JP6900642B2 - スパッタリングターゲット用銅素材 - Google Patents

スパッタリングターゲット用銅素材 Download PDF

Info

Publication number
JP6900642B2
JP6900642B2 JP2016165553A JP2016165553A JP6900642B2 JP 6900642 B2 JP6900642 B2 JP 6900642B2 JP 2016165553 A JP2016165553 A JP 2016165553A JP 2016165553 A JP2016165553 A JP 2016165553A JP 6900642 B2 JP6900642 B2 JP 6900642B2
Authority
JP
Japan
Prior art keywords
less
mass
sputtering target
vickers hardness
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016165553A
Other languages
English (en)
Other versions
JP2018031064A (ja
Inventor
翔一郎 矢野
翔一郎 矢野
敏夫 坂本
敏夫 坂本
志信 佐藤
志信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016165553A priority Critical patent/JP6900642B2/ja
Priority to PCT/JP2017/027694 priority patent/WO2018037840A1/ja
Priority to CN201780031666.5A priority patent/CN109312425B/zh
Priority to KR1020187032547A priority patent/KR102426482B1/ko
Priority to TW106126537A priority patent/TWI729182B/zh
Publication of JP2018031064A publication Critical patent/JP2018031064A/ja
Application granted granted Critical
Publication of JP6900642B2 publication Critical patent/JP6900642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、例えば、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜(銅膜)を成膜する際に用いられるスパッタリングターゲット用銅素材に関するものである。
従来、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等の配線膜としてAlが広く使用されている。最近では、配線膜の微細化(幅狭化)および薄膜化が図られており、従来よりも比抵抗の低い配線膜が求められている。
そこで、上述の配線膜の微細化および薄膜化にともない、Alよりも比抵抗の低い材料である銅(Cu)からなる配線膜が提供されている。
ところで、上述の配線膜は、通常、スパッタリングターゲットを用いて真空雰囲気中で成膜される。銅配線膜を成膜するスパッタリングターゲットとしては、例えば特許文献1,2に開示されたものが提案されている。
ここで、特許文献1には、純度が99.995wt%以上である純銅において、実質的に再結晶組織を有し、平均結晶粒径が80ミクロン以下であり、かつビッカース硬度が100Hv以下とされたスパッタリング用銅ターゲットが提案されている。
この特許文献1においては、再結晶組織として結晶粒を微細化するとともに歪量を低減することにより、粗大クラスタの発生を抑制し、さらに、銅粒子の方向性を揃えて銅配線を均一に成膜することを目的としている。
また、特許文献2には、電気銅からゾーンメルト法により溶解インゴットを作成する工程と、上記溶解インゴットを真空溶解することにより高純度銅インゴットを作成する工程と、上記高純度銅インゴットを100〜600℃で熱処理することにより再結晶させる工程と、熱処理した上記高純度銅インゴットに機械加工を施す工程とを具備することにより、酸素含有量が10ppm以下であり、硫黄含有量が1ppm以下であり、鉄含有量が1ppm以下であり、純度が99.999%以上の高純度銅基材から成るスパッタリングターゲットを得るスパッタリングターゲットの製造方法が提案されている。
この特許文献2においては、成膜時における配線膜の流動性が良好であり、緻密で密着性が良好な配線膜を形成することが可能なスパッタリングターゲットを製造することを目的としている。
特開平11−158614号公報 特開2007−023390号公報
ところで、スパッタリングターゲットを用いて成膜を行う場合、電荷の集中によって異常放電(アーキング)が発生することがあり、そのため均一な配線膜を形成できないことがある。ここで異常放電とは、正常なスパッタリング時と比較して極端に高い電流が突然急激に流れて、異常に大きな放電が急激に発生してしまう現象であり、このような異常放電が発生すれば、パーティクルの発生原因となったり、配線膜の膜厚が不均一となったりしてしまうおそれがある。したがって、成膜時の異常放電はできるだけ回避することが望まれる。
特に最近では、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等においては、配線膜のさらなる高密度化が求められており、従来にも増して、微細化および薄膜化された配線膜を安定して形成する必要がある。
ここで、特許文献1に記載されたスパッタリング用銅ターゲットにおいては、再結晶組織として平均結晶粒径を微細化するとともに歪量を低減することが記載されているが、不純物について特に言及されていない。例えば不純物として硫黄(S)を含有している場合には、再結晶の進行が抑制されるため、均一な再結晶組織を得ることができないおそれがあった。このため、全体として平均結晶粒径が小さく歪量が低くても、未再結晶領域が存在し、局所的に歪量が高い領域が存在する場合には、異常放電が発生しやすくなるおそれがあった。
また、特許文献2に記載されたスパッタリングターゲットの製造方法においては、ゾーンメルト法によって純度が99.9995%の溶解インゴットを製造しており、不純物量を抑えているが、再結晶挙動について何ら考慮されておらず、歪量についても考慮されていないため、やはり、異常放電が発生しやすくなるおそれがあった。また、ゾーンメルト法を用いているため、生産効率が大幅に低下してしまうといった問題があった。
この発明は、前述した事情に鑑みてなされたものであって、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することを目的とする。
上記の課題を解決するために、本発明のスパッタリングターゲット用銅素材は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上99.999mass%未満とされ、Sの含有量が0.005mass%以下とされており、平均結晶粒径が100μm以下であり、スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であり、ビッカース硬度が80Hv以下であり、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることを特徴としている。
この構成のスパッタリングターゲット用銅素材においては、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上99.999mass%未満とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。
また、Sの含有量がSの含有量が0.005mass%以下に制限されているので、上述の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。
さらに、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。
またスパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶の進行を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。
さらにビッカース硬度が80Hv以下であるので、均一な再結晶組織を有しており、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
またスパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であり、歪が均一に解放されているので、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
本発明によれば、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することができる。
スパッタ面が円形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。 スパッタ面が矩形形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。 スパッタ面が円筒形状をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。 本発明の実施形態に係るスパッタリングターゲット用銅素材の製造方法の一例を示すフロー図である。
以下に、本発明の一実施形態に係るスパッタリングターゲット用銅素材について説明する。
本実施形態であるスパッタリングターゲット用銅素材は、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜として使用される銅膜を基板上に成膜する際に用いられるスパッタリングターゲットの素材となるものである。なお、スパッタリングターゲット用銅素材としては、円板状、矩形平板状、円筒形状のものがある。
そして、本実施形態であるスパッタリングターゲット用銅素材の組成は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされている。また、本実施形態では、Sの含有量が0.005mass%以下とされている。
また、本実施形態であるスパッタリングターゲット用銅素材は、スパッタ面と同一平面内において前述の添加元素(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上)とSを含む化合物が占める面積率が0.4%以下とされている。
さらに、本実施形態であるスパッタリングターゲット用銅素材は、ビッカース硬度が80Hv以下とされている。
また、本実施形態であるスパッタリングターゲット用銅素材は、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされている。
さらに、本実施形態であるスパッタリングターゲット用銅素材は、平均結晶粒径が100μm以下とされている。
以下に、本実施形態であるスパッタリングターゲット用銅素材の組成、スパッタ面における化合物の面積率、ビッカース硬さ、ビッカース硬さの標準偏差、平均結晶粒径を上述のように規定した理由について説明する。
(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素:0.001mass%以上0.008mass%以下)
上述の添加元素は、Cuよりも硫化物生成自由エネルギーが低い元素であることから、S(硫黄)と化合物を形成し、Sを固定することが可能となる。これにより、再結晶を促進することができる。
ここで、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.001mass%未満の場合には、銅中のSを十分に固定することができなくなるおそれがある。一方、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.008mass%を超えると、添加元素とSを含む化合物が数多く生成し、あるいは化合物が粗大化し、この化合物を起因とした異常放電が発生するおそれがある。
このため、本実施形態では、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量を0.001mass%以上0.008mass%以下の範囲内とする。
なお、銅中のSをさらに十分に固定するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の下限を0.0015mass%以上とすることが好ましく、0.0020mass%以上とすることが好ましい。
また、化合物に起因する異常放電の発生を抑制するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の上限を0.0060mass%以下とすることが好ましく、0.0040mass%以下とすることが好ましい。
(Cuの含有量と添加元素の含有量との合計が99.99mass%以上)
配線膜(高純度銅膜)をスパッタにて成膜する場合、異常放電(アーキング)を抑えるために不純物を極力低減することが好ましい。ただし、Cuの含有量と添加元素の含有量との合計が99.999mass%以上に高純度化するためには、製造工程が複雑となり、製造コストが大幅に上昇することになる。そこで、本実施形態では、Cuの含有量と添加元素の含有量との合計を99.99mass%以上とすることで、製造コストの低減を図っている。また、Cuの含有量と添加元素の含有量との合計の上限は、製造コストの低減の観点から、99.999mass%未満とすることが好ましい。
(S:0.005mass%以下)
Sは、銅の再結晶の進行を阻害するとともに、導電率を低下させる元素である。ここで、Sの含有量が0.005mass%を超える場合には、上述の添加元素を添加した場合であっても、Sを十分に固定することができなくなり、再結晶が不十分となって、未再結晶領域が生成し、歪量が局所的に不均一となるおそれがある。また、導電率が低下するおそれがある。
このため、再結晶を十分に進行させて歪量を十分に均一化するとともに、導電率を確保するためには、Sの含有量を0.005mass%以下に制限することが好ましい。なお、Sの含有量は0.003mass%以下とすることが好ましく、0.001mass%以下とすることがさらに好ましい。
(スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率:0.4%以下)
Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加することにより、添加元素とSとを含む化合物が生成することになるが、この化合物の一部がスパッタリングターゲット用銅素材に混入することがある。この添加元素とSとを含む化合物の数が多くなった場合、あるいは、化合物が粗大化した場合には、再結晶温度が高温化して再結晶が抑制されるおそれがある。また、成膜時においてこの化合物に起因して異常放電が発生してしまうおそれがある。
このため、本実施形態では、添加元素とSを含む化合物が占める面積率を0.4%以下としている。なお、添加元素とSを含む化合物が占める面積率は0.3%以下とすることが好ましく、0.1%以下とすることがさらに好ましい。
(ビッカース硬度:80Hv以下)
再結晶が促進されて歪が十分に解放された場合にはビッカース硬度は低くなる。
ここで、ビッカース硬度が80Hv以下であれば、十分に再結晶が進行し、歪が解放されていることになる。
このため、本実施形態では、ビッカース硬度を80Hv以下に限定している。なお、ビッカース硬度は65Hv以下とすることが好ましく、50Hv以下とすることがさらに好ましい。
本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値が80Hv以下とされている。
(スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差:10以下)
未再結晶領域を有し、局所的に歪が高い領域が存在している場合には、ビッカース硬度にばらつきが生じることになる。
ここで、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であれば、ビッカース硬度のばらつきが小さく、局所的に歪が高い領域がほとんど存在しないことになる。
このため、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差を10以下に限定している。なお、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差は5以下とすることが好ましく、3以下とすることがさらに好ましい。
ここで、本実施形態においては、上述のビッカース硬度の測定位置については、スパッタリングターゲット用銅素材の形状に応じて設定している。
スパッタリングターゲット用銅素材のスパッタ面が円形をなす場合には、図1に示すように、円の中心(1)、及び、円の中心を通過するとともに互いに直交する2本の直線上の外周部分(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出している。
スパッタリングターゲット用銅素材のスパッタ面が矩形をなす場合には、図2に示すように、対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出している。
スパッタリングターゲット用銅素材のスパッタ面が円筒面をなす場合には、図3に示すように、周方向で等間隔に3ケ所の位置においてそれぞれ軸線方向の3ケ所の合計9箇所(A1〜A3、B1〜B3、C1〜C3)でビッカース硬度を測定し、その平均値及び標準偏差を算出している。
(平均結晶粒径:100μm以下)
スパッタレートは、結晶方位によって異なることから、スパッタが進行するとスパッタ面に、上述のスパッタレートの違いに起因して結晶粒に応じた凹凸が生じることになる。
ここで、平均結晶粒径が100μmを超えると、結晶方位の異方性が顕著となるため、スパッタ面に生じる凹凸が大きくなり、凸部に電荷が集中して異常放電が発生しやすくなる。
このような理由から、本実施形態であるスパッタリングターゲット用銅素材では、平均結晶粒径を100μm以下に規定している。なお、本実施形態においては、平均結晶粒径を80μm以下とすることが好ましく、50μm以下とすることがさらに好ましい。
次に、本実施形態であるスパッタリングターゲット用銅素材の製造方法の一例について図4を参照して説明する。
(溶解・鋳造工程S01)
まず、銅の純度が99.99mass%以上の銅原料を溶解し、銅溶湯を得る。次いで、得られた銅溶湯に、所定の濃度となるようにZr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
そして、本実施形態では、連続鋳造装置を用いて所定の断面形状(例えば矩形状、円形状、円環形状)の鋳塊を製造する。
(冷間加工工程S02)
次に、所定の断面形状を有する鋳塊に対して冷間加工を行う。この冷間加工における加工率は40.0%以上99.9%以下の範囲内とすることが好ましい。
(熱処理工程S03)
次に、冷間加工後に熱処理を実施する。このときの熱処理温度は100℃以上600℃以下の範囲内、保持時間は30min以上300min以下の範囲内とすることが好ましく、さらには、熱処理温度は150℃以上400℃以下の範囲内、保持時間は60min以上180min以下の範囲内とすることが好ましい。この熱処理工程S03により、再結晶が進行し、冷間加工工程S02で付与された歪が解放される。
(機械加工工程S04)
次に、熱処理後に機械加工を行い、表面の酸化膜を除去するとともに所定の形状に仕上げる。
以上のような工程により、本実施形態であるスパッタリングターゲット用銅素材が製造されることになる。
以上のような構成とされた本実施形態であるスパッタリングターゲット用銅素材によれば、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。
また、本実施形態では、Sの含有量が0.005mass%以下に制限されているので、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。
さらに、本実施形態では、スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。
さらに、本実施形態では、ビッカース硬度が80Hv以下とされているので、均一な再結晶組織を有し、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
また、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされているので、歪が均一に解放されており、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
さらに、本実施形態では、図1から図3に示すように、スパッタリングターゲット用銅素材の形状に応じて、ビッカース硬度の測定箇所を規定しているので、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値及び標準偏差を適切に算出することができ、均一な歪を有するスパッタリングターゲット用銅素材を得ることができる。
また、本実施形態では、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。
さらに、本実施形態では、溶解・鋳造工程S01の後に冷間加工工程S02、熱処理工程S03を実施しているが、上述のように、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってS(硫黄)が固定され、再結晶の進行が促進されているので、均一な再結晶組織を得ることが可能となる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、配線膜として高純度銅膜を形成するスパッタリングターゲットを例に挙げて説明したが、これに限定されることはなく、他の用途で銅膜を用いる場合であっても適用することができる。
スパッタリングターゲット用銅素材の製造方法については、本実施形態に限定されることはなく、他の製造方法によって製造されたものであってもよい。例えば、溶解・鋳造工程後に熱間加工工程を備えていてもよい。また、連続鋳造装置を用いることなく鋳塊を得てもよい。
以下に、前述した本実施形態であるスパッタリングターゲット用銅素材について評価した評価試験の結果について説明する。
純度が99.99mass%以上の銅原料を準備し、表1に示す組成となるように銅溶湯を溶製し、連続鋳造装置を用いて、50mm×200mmの矩形状断面を有する鋳塊を得た。
得られた鋳塊に対して表2に示す加工率で冷間圧延を実施した。その後、表2に示す条件で熱処理を実施した。
その後、切削加工を行い、10mm×130mm×140mmの矩形状をなすスパッタリングターゲット用銅素材を得た。
得られたスパッタリングターゲット用銅素材について、スパッタ面と同一平面内における添加元素とSを含む化合物が占める面積率、ビッカース硬度の平均値と標準偏差、平均結晶粒径、導電率、異常放電発生回数について、以下の手順で評価した。評価結果を表2に示す。
(化合物の面積率)
SEM−EPMAにて視野60μm×80μmにおける面分析を実施し、添加元素MとSが同一箇所で検出された場合をM−S化合物とみなし、「検出領域(全数)÷観察領域(60μm×80μm)×100」により、面積率を算出した。
(ビッカース硬度)
スパッタリングターゲット用銅素材のスパッタ面と同一平面内において、図2に示す位置で、JIS Z 2244に準拠してビッカース硬さ試験機にてビッカース硬度を測定し、その平均値及び標準偏差を算出した。評価結果を表2に示す。
(平均結晶粒径)
スパッタリングターゲット用銅素材のスパッタ面と同一平面において、図2に示す位置から観察用試験片を採取し、光学顕微鏡を使用してミクロ組織観察を行い、JIS H 0501:1986(切断法)に基づき、結晶粒径を測定し、平均結晶粒径を算出した。評価結果を表2に示す。
(成膜条件)
得られたスパッタリングターゲット用銅素材をバッキングプレートに接合し、以下の条件で銅の薄膜を成膜した。
スパッタ電圧:3000W
到達真空度:5×10−4Pa
スパッタガス:Ar、0.4Pa
上記成膜条件において1時間のスパッタリングを行い、異常放電の発生回数をスパッタ電源装置に付属したアーキングカウンターにて自動的にその回数を計測した。評価結果を表2に示す。
Figure 0006900642
Figure 0006900642
Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加しなかった比較例1においては、ビッカース硬度の標準偏差が大きく、異常放電発生回数が比較的多くなった。Sによって再結晶の進行が妨げられて未再結晶領域が存在し、局所的に歪が高い領域が存在したためと推測される。
Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.008mass%を超えて添加した比較例2においては、化合物の面積率が高く、異常放電発生回数が比較的多くなった。また、導電率も低くなった。
Cuの含有量と前記添加元素の含有量との合計が99.99mass%未満とされた比較例3においては、ビッカース硬度が高く、標準偏差も大きかった。また、平均結晶粒径も大きく、異常放電の発生回数が多くなった。再結晶が不十分であり、歪が高かったためと推測される。
これに対して、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされた本発明例1−23によれば、異常放電の発生回数が少なかった。再結晶が促進され、歪が均一に解放されたためと推測される。
以上のことから、本発明のスパッタリングターゲット用銅素材によれば、異常放電の発生を抑制して安定して成膜可能であることが確認された。

Claims (1)

  1. Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上99.999mass%未満とされ、Sの含有量が0.005mass%以下とされており、
    平均結晶粒径が100μm以下であり、
    スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であり、
    ビッカース硬度が80Hv以下であり、
    スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることを特徴とするスパッタリングターゲット用銅素材。
JP2016165553A 2016-08-26 2016-08-26 スパッタリングターゲット用銅素材 Active JP6900642B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016165553A JP6900642B2 (ja) 2016-08-26 2016-08-26 スパッタリングターゲット用銅素材
PCT/JP2017/027694 WO2018037840A1 (ja) 2016-08-26 2017-07-31 スパッタリングターゲット用銅素材およびスパッタリングターゲット
CN201780031666.5A CN109312425B (zh) 2016-08-26 2017-07-31 溅射靶用铜材料及溅射靶
KR1020187032547A KR102426482B1 (ko) 2016-08-26 2017-07-31 스퍼터링 타깃용 구리 소재 및 스퍼터링 타깃
TW106126537A TWI729182B (zh) 2016-08-26 2017-08-07 濺鍍靶用銅材料及濺鍍靶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165553A JP6900642B2 (ja) 2016-08-26 2016-08-26 スパッタリングターゲット用銅素材

Publications (2)

Publication Number Publication Date
JP2018031064A JP2018031064A (ja) 2018-03-01
JP6900642B2 true JP6900642B2 (ja) 2021-07-07

Family

ID=61245698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165553A Active JP6900642B2 (ja) 2016-08-26 2016-08-26 スパッタリングターゲット用銅素材

Country Status (5)

Country Link
JP (1) JP6900642B2 (ja)
KR (1) KR102426482B1 (ja)
CN (1) CN109312425B (ja)
TW (1) TWI729182B (ja)
WO (1) WO2018037840A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548029B1 (ko) * 2017-10-30 2023-06-26 미쓰비시 마테리알 가부시키가이샤 초전도 안정화재, 초전도선 및 초전도 코일
JP2020094241A (ja) * 2018-12-13 2020-06-18 三菱マテリアル株式会社 純銅材、電子・電気機器用部材、放熱用部材
JP7131376B2 (ja) * 2018-12-27 2022-09-06 三菱マテリアル株式会社 スパッタリングターゲット用銅素材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975414B2 (ja) 1997-11-28 2007-09-12 日立金属株式会社 スパッタリング用銅ターゲットおよびその製造方法
JPH11176769A (ja) * 1997-12-15 1999-07-02 Toshiba Corp スパッタリングターゲットおよび銅配線膜
JP2002294438A (ja) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp 銅合金スパッタリングターゲット
US20070251819A1 (en) * 2006-05-01 2007-11-01 Kardokus Janine K Hollow cathode magnetron sputtering targets and methods of forming hollow cathode magnetron sputtering targets
US20100000860A1 (en) * 2006-09-08 2010-01-07 Tosoh Smd, Inc. Copper Sputtering Target With Fine Grain Size And High Electromigration Resistance And Methods Of Making the Same
JP4421586B2 (ja) 2006-09-21 2010-02-24 株式会社東芝 スパッタリングターゲットの製造方法および銅配線膜の製造方法
JP6727749B2 (ja) * 2013-07-11 2020-07-22 三菱マテリアル株式会社 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット
JP5828350B2 (ja) * 2014-04-11 2015-12-02 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材の製造方法
JP5783293B1 (ja) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材
JP2016079450A (ja) * 2014-10-15 2016-05-16 Jx金属株式会社 Cu−Ga合金スパッタリングターゲット

Also Published As

Publication number Publication date
TWI729182B (zh) 2021-06-01
TW201816134A (zh) 2018-05-01
CN109312425B (zh) 2022-01-14
CN109312425A (zh) 2019-02-05
WO2018037840A1 (ja) 2018-03-01
KR20190042491A (ko) 2019-04-24
KR102426482B1 (ko) 2022-07-27
JP2018031064A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
TWI535867B (zh) 圓筒型濺鍍靶用材料
JP6727749B2 (ja) 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット
JP7018055B2 (ja) スパッタリングターゲット及び、その製造方法
JP6900642B2 (ja) スパッタリングターゲット用銅素材
WO2012137461A1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP7131376B2 (ja) スパッタリングターゲット用銅素材
JP2011127160A (ja) スパッタリングターゲット材
JP6435981B2 (ja) 銅合金スパッタリングターゲット
WO2017022320A1 (ja) アルミニウムスパッタリングターゲット
KR20150114584A (ko) 스퍼터링용 티탄 타깃
JP2018087371A (ja) アルミニウム合金スパッタリングターゲット
JP2019183256A (ja) スパッタリングターゲット材
JP6661951B2 (ja) 高純度銅スパッタリングターゲット材
JP6661953B2 (ja) 高純度銅スパッタリングターゲット材
JP5830908B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669014B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669015B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP6651737B2 (ja) 高純度銅スパッタリングターゲット材
JP6662087B2 (ja) 高純度銅スパッタリングターゲット材
CN110709532B (zh) 溅射靶材、溅射靶、溅射靶用铝板及其制造方法
JP6331824B2 (ja) 銅合金スパッタリングターゲット
JP2018145518A (ja) Cu−Ni合金スパッタリングターゲット
JP2010159496A (ja) タンタルスパッタリングターゲット及びその製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150