoist the container to a loading position on the automatic guided transport vehicle, and the pair is automatically guided.
  • the container on the transport vehicle is scanned for inspection.
  • the radiation detecting mechanism comprises a detector and an L-shaped cantilever, the detector is disposed on the L-shaped cantilever, and the L-shaped cantilever is connected with a mounting structure of the radiation source to form a loading The gantry frame through which the container automatically guides the transport vehicle.
  • the radiation source and the radiation detecting mechanism are located at a front side or a rear side of the automatic guided transport vehicle and with the automatic guided transport vehicle Interval by a preset distance.
  • a power supply unit is included for powering the source of radiation, the detector or/and the shore bridge.
  • the L-shaped cantilever is rotatably coupled to the mounting structure of the radiation source such that the L-shaped cantilever is switchable between an expanded state and a retracted state.
  • the L-shaped cantilever is folded into the retracted state as the source of radiation and the beam detecting mechanism move with the shore bridge.
  • the L-shaped cantilever is extended to be in the deployed state.
  • the overall width of the radiation source and the radiation detecting mechanism is not greater than a width of a travel path of the automated guided transport vehicle.
  • the radiation source and the radiation detecting mechanism are mounted on a side frame or a bottom frame of the shore bridge adjacent to a side of the automated guided transport vehicle travel site.
  • the radiation source and the radiation detecting mechanism are adjacent to a front side or a rear side of the automated guided transport vehicle.
  • the invention also provides a port facility comprising the container inspection system.
  • the port facility includes an automated guided transport vehicle for loading containers.
  • the present invention can be moved along with the shore bridge by installing the radiation source and the radiation detecting mechanism on the shore bridge.
  • the shore bridge can be utilized when the container loading of the automatic guided transport vehicle is completed.
  • the ray source and the ray detecting mechanism that have been moved into place are used to scan the self-guided transport vehicle.
  • the ray source and the ray detecting mechanism follow the shore bridge movement, that is to say, it is possible to more conveniently realize the scanning inspection of the mobile vehicle container and improve the inspection without the need to specially arrange the ray source and the ray detecting mechanism to enter the field.
  • Checking efficiency; compared to the existing in-vehicle container inspection system, the present invention does not require modification of the site of the automated guided transport vehicle, nor does it require occupying a fixed area.
  • FIG. 1 is a schematic view of an embodiment of a container inspection system of the present invention applied to an intelligent port.
  • Figure 2 is an enlarged schematic view of an embodiment of the container inspection system of the present invention shown in a circled portion of Figure 1.
  • FIG. 3 is a schematic view of a top view angle of an embodiment of a container inspection system of the present invention in detecting an AGV passing through.
  • FIGS. 4 to 6 are schematic views respectively showing a process state of scanning inspection of an AGV loaded with a container according to an embodiment of the container inspection system of the present invention.
  • the inventors have investigated the intelligent port and noticed that the automated shore bridge needs to move to the corresponding loading position for loading and loading when loading the AGV container. If the AGV of the container is to be scanned, it is preferable to perform a scan inspection in the vicinity of the loading position. On the other hand, the inventor also notices that the AGV will travel a further distance after the container is loaded.
  • the inventor proposes a technical concept of moving the radiation source and the radiation detecting mechanism with the shore bridge, and using the moving process of the shore bridge to move the inspection system to the loading position, so that when the loading is completed, the The location inspection system makes it easy to scan the AGV.
  • the present invention proposes a container inspection system of the present invention comprising a radiation source and a radiation detecting mechanism, the radiation source and the radiation detecting mechanism being mounted on a shore bridge, which can be moved to the AGV along with the shore bridge The loading position is so that the AGV after the container loading is scanned for inspection.
  • FIG. 1 a schematic diagram of an embodiment of a container inspection system of the present invention applied to an intelligent port is shown.
  • the automated shore bridge 1 is capable of moving in an intelligent port, hoisting container cargo on the ship to the AGV in the AGV travel venue on the right.
  • the automated shore bridge 1 According to the deployment of the control system, the automated shore bridge 1 and ready to load this assembly
  • the AGV of the box cargo is moved to a given loading location.
  • the hoisting mechanism 2 on the automated shore bridge 1 places the container on the AGV and transports it away by the AGV.
  • the portion marked in the lower right corner of Fig. 1 is the container inspection system 3, which is located on one side of the automated shore bridge 1 and is mounted on the automated shore bridge 1.
  • the container inspection system includes a source 31 and a radiation detecting mechanism.
  • the ray detecting mechanism includes a ray source 31 (radiation source) capable of emitting a ray for scanning and inspecting the container to be tested, and the ray detector 33 is configured to receive the ray transmitted by the ray source 31 when scanning the container to be tested, and then pass the ray. Image processing to obtain the internal condition of the object to be tested.
  • a plurality of radiation detectors 33 can be used on the radiation detecting mechanism, and the detection surface of the radiation detector 33 is directed toward the radiation source 31.
  • the radiation detecting mechanism may include an L-shaped cantilever 34, the radiation detector 33 is disposed on the L-shaped cantilever 34, and the L-shaped cantilever 34 is coupled to the mounting structure 32 of the radiation source 31, and can be formed for completion of loading of the container.
  • Figure 2 is a portal scanning frame that forms an AGV for container loading.
  • the mounting structure 32 of the radiation source 31 herein may be the device housing of the radiation source 31 or the mounting chamber of the radiation source 31.
  • the radiation source 31 and the radiation detecting mechanism move together with the shore bridge.
  • the channel formed by the portal scanning frame can be located when the container is loaded on the shore bridge.
  • the travel route of the AGV In this way, when the AGV completes the loading of the container, the scanning inspection process can be completed by moving along the predetermined driving route.
  • the AGV combines some existing motion modes with scanning inspections after the container is loaded for a certain distance, thereby improving the inspection efficiency and simplifying the control process.
  • the gantry scanning frame when the container is loaded by the shore bridge, the gantry scanning frame is located on the front side or the rear side of the AGV and is spaced apart from the AGV by a predetermined distance, in particular, adjacent to the front or rear side of the AGV. .
  • the corresponding AGV can reach the gantry scan frame forward or backward after the loading of the container, and the scanning inspection is completed through the gantry scan frame during continuous driving.
  • the power supply of the radiation source 31 and the radiation detector 33 is preferably powered by the power supply unit of the shore bridge, which can save space occupied by the power supply equipment in the container inspection system, and can also save space. Reduce the impact of the vibration generated by the power supply equipment on the accuracy of the inspection system.
  • the radiation source 31 and the radiation detector 33 may be powered by a power supply device independent of the power supply unit of the shore bridge, and the power supply device may be a generator or a battery or the like. This independent power supply simplifies power distribution and reduces control complexity.
  • the L-shaped cantilever 34 includes a horizontal arm and a vertical arm connected to one end thereof, and the other end of the horizontal arm is coupled to the mounting structure 32 of the radiation source 31.
  • the connection structure can be a fixed connection, i.e., the L-shaped cantilever 34 maintains the form of the portal scanning frame moving with the shore bridge.
  • a rotatable connection structure can also be employed, i.e., the L-shaped cantilever 34 can be moved relative to the mounting structure 32 of the radiation source 31 to effect switching of the deployed and retracted states of the L-shaped cantilever 34.
  • the container inspection system of the present invention can be applied to ports requiring container loading and container inspection, and is not limited to smart ports.
  • the shore bridge can be operated by manpower or an automated shore bridge automatically controlled by the control system.
  • the intermediate bridge at the port may be an automated shore bridge 1, and the automated shore bridge 1 can be moved to the loading position of the AGV 4.
  • the container 5 is hoisted to the AGV 4.
  • the radiation source 31 and the radiation detecting mechanism are preferably mounted on the side frame or the bottom frame on the side of the automated shore bridge 1 near the AGV traveling field so that the radiation source 31 and the radiation detecting mechanism move with the automated shore bridge 1.
  • the overall occupied width of the radiation source 31 and the radiation detecting mechanism is not greater than the AGV 4 A width of the travel channel, which enables the passage of the AGV 4 to be scanned and does not affect the AGV of the travel path.
  • the present invention also provides a port facility including a shore bridge and an AGV travel site, the smart port facility including the aforementioned container inspection system. Further, the port facility can be an intelligent port, and the shore bridge can be an automated shore bridge1.

Abstract

一种集装箱检查系统及港口设施,该集装箱检查系统包括射线源(31)、射线探侧机构(33)和岸桥(1),岸桥(1)用于将集装箱(5)吊装到车辆(4)上,射线源(31)和射线探测机构(33)安装在岸桥(1)上,用于对装载在车辆(4)上的集装箱(5)进行扫描检查。该检查系统无需专门调配射线源和射线探测机构进场,能够更加便利地实现集装箱的扫描检查,提高检查效率。

Description

集装箱检查系统和港口设施 技术领域
本发明涉及安全检查技术领域,尤其涉及一种集装箱检查系统及港口设施。
背景技术
现有的集装箱检查系统,常见的有固定门架类、移动门架类或者车载类等。其中,固定门架类的集装箱检查系统是固定在一个通道上,被检物移动通过扫描通道完成扫描的检查方式,而移动门架类和车载类则是射线源和探测器移动,被扫描物固定的扫描检查方式。具体对于车载类集装箱系统来说,其检查系统采用通用卡车底盘进行承载,利用底盘车的运动来实现整个检查系统的可移动性。而移动门架类则采用轨道装置,通过驱动装置在轨道上实现整个检查系统的可移动性。
在以上的车载类和移动门架类的集装箱检查系统中,车载类会受到底盘车的排放、左舵/右舵以及其它相关道路法规限制,而移动门架类则因为需要在固定的场地使用而受到相应限制。
对于智能化集成化的港口来说,会大量采用无人驾驶的自动导引运输车(Automated Guided Vehicle,简称AGV)系统,可移动的集装箱检查系统作为港口的一个环节需要进行集中管理和控制,并且需要实现检查系统上的无人操作,但这两种移动方式均难以适用于当前智能港口的需求。
另一方面,对于部分智能港口,尤其是已经实施和完成规划的智能港口,AGV运动运动往往需要根据控制系统的控制在任意位置变道和转向,并没有固定的路径。同时,引导AGV的设备磁钉布满了整个AGV行进场地,因此基于集装箱检查系统的二次土建非常困难,而且也难以找到一个固定的区域来实现所有AGV设备的通过。
发明内容
本发明的目的是提出一种集装箱检查系统和港口设施,能够更便利实现集装箱的扫描检查。
为实现上述目的,本发明提供一种集装箱检查系统,包括射线源、射线探测机构和岸桥,所述岸桥用于将集装箱吊装到自动引导运输车上,所述射线源和所述射线探测机构安装在所述岸桥上,用于对装载在所述自动引导运输车上的集装箱进行扫描检 查。
可选地,所述岸桥是可移动的,使得所述射线源和所述射线探测机构随其一起移动到所述岸桥将集装箱吊装到自动引导运输车上的装载位置,对在自动引导运输车上的集装箱进行扫描检查。
可选地,所述射线探测机构包括探测器和L型悬臂,所述探测器设置于所述L型悬臂上,所述L型悬臂与所述射线源的安装结构连接,以形成供装载有集装箱的自动引导运输车通过的门式框架。
可选地,在所述岸桥向所述自动引导运输车吊装集装箱时,所述射线源和所述射线探测机构位于所述自动引导运输车前侧或后侧且与所述自动引导运输车间隔一预设距离。
可选地,包括供电单元,用于向所述射线源、所述探测器或/和所述岸桥供电。
可选地,所述L型悬臂与所述射线源的安装结构可转动地相连,以便L型悬臂能够在展开状态和收回状态之间切换。
可选地,在所述射线源和所述射线探测机构随所述岸桥一起移动时,所述L型悬臂被折叠而处于所述收回状态。
可选地,当所述岸桥到达所述装载位置时,所述L型悬臂被伸出而处于所述展开状态。
可选地,所述射线源和射线探测机构的整体宽度不大于所述自动引导运输车的一个行进通道宽度。
可选地,所述射线源和所述射线探测机构安装在所述岸桥的靠近所述自动引导运输车行进场地一侧的侧框架或底部框架上。
可选地,所述射线源和所述射线探测机构与所述自动引导运输车前侧或后侧相邻近。
本发明还提供一种港口设施,包括所述的集装箱检查系统。
可选地,该港口设施包括用于装载集装箱的自动引导运输车。
基于上述技术方案,本发明通过将射线源和射线探测机构安装在岸桥来使其能够随着岸桥一起移动,当到达装载位置时,岸桥完成自动引导运输车的集装箱装载时,就可以利用已移动到位的射线源和射线探测机构来对自动引导运输车进行扫描检查。在这个过程中射线源和射线探测机构跟随着岸桥移动,也就是说,无需专门调配射线源和射线探测机构进场,能够更加便利地实现移动式车载集装箱的扫描检查,提高检 查效率;相比于现有的车载集装箱检查系统,本发明既无需对自动引导运输车的场地进行改造,也无需占用固定区域。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明集装箱检查系统实施例应用在智能港口的示意图。
图2为图1中圆圈部分示出的本发明集装箱检查系统实施例的放大示意图。
图3为本发明集装箱检查系统实施例在对通过的AGV进行检测的俯视角度的示意图。
图4-图6分别为本发明集装箱检查系统实施例对装载了集装箱的AGV进行扫描检查的过程状态的示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
针对于现有的车载类集装箱检查系统存在的诸多缺点,发明人经过对智能港口的调研,注意到自动化岸桥在对AGV进行集装箱装载时,需要移动到相应的装载位置来进行装载,而装载了集装箱的AGV如果要进行扫描检查,那么优选在装载位置的附近进行扫描检查,另一方面,发明人还注意到AGV在集装箱装载完毕后会再行驶一段距离。发明人在本发明中提出了使射线源和射线探测机构与岸桥随动的技术构思,利用岸桥的移动过程来使检查系统随之移动到装载位置,这样当装载完毕后,就在该位置的检查系统就可以便利地对AGV进行扫描检查。
基于上述构思,本发明提出了一种本发明集装箱检查系统,包括射线源和射线探测机构,所述射线源和所述射线探测机构安装在岸桥上,可以随所述岸桥一起移动到AGV的装载位置,以便完成集装箱装载后的AGV进行扫描检查。
以下将结合图1-图6对本发明集装箱检查系统的各个实施例进行详细说明。
如图1所示,为本发明集装箱检查系统实施例应用在智能港口的示意图。在图1中,自动化岸桥1能够在智能港口中进行移动,将轮船上的集装箱货物吊装到右侧的AGV行进场地中的AGV上。根据控制系统的调配,自动化岸桥1和准备装载本次集装 箱货物的AGV均移动到给定的装载地点,当自动化岸桥1和AGV均到位时,自动化岸桥1上的吊装机构2会将集装箱放置在AGV上,由AGV将其运走。
在图1右下角标出的部分为集装箱检查系统3,其位于自动化岸桥1的一侧,并安装在自动化岸桥1上。在图2中,集装箱检查系统包括射线源31和射线探测机构。
射线探测机构包括射线源31(辐射源),能够发出用于扫描检查待测集装箱的射线,而射线探测器33则用于接收射线源31扫描待测集装箱时透过的射线进行探测,进而通过图像处理来获得待测物体的内部情况。为了使射线探测器33能够准确的接收射线源31发出的射线,可以在射线探测机构上使用多个射线探测器33,并使射线探测器33的检测面朝向射线源31。
在图2中,射线探测机构可以包括L型悬臂34,射线探测器33设置于L型悬臂34上,而L型悬臂34与射线源31的安装结构32连接,能够形成供完成集装箱装载后的AGV通过的门式扫描框架。对于图2即是形成供完成集装箱装载的AGV通过的门式扫描框架。这里的射线源31的安装结构32可以是射线源31的设备外壳,也可以是射线源31的安装室。
前面提到射线源31和射线探测机构会随着岸桥一起运动,为了使装载了集装箱的AGV能够便利的实现扫描检查,可以在岸桥进行集装箱装载时,使门式扫描框架所形成的通道位于所述AGV的行驶路线上。这样,当AGV完成集装箱装载后,沿着既定的行驶路线移动就可以完成扫描检查过程。在目前AGV在集装箱装载完毕后会再行驶一段距离的情况下,将其已有的一些运动方式与扫描检查结合起来,从而提高了检查效率,也简化了控制过程。
相应的,优选在岸桥进行集装箱装载时,使门式扫描框架位于所述AGV前侧或后侧且与所述AGV间隔一预设距离,尤其是与所述AGV前侧或后侧相邻。相应的AGV可以在装载集装箱完毕后,向前或向后直行该第一预设距离来到达门式扫描框架,在持续的行驶过程中通过该门式扫描框架,完成扫描检查。
考虑到集装箱检查系统是安装在岸桥上的,因此其射线源31和射线探测器33的供电优选采用岸桥的供电单元进行供电,这样可以节省集装箱检查系统中供电设备占据的空间,也能够减少因供电设备工作时产生的振动对检查系统的精度影响。在另一个实施例中,也可以采用射线源31和所述射线探测器33由独立于所述岸桥的供电单元的供电设备进行供电的方式,该供电设备可以为发电机或者电池等。这种独立供电方式能够简化电力调配方案,降低控制复杂度。
在图2中,L型悬臂34包括水平臂和与其一端连接的竖直臂,水平臂的另一端与射线源31的安装结构32连接。该连接结构可以为固定连接,即L型悬臂34维持着门式扫描框架的形式随岸桥移动。在另一个实施例中,也可以采用可转动连接结构,即L型悬臂34能够相对于所述射线源31的安装结构32运动,以实现L型悬臂34的展开状态和收回状态的切换。
本发明集装箱检查系统可应用于需要集装箱装载和集装箱检查的港口,并不仅限于智能港口。其中岸桥可以由人力操纵,也可以为由控制系统自动控制的自动化岸桥。
参考图1-图3,当上述本发明集装箱检查系统实施例应用于智能港口时,在该港口中岸桥可以为自动化岸桥1,自动化岸桥1能够运动到所述AGV 4的装载位置,将集装箱5吊装到所述AGV 4上。在此过程中,射线源31和射线探测机构优选安装在自动化岸桥1上靠近AGV行进场地一侧的侧框架或底部框架上,以便射线源31和射线探测机构随着自动化岸桥1移动。
考虑到AGV行进场地中可存在着多辆AGV,为了使集装箱检查系统避免与其他AGV之间发生刮蹭或碰撞,优选使射线源31和射线探测机构的整体占用宽度不大于所述AGV 4的一个行进通道宽度,这样既能够实现待扫描检查的AGV 4的通过,同时也不会对行进通道的AGV造成影响。
基于上述的各个集装箱检查系统,本发明还提供了一种港口设施,包括岸桥和AGV行进场地,该智能港口设施包括前述的集装箱检查系统。进一步的,港口设施可以为智能港口,而岸桥可以为自动化岸桥1。
可以看到整个集装箱装载和扫描检查过程是连续的,简化了集装箱装载操作和扫描检查操作之间的检查系统和AGV的操作,进而提高了检查效率。
最后应当说明的是以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (13)

  1. 一种集装箱检查系统,包括射线源(31)、射线探测机构和岸桥,所述岸桥用于将集装箱吊装到自动引导运输车上,所述射线源(31)和所述射线探测机构安装在所述岸桥上,用于对装载在所述自动引导运输车上的所述集装箱进行扫描检查。
  2. 根据权利要求1所述的集装箱检查系统,所述岸桥是可移动的,使得所述射线源(31)和所述射线探测机构随其一起移动到所述岸桥将所述集装箱吊装到所述自动引导运输车上的装载位置,对在所述自动引导运输车上的所述集装箱进行扫描检查。
  3. 根据权利要求1所述的集装箱检查系统,其特征在于,所述射线探测机构包括探测器(33)和L型悬臂(34),所述探测器(33)设置于所述L型悬臂(34)上,所述L型悬臂(34)与所述射线源(31)的安装结构(32)连接,以形成供装载有集装箱的自动引导运输车通过的门式框架。
  4. 根据权利要求1所述的集装箱检查系统,其特征在于,在所述岸桥向所述自动引导运输车吊装集装箱时,所述射线源(31)和所述射线探测机构位于所述自动引导运输车前侧或后侧且与所述自动引导运输车间隔一预设距离。
  5. 根据权利要求1所述的集装箱检查系统,其特征在于,包括供电单元,用于向所述射线源(31)、所述探测器(33)或/和所述岸桥供电。
  6. 根据权利要求3所述的集装箱检查系统,其特征在于,所述L型悬臂(34)与所述射线源(31)的安装结构(32)可转动地相连,以便L型悬臂(34)能够在展开状态和收回状态之间切换。
  7. 根据权利要求6所述的集装箱检查系统,其特征在于,在所述射线源(31)和所述射线探测机构随所述岸桥一起移动时,所述L型悬臂(34)被折叠而处于所述收回状态。
  8. 根据权利要求6所述的集装箱检查系统,其特征在于,当所述岸桥到达所述装载位置时,所述L型悬臂(34)伸出而处于所述展开状态。
  9. 根据权利要求1所述的集装箱检查系统,其特征在于,所述射线源(31)和射线探测机构的整体宽度不大于所述自动引导运输车(4)的一个行进通道宽度。
  10. 根据权利要求1所述的集装箱检查系统,其特征在于,所述射线源(31)和所述射线探测机构安装在所述岸桥的靠近所述自动引导运输车行进场地一侧的侧框架或底部框架上。
  11. 根据权利要求4所述的集装箱检查系统,其特征在于,所述射线源(31)和所述射线探测机构与所述自动引导运输车前侧或后侧相邻。
  12. 一种港口设施,其特征在于,包括权利要求1所述的集装箱检查系统。
  13. 根据权利要求12所述的港口设施,其特征在于,包括用于装载集装箱的自动引导运输车。
PCT/CN2017/099045 2016-08-31 2017-08-25 集装箱检查系统和港口设施 WO2018041037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610786653.6A CN106226336A (zh) 2016-08-31 2016-08-31 移动式物品检查系统、方法及港口
CN201610786653.6 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041037A1 true WO2018041037A1 (zh) 2018-03-08

Family

ID=58073581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099045 WO2018041037A1 (zh) 2016-08-31 2017-08-25 集装箱检查系统和港口设施

Country Status (5)

Country Link
US (1) US10365397B2 (zh)
EP (1) EP3290385A1 (zh)
CN (1) CN106226336A (zh)
HK (1) HK1250507A1 (zh)
WO (1) WO2018041037A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226336A (zh) * 2016-08-31 2016-12-14 同方威视技术股份有限公司 移动式物品检查系统、方法及港口
CN106908852A (zh) * 2017-04-11 2017-06-30 北京华力兴科技发展有限责任公司 Agv型车辆检查系统
CN107860782A (zh) * 2017-09-22 2018-03-30 北京华力兴科技发展有限责任公司 移动式物品检查系统
CN107861165A (zh) * 2017-10-17 2018-03-30 青岛新前湾集装箱码头有限责任公司 移动式物品检查系统
CN107727674A (zh) * 2017-12-04 2018-02-23 上海航天精密机械研究所 基于数字射线与物联网技术的智能化检测系统
CN108490495A (zh) * 2018-04-04 2018-09-04 同方威视技术股份有限公司 集装箱检查系统、转运方法及港口设施
CN108508496A (zh) * 2018-04-04 2018-09-07 同方威视技术股份有限公司 集装箱检查系统、港口设施及集装箱检查方法
CN108373108A (zh) * 2018-04-25 2018-08-07 同方威视技术股份有限公司 集装箱检查系统、港口设施及集装箱检查方法
CN108873088A (zh) * 2018-05-07 2018-11-23 同方威视技术股份有限公司 集装箱检查系统、港口设施及集装箱检查方法
CN109406549A (zh) * 2018-12-12 2019-03-01 北京中百源国际科技创新研究有限公司 一种车载移动式安全检查装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011849A1 (en) * 2003-07-17 2005-01-20 Nigel Chattey Crane apparatus equipped with container security scanning system
CN1602280A (zh) * 2001-12-12 2005-03-30 诺尔起重系统有限公司 在起重机设备上进行非接触式装载检查的装置和方法
CN1745435A (zh) * 2003-01-31 2006-03-08 创新医疗系统技术公司 在海港等处对货物运载容器的辐射扫描
CN200982954Y (zh) * 2006-12-14 2007-11-28 清华大学 一种可移动悬臂门式集装箱检查装置
CN104459811A (zh) * 2014-12-11 2015-03-25 同方威视技术股份有限公司 车载移动式集装箱或车辆检查系统
CN106226336A (zh) * 2016-08-31 2016-12-14 同方威视技术股份有限公司 移动式物品检查系统、方法及港口
CN206020303U (zh) * 2016-08-31 2017-03-15 同方威视技术股份有限公司 移动式物品检查系统及港口

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267239B2 (en) * 2003-08-12 2007-09-11 Toru Takehara Method for nonintrusive scanning of cargo containers in a buffer operation
US7780390B2 (en) * 2004-03-12 2010-08-24 Mitsui Engineering & Shipbuilding Co., Ltd. Container inspection/cargo-handling method and container inspection/cargo-handling system
JP4813781B2 (ja) * 2004-08-24 2011-11-09 三菱重工業株式会社 検査装置付クレーン
KR100743561B1 (ko) * 2005-04-25 2007-07-30 동아대학교 산학협력단 화물 하역 및 선적장치
CN2840027Y (zh) * 2005-09-20 2006-11-22 赵景岐 一种双通道组合移动式集装箱或车辆检查系统
CN100587481C (zh) * 2006-12-14 2010-02-03 清华大学 一种可移动悬臂门式集装箱检查系统
CN101054151A (zh) * 2006-04-14 2007-10-17 宋世鹏 一种集装箱起重机装置
CN101162206B (zh) * 2006-10-13 2011-01-05 同方威视技术股份有限公司 移动式车辆检查系统
US7661738B2 (en) * 2006-11-28 2010-02-16 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
CN105270875A (zh) * 2014-07-07 2016-01-27 武汉理工大学 高架轨道交通式集装箱码头装卸系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602280A (zh) * 2001-12-12 2005-03-30 诺尔起重系统有限公司 在起重机设备上进行非接触式装载检查的装置和方法
CN1745435A (zh) * 2003-01-31 2006-03-08 创新医疗系统技术公司 在海港等处对货物运载容器的辐射扫描
US20050011849A1 (en) * 2003-07-17 2005-01-20 Nigel Chattey Crane apparatus equipped with container security scanning system
CN200982954Y (zh) * 2006-12-14 2007-11-28 清华大学 一种可移动悬臂门式集装箱检查装置
CN104459811A (zh) * 2014-12-11 2015-03-25 同方威视技术股份有限公司 车载移动式集装箱或车辆检查系统
CN106226336A (zh) * 2016-08-31 2016-12-14 同方威视技术股份有限公司 移动式物品检查系统、方法及港口
CN206020303U (zh) * 2016-08-31 2017-03-15 同方威视技术股份有限公司 移动式物品检查系统及港口

Also Published As

Publication number Publication date
EP3290385A1 (en) 2018-03-07
US10365397B2 (en) 2019-07-30
CN106226336A (zh) 2016-12-14
HK1250507A1 (zh) 2018-12-21
US20180059282A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2018041037A1 (zh) 集装箱检查系统和港口设施
WO2018041038A1 (zh) 可移动式物品检查系统及检查方法
US7780390B2 (en) Container inspection/cargo-handling method and container inspection/cargo-handling system
EP2988150B1 (en) Vehicle inspection system
US10151712B2 (en) Vehicle-carried quick inspection system
EP2988151B1 (en) Vehicle inspection system
WO2018041035A1 (zh) 可移动分体式检查系统及方法
WO2001065245A1 (fr) Dispositif d'inspection de conteneur
US9783366B2 (en) Vehicle dragging system and vehicle inspection system
CN206020303U (zh) 移动式物品检查系统及港口
KR101058723B1 (ko) 타이어형 크레인의 자동화 시스템
KR101058644B1 (ko) 비접촉식으로 전원을 공급받기 위한 야드 트랙터 및 그 제어 방법
US10641717B2 (en) Movable article inspention system and inspection method
JP2018172188A (ja) コンテナターミナル及びその運用方法
KR102462252B1 (ko) 컨테이너 화물 검사 장치
PL241870B1 (pl) Układ i sposób do kontroli pojazdu
WO2020059842A1 (ja) コンテナクレーン装置及びコンテナクレーン装置の制御方法
WO2022143175A1 (zh) 车辆辐射检查设备和车辆辐射检查系统
KR102462253B1 (ko) 컨테이너 화물 검사 장치
KR102462254B1 (ko) 컨테이너 화물 검사 장치
JP5705698B2 (ja) X線検査方法と装置
CN117783165A (zh) 辐射检查系统
CN117470214A (zh) 用于物料搬运车辆的导航对准系统和方法
JP2001255936A (ja) 自走台車の位置合わせ方式
JP2005352862A (ja) 搬送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845339

Country of ref document: EP

Kind code of ref document: A1