WO2021185239A1 - 背散射扫描系统 - Google Patents

背散射扫描系统 Download PDF

Info

Publication number
WO2021185239A1
WO2021185239A1 PCT/CN2021/081036 CN2021081036W WO2021185239A1 WO 2021185239 A1 WO2021185239 A1 WO 2021185239A1 CN 2021081036 W CN2021081036 W CN 2021081036W WO 2021185239 A1 WO2021185239 A1 WO 2021185239A1
Authority
WO
WIPO (PCT)
Prior art keywords
backscatter
imaging device
transfer vehicle
scanning system
omnidirectional
Prior art date
Application number
PCT/CN2021/081036
Other languages
English (en)
French (fr)
Inventor
陈志强
李元景
吴万龙
丁富华
唐乐
沈宗俊
桑斌
丁光伟
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2021185239A1 publication Critical patent/WO2021185239A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering

Definitions

  • the invention relates to a backscatter scanning system.
  • Backscattered rays belongs to incoherent scattering, which originates from the Compton effect.
  • the X-ray backscatter imaging technology is based on the Compton scattering effect.
  • the X-ray source and the backscatter detector are placed on the same side of the object to be inspected, and the fan beam emitted by the X-ray source is modulated into a pen shape by a flying spot scanning device.
  • the received scattered ray signal is converted, transmitted and data processed to obtain the image of the detected substance.
  • This technology has a low radiation dose, is sensitive to lightweight materials, and has convenient equipment layout. It effectively complements traditional X-ray transmission products and has been widely used in various security inspection places.
  • backscatter imaging device In order to achieve scanning perpendicular to the direction of the beam exit surface of the flying spot, relative movement between the backscatter imaging device and the inspected substance is required.
  • the principle and characteristics of backscatter imaging technology make it a unique advantage in portable or mobile inspection of contraband such as drugs, explosives and weapons. Because the backscatter detector and the flying spot X-ray source can be placed on the same side of the object to be inspected, it is convenient to integrate the backscatter imaging module into a suitable moving carrier.
  • the common ones are car chassis reforming load-bearing type, manual trolley type and trailer towing type.
  • Such products have obvious needs in road inspections, vehicle inspections, wall inspections, venue facilities and environmental concealment, and can perform non-destructive comprehensive searches or non-contact concealed inspections in places where ordinary security inspection equipment is difficult to use or have special needs. .
  • backscatter inspection equipment there are mainly three types of backscatter inspection equipment, namely, vehicle-mounted backscatter inspection equipment, hand-push mobile backscatter equipment, and trailer-towed backscatter equipment.
  • vehicle-mounted backscatter inspection equipment modified from the light-duty truck chassis has a complex structure, high body weight, high cost, high driving requirements, poor image signal-to-noise ratio, and limited application methods. It is suitable for large-scale contraband detection .
  • the hand-push mobile backscatter equipment has limited irradiation energy, and manual operation is not flexible enough and will endanger personal radiation safety.
  • Trailer-towed backscattering equipment is a compromise between the two mentioned above, and there are also problems such as insufficient inspection methods, limited detection range, and low image resolution.
  • the purpose of the present invention is to solve at least one aspect of the above-mentioned problems and defects in the prior art.
  • a backscatter scanning system including: a backscatter imaging device, adapted to obtain a backscatter image of the object under inspection by X-ray scanning the object.
  • the backscatter scanning system also includes an omnidirectional transfer vehicle on which the backscatter imaging device is mounted; the omnidirectional transfer vehicle has an autonomous navigation driving mode and a remote control driving mode, And it is configured to drive autonomously according to a predetermined route according to a navigation plan or according to a remote control command.
  • the backscatter scanning system further includes a lifting device mounted on the omnidirectional transfer vehicle, and the backscatter imaging device is fixed on the lifting device
  • the lifting device can automatically rise and fall, and is used to change the height of the backscatter imaging device to expand the scanning range of the backscatter imaging device.
  • the backscatter scanning system further includes a lifting device and a rocking device, the lifting device is mounted on the omnidirectional transfer vehicle, and the rocking device is fixed on the lifting device.
  • the backscatter imaging device is fixed on the rocking device; the lifting device can be automatically raised and lowered, and is used to change the height of the backscatter imaging device to expand the scanning range of the backscatter imaging device;
  • the swing device can automatically swing, and is used to change the angle of the backscatter imaging device to expand the scanning range of the backscatter imaging device.
  • the backscatter imaging device has a wireless communication module that wirelessly communicates with the user terminal, so that the acquired backscatter image can be transmitted to the user terminal through a wireless communication network.
  • the backscatter scanning system further includes a remote controller, which wirelessly communicates with the backscatter imaging device and the omnidirectional transfer vehicle, and is used for controlling the The driving mode of the omnidirectional transfer vehicle and the X-ray scanning operation of the backscatter imaging device.
  • the omnidirectional transfer vehicle includes a differential drive device for driving the omnidirectional transfer vehicle to move in all directions, and the differential drive device includes a left-side drive A motor, a left drive wheel, a right drive motor, and a right drive wheel.
  • the left drive motor and the right drive motor are respectively connected to the left drive wheel and the right drive wheel.
  • the omnidirectional transfer vehicle further has two universal wheels, and the two universal wheels are respectively arranged on the front and rear sides of the omnidirectional transfer vehicle , The two universal wheels are used as driven wheels for support and guidance.
  • the omnidirectional transfer vehicle further includes a sensing module for sensing external environmental information, and the sensing module includes a sensing module for sensing the current position of the omnidirectional transfer vehicle and Directional lidar module and ultrasonic obstacle avoidance module for sensing obstacles.
  • the omni-directional transfer vehicle further includes a controller, which is adapted to control the vehicle according to the induction signal collected by the induction module or according to the received remote control instruction. The driving of the omnidirectional transfer vehicle is controlled.
  • the lifting device includes a base, a scissor, a hydraulic pump, a hydraulic cylinder, and a platform, the base is mounted on the omnidirectional transfer vehicle, and the scissor The upper and lower ends are respectively connected to the base and the platform; the backscatter imaging device is fixed on the platform, the hydraulic pump drives the hydraulic cylinder, and the telescopic rod of the hydraulic cylinder is connected to the A connecting rod of the scissor fork is used to drive the scissor fork to rise or fall.
  • the swing device includes a plurality of hydraulic rods fixed on the lifting device, and the telescopic rods of the plurality of hydraulic rods are connected to the bottom of the backscatter imaging device , To control the angle of the backscatter imaging device by controlling the amount of expansion and contraction of the telescopic rods of the plurality of hydraulic rods.
  • the omnidirectional transfer vehicle further has a shock absorbing unit, and the lifting device is supported on the shock absorbing unit to reduce the unevenness of the road surface. The impact of the backscatter imaging device on the omnidirectional transfer vehicle.
  • the backscatter imaging device includes a mounting bracket and a high-voltage power supply fixed on the mounting bracket, an X-ray tube assembly, a flying spot scanning device, and a backscatter detector.
  • the high-voltage power supply is connected to the X-ray tube assembly through a high-voltage cable, or the high-voltage power supply and the X-ray tube assembly are combined into an integrated X-ray generator.
  • the flying spot scanning device includes a servo controller, a servo motor, a rotating drum, a transmission shaft, a bearing base, a first bearing, a second bearing, and a support base; the first The bearing and the second bearing are respectively installed on both ends of the transmission shaft, the transmission shaft is embedded in the bearing base; one end of the transmission shaft is connected with the output shaft of the servo motor, the The other end of the transmission shaft is connected to the rotating drum, the servo motor and the bearing base are fixed to the support base; the servo controller controls the servo motor, and the servo motor passes through the transmission The shaft drives the rotating drum to rotate.
  • the backscatter detector further includes an electric control unit for realizing power distribution of the backscatter imaging device and system power-on/off control;
  • the electronic control unit includes a programmable logic controller that communicates with the servo controller to control the flying spot scanning device.
  • the backscatter detector includes at least one photomultiplier tube, a light guide crystal, and an intensifying screen, the intensifying screen is wrapped on the light guide crystal, and the at least A photomultiplier tube is directly coupled with the light guide crystal through an optical coupling agent to convert visible light signals into electrical signals.
  • the backscatter detector further includes a side plate on the mounting side, which is close to the beam exit slit, and the side plate is used to reduce the interference of ineffective scattered rays on the detection signal.
  • the backscatter imaging device further includes a data acquisition transmission module and an industrial computer, and the data acquisition transmission module performs conditioning amplification and analog-to-digital conversion on the output signal of the photomultiplier tube , And upload the processed sample data to the industrial computer in real time, and the industrial computer generates a backscatter image of the inspected target according to the sample data, and wirelessly transmits the generated backscatter image to the user terminal.
  • the data acquisition transmission module performs conditioning amplification and analog-to-digital conversion on the output signal of the photomultiplier tube , And upload the processed sample data to the industrial computer in real time, and the industrial computer generates a backscatter image of the inspected target according to the sample data, and wirelessly transmits the generated backscatter image to the user terminal.
  • the remote controller has a left button, a right button and a display, the left button is used to remotely control the driving mode of the omnidirectional transfer vehicle, and the right button is used to remotely control the driving mode of the omnidirectional transfer vehicle.
  • the display is used to display the backscatter image of the inspected target and the working status of the omnidirectional transfer vehicle and the backscatter imaging device.
  • the backscatter imaging device is mounted on the omnidirectional transfer vehicle, which can realize uninterrupted and omnidirectional backscatter scanning of the inspected target, and can be operated by remote control and It can run automatically, realizing the miniaturization, modularity and portability of the backscatter scanning system.
  • the height and/or angle of the backscatter imaging device can be changed by the lifting device or the swing device, so that the scanning range of the backscatter imaging device can be expanded.
  • Fig. 1 shows a three-dimensional schematic diagram of a backscatter scanning system according to an exemplary embodiment of the present invention
  • FIG. 2 shows a schematic structural diagram of the backscatter imaging module of the backscatter scanning system shown in FIG. 1;
  • Fig. 3 shows a schematic structural diagram of the flying spot scanning device of the backscatter imaging module shown in Fig. 2;
  • FIG. 4 shows a schematic diagram of the structure of the backscatter detector of the backscatter imaging module shown in FIG. 2;
  • FIG. 5 shows a schematic diagram of the structure of the omnidirectional transfer vehicle and the lifting device of the backscatter scanning system shown in FIG. 1;
  • Fig. 6 shows a schematic structural diagram of the differential drive device of the omnidirectional transfer vehicle shown in Fig. 5;
  • FIG. 7 shows a schematic diagram of a backscatter scanning system with a rocking device according to another exemplary embodiment of the present invention.
  • a backscatter scanning system including: a backscatter imaging device, adapted to obtain a backscatter image of the object under inspection by X-ray scanning the object.
  • the backscatter scanning system also includes an omnidirectional transfer vehicle on which the backscatter imaging device is mounted; the omnidirectional transfer vehicle has an autonomous navigation driving mode and a remote control driving mode, Thus, it can drive autonomously according to a predetermined route according to the navigation plan or can drive according to a predetermined route according to a remote control instruction.
  • Fig. 1 shows a three-dimensional schematic diagram of a backscatter scanning system according to an exemplary embodiment of the present invention
  • the backscatter omnidirectional scanning system has a structure as shown in FIG. 1, and mainly includes a backscatter imaging device 100, an omnidirectional transfer vehicle 200, a lifting device 300 and a remote controller. 400 etc.
  • the backscatter imaging device 100 is an independent module, which is fixed on the lifting device 300, and the two are mounted on the omnidirectional transfer vehicle 200 together.
  • the omnidirectional transfer vehicle 200 can automatically drive straight or turn along the expected route according to the set interval distance according to the navigation plan. It can also be controlled by the remote control 400 and its route can be automatically avoided.
  • the barrier prevents accidental exposure or damage to the equipment.
  • the lifting device 300 can automatically lift, change the scanning height, and expand the scanning range.
  • the backscatter imaging device 100 emits a pen-shaped X-ray beam to the inspected target, and the backscattered signal is collected and adjusted, converted and transmitted, and data processed by a high-performance backscatter detector. Fully scan the inspection target and present high-quality backscatter images to the user through the wireless network (WIFI).
  • WIFI wireless network
  • the backscatter imaging device 100 includes an independent cover 180, and the omnidirectional transfer vehicle 200 includes two side panels 201, as shown in FIG. 1.
  • the whole machine is also equipped with a front cover plate 11 and a rear cover plate 12.
  • the front cover plate 11 and the rear cover plate 12 adopt an integrally formed structure.
  • lightweight materials such as glass fiber reinforced plastic or carbon fiber are preferred.
  • the emergency stop switch 13 is used to cut off the system power in an emergency, including the power input of the backscatter imaging device 100 and the omnidirectional transfer vehicle 200;
  • the key switch 14 is used to enable power-on and normal power-off, and can distinguish The power supply of the control system and the power supply of the power system;
  • the power-on indicator 15 is used to indicate the power supply status of the system;
  • the front light 16 is used to indicate the location of the device to the outside.
  • an emergency switch 13 and rear lights are arranged on the rear cover 12.
  • a power light 17 and a warning light 18 are configured on the backscatter imaging device 100.
  • FIG. 2 shows a schematic diagram of the structure of the backscatter imaging module of the backscatter scanning system shown in FIG. 1.
  • the backscatter imaging device 100 has the characteristics of miniaturization, modularity and versatility, and its structure is shown in FIG. 2. Its core components are the high-voltage power supply 110, the X-ray tube assembly 120, the flying spot scanning device 130 and the backscatter detector 140, which are fixed together by the mounting bracket 101.
  • the high-voltage power supply 110 is applied to both ends of the X-ray tube assembly 120 to generate X-rays.
  • the two can be connected by a high-voltage cable or combined It is an integrated X-ray generator.
  • the X-ray tube assembly 120 is provided with a primary collimator 121 at the beam exit to constrain the X-ray beam into a fan shape.
  • Fig. 3 shows a schematic structural diagram of the flying spot scanning device of the backscatter imaging module shown in Fig. 2;
  • the flying spot scanning device 130 adopts a servo motor direct drive and a cylindrical rotation structure, as shown in FIG. 3.
  • the bearing 136 and the bearing 137 are placed at a certain distance, and the transmission shaft 134 is embedded in the inner rings of the two bearings, and then the whole is embedded in the inner ring of the bearing base 135.
  • One end of the transmission shaft 134 is directly connected to the shaft of the servo motor 132, and the other end is connected to the rotating drum 133 through a flange. After the foregoing assembly is completed, the whole is fixed to the support base 138.
  • the mechanical transmission links are reduced, and the servo motor 132 is driven by the servo controller 131 to directly transmit the electric power to the actuator, which improves the operating efficiency, and the generated X-ray pencil beam will be more stable and consistent, and the quality of the detection signal can be improved.
  • the rotating drum 133 is provided with one or more small holes (not shown) uniformly distributed along the circumference, and the diameter of the hole can be 0.5 mm. Or larger, the small holes can be regular through holes or irregular shapes.
  • the material of the rotating drum 133 and the primary collimator 121 must have a good shielding effect against X-rays, and here, a tungsten-nickel-iron alloy or a lead-antimony alloy is preferable. And there must be a labyrinth structure between the two to attenuate the leakage rays to the radiation safety range.
  • two sets of backscatter detectors 140 are distributed on both sides of the fan-shaped surface formed by the pen beam scanning of the flying spot scanning device 130, leaving a space in the middle. Appropriate clearance.
  • FIG. 4 shows a schematic diagram of the structure of the backscatter detector of the backscatter imaging module shown in FIG. 2.
  • the backscatter detector 140 in order to meet the requirements of miniaturization, should be as thin and light as possible on the basis of ensuring the receiving area.
  • the effective backscattered signal itself is much weaker than the transmitted signal, coupled with the interference of the background noise, its signal-to-noise ratio is generally higher, and as the penetration depth increases, it will be more difficult to detect, so we must try to enhance the backscattering detector
  • the signal strength of 140 improves the receiving efficiency.
  • the backscatter detector 140 also needs to have a higher response speed.
  • the present invention adopts a structure in which the light guide crystal 142 is outside the intensifying screen 143, as shown in FIG.
  • the spatial distribution of the output signal of the backscatter detector 140 of the present invention has good uniformity and small degree of dispersion.
  • a side plate 144 is installed on the side of the backscatter detector 140 close to the beam exit slit, as shown in FIG. 1, to reduce the ineffective scattering Interference of the line to the detection signal.
  • the electronic control unit 150 implements power distribution and system power-on and power-off control of the backscatter imaging device 100, and a programmable logic controller (PLC) 151 Remotely communicate with the servo controller 131 to control the operating state of the flying spot scanning device 130 and detect the flying spot trigger signal.
  • PLC programmable logic controller
  • the lithium battery assembly 160 is preferably a lithium iron phosphate type with better safety, which supplies power to the backscatter imaging device 100, and is equipped with power display and remote communication.
  • the function is to charge the lithium battery pack 161 through the charging interface 163 and the charger 162, as shown in FIG. 1.
  • the data acquisition transmission module 102 performs conditioning, amplification and analog-to-digital conversion on the output signal of the photomultiplier tube 141, and uses a field programmable gate array ( FPGA) high-speed transmission circuit uploads the sampled data to the industrial computer 103 in real time through the Gigabit Ethernet port for algorithm processing, and transmits the backscatter image data of the inspected target to the user through WIFI for display and judgment.
  • FPGA field programmable gate array
  • the overall structure of the cover 180 of the backscatter imaging device 100 is a five-sided closed shape, as shown in FIG. 1.
  • the front panel close to the receiving surface of the backscatter detector 140 is made of a material with low X-ray attenuation, preferably a carbon fiber material.
  • the rest of the side panels are made of lightweight outdoor materials, preferably FRP materials.
  • the front panel and the side panel adopt integrated processing and mounting technology.
  • FIG. 5 shows a schematic diagram of the structure of the omnidirectional transfer vehicle and the lifting device of the backscatter scanning system shown in FIG. 1.
  • the core components such as the differential driving device 210, the lithium battery module 220, the sensing module 230 and the controller 240 of the omnidirectional transfer vehicle 200 are arranged on the chassis 250 of the vehicle.
  • a lifting device 300 is also integrated on the vehicle chassis 250, as shown in FIG. 5.
  • the omnidirectional transfer device with lifting function of the present invention has compact structure, convenient disassembly and assembly, optical navigation, flexible movement, and has certain climbing and hurdle crossing capabilities.
  • FIG. 6 shows a schematic diagram of the structure of the differential drive device of the omnidirectional transfer vehicle shown in FIG. 5.
  • the differential drive device 210 is in the middle position close to the chassis 250, and the dual motors independently drive the two load-bearing wheels.
  • the differential speed adaptive adjustment principle realizes the 360° omnidirectional movement of the omnidirectional transfer vehicle 200, which can rotate in all directions on the spot and drive in any direction.
  • its core part includes a left drive motor 211, a left drive wheel 212, a right drive motor 214, a right drive wheel 215, a universal wheel 217 and a shock absorption unit 218.
  • the left drive motor 211 is connected to the left drive wheel 212 through an adapter bracket 213, and the right drive motor 214 is connected to the left drive wheel 212 through an adapter bracket 216.
  • the right driving wheel 215 is connected, and the adapter bracket 213 and the adapter bracket 216 are respectively fixed on both sides of the inner frame of the chassis suspension 251.
  • the size and direction of the speed difference between the left drive wheel 212 and the right drive wheel 215 can be adjusted respectively, so that the omni-directional transfer vehicle can be arbitrarily changed
  • the 200 radius of rotation enables flexible turning and driving.
  • the omnidirectional transfer vehicle 200 can drive stably in a straight line, or move around itself along the midpoint of the double drive wheel connection.
  • two universal wheels 217 are respectively arranged in the front and rear of the omni-directional transfer vehicle 200 as driven wheels, both supporting and freely guiding effect.
  • the omnidirectional transfer vehicle 200 further has a shock absorption unit 218, and the lifting device 300 is supported on the shock absorption unit 218 to reduce unevenness.
  • the road faces the impact of the backscatter imaging device 100 mounted on the omnidirectional transfer vehicle 200.
  • the damping unit 218 may be composed of one or more buffer springs, or may be other buffering methods, so that the omnidirectional transfer vehicle 200 can normally pass a certain degree of uneven road surface.
  • the lithium battery module 220 independently powers the omni-directional transfer vehicle 200 and provides power for various driving devices and control modules.
  • the output voltage range is Generally, it is 12V ⁇ 72V.
  • the module has power display and remote communication functions, and is compatible with chargers.
  • the sensing module 230 is the basis for the accurate and stable operation of the omnidirectional transfer vehicle 200.
  • the external environment information is sensed through the lidar module 231 and the ultrasonic obstacle avoidance module 232.
  • the lidar module 231 emits a laser beam, and at the same time collects the laser beam reflected from the surroundings, the current position and direction of the omnidirectional transfer vehicle 200 can be determined through calculation.
  • the detection fan angle is 0-180°
  • the detection distance is 0-3m
  • the obstacle avoidance distance is 0.2-0.5m.
  • the lidar module 231 can be freely raised and lowered through the electric linear module 233 to adapt to the height of the inspected target.
  • the number can be one group or more.
  • identifying and bypassing obstacles is a prerequisite for the safe operation of the omnidirectional transfer vehicle 200.
  • the present invention is equipped with two ultrasonic obstacle avoidance modules 232 at appropriate positions of the front cover plate 11, the rear cover plate 12 and the two side panels 201.
  • Non-contact obstacle avoidance Of course, different numbers of ultrasonic obstacle avoidance modules 232 can also be arranged at different positions according to different requirements.
  • the controller 240 integrates the control circuit and the display screen into an integrated structure, and collects the differential drive device 210, the lithium battery module 220, and the sensor Signals such as the module 230, the lifting device 300 and the electrical buttons, with built-in algorithm programs, are responsible for the external command response, path selection, travel adjustment and information upload of the omnidirectional transfer vehicle 200.
  • the display screen 241 is used for parameter setting and status display to realize interaction with the user.
  • the controller 240 adopts a wireless digital communication mode with the outside.
  • the controller 240 can also automatically plan the driving route path through software algorithms on the basis of pre-simulating the scene. Automatic inspection function of X-ray backscatter equipment.
  • the lifting device 300 includes a base 305, a scissor 303, a hydraulic pump 301, a hydraulic cylinder 302, and a platform 304.
  • the base 305 is mounted on the omnidirectional On the transfer vehicle 200, the upper and lower ends of the scissor 303 are respectively connected to the base 305 and the platform 304.
  • the backscatter imaging device 100 is fixed on the platform 304, the hydraulic pump 301 drives the hydraulic cylinder 302, and the telescopic rod of the hydraulic cylinder 302 is connected to a connecting rod of the scissor 303 to drive the scissor 303 to rise or fall.
  • the lifting device 300 drives the hydraulic cylinder 302 through the electric hydraulic pump 301 to adjust the lifting height of the scissor 303, and the platform 304 is used to fix the backscatter imaging device 100, as shown in Figure 1.
  • the backscatter imaging device 100 can be adjusted to a suitable spatial position to meet the requirements of different scanning heights.
  • the lifting device 300 can also adopt a multi-motor drive or other style lifting platform structure, and it needs to have the necessary load capacity.
  • the left button 401 of the remote controller 400 remotely controls the driving mode of the omnidirectional transfer vehicle 200; the right button 402 remotely controls the X-ray flight of the backscatter imaging device 100 Point scanning operation; the external display 403 displays the X-ray backscatter image of the inspected target and the status of the whole machine in real time via WIFI.
  • the remote control operation not only guarantees the flexibility of operation, but also guarantees the safety of X-ray radiation.
  • the remote controller 400 can also remotely control the lifting operation of the lifting device 300 so that the scanning range of the backscatter imaging device 100 can be remotely controlled.
  • the backscatter omnidirectional scanning imaging device of the present invention can be operated manually by remote control, or can be operated automatically.
  • the remote controller 400 of the present invention can also be replaced by a portable computer or the like.
  • the present invention can be configured with voice interaction and camera functions.
  • FIG. 7 shows a schematic diagram of a backscatter scanning system with a rocking device according to another exemplary embodiment of the present invention.
  • an electric multi-directional swing device 500 is added to the main structure, which can add an elevation angle and multi-directional swing on the basis of omnidirectional scanning of the horizontal plane to achieve A wide range of scanning perpendicular to the ground direction enhances the function of the device and expands the scope of application.
  • the rocking device 500 includes a plurality of hydraulic rods 501 fixed on the lifting device 300, and the telescopic rods of the plurality of hydraulic rods 501 are connected to the backscatter imaging device 100.
  • the angle of the backscatter imaging device 100 can be controlled by controlling the expansion and contraction of the telescopic rods of the plurality of hydraulic rods 501.
  • the remote controller 400 can also remotely control the swing operation of the swing device 500 so that the scanning range of the backscatter imaging device 100 can be remotely controlled.
  • the present invention is suitable for occasions such as cars, trucks, containers, walls, road inspections, square searches, sports venues and large indoor facilities.
  • the invention cleverly integrates the X-ray backscatter imaging device and the omnidirectional transfer vehicle, supplemented by lifting and swing functions, can realize uninterrupted and omnidirectional backscatter scanning of the inspected target, and can be operated by remote control and It can be operated automatically, and the miniaturization, modularity and portability of X-ray backscatter imaging equipment are well realized.
  • the structure design is simple, the use mode is flexible, the imaging quality is high, the radiation safety is good, the application range is wide, the weight is small, the cost is low, and it has good application prospects and economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种背散射扫描系统,包括:背散射成像装置(100),适于通过对被检目标进行X射线扫描来获取被检目标的背散射图像。背散射扫描系统还包括全向移载车(200),背散射成像装置(100)被搭载在全向移载车(200)上;全向移载车(200)具有自主导航行驶模式和远程控制行驶模式,从而可依据导航规划按照预定路线自主行驶或者可根据远程控制指令按照预定路线行驶。背散射成像装置(100)被搭载在全向移载车(200)上,可以对被检目标实现不间断、全方位的背散射扫描,既可以遥控操作,又可以自动运行,实现了背散射扫描系统的小型化、模块化和便携性。

Description

背散射扫描系统
相关申请的交叉引用
本申请要求于2020年3月19日提交的、申请号为202010194651.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种背散射扫描系统。
背景技术
X射线照射到被检物质时,部分X射线会与物质中的原子发生碰撞而朝各个方向发生散射,其中入射X射线方向和散射后X射线方向之间夹角大于90°的散射线称为背散射射线。背散射属于不相干散射,该现象源于康普顿效应。X射线背散射成像技术即以康普顿散射效应为基础,将X射线源与背散射探测器放置于被检物质的同一侧,利用飞点扫描装置将X射线源发出的扇形束调制成笔形束,然后对接收到的散射线信号进行转换传输和数据处理后得到被检物质的图像。该技术辐射量剂量低,对轻质材料敏感,设备布局方便,与传统的X射线透射产品形成有效互补,已被广泛应用于各类安检场所。
为了实现垂直于飞点出束面方向的扫描,背散射成像设备与被检物质之间需要有相对运动。背散射成像技术的原理特点使得其在便携或移动式检查毒品炸药武器等违禁品方面具有独特优势。因为背散射探测器和飞点X射线源可以置于被检目标的同一侧,所以很方便把背散射成像模块集成到一个合适的运动载体上。常见的有汽车底盘改制承载式、人工手推车式和拖车牵引式等。此类产品在马路巡检、车辆检查、墙体检测、场馆设施和环境隐藏等场合需求明显,可以对普通安检设备难以应用或有特殊需求的地方进行非破坏式全面搜索或者非接触式隐蔽检查。
在现有技术中,主要有三种背散射检查设备,分别是车载式背散射检查设备、手推移动式背散射设备和拖车牵引式背散射设备。由轻型载重卡车底盘改制而成的车载式背散射检查设备结构复杂,体重大成本高,对驾驶要求较高,图像信噪比不佳,应用方式受限,适用于较大体量的违禁品检测。手推移动式背散射设备照射能量有限,人工操作不够灵便且会危及人身辐射安全。拖车牵引式背散射设备为前述两者的折中产品,也存在检查方式不够灵活,检测范围有限和图像分辨率不高等问题。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本发明的一个方面,提供一种背散射扫描系统,包括:背散射成像装置,适于通过对被检目标进行X射线扫描来获取所述被检目标的背散射图像。所述背散射扫描系统还包括全向移载车,所述背散射成像装置被搭载在所述全向移载车上;所述全向移载车具有自主导航行驶模式和远程控制行驶模式,且被配置为依据导航规划按照预定路线自主行驶或者根据远程控制指令按照预定路线行驶。
根据本发明的一个实例性的实施例,所述背散射扫描系统还包括升降装置,所述升降装置搭载在所述全向移载车上,所述背散射成像装置固定在所述升降装置上;所述升降装置能够自动升降,用于改变所述背散射成像装置的高度,以扩大所述背散射成像装置的扫描范围。
根据本发明的另一个实例性的实施例,所述背散射扫描系统还包括升降装置和摇摆装置,所述升降装置搭载在所述全向移载车上,所述摇摆装置固定在所述升降装置上,所述背散射成像装置固定在所述摇摆装置上;所述升降装置能够自动升降,用于改变所述背散射成像装置的高度,以扩大所述背散射成像装置的扫描范围;所述摇摆装置能够自动摇摆,用于改变所述背散射成像装置的角度,以扩大所述背散射成像装置的扫描范围。
根据本发明的另一个实例性的实施例,所述背散射成像装置具有与用户终端无线通信的无线通信模块,从而可通过无线通信网络将获取的背散射图像传输给用户终端。
根据本发明的另一个实例性的实施例,所述背散射扫描系统还包括遥控器,所述遥控器与所述背散射成像装置和所述全向移载车无线通信,用于控制所述全向移载车的行驶模式和所述背散射成像装置的X射线扫描操作。
根据本发明的另一个实例性的实施例,所述全向移载车包括用于驱动所述全向移载车度全向移动的差速驱动装置,所述差速驱动装置包括左侧驱动电机、左侧驱动轮、右侧驱动电机和右侧驱动轮,所述左侧驱动电机和所述右侧驱动电机分别与所述左侧驱动轮和所述右侧驱动轮连接。
根据本发明的另一个实例性的实施例,所述全向移载车还具有两个万向轮,所述两个万向轮分别设置在所述全向移载车的前、后两侧,所述两个万向轮作为从动轮,用于 支撑和导向。
根据本发明的另一个实例性的实施例,所述全向移载车还包括用于感应外部环境信息的感应模块,所述感应模块包括用于感应所述全向移载车的当前位置和方向的激光雷达模块和用于感应障碍物的超声避障模块。
根据本发明的另一个实例性的实施例,所述全向移载车还包括控制器,所述控制器适于根据所述感应模块采集到的感应信号或根据接收到的远程控制指令对所述全向移载车的行驶进行控制。
根据本发明的另一个实例性的实施例,所述升降装置包括底座、剪叉、液压泵、液压缸和平台,所述底座被搭载在所述全向移载车上,所述剪叉的上下两端分别连接到所述底座和所述平台上;所述背散射成像装置被固定在所述平台上,所述液压泵驱动所述液压缸,所述液压缸的伸缩杆被连接到所述剪叉的一个连杆上,用于驱动所述剪叉上升或下降。
根据本发明的另一个实例性的实施例,所述摇摆装置包括固定在所述升降装置上的多个液压杆,所述多个液压杆的伸缩杆连接到所述背散射成像装置的底部上,以通过控制所述多个液压杆的伸缩杆的伸缩量来控制所述背散射成像装置的角度。
根据本发明的另一个实例性的实施例,所述全向移载车还具有减震单元,所述升降装置被支撑在所述减震单元上,以减小凹凸路面对搭载在所述全向移载车上的背散射成像装置的冲击。
根据本发明的另一个实例性的实施例,所述背散射成像装置包括安装支架和固定在所述安装支架上的高压电源、X射线管组件、飞点扫描装置和背散射探测器。
根据本发明的另一个实例性的实施例,所述高压电源通过高压电缆连接至所述X射线管组件,或者所述高压电源和所述X射线管组件被组合为一体式X射线发生器。
根据本发明的另一个实例性的实施例,所述飞点扫描装置包括伺服控制器、伺服电机、转筒、传动轴、轴承底座、第一轴承、第二轴承和支撑座;所述第一轴承和所述第二轴承分别安装在所述传动轴的两端上,所述传动轴嵌装在所述轴承底座中;所述传动轴的一端与所述伺服电机的输出轴连接,所述传动轴的另一端与所述转筒连接,所述伺服电机和所述轴承底座固定到所述支撑座上;所述伺服控制器对所述伺服电机进行控制,所述伺服电机通过所述传动轴驱动所述转筒转动。
根据本发明的另一个实例性的实施例,所述背散射探测器还包括电控单元,所述电 控单元用于实现所述背散射成像装置的电源分配和系统通断电控制;所述电控单元包括可编程逻辑控制器,所述可编程逻辑控制器与所述伺服控制器通信,以对所述飞点扫描装置进行控制。
根据本发明的另一个实例性的实施例,所述背散射探测器包括至少一个光电倍增管、导光晶体和增感屏,所述增感屏外包在所述导光晶体上,所述至少一个光电倍增管通过光学耦合剂与所述导光晶体直接耦合,以将可见光信号转化为电信号。
根据本发明的另一个实例性的实施例,所述背散射探测器还包括安装侧面上的、靠近出束狭缝的侧板所述侧板用于减小无效散射线对探测信号的干扰。
根据本发明的另一个实例性的实施例,所述背散射成像装置还包括数采传输模块和工控机,所述数采传输模块对所述光电倍增管的输出信号进行调理放大和模数转换,并将处理后的采样数据实时上传到所述工控机,所述工控机根据所述采样数据生成被检目标的背散射图像,并将生成的背散射图像以无线方式传输给用户终端。
根据本发明的另一个实例性的实施例,所述遥控器具有左键、右键和显示器,所述左键用于远程控制所述全向移载车的行驶模式,所述右键用于远程控制所述背散射成像装置的X射线扫描操作,所述显示器用于显示被检目标的背散射图像以及所述全向移载车和所述背散射成像装置的工作状态。
在根据本发明的前述各个实例性的实施例中,背散射成像装置被搭载在全向移载车上,可以对被检目标实现不间断、全方位的背散射扫描,既可以遥控操作,又可以自动运行,实现了背散射扫描系统的小型化、模块化和便携性。
此外,在本发明的前述一些实例性的实施例中,可以通过升降装置或摇摆装置来改变背散射成像装置的高度和/或角度,从而能够扩大背散射成像装置的扫描范围。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的一个实例性的实施例的背散射扫描系统的立体示意图;
图2显示图1所示的背散射扫描系统的背散射成像模块的结构示意图;
图3显示图2所示的背散射成像模块的飞点扫描装置的结构示意图;
图4显示图2所示的背散射成像模块的背散射探测器的结构示意图;
图5显示图1所示的背散射扫描系统的全向移载车与升降装置的结构示意图;
图6显示图5所示的全向移载车的差速驱动装置的结构示意图;
图7显示根据本发明的另一个实例性的实施例的具有摇摆装置的背散射扫描系统的示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个总体技术构思,提供一种背散射扫描系统,包括:背散射成像装置,适于通过对被检目标进行X射线扫描来获取所述被检目标的背散射图像。所述背散射扫描系统还包括全向移载车,所述背散射成像装置被搭载在所述全向移载车上;所述全向移载车具有自主导航行驶模式和远程控制行驶模式,从而可依据导航规划按照预定路线自主行驶或者可根据远程控制指令按照预定路线行驶。
图1显示根据本发明的一个实例性的实施例的背散射扫描系统的立体示意图;
如图1所示,在图示的实施例中,该背散射全向扫描系统,结构如图1所示,主要包含背散射成像装置100、全向移载车200、升降装置300和遥控器400等。其中背散射成像装置100是一个独立模块,固定在升降装置300上,二者一起搭载于全向移载车200。辅以必要的电气控制,全向移载车200可以依据导航规划自主地按照设定的间隔距离沿着预期路线自动直线或者转弯行驶,也可以通过遥控器400控制其行进路线,并可以自动避障防止误照射或者损坏设备。升降装置300可以自动升降,改变扫描高度,扩大扫描范围。背散射成像装置100向被检目标发射出笔形X射线束,由高性能背散射探测器对背散射信号进行收集调理、转换传输和数据处理,随着全向移载车200的移动实现对被检目标的全面扫描,并通过无线网络(WIFI)将高质量背散射图像呈现给用户。
根据上述技术方案,如图1所示,背散射成像装置100包含独立外罩180,全向移载车200包含两个侧面板201,如图1所示。此外,整机还装配有前罩板11和后罩板12。
如图1所示,在本发明的一个实例性的实施例中,前罩板11和后罩板12采用整体成型结构。特别地,为了减轻重量和满足户外使用条件,优选玻璃钢或者碳纤维等轻型材质。
如图1所示,在本发明的一个实例性的实施例中,前罩板11上布局不同元器件以实现相应的辅助功能。其中,急停开关13用于紧急情况下断掉系统电源,包括背散射成像装置100和全向移载车200的动力输入;钥匙开关14用于上电使能和常规断电,并能区分控制系统电源和动力系统电源;上电指示灯15用于指示系统供电状态;车前灯16用于向外部提示装置的位置。
如图1所示,在本发明的一个实例性的实施例中,后罩板12上布局紧急开关13和车后灯。
如图1所示,在本发明的一个实例性的实施例中,背散射成像装置100上配置有电源灯17和警示灯18。
图2显示图1所示的背散射扫描系统的背散射成像模块的结构示意图。
根据上述技术方案,如图1和图2所示,背散射成像装置100具有小型化、模块式和通用性的特点,其结构如图2所示。其核心部件为高压电源110、X射线管组件120、飞点扫描装置130和背散射探测器140,通过安装支架101固定在一起。
如图1和图2所示,在本发明的一个实例性的实施例中,高压电源110施加于X射线管组件120的两端会产生X射线,两者可以通过高压电缆连接,也可以组合为一体式X射线发生器。X射线管组件120在出束口设有初级准直器121,将X射线束约束为扇形形状。
图3显示图2所示的背散射成像模块的飞点扫描装置的结构示意图;
如图1至图3所示,在本发明的一个实例性的实施例中,飞点扫描装置130采用伺服电机直驱和圆筒旋转结构,如图3所示。轴承136和轴承137隔开一定距离放置,传动轴134嵌装在两个轴承的内圈,然后整体嵌装进轴承底座135的内圈。传动轴134的一端与伺服电机132的轴直连,另一端通过法兰盘方式与转筒133连接。前述装配完成后,整体固定到支撑座138上。如此减少机械传动环节,通过伺服控制器131驱动伺服电机132,将电动力直接传送到执行机构,提高运行效率,所产生的X射线笔形束也会更为稳定一致,并能提高探测信号的质量。
如图1至图3所示,在本发明的一个实例性的实施例中,转筒133上开有一个或者 更多数量沿圆周均布的小孔(未图示),孔径可以为0.5mm或者更大,小孔可以为规则通孔,也可以为不规则形状。转筒133与初级准直器121的材质必须对X射线有很好的屏蔽效果,此处优选钨镍铁合金或者铅锑合金。且二者之间要有迷宫结构,将漏射线衰减到辐射安全范围。
如图1至图3所示,在本发明的一个实例性的实施例中,两套背散射探测器140分布在飞点扫描装置130笔形束扫描所形成的扇形面的两侧,中间留出适当间隙。
图4显示图2所示的背散射成像模块的背散射探测器的结构示意图。
如图1至图4所示,在本发明的一个实例性的实施例中,为了满足小型化的要求,背散射探测器140在保证接收面积的基础上要尽量薄而轻。有效背散射信号本身比透射信号要弱小很多,再加上本底噪声的干扰,其信噪比一般比较高,并且随着穿透深度的增加会更加难以检测,因此必须设法增强背散射探测器140的信号强度,提高接收效率。此外,为了满足系统高速扫描的需求,背散射探测器140还需要有较高的响应速度。综合考虑,本发明采用导光晶体142外包增感屏143的结构,如图4所示,并通过光学耦合剂与一个或者多个光电倍增管141直接耦合,将可见光信号转化为电信号。本发明的背散射探测器140输出信号的空间分布均匀性好,离散程度小。
如图1至图4所示,在本发明的一个实例性的实施例中,在背散射探测器140靠近出束狭缝的一侧安装侧板144,如图1所示,减小无效散射线对探测信号的干扰。
如图1至图4所示,在本发明的一个实例性的实施例中,电控单元150实现背散射成像装置100的电源分配和系统通断电控制,可编程逻辑控制器(PLC)151与伺服控制器131远程通信控制飞点扫描装置130的运行状态,并检测飞点触发信号。
如图1至图4所示,在本发明的一个实例性的实施例中,锂电池组件160优选安全性更好的磷酸铁锂类型,为背散射成像装置100供电,具备电量显示与远程通信功能,通过充电接口163和充电器162为锂电池组161进行充电,如图1所示。
如图1至图4所示,在本发明的一个实例性的实施例中,数采传输模块102对光电倍增管141的输出信号进行调理放大和模数转换,并利用现场可编程门阵列(FPGA)高速传输电路通过千兆以太网口将采样数据实时上传到工控机103进行算法处理,并将被检目标的背散射图像数据通过WIFI传送给用户予以显示和判断。
如图1至图4所示,在本发明的一个实例性的实施例中,背散射成像装置100的外罩180整体结构呈五面封闭形状,如图1所示。靠近背散射探测器140接收面的前面板 采用X射线衰减小的材料,优选碳纤维材料。其余的侧面板为轻质户外材料,优选玻璃钢材料。前面板和侧面板采用一体式加工嵌装工艺。
图5显示图1所示的背散射扫描系统的全向移载车与升降装置的结构示意图。
如图1至图5所示,根据上述技术方案,全向移载车200的差速驱动装置210、锂电池模组220、感应模块230和控制器240等核心部件设置在车底盘250上。特别地,为了灵活调节X射线背散射扫描高度,车底盘250上还集成了升降装置300,如图5所示。本发明的带升降功能全向移载装置结构紧凑、拆装便捷、光学导航、运动灵活,且具备一定的爬坡和过坎能力。
图6显示图5所示的全向移载车的差速驱动装置的结构示意图。
如图1至图6所示,在本发明的一个实例性的实施例中,差速驱动装置210处于靠近车底盘250的中间位置,采用双电机独立驱动两个承载车轮的方式,通过双轮差速自适应调节原理实现全向移载车200的360°全向移动,既能原地全向旋转,又能朝着任意方向前进行驶。如图6所示,其核心部分包括左侧驱动电机211、左侧驱动轮212、右侧驱动电机214、右侧驱动轮215、万向轮217和减震单元218。
如图1至图6所示,在本发明的一个实例性的实施例中,左侧驱动电机211通过转接支架213与左侧驱动轮212连接,右侧驱动电机214通过转接支架216与右侧驱动轮215连接,转接支架213和转接支架216分别固定在底盘悬架251的内框两侧。通过自适应独立调节左侧驱动电机211和右侧驱动电机214的电流参数,分别调节左侧驱动轮212和右侧驱动轮215的速度差值大小和方向,从而可以任意改变全向移载车200的旋转半径,实现灵活的转弯行驶。特别地,可以实现全向移载车200稳定直线行驶,或者沿双驱动轮连线的中点做自身环绕运动。
如图1至图6所示,在本发明的一个实例性的实施例中,全向移载车200的前方和后方分别布置两个万向轮217作为从动轮,兼起支撑和自由导向的作用。
如图1至图6所示,在本发明的一个实例性的实施例中,全向移载车200还具有减震单元218,升降装置300被支撑在减震单元218上,以减小凹凸路面对搭载在全向移载车200上的背散射成像装置100的冲击。减震单元218可以由一个或者多个缓冲弹簧组成,也可以是其他缓冲方式,使得全向移载车200能够正常通过一定程度的凹凸路面。
如图1至图6所示,在本发明的一个实例性的实施例中,锂电池模组220为全向移载车200独立供电,为各种驱动装置和控制模块提供电源,输出电压范围一般为12V~72V。 该模组具有电量显示和远程通信功能,并适配充电器。
如图1至图6所示,在本发明的一个实例性的实施例中,感应模块230是全向移载车200准确、稳定运行的基础。通过激光雷达模块231和超声避障模块232感应外部环境信息。激光雷达模块231发射激光束,同时采集四周反射回来的激光束,通过计算可以确定全向移载车200的当前位置和方向。优选地,检测扇角0~180°,检测距离0~3m,避障距离0.2~0.5m。
如图1至图6所示,在本发明的一个实例性的实施例中,激光雷达模块231可以通过电动直线模组233自由升降,以适应被检目标的高度。其数量可以为一组或者更多。
如图1至图6所示,在本发明的一个实例性的实施例中,识别并绕过障碍物是全向移载车200安全运行的前提。参考图1,本发明在前罩板11、后罩板12和两个侧面板201的合适位置分别装配两个超声避障模块232,根据超声波发射和接收的往返时间判断障碍物的距离,实现非接触式避障。当然,也可以根据不同的需求在不同位置布局不同数量的超声避障模块232。
如图1至图6所示,在本发明的一个实例性的实施例中,控制器240将控制电路和显示屏集成为一体式结构,采集差速驱动装置210、锂电池模组220、感应模块230、升降装置300和电气按钮等信号,内置算法程序,负责全向移载车200的外部指令响应、路径选择、行进调整和信息上传。显示屏241用于参数设置和状态显示,实现与用户交互。
如图1至图6所示,在本发明的一个实例性的实施例中,控制器240与外部采用无线数字通信模式。
如图1至图6所示,在本发明的一个实例性的实施例中,针对某些固定检测场所,控制器240也可以在先期模拟现场的基础上通过软件算法自动规划行驶路线路径,实现X射线背散射设备的自动巡检功能。
如图1至图6所示,在本发明的一个实例性的实施例中,升降装置300包括底座305、剪叉303、液压泵301、液压缸302和平台304,底座305被搭载在全向移载车200上,剪叉303的上下两端分别连接到底座305和平台304上。背散射成像装置100被固定在平台304上,液压泵301驱动液压缸302,液压缸302的伸缩杆被连接到剪叉303的一个连杆上,用于驱动剪叉303上升或下降。
如图1至图6所示,在本发明的一个实例性的实施例中,升降装置300通过电动液 压泵301驱动液压缸302调节剪叉303的升降高度,平台304用以固定背散射成像装置100,如图1所示。如此可以将背散射成像装置100调整到合适的空间位置,以适应不同扫描高度的需求。此外,升降装置300也可以采用多电机驱动或者其他样式的升降台结构,并且需要具备必要的载重能力。
如图1至图6所示,根据上述技术方案,参考图1,遥控器400的左键401远程控制全向移载车200的行驶模式;右键402远程控制背散射成像装置100的X射线飞点扫描操作;外挂显示器403通过WIFI实时显示被检目标的X射线背散射图像与整机状态。遥控操作既保证了操作灵活性,又保证了X射线辐射安全。
如图1至图6所示,在本发明的一个实例性的实施例中,遥控器400还可远程控制升降装置300的升降操作,以便可远程控制背散射成像装置100的扫描范围。
如图1至图6所示,在本发明的一个实例性的实施例中,本发明的背散射全向扫描成像装置既可以人工遥控操作,也可以自动运行。
如图1至图6所示,在本发明的一个实例性的实施例中,本发明的遥控器400也可以用便携式电脑等替代。
如图1至图6所示,在本发明的一个实例性的实施例中,本发明可以配置语音互动和摄像功能。
图7显示根据本发明的另一个实例性的实施例的具有摇摆装置的背散射扫描系统的示意图。
如图7所示,为本发明的另一种实现方式。在前述背散射成像装置100、全向移载车200和升降装置300的基础上,主体结构增加一个电动多向摇摆装置500,可以在水平面全向扫描的基础上增加一个仰角多向摆动,实现垂直于地面方向的大范围扫描,增强设备功能,扩大应用范围。
如7所示,在本发明的一个实例性的实施例中,摇摆装置500包括固定在升降装置300上的多个液压杆501,多个液压杆501的伸缩杆连接到背散射成像装置100的底部上,从而可通过控制多个液压杆501的伸缩杆的伸缩量来控制背散射成像装置100的角度。
如图1至图7所示,在本发明的一个实例性的实施例中,遥控器400还可远程控制摇摆装置500的摇摆操作,以便可远程控制背散射成像装置100的扫描范围。
根据上述技术方案,如图1至图7所示,本发明适用于小汽车、货车、集装箱、墙体、马路巡检、广场搜查、运动场馆和大型室内设施等场合。
本发明将X射线背散射成像装置和全向移载车巧妙地集成为一体,辅以升降和摇摆功能,可以对被检目标实现不间断、全方位的背散射扫描,既可以遥控操作,又可以自动运行,很好地实现了X射线背散射成像设备的小型化、模块化和便携性。结构设计简洁,使用方式灵活,成像质量高,辐射安全性好,应用范围广,体重小,成本低,具有很好的应用前景和经济效益。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (15)

  1. 一种背散射扫描系统,包括:
    背散射成像装置(100),适于通过对被检目标进行X射线扫描来获取所述被检目标的背散射图像;以及
    全向移载车(200),所述背散射成像装置(100)被搭载在所述全向移载车(200)上;其中,
    所述全向移载车(200)具有自主导航行驶模式和远程控制行驶模式,且被配置为依据导航规划按照预定路线自主行驶或者根据远程控制指令按照预定路线行驶;
    所述背散射成像装置(100)具有与用户终端无线通信的无线通信模块,以通过无线通信网络将获取的背散射图像传输给用户终端。
  2. 根据权利要求1所述的背散射扫描系统,还包括:
    升降装置(300),所述升降装置(300)搭载在所述全向移载车(200)上,所述背散射成像装置(100)固定在所述升降装置(300)上;
    所述升降装置(300)能够自动升降,用于改变所述背散射成像装置(100)的高度,以扩大所述背散射成像装置(100)的扫描范围。
  3. 根据权利要求1所述的背散射扫描系统,还包括:
    升降装置(300)和摇摆装置(500),所述升降装置(300)搭载在所述全向移载车(200)上,所述摇摆装置(500)固定在所述升降装置(300)上,所述背散射成像装置(100)固定在所述摇摆装置(500)上;
    所述升降装置(300)能够自动升降,用于改变所述背散射成像装置(100)的高度,以扩大所述背散射成像装置(100)的扫描范围;
    所述摇摆装置(500)能够自动摇摆,用于改变所述背散射成像装置(100)的角度,以扩大所述背散射成像装置(100)的扫描范围。
  4. 根据权利要求1所述的背散射扫描系统,还包括:
    遥控器(400),所述遥控器(400)与所述背散射成像装置(100)和所述全向移载车(200)无线通信,用于控制所述全向移载车(200)的行驶模式和所述背散射成像装置(100)的X射线扫描操作;
    所述遥控器(400)具有左键(401)、右键(402)和显示器(403),所述左键(401) 用于远程控制所述全向移载车(200)的行驶模式,所述右键(402)用于远程控制所述背散射成像装置(100)的X射线扫描操作,所述显示器(403)用于显示被检目标的背散射图像以及所述全向移载车(200)和所述背散射成像装置(100)的工作状态。
  5. 根据权利要求1所述的背散射扫描系统,其中:
    所述全向移载车(200)包括用于驱动所述全向移载车(200)360度全向移动的差速驱动装置(210),所述差速驱动装置(210)包括左侧驱动电机(211)、左侧驱动轮(212)、右侧驱动电机(214)和右侧驱动轮(215),所述左侧驱动电机(211)和所述右侧驱动电机(214)分别与所述左侧驱动轮(212)和所述右侧驱动轮(215)连接;并且
    所述全向移载车(200)还具有两个万向轮(217),所述两个万向轮(217)分别设置在所述全向移载车(200)的前、后两侧,所述两个万向轮(217)作为从动轮,用于支撑和导向。
  6. 根据权利要求5所述的背散射扫描系统,其中:
    所述全向移载车(200)还包括用于感应外部环境信息的感应模块(230),所述感应模块(230)包括用于感应所述全向移载车(200)的当前位置和方向的激光雷达模块(231)和用于感应障碍物的超声避障模块(232);并且
    所述全向移载车(200)还包括控制器(240),所述控制器(240)适于根据所述感应模块(230)采集到的感应信号或根据接收到的远程控制指令对所述全向移载车(200)的行驶进行控制。
  7. 根据权利要求2所述的背散射扫描系统,其中:
    所述升降装置(300)包括底座(305)、剪叉(303)、液压泵(301)、液压缸(302)和平台(304),所述底座(305)被搭载在所述全向移载车(200)上,所述剪叉(303)的上下两端分别连接到所述底座(305)和所述平台(304)上;
    所述背散射成像装置(100)被固定在所述平台(304)上,所述液压泵(301)驱动所述液压缸(302),所述液压缸(302)的伸缩杆被连接到所述剪叉(303)的一个连杆上,用于驱动所述剪叉(303)上升或下降。
  8. 根据权利要求3所述的背散射扫描系统,其中:
    所述摇摆装置(500)包括固定在所述升降装置(300)上的多个液压杆(501),所述多个液压杆(501)的伸缩杆连接到所述背散射成像装置(100)的底部上,以通过 控制所述多个液压杆(501)的伸缩杆的伸缩量来控制所述背散射成像装置(100)的角度。
  9. 根据权利要求7或8所述的背散射扫描系统,其中:
    所述全向移载车(200)还具有减震单元(218),所述升降装置(300)被支撑在所述减震单元(218)上,以减小凹凸路面对搭载在所述全向移载车(200)上的背散射成像装置(100)的冲击。
  10. 根据权利要求1所述的背散射扫描系统,其中:
    所述背散射成像装置(100)包括安装支架(101)和固定在所述安装支架(101)上的高压电源(110)、X射线管组件(120)、飞点扫描装置(130)和背散射探测器(140)。
  11. 根据权利要求10所述的背散射扫描系统,其中:
    所述飞点扫描装置(130)包括伺服控制器(131)、伺服电机(132)、转筒(133)、传动轴(134)、轴承底座(135)、第一轴承(136)、第二轴承(137)和支撑座(138);
    所述第一轴承(136)和所述第二轴承(137)分别安装在所述传动轴(134)的两端上,所述传动轴(134)嵌装在所述轴承底座(135)中;
    所述传动轴(134)的一端与所述伺服电机(132)的输出轴连接,所述传动轴(134)的另一端与所述转筒(133)连接,所述伺服电机(132)和所述轴承底座(135)固定到所述支撑座(138)上;
    所述伺服控制器(131)对所述伺服电机(132)进行控制,所述伺服电机(132)通过所述传动轴(134)驱动所述转筒(133)转动。
  12. 根据权利要求10所述的背散射扫描系统,其中:
    所述高压电源(110)通过高压电缆连接至所述X射线管组件(120),或者所述高压电源(110)和所述X射线管组件(120)被组合为一体式X射线发生器;
    所述背散射探测器(140)还包括电控单元(150),所述电控单元(150)用于实现所述背散射成像装置(100)的电源分配和系统通断电控制;
    所述电控单元(150)包括可编程逻辑控制器(151),所述可编程逻辑控制器(151)与所述伺服控制器(131)通信,以对所述飞点扫描装置(130)进行控制。
  13. 根据权利要求10所述的背散射扫描系统,其中:
    所述背散射探测器(140)包括至少一个光电倍增管(141)、导光晶体(142)和增感屏(143),所述增感屏(143)外包在所述导光晶体(142)上,所述至少一个光电倍 增管(141)通过光学耦合剂与所述导光晶体(142)直接耦合,以将可见光信号转化为电信号。
  14. 根据权利要求13所述的背散射扫描系统,其中:
    所述背散射探测器(140)还包括安装侧面上的、靠近出束狭缝的侧板(144),所述侧板(144)用于减小无效散射线对探测信号的干扰。
  15. 根据权利要求13所述的背散射扫描系统,其中:
    所述背散射成像装置(100)还包括数采传输模块(102)和工控机(103),所述数采传输模块(102)对所述光电倍增管(141)的输出信号进行调理放大和模数转换,并将处理后的采样数据实时上传到所述工控机(103),所述工控机(103)根据所述采样数据生成被检目标的背散射图像,并将生成的背散射图像以无线方式传输给用户终端。
PCT/CN2021/081036 2020-03-19 2021-03-16 背散射扫描系统 WO2021185239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010194651.4 2020-03-19
CN202010194651 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021185239A1 true WO2021185239A1 (zh) 2021-09-23

Family

ID=77770735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081036 WO2021185239A1 (zh) 2020-03-19 2021-03-16 背散射扫描系统

Country Status (1)

Country Link
WO (1) WO2021185239A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992435A (zh) * 2022-02-24 2022-09-02 北京固鸿科技有限公司 用于辐射成像系统的升降机构和辐射成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010310A1 (en) * 1996-09-06 1998-03-12 Underground Imaging, Inc. Oblique scanning ground penetrating radar
CN102901988A (zh) * 2012-09-28 2013-01-30 深圳市鑫源通电子有限公司 一种基于大扇形束康普顿背散射扫描技术的检测车
CN105403926A (zh) * 2015-10-28 2016-03-16 北京紫方启研科技有限公司 行走式履带底座背散射成像仪
CN106312997A (zh) * 2016-10-27 2017-01-11 桂林电子科技大学 一种具有带自动稳定装置的激光雷达的室外自主移动机器人
CN205898713U (zh) * 2016-08-04 2017-01-18 同方威视技术股份有限公司 自主移动的背散射检测设备
CN108227027A (zh) * 2017-12-29 2018-06-29 同方威视技术股份有限公司 车载背散射检查系统
CN208444021U (zh) * 2018-02-07 2019-01-29 同方威视技术股份有限公司 背散射机器人系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010310A1 (en) * 1996-09-06 1998-03-12 Underground Imaging, Inc. Oblique scanning ground penetrating radar
CN102901988A (zh) * 2012-09-28 2013-01-30 深圳市鑫源通电子有限公司 一种基于大扇形束康普顿背散射扫描技术的检测车
CN105403926A (zh) * 2015-10-28 2016-03-16 北京紫方启研科技有限公司 行走式履带底座背散射成像仪
CN205898713U (zh) * 2016-08-04 2017-01-18 同方威视技术股份有限公司 自主移动的背散射检测设备
CN106312997A (zh) * 2016-10-27 2017-01-11 桂林电子科技大学 一种具有带自动稳定装置的激光雷达的室外自主移动机器人
CN108227027A (zh) * 2017-12-29 2018-06-29 同方威视技术股份有限公司 车载背散射检查系统
CN208444021U (zh) * 2018-02-07 2019-01-29 同方威视技术股份有限公司 背散射机器人系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992435A (zh) * 2022-02-24 2022-09-02 北京固鸿科技有限公司 用于辐射成像系统的升降机构和辐射成像系统

Similar Documents

Publication Publication Date Title
US10761236B2 (en) Self-propelled container and/or vehicle inspection device
JP6652266B2 (ja) 充電装置
CN107531217B (zh) 识别或检测障碍物的设备和方法
US9316760B2 (en) Mobile aircraft inspection system
EP2538206B1 (en) Integrated backscatter X-ray system
WO2022065587A1 (ko) 거리측량 드론
US20150226369A1 (en) Automated Mobile Boom System for Crawling Robots
EP3346300A1 (en) Movable article inspection system
US20210339993A1 (en) Moving body
CN111438677A (zh) 一种无人值守机房巡检机器人
WO2021185239A1 (zh) 背散射扫描系统
EP3505973B1 (en) Vehicle-mounted type back scattering inspection system
EP3505974B1 (en) Vehicle-mounted type back scattering inspection system
CN108549111B (zh) 一种移动式车内全景x射线背散射扫描安检装置
US10331132B2 (en) Remotely controlled robot
CN115728332A (zh) 背散射扫描系统
RU151430U1 (ru) Робот-платформа
CN208444021U (zh) 背散射机器人系统
CN218489783U (zh) 一种激光导航轮式巡检机器人
KR102689141B1 (ko) 전력설비 감시용 무인 이동장치
CN214824119U (zh) 一种密闭狭小复杂空间巡视无人机
CN114142966B (zh) 一种基于信号阻碍反馈的无人机反制技术的动力控制系统
CN217414020U (zh) 天然气应急抢险踏勘专用机器人
CN113156488B (zh) 一种永磁吸附式核应急大面积壁面污染快速测量装置
CN214520313U (zh) 一种γ相机载带机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771045

Country of ref document: EP

Kind code of ref document: A1