WO2018037840A1 - スパッタリングターゲット用銅素材およびスパッタリングターゲット - Google Patents

スパッタリングターゲット用銅素材およびスパッタリングターゲット Download PDF

Info

Publication number
WO2018037840A1
WO2018037840A1 PCT/JP2017/027694 JP2017027694W WO2018037840A1 WO 2018037840 A1 WO2018037840 A1 WO 2018037840A1 JP 2017027694 W JP2017027694 W JP 2017027694W WO 2018037840 A1 WO2018037840 A1 WO 2018037840A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sputtering
less
mass
copper material
Prior art date
Application number
PCT/JP2017/027694
Other languages
English (en)
French (fr)
Inventor
翔一郎 矢野
敏夫 坂本
志信 佐藤
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201780031666.5A priority Critical patent/CN109312425B/zh
Priority to KR1020187032547A priority patent/KR102426482B1/ko
Publication of WO2018037840A1 publication Critical patent/WO2018037840A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention is, for example, manufactured using a copper material for a sputtering target used when forming a wiring film (copper film) in a semiconductor device, a flat panel display such as a liquid crystal or an organic EL panel, a touch panel, etc.
  • the present invention relates to a sputtering target.
  • the above-described wiring film is usually formed in a vacuum atmosphere using a sputtering target.
  • a sputtering target for forming a copper wiring film for example, those disclosed in Patent Documents 1 and 2 have been proposed.
  • Patent Document 1 discloses that for pure copper having a purity of 99.995 wt% or more and having a substantially recrystallized structure, an average crystal grain size of 80 microns or less, and a Vickers hardness of 100 Hv or less. Copper targets have been proposed.
  • Patent Document 1 the generation of coarse clusters is suppressed by refining crystal grains as a recrystallized structure and reducing the amount of strain, and furthermore, copper wiring is uniformly formed by aligning the direction of copper particles. The purpose is to do.
  • Patent Document 2 discloses a step of producing a molten ingot from electrolytic copper by a zone melt method, a step of producing a high-purity copper ingot by vacuum-dissolving the molten ingot, and 100% of the high-purity copper ingot.
  • the oxygen content is 10 ppm or less and the sulfur content is 1 ppm or less.
  • a sputtering target manufacturing method for obtaining a sputtering target composed of a high-purity copper base material having an iron content of 1 ppm or less and a purity of 99.999% or more.
  • an object is to produce a sputtering target that can form a dense wiring film having good fluidity of the wiring film during film formation and good adhesion.
  • abnormal discharge is a phenomenon in which an extremely high current suddenly and suddenly flows compared to that during normal sputtering, and an abnormally large discharge occurs suddenly. Or the wiring film thickness may be non-uniform. Therefore, it is desirable to avoid as much as possible abnormal discharge during film formation.
  • semiconductor devices flat panel displays such as liquid crystal and organic EL panels, touch panels, etc., higher density of wiring films has been demanded, and wiring that has been made finer and thinner than before. It is necessary to form the film stably.
  • the present invention has been made in view of the circumstances described above, and provides a copper material for a sputtering target that can stably form a film while suppressing the occurrence of abnormal discharge and can be manufactured at low cost.
  • the purpose is to do.
  • the copper material for a sputtering target of the present invention contains one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca in an amount of 0.001 mass% or more and 0. It is contained within a range of 0.008 mass% or less, and the total content of Cu and the content of the additive element is 99.99 mass% or more.
  • This copper material for sputtering target contains one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca within a range of 0.001 mass% to 0.008 mass%.
  • the total of the content of Cu and the content of the additive element is 99.99 mass% or more and is not purified more than necessary, so that it can be manufactured at a relatively low cost.
  • one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are contained in the range of 0.001 mass% to 0.008 mass%, S is added to these. It can fix as a compound with an additional element, and can suppress that the progress of recrystallization is inhibited by S.
  • the sulfur compound examples include ZrS 2 , TiS, TiS 2 , MgS, MnS, LaS, La 2 S 3 , and CaS.
  • the content of S is preferably 0.005 mass% or less.
  • S can be reliably fixed by the above-described additive element, a uniform recrystallized structure can be obtained, It is possible to suppress the occurrence of abnormal discharge (arcing). In addition, a decrease in conductivity can be suppressed.
  • the area ratio occupied by the compound containing the additive element and S in the same plane as the sputtering surface is 0.4% or less.
  • the area ratio occupied by the compound containing the additive element and S is suppressed to 0.4% or less, it is possible to suppress the increase in the recrystallization temperature and further promote the progress of the recrystallization, Generation of non-recrystallized regions can be further suppressed.
  • production of the abnormal discharge resulting from the compound containing an additive element and S can be suppressed reliably.
  • the Vickers hardness is 80 Hv or less. In this case, it has a uniform recrystallized structure, and the strain is sufficiently released, so that the occurrence of abnormal discharge (arcing) during film formation can be reliably suppressed.
  • the standard deviation of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less. In this case, since the strain is released uniformly, there is no region where the amount of strain is locally high, and the occurrence of abnormal discharge can be reliably suppressed.
  • the copper material for a sputtering target of the present invention preferably has an average crystal grain size of 100 ⁇ m or less.
  • the average crystal grain size is 100 ⁇ m or less and relatively fine, unevenness generated on the sputtering surface when the sputtering progresses is reduced, and the occurrence of abnormal discharge can be suppressed.
  • the sputtering target of this invention has the target main body which consists of the said copper raw material for sputtering targets, and the backing plate fixed to the one surface of the said target main body. Also in this sputtering target, the above-described excellent effect can be obtained.
  • the present invention it is possible to provide a copper material for a sputtering target that can be stably formed while suppressing the occurrence of abnormal discharge and can be manufactured at low cost.
  • the copper raw material for sputtering target of this embodiment is a sputtering target used when a copper film used as a wiring film in a semiconductor device, a flat panel display such as a liquid crystal or organic EL panel, a touch panel, etc. is formed on a substrate. It becomes a material.
  • the shape of the copper raw material for sputtering targets is not limited, For example, a disk shape, a rectangular flat plate shape, and a cylindrical shape may be sufficient.
  • composition of the sputtering target copper material of this embodiment is a range of 0.001 mass% or more and 0.008 mass% or less of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca.
  • the total of the Cu content and the content of the additive element is 99.99 mass% or more.
  • the S content is 0.005 mass% or less.
  • the copper material for the sputtering target of the present embodiment contains the above-described additive elements (one or more selected from Zr, Ti, Mg, Mn, La, and Ca) and S in the same plane as the sputtering surface.
  • the area ratio occupied by the compound to be contained is 0.4% or less.
  • the copper material for sputtering targets of this embodiment has a Vickers hardness of 80 Hv or less.
  • the copper material for sputtering targets of this embodiment has a standard deviation of Vickers hardness of 10 or less measured at a plurality of locations in the same plane as the sputtering surface.
  • the copper raw material for sputtering targets of this embodiment has an average crystal grain size of 100 ⁇ m or less.
  • the composition of the copper material for the sputtering target of the present embodiment the area ratio of the compound on the sputtering surface, the Vickers hardness, the standard deviation of the Vickers hardness, and the average crystal grain size are defined as described above will be described.
  • the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is within a range of 0.001 mass% to 0.008 mass%.
  • the lower limit of the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is set to 0.0015 mass% or more. It is preferable to make it 0.0020 mass% or more.
  • the upper limit of the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is set to 0.0060 mass. % Or less, and more preferably 0.0040 mass% or less.
  • Total of Cu content and additive element content is 99.99 mass% or more
  • the manufacturing cost is reduced by setting the total of the Cu content and the additive element content to 99.99 mass% or more.
  • the upper limit of the total content of Cu and the content of additive elements is preferably less than 99.999 mass% from the viewpoint of reducing manufacturing costs.
  • S is an element that inhibits the progress of copper recrystallization and lowers the electrical conductivity.
  • S exceeds 0.005 mass%, even when the above-described additive elements are added, S cannot be sufficiently fixed, and recrystallization becomes insufficient, so There is a possibility that a crystal region is generated and the amount of strain is locally non-uniform. Moreover, there exists a possibility that electrical conductivity may fall. For this reason, it is preferable to limit the S content to 0.005 mass% or less in order to sufficiently advance the recrystallization so as to sufficiently uniform the strain amount and to ensure the electrical conductivity.
  • the S content is more preferably 0.003 mass% or less, and further preferably 0.001 mass% or less. However, since it is difficult to make S content zero, 0.0003 mass% or more may be sufficient.
  • a compound containing the additional element and S is generated. May be mixed in the sputtering target copper material.
  • the recrystallization temperature may be increased and recrystallization may be suppressed. Further, abnormal discharge may occur due to exposure of the particles of the compound to the sputtering surface during film formation.
  • the area ratio which the compound containing an additive element and S occupies is 0.4% or less.
  • the area ratio occupied by the compound containing the additive element and S is preferably 0.3% or less, and more preferably 0.1% or less. Since it is difficult to make the area ratio zero, it may be 0.03% or more.
  • the Vickers hardness When recrystallization is promoted and the strain is sufficiently released, the Vickers hardness becomes low. When the Vickers hardness is 80 Hv or less, recrystallization proceeds sufficiently and the strain is released. For this reason, in this embodiment, the Vickers hardness is limited to 80 Hv or less.
  • the Vickers hardness is preferably 65 Hv or less, and more preferably 50 Hv or less.
  • the Vickers hardness may be 30 Hv or more.
  • the average value of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 80 Hv or less.
  • the same plane as the sputtering surface means a surface parallel to the surface to be sputtered after the copper material is formed on the sputtering target, and this surface becomes a sputtering surface through grinding, polishing or cleaning as necessary.
  • the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less, the variation in Vickers hardness is small, and there is almost no region where the strain is locally high. For this reason, in this embodiment, the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is limited to 10 or less.
  • the standard deviation of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is preferably 5 or less, and more preferably 3 or less.
  • the measurement position of the above-mentioned Vickers hardness is set as follows according to the shape of the copper material for the sputtering target.
  • the center (1) of the circle and the outer peripheral portion on two straight lines that pass through the center of the circle and are orthogonal to each other ( 2) Vickers hardness is measured at 5 points of (3), (4), and (5), and the average value and standard deviation are calculated.
  • the said outer peripheral part means the point located inside 5 mm from the outer periphery of a copper raw material, for example.
  • the intersection (1) where the diagonal lines intersect and the corners (2), (3), (4), Vickers hardness is measured at 5 points in (5), and the average value and standard deviation are calculated.
  • angular part means the point located inside 5 mm along a diagonal from the vertex of a rectangle, for example.
  • imaginary lines are drawn at three locations spaced at equal intervals in the circumferential direction, and on these three imaginary lines, Three points separated in the axial direction are determined, Vickers hardness is measured at these nine points (A1 to A3, B1 to B3, C1 to C3), and the average value and standard deviation are calculated.
  • the three places on each virtual line refer to, for example, the center point of the virtual line and a point located 10 mm inside from both ends of the virtual line.
  • the sputtering rate is a statistical probability value of the number of atoms jumping out of the target when one ion collides with the target, and varies depending on the crystal orientation of each crystal exposed to the sputtering surface. For this reason, when sputtering progresses, unevenness corresponding to crystal grains occurs on the sputtering surface due to the difference in sputtering rate. When the average crystal grain size on the sputter surface exceeds 100 ⁇ m, the crystal orientation anisotropy becomes significant, and the unevenness generated on the sputter surface becomes large, and electric charges are concentrated on the convex portion and abnormal discharge is likely to occur. .
  • the average crystal grain size is regulated to 100 ⁇ m or less in the copper material for sputtering target of the present embodiment.
  • the average crystal grain size is more preferably 80 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the average crystal grain size may be 5 ⁇ m or more.
  • a copper raw material having a copper purity of 99.99 mass% or more is melted to obtain a molten copper.
  • one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added to the obtained molten copper so as to have a predetermined concentration, and component preparation is performed.
  • the ingot of predetermined cross-sectional shape (For example, rectangular shape, circular shape, annular shape) is manufactured using a continuous casting apparatus.
  • Cold processing step S02 cold working is performed on the ingot having a predetermined cross-sectional shape.
  • the processing rate in this cold working is preferably in the range of 40.0% or more and 99.9% or less.
  • Heat treatment step S03 heat treatment is performed after cold working.
  • the heat treatment temperature at this time is preferably in the range of 100 ° C. to 600 ° C., and the holding time is preferably in the range of 30 min to 300 min. More preferably, the heat treatment temperature is in the range of 150 ° C. to 400 ° C., and the holding time is in the range of 60 min to 180 min.
  • the copper material for sputtering target of this embodiment is manufactured by the above processes.
  • the sputtering target is obtained by processing the copper material into a desired shape and bonding a backing plate made of a metal such as copper to the back surface of the copper material as necessary.
  • a bonding layer made of In or an In alloy or the like may be provided between the copper material and the backing plate as necessary.
  • one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added by 0.001 mass%. It is contained within the range of 0.008 mass% or less, and the total of the content of Cu and the content of the additional element is 99.99 mass% or more and is not highly purified as necessary. Can be manufactured at low cost. Further, since one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are contained in the range of 0.001 mass% to 0.008 mass%, S is added to these. It can fix as a compound with an additional element, and can suppress that the progress of recrystallization is inhibited by S. Therefore, a uniform recrystallized structure can be obtained and the occurrence of abnormal discharge (arcing) during film formation can be suppressed.
  • the S content is limited to 0.005 mass% or less
  • the S content can be increased by one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca.
  • the S content can be increased by one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca.
  • the recrystallization temperature is prevented from being increased and the recrystallization temperature is further increased. Crystallization can be promoted, and generation of an unrecrystallized region can be further suppressed. Moreover, generation
  • the Vickers hardness is 80 Hv or less, it has a uniform recrystallized structure, and further, the strain is sufficiently released, and abnormal discharge (arcing) during film formation occurs. Occurrence can be reliably suppressed.
  • the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less, the strain is released uniformly and the amount of strain is locally high. There is no region, and the occurrence of abnormal discharge can be reliably suppressed.
  • the measurement locations of the Vickers hardness are defined according to the shape of the copper material for the sputtering target, a plurality of locations in the same plane as the sputtering surface
  • the average value and standard deviation of the Vickers hardness measured in (1) can be appropriately calculated, and a copper material for a sputtering target having uniform strain can be obtained.
  • the average crystal grain size is made relatively small as 100 ⁇ m or less, the unevenness generated on the sputtering surface when the sputtering progresses is reduced, and the occurrence of abnormal discharge can be suppressed.
  • the cold working step S02 and the heat treatment step S03 are performed after the melting / casting step S01, and as described above, selected from Zr, Ti, Mg, Mn, La, and Ca. Since S (sulfur) is fixed by one or more additive elements and the progress of recrystallization is promoted, a uniform recrystallized structure can be obtained.
  • the sputtering target for forming a high-purity copper film as the wiring film has been described as an example.
  • the present invention is not limited to this, and the present invention is applicable even when the copper film is used for other purposes. be able to.
  • the manufacturing method of the copper material for the sputtering target is not limited to this embodiment, and may be manufactured by another manufacturing method.
  • a hot working process may be provided after the melting / casting process.
  • a specimen for observation is taken from the position shown in FIG. 2 on the same plane as the sputtering surface of the copper material for the sputtering target, and the microstructure is observed using an optical microscope, based on JIS H 0501: 1986 (cutting method). The crystal grain size was measured, and the average crystal grain size was calculated. The evaluation results are shown in Table 2.
  • Comparative Example 1 In Comparative Example 1 in which one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca were not added, the standard deviation of Vickers hardness was large, and the number of abnormal discharge occurrences was relatively high. Increased. It is presumed that the progress of recrystallization was hindered by S, an unrecrystallized region was present, and a region with high strain was present locally. In Comparative Example 2 in which one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added in excess of 0.008 mass%, the area ratio of the compound is high, and abnormal discharge occurs. The number of times has become relatively large. Also, the conductivity was lowered.
  • the Inventive Example 1-23 in which the total of the amount and the content of the additive element was 99.99 mass% or more, the number of occurrences of abnormal discharge was small. It is presumed that recrystallization was promoted and the strain was released uniformly. From the above, it was confirmed that according to the copper material for sputtering target of the present invention, it is possible to stably form a film while suppressing the occurrence of abnormal discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

このスパッタリングターゲット銅素材は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされていることを特徴とする。Sの含有量が0.005mass%以下とされていることが好ましい。

Description

スパッタリングターゲット用銅素材およびスパッタリングターゲット
 本発明は、例えば、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜(銅膜)を成膜する際に用いられるスパッタリングターゲット用銅素材およびそれを用いて製造されたスパッタリングターゲットに関する。
 本願は、2016年8月26日に、日本に出願された特願2016-165553号に基づき優先権を主張し、その内容をここに援用する。
 従来、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等の配線膜としてアルミニウム(Al)が広く使用されている。最近では、配線膜の微細化(幅狭化)および薄膜化が図られており、従来よりも比抵抗の低い配線膜が求められている。
 そこで、上述の配線膜の微細化および薄膜化にともない、Alよりも比抵抗の低い材料である銅(Cu)からなる配線膜が提供されている。
 ところで、上述の配線膜は、通常、スパッタリングターゲットを用いて真空雰囲気中で成膜される。銅配線膜を成膜するスパッタリングターゲットとしては、例えば特許文献1,2に開示されたものが提案されている。
 特許文献1には、純度が99.995wt%以上である純銅において、実質的に再結晶組織を有し、平均結晶粒径が80ミクロン以下であり、かつビッカース硬度が100Hv以下とされたスパッタリング用銅ターゲットが提案されている。
 特許文献1においては、再結晶組織として結晶粒を微細化するとともに歪量を低減することにより、粗大クラスタの発生を抑制し、さらに、銅粒子の方向性を揃えて銅配線を均一に成膜することを目的としている。
 また、特許文献2には、電気銅からゾーンメルト法により溶解インゴットを作成する工程と、前記溶解インゴットを真空溶解することにより高純度銅インゴットを作成する工程と、前記高純度銅インゴットを100~600℃で熱処理することにより再結晶させる工程と、熱処理した前記高純度銅インゴットに機械加工を施す工程とを具備することにより、酸素含有量が10ppm以下であり、硫黄含有量が1ppm以下であり、鉄含有量が1ppm以下であり、純度が99.999%以上の高純度銅基材から成るスパッタリングターゲットを得るスパッタリングターゲットの製造方法が提案されている。
 特許文献2においては、成膜時における配線膜の流動性が良好であり、緻密で密着性が良好な配線膜を形成することが可能なスパッタリングターゲットを製造することを目的としている。
特開平11-158614号公報 特開2007-023390号公報
 ところで、スパッタリングターゲットを用いて成膜を行う場合、電荷の集中によって異常放電(アーキング)が発生することがあり、そのため均一な配線膜を形成できないことがある。異常放電とは、正常なスパッタリング時と比較して極端に高い電流が突然急激に流れて、異常に大きな放電が急激に発生してしまう現象であり、このような異常放電が発生すれば、パーティクルの発生原因となったり、配線膜の膜厚が不均一となったりしてしまうおそれがある。したがって、成膜時の異常放電はできるだけ回避することが望まれる。
 特に最近では、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等においては、配線膜のさらなる高密度化が求められており、従来にも増して、微細化および薄膜化された配線膜を安定して形成する必要がある。
 特許文献1に記載されたスパッタリング用銅ターゲットにおいては、再結晶組織として平均結晶粒径を微細化するとともに歪量を低減することが記載されているが、不純物について特に言及されていない。例えば不純物として硫黄(S)を含有している場合には、再結晶の進行が抑制されるため、均一な再結晶組織を得ることができないおそれがあった。このため、全体として平均結晶粒径が小さく歪量が低くても、未再結晶領域が存在し、局所的に歪量が高い領域が存在する場合には、異常放電が発生しやすくなるおそれがあった。
 また、特許文献2に記載されたスパッタリングターゲットの製造方法においては、ゾーンメルト法によって純度が99.9995%の溶解インゴットを製造しており、不純物量を抑えているが、再結晶挙動について何ら考慮されておらず、歪量についても考慮されていないため、やはり、異常放電が発生しやすくなるおそれがあった。また、ゾーンメルト法を用いているため、生産効率が大幅に低下してしまうといった問題があった。
 この発明は、前述した事情に鑑みてなされたものであって、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することを目的とする。
 前記の課題を解決するために、本発明のスパッタリングターゲット用銅素材は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされている。
 このスパッタリングターゲット用銅素材においては、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
 また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。前記硫黄化合物としては、ZrS,TiS,TiS,MgS,MnS,LaS,La23,CaSなどが挙げられる。
 本発明のスパッタリングターゲット用銅素材においては、Sの含有量が0.005mass%以下とされていることが好ましい。この場合、Sの含有量が0.005mass%以下に制限されているので、上述の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。
 また、本発明のスパッタリングターゲット用銅素材においては、スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であることが好ましい。この場合、前記添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶の進行を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。
 さらに、本発明のスパッタリングターゲット用銅素材においては、ビッカース硬度が80Hv以下であることが好ましい。この場合、均一な再結晶組織を有しており、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
 また、本発明のスパッタリングターゲット用銅素材においては、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることが好ましい。この場合、歪が均一に解放されているので、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
 さらに、本発明のスパッタリングターゲット用銅素材は、平均結晶粒径が100μm以下であることが好ましい。この場合、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。
 一方、本発明のスパッタリングターゲットは、前記スパッタリングターゲット用銅素材からなるターゲット本体と、前記ターゲット本体の一面に固定されたバッキングプレートとを有する。このスパッタリングターゲットにおいても、前述した優れた効果が得られる。
 本発明によれば、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することができる。
スパッタ面が円形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す平面図である。 スパッタ面が矩形形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す平面図である。 スパッタ面が円筒形状をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す平面図である。 スパッタ面が円筒形状をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す正面図である。 本発明の実施形態に係るスパッタリングターゲット用銅素材の製造方法の一例を示すフロー図である。
 以下に、本発明の一実施形態に係るスパッタリングターゲット用銅素材について説明する。
 本実施形態のスパッタリングターゲット用銅素材は、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜として使用される銅膜を基板上に成膜する際に用いられるスパッタリングターゲットの素材となる。スパッタリングターゲット用銅素材の形状は限定されないが、例えば、円板状、矩形平板状、円筒形状であってもよい。
 本実施形態のスパッタリングターゲット用銅素材の組成は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされている。また、本実施形態では、Sの含有量が0.005mass%以下とされている。
 また、本実施形態のスパッタリングターゲット用銅素材は、スパッタ面と同一平面内において前述の添加元素(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上)とSを含む化合物が占める面積率が0.4%以下とされている。
 さらに、本実施形態のスパッタリングターゲット用銅素材は、ビッカース硬度が80Hv以下とされている。
 また、本実施形態のスパッタリングターゲット用銅素材は、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされている。
 さらに、本実施形態のスパッタリングターゲット用銅素材は、平均結晶粒径が100μm以下とされている。
 以下に、本実施形態のスパッタリングターゲット用銅素材の組成、スパッタ面における化合物の面積率、ビッカース硬さ、ビッカース硬さの標準偏差、平均結晶粒径を上述のように規定した理由について説明する。
(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素:0.001mass%以上0.008mass%以下)
 上述の添加元素は、Cuよりも硫化物生成自由エネルギーが低い元素であることから、S(硫黄)と化合物を形成し、Sの全量または大部分を固定することが可能となる。これにより、再結晶を促進することができる。
 Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.001mass%未満の場合には、銅中のSを十分に固定することができなくなるおそれがある。一方、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.008mass%を超えると、添加元素とSを含む化合物の粒子が数多く生成し、あるいは化合物の粒子が粗大化し、スパッタ面に露出するこの化合物の粒子を起因とした異常放電が発生するおそれがある。
 このため、本実施形態では、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量を0.001mass%以上0.008mass%以下の範囲内とする。
 銅中のSをさらに十分に固定するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の下限を0.0015mass%以上とすることが好ましく、0.0020mass%以上とすることがより好ましい。
 また、化合物に起因する異常放電の発生を抑制するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の上限を0.0060mass%以下とすることが好ましく、0.0040mass%以下とすることがより好ましい。
(Cuの含有量と添加元素の含有量との合計が99.99mass%以上)
 配線膜(高純度銅膜)をスパッタにて成膜する場合、異常放電(アーキング)を抑えるために不純物を極力低減することが好ましい。ただし、Cuの含有量と添加元素の含有量との合計が99.999mass%以上に高純度化するためには、製造工程が複雑となり、製造コストが大幅に上昇することになる。そこで、本実施形態では、Cuの含有量と添加元素の含有量との合計を99.99mass%以上とすることで、製造コストの低減を図っている。また、Cuの含有量と添加元素の含有量との合計の上限は、製造コストの低減の観点から、99.999mass%未満とすることが好ましい。
(S:0.005mass%以下)
 Sは、銅の再結晶の進行を阻害するとともに、導電率を低下させる元素である。Sの含有量が0.005mass%を超える場合には、上述の添加元素を添加した場合であっても、Sを十分に固定することができなくなり、再結晶が不十分となって、未再結晶領域が生成し、歪量が局所的に不均一となるおそれがある。また、導電率が低下するおそれがある。
 このため、再結晶を十分に進行させて歪量を十分に均一化するとともに、導電率を確保するためには、Sの含有量を0.005mass%以下に制限することが好ましい。Sの含有量は0.003mass%以下とすることがより好ましく、0.001mass%以下とすることがさらに好ましい。ただし、Sの含有量をゼロにすることは難しいので、0.0003mass%以上であってもよい。
(スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率:0.4%以下)
 Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加することにより、添加元素とSとを含む化合物が生成することになるが、この化合物の一部がスパッタリングターゲット用銅素材に混入することがある。この添加元素とSとを含む化合物の粒子の数が多くなった場合、あるいは、化合物の粒子が粗大化した場合には、再結晶温度が高温化して再結晶が抑制されるおそれがある。また、成膜時においてこの化合物の粒子がスパッタ面に露出することにより異常放電が発生してしまうおそれがある。
 このため、本実施形態では、添加元素とSを含む化合物が占める面積率を0.4%以下としている。添加元素とSを含む化合物が占める面積率は0.3%以下とすることが好ましく、0.1%以下とすることがさらに好ましい。前記面積率をゼロにすることは難しいため0.03%以上であってよい。
(ビッカース硬度:80Hv以下)
 再結晶が促進されて歪が十分に解放された場合にはビッカース硬度は低くなる。ビッカース硬度が80Hv以下であれば、十分に再結晶が進行し、歪が解放されていることになる。このため、本実施形態では、ビッカース硬度を80Hv以下に限定している。ビッカース硬度は65Hv以下とすることが好ましく、50Hv以下とすることがさらに好ましい。前記ビッカース硬度は30Hv以上であってもよい。
 本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値が80Hv以下とされている。スパッタ面と同一平面とは、銅素材がスパッタリングターゲットに成形された後にスパッタリングされる面と平行な面を意味し、この面が必要に応じて研削や研磨や洗浄を経てスパッタ面になる。
(スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差:10以下)
 未再結晶領域を有し、局所的に歪が高い領域が存在している場合には、ビッカース硬度にばらつきが生じることになる。
 スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であれば、ビッカース硬度のばらつきが小さく、局所的に歪が高い領域がほとんど存在しないことになる。
 このため、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差を10以下に限定している。スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差は5以下とすることが好ましく、3以下とすることがさらに好ましい。
 本実施形態において、上述のビッカース硬度の測定位置は、スパッタリングターゲット用銅素材の形状に応じて下記のとおりに設定する。
 スパッタリングターゲット用銅素材のスパッタ面が円形の場合には、図1に示すように、円の中心(1)、及び、円の中心を通過するとともに互いに直交する2本の直線上の外周部分(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出する。前記外周部分とは、例えば銅素材の外周縁から5mm内側に位置する点をいう。
 スパッタリングターゲット用銅素材のスパッタ面が矩形の場合には、図2に示すように、対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出する。前記角部とは、例えば矩形の頂点から対角線に沿って5mm内側に位置する点をいう。
 スパッタリングターゲット用銅素材のスパッタ面が円筒面の場合には、図3Aおよび図3Bに示すように、周方向に等間隔を空けた3ケ所に仮想線を引き、これら3本の仮想線上に、軸線方向に離間した3ケ所を決め、これら合計9箇所(A1~A3、B1~B3、C1~C3)でビッカース硬度を測定し、その平均値及び標準偏差を算出する。各仮想線上の3ケ所は、例えば仮想線の中心点と、仮想線の両端から10mm内側に位置する点をいう。
(平均結晶粒径:100μm以下)
 スパッタレートは、イオン1個がターゲットに衝突したときにターゲットから飛び出す原子数の統計的確率値であり、スパッタ面に露出する各結晶の結晶方位によって異なる。このため、スパッタが進行すると、スパッタ面にはスパッタレートの違いに起因して、結晶粒に対応した凹凸が生じる。
 スパッタ面での平均結晶粒径が100μmを超えると、結晶方位の異方性が顕著となるため、スパッタ面に生じる凹凸が大きくなり、凸部に電荷が集中して異常放電が発生しやすくなる。このような理由から、本実施形態のスパッタリングターゲット用銅素材では、平均結晶粒径を100μm以下に規定している。本実施形態においては、平均結晶粒径を80μm以下とすることがより好ましく、50μm以下とすることがさらに好ましい。平均結晶粒径は5μm以上であってもよい。
 次に、本実施形態のスパッタリングターゲット用銅素材の製造方法の一例について図4を参照して説明する。
(溶解・鋳造工程S01)
 まず、銅の純度が99.99mass%以上の銅原料を溶解し、銅溶湯を得る。次いで、得られた銅溶湯に、所定の濃度となるようにZr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
 そして、本実施形態では、連続鋳造装置を用いて所定の断面形状(例えば矩形状、円形状、円環形状)の鋳塊を製造する。
(冷間加工工程S02)
 次に、所定の断面形状を有する鋳塊に対して冷間加工を行う。この冷間加工における加工率は40.0%以上99.9%以下の範囲内とすることが好ましい。
(熱処理工程S03)
 次に、冷間加工後に熱処理を実施する。このときの熱処理温度は100℃以上600℃以下の範囲内、保持時間は30min以上300min以下の範囲内とすることが好ましい。熱処理温度は150℃以上400℃以下の範囲内、保持時間は60min以上180min以下の範囲内とすることがより好ましい。この熱処理工程S03により、再結晶が進行し、冷間加工工程S02で付与された歪が解放される。
(機械加工工程S04)
 次に、熱処理後に機械加工を行い、表面の酸化膜を除去するとともに所定の形状に仕上げる。
 以上のような工程により、本実施形態のスパッタリングターゲット用銅素材が製造される。スパッタリングターゲットを製造する場合には、前記銅素材を所望の形状に加工し、前記銅素材の裏面に必要に応じて銅などの金属からなるバッキングプレートを接合することにより、スパッタリングターゲットが得られる。銅素材とバッキングプレートとの間には、必要に応じてInまたはIn合金等からなるボンディング層を設けても良い。
 以上のような構成とされた本実施形態のスパッタリングターゲット用銅素材によれば、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
 また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。
 また、本実施形態では、Sの含有量が0.005mass%以下に制限されているので、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。
 さらに、本実施形態では、スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。
 さらに、本実施形態では、ビッカース硬度が80Hv以下とされているので、均一な再結晶組織を有し、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
 また、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされているので、歪が均一に解放されており、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
 さらに、本実施形態では、図1から図3に示すように、スパッタリングターゲット用銅素材の形状に応じて、ビッカース硬度の測定箇所を規定しているので、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値及び標準偏差を適切に算出することができ、均一な歪を有するスパッタリングターゲット用銅素材を得ることができる。
 また、本実施形態では、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。
 さらに、本実施形態では、溶解・鋳造工程S01の後に冷間加工工程S02、熱処理工程S03を実施しているが、上述のように、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってS(硫黄)が固定され、再結晶の進行が促進されているので、均一な再結晶組織を得ることが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本実施形態では、配線膜として高純度銅膜を形成するスパッタリングターゲットを例に挙げて説明したが、これに限定されることはなく、他の用途で銅膜を用いる場合であっても適用することができる。
 スパッタリングターゲット用銅素材の製造方法については、本実施形態に限定されることはなく、他の製造方法によって製造されたものであってもよい。例えば、溶解・鋳造工程後に熱間加工工程を備えていてもよい。また、連続鋳造装置を用いることなく、例えばバッチ式の鋳造装置により鋳塊を得てもよい。
 以下に、前述した本実施形態のスパッタリングターゲット用銅素材について評価した評価試験の結果について説明する。
 純度が99.99mass%以上の銅原料を準備し、表1に示す組成となるように銅溶湯を溶製し、連続鋳造装置を用いて、50mm×200mmの矩形状断面を有する鋳塊を得た。
 得られた鋳塊に対して表2に示す加工率で冷間圧延を実施した。その後、表2に示す条件で熱処理を実施した。
 その後、切削加工を行い、10mm×130mm×140mmの矩形状をなすスパッタリングターゲット用銅素材を得た。
 得られたスパッタリングターゲット用銅素材について、スパッタ面と同一平面内における添加元素とSを含む化合物が占める面積率、ビッカース硬度の平均値と標準偏差、平均結晶粒径、導電率、異常放電発生回数について、以下の手順で評価した。評価結果を表2に示す。
(化合物の面積率)
 SEM-EPMAにて視野60μm×80μmにおける面分析を実施し、添加元素MとSが同一箇所で検出された場合をM-S化合物とみなし、「検出領域(全数)÷観察領域(60μm×80μm)×100」により、面積率を算出した。
(ビッカース硬度)
 スパッタリングターゲット用銅素材のスパッタ面と同一平面内において、図2に示す位置で、JIS Z 2244に準拠してビッカース硬さ試験機にてビッカース硬度を測定し、その平均値及び標準偏差を算出した。評価結果を表2に示す。
(平均結晶粒径)
 スパッタリングターゲット用銅素材のスパッタ面と同一平面において、図2に示す位置から観察用試験片を採取し、光学顕微鏡を使用してミクロ組織観察を行い、JIS H 0501:1986(切断法)に基づき結晶粒径を測定し、平均結晶粒径を算出した。評価結果を表2に示す。
(成膜条件)
 得られたスパッタリングターゲット用銅素材をバッキングプレートに接合し、以下の条件で銅の薄膜を成膜した。
 スパッタ電圧:3000V
 到達真空度:5×10-4Pa
 スパッタガス:Ar、0.4Pa
 前記成膜条件において1時間のスパッタリングを行い、異常放電の発生回数をスパッタ電源装置に付属したアーキングカウンターにて自動的にその回数を計測した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加しなかった比較例1においては、ビッカース硬度の標準偏差が大きく、異常放電発生回数が比較的多くなった。Sによって再結晶の進行が妨げられて未再結晶領域が存在し、局所的に歪が高い領域が存在したためと推測される。
 Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.008mass%を超えて添加した比較例2においては、化合物の面積率が高く、異常放電発生回数が比較的多くなった。また、導電率も低くなった。
 Cuの含有量と前記添加元素の含有量との合計が99.99mass%未満とされた比較例3においては、ビッカース硬度が高く、標準偏差も大きかった。また、平均結晶粒径も大きく、異常放電の発生回数が多くなった。再結晶が不十分であり、歪が高かったためと推測される。
 これに対して、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされた本発明例1-23によれば、異常放電の発生回数が少なかった。再結晶が促進され、歪が均一に解放されたためと推測される。
 以上のことから、本発明のスパッタリングターゲット用銅素材によれば、異常放電の発生を抑制して安定して成膜可能であることが確認された。

Claims (7)

  1.  Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされていることを特徴とするスパッタリングターゲット用銅素材。
  2.  Sの含有量が0.005mass%以下とされていることを特徴とする請求項1に記載のスパッタリングターゲット用銅素材。
  3.  スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であることを特徴とする請求項1又は請求項2に記載のスパッタリングターゲット用銅素材。
  4.  ビッカース硬度が80Hv以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット用銅素材。
  5.  スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることを特徴とする請求項1から請求項4のいずれか一項に記載のスパッタリングターゲット用銅素材。
  6.  平均結晶粒径が100μm以下であることを特徴とする請求項1から請求項5のいずれか一項に記載のスパッタリングターゲット用銅素材。
  7.  請求項1から請求項6のいずれか一項に記載されたスパッタリングターゲット用銅素材からなるターゲット本体と、前記ターゲット本体の一面に固定されたバッキングプレートとを有するスパッタリングターゲット。
PCT/JP2017/027694 2016-08-26 2017-07-31 スパッタリングターゲット用銅素材およびスパッタリングターゲット WO2018037840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780031666.5A CN109312425B (zh) 2016-08-26 2017-07-31 溅射靶用铜材料及溅射靶
KR1020187032547A KR102426482B1 (ko) 2016-08-26 2017-07-31 스퍼터링 타깃용 구리 소재 및 스퍼터링 타깃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016165553A JP6900642B2 (ja) 2016-08-26 2016-08-26 スパッタリングターゲット用銅素材
JP2016-165553 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018037840A1 true WO2018037840A1 (ja) 2018-03-01

Family

ID=61245698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027694 WO2018037840A1 (ja) 2016-08-26 2017-07-31 スパッタリングターゲット用銅素材およびスパッタリングターゲット

Country Status (5)

Country Link
JP (1) JP6900642B2 (ja)
KR (1) KR102426482B1 (ja)
CN (1) CN109312425B (ja)
TW (1) TWI729182B (ja)
WO (1) WO2018037840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088080A1 (ja) * 2017-10-30 2019-05-09 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094241A (ja) * 2018-12-13 2020-06-18 三菱マテリアル株式会社 純銅材、電子・電気機器用部材、放熱用部材
JP7131376B2 (ja) * 2018-12-27 2022-09-06 三菱マテリアル株式会社 スパッタリングターゲット用銅素材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176769A (ja) * 1997-12-15 1999-07-02 Toshiba Corp スパッタリングターゲットおよび銅配線膜
JP2002294438A (ja) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp 銅合金スパッタリングターゲット
JP2009535519A (ja) * 2006-05-01 2009-10-01 ハネウェル・インターナショナル・インコーポレーテッド 中空カソードマグネトロンスパッタリングターゲット及び中空カソードマグネトロンスパッタリングターゲットを成形する方法
JP2010502841A (ja) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法
JP2015203125A (ja) * 2014-04-11 2015-11-16 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975414B2 (ja) 1997-11-28 2007-09-12 日立金属株式会社 スパッタリング用銅ターゲットおよびその製造方法
JP4421586B2 (ja) 2006-09-21 2010-02-24 株式会社東芝 スパッタリングターゲットの製造方法および銅配線膜の製造方法
JP6727749B2 (ja) * 2013-07-11 2020-07-22 三菱マテリアル株式会社 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット
JP5783293B1 (ja) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材
JP2016079450A (ja) * 2014-10-15 2016-05-16 Jx金属株式会社 Cu−Ga合金スパッタリングターゲット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176769A (ja) * 1997-12-15 1999-07-02 Toshiba Corp スパッタリングターゲットおよび銅配線膜
JP2002294438A (ja) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp 銅合金スパッタリングターゲット
JP2009535519A (ja) * 2006-05-01 2009-10-01 ハネウェル・インターナショナル・インコーポレーテッド 中空カソードマグネトロンスパッタリングターゲット及び中空カソードマグネトロンスパッタリングターゲットを成形する方法
JP2010502841A (ja) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法
JP2015203125A (ja) * 2014-04-11 2015-11-16 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088080A1 (ja) * 2017-10-30 2019-05-09 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
JPWO2019088080A1 (ja) * 2017-10-30 2019-11-14 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
US11613794B2 (en) 2017-10-30 2023-03-28 Mitsubishi Materials Corporation Superconductivity stabilizing material, superconducting wire and superconducting coil

Also Published As

Publication number Publication date
TWI729182B (zh) 2021-06-01
TW201816134A (zh) 2018-05-01
CN109312425B (zh) 2022-01-14
CN109312425A (zh) 2019-02-05
JP6900642B2 (ja) 2021-07-07
KR20190042491A (ko) 2019-04-24
KR102426482B1 (ko) 2022-07-27
JP2018031064A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
TWI429762B (zh) 導電膜形成用銀合金濺鍍靶及其製造方法
TWI444492B (zh) Aluminum alloy sputtering target
TWI444491B (zh) Pure aluminum or aluminum alloy sputtering target
WO2012137461A1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
WO2018037840A1 (ja) スパッタリングターゲット用銅素材およびスパッタリングターゲット
KR101854009B1 (ko) 도전성 막 형성용 은 합금 스퍼터링 타겟 및 그 제조 방법
KR20170141280A (ko) 탄탈 스퍼터링 타깃
JP7131376B2 (ja) スパッタリングターゲット用銅素材
JP6043413B1 (ja) アルミニウムスパッタリングターゲット
JP6435981B2 (ja) 銅合金スパッタリングターゲット
CN106661720A (zh) 基于银合金的溅射靶
KR20150114584A (ko) 스퍼터링용 티탄 타깃
WO2014021173A1 (ja) Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法
JP5830908B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669014B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5830907B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP6661951B2 (ja) 高純度銅スパッタリングターゲット材
JP2017071834A (ja) 高純度銅スパッタリングターゲット材
JP5669015B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5406753B2 (ja) Al基合金スパッタリングターゲットおよびその製造方法
JP2017043790A (ja) 高純度銅スパッタリングターゲット材
JP2017150008A (ja) 高純度銅スパッタリングターゲット材
JP6331824B2 (ja) 銅合金スパッタリングターゲット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032547

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843326

Country of ref document: EP

Kind code of ref document: A1