WO2018036428A1 - 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备 - Google Patents
一种金属纳米线-抗氧化材料复合的透明导电膜及其制备 Download PDFInfo
- Publication number
- WO2018036428A1 WO2018036428A1 PCT/CN2017/098069 CN2017098069W WO2018036428A1 WO 2018036428 A1 WO2018036428 A1 WO 2018036428A1 CN 2017098069 W CN2017098069 W CN 2017098069W WO 2018036428 A1 WO2018036428 A1 WO 2018036428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- conductive film
- metal nanowire
- metal
- graphene
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the invention relates to the technical field of transparent electrodes, in particular to a transparent conductive film composited with a metal nanowire-antioxidant material and a preparation thereof.
- Transparent conductive materials are a class of transparent materials with conductive functions, which have been widely used in many industrial fields, such as transparent antistatic sealing materials for electronic industry, transparent electrode materials, electrochromic display materials, smart window materials, transparent electrothermal materials, Nonlinear optical materials and transparent anti-electromagnetic radiation materials.
- the transparent oxide film which is the most widely used in the industry is an indium tin oxide film, referred to as an ITO film.
- ITO film is an important photoelectric material with both light transmittance and conductivity. It has good electrical conductivity (resistivity ⁇ is about 10 -4 ⁇ cm) and is transparent to visible light (transmittance can reach more than 85%).
- ITO indium is a rare precious metal, and the development of technology brings worldwide demand so that it is in short supply.
- the preparation method is very expensive. For example, the prepared target is up to nearly 10,000 yuan per kilogram.
- the preparation methods such as sputtering, vapor deposition, pulsed laser deposition, etc. are very complicated, the equipment requirements are high, and high vacuum and high precision are required. Chemical ratio control and strict oxide structure morphology control, process control is difficult.
- an oxide film such as ITO is a brittle crystalline material, and the stress is broken, resulting in a large decrease in conductivity and optical clarity (conductivity drops by several orders of magnitude), which is greatly limited in use.
- Heavy metal indium is toxic and harmful to the human body during preparation and application; in addition, Sn and In have a large atomic weight, which easily penetrates into the substrate during film formation, poisoning the substrate material, especially in liquid crystal display devices. Serious pollution has led to restrictions on use.
- ITO will be reduced in the environment of hydrogen and the like, and hydrogen is necessary for the preparation of solar cells, and the efficiency of solar cells will be reduced after ITO reduction. Therefore, its further application development prospects are being challenged by new transparent conductive materials.
- These new generations of transparent conductive materials include: 1) new oxide transparent conductive materials FTO (SnO: F), AZO, GZO (ZnO: Gd), etc. 2) organic conductive transparent materials such as polythiophene 3) graphene, carbon nanotubes , nano silver wire and other nano-conductive transparent film.
- the metal nanowire-antioxidant material composite transparent conductive film of the present invention comprises a highly conductive transparent metal nanowire and a continuous film of an anti-oxidation material for isolating air covered on the outside of the metal nanowire grid.
- the antioxidant material is graphene or a conductive nano metal oxide.
- metal nanowires include: silver nanowires, copper nanowires, gold nanowires, palladium nanowires, alloy nanowires, or copper core/gold shells, and silver core/gold shell nanowires.
- the metal nanowires have an average diameter of less than 80 nm and an aspect ratio of more than 400; and the percentage of the graphene below 5 layers is 70% or more.
- the metal nanowires have an average diameter of less than 50 nanometers; and the percentage of the graphenes below 5 layers is 80% or more.
- the metal nanowires have an average diameter of less than 30 nanometers; and the percentage of the graphenes below 5 layers is 90% or more.
- the nano metal oxide comprises nano zinc oxide and nano iron oxide.
- a method for preparing a metal nanowire-graphene composite transparent conductive film comprising:
- metal twin crystals are selected under the protection of an organic ligand to form a nano-line with a larger aspect ratio
- Step 2 Chemically modify the substrate
- the base surface is mixed with a strong acid, a strong acid and a strong oxidizing agent, hydroxylated with a strong base or treated with an oxygen plasma for carboxylation or hydroxylation, and then modified with a coupling agent containing a mercapto group and an amino group;
- the metal nanowire dispersion is coated on the substrate, and then the anti-oxidation material prepared in step 1 is coated on the film to form a uniform and stable transparent conductive film; in order to obtain a transparent and stable transparent conductive film, the invention adopts The chemical modification grafting method realizes chemical bonding of metal nanowires, graphene sheets and substrates such as glass and PET.
- the solvent is removed by hot evaporation, and the chemical bonding of the substrate to the metal nanowires and the antioxidant material is achieved by heating.
- the substrate in the step 2 is a glass substrate or a PET substrate; and the surface of the glass substrate is treated with a strong acid or a mixture of a strong acid and a strong oxidizing agent, and then modified with a mercapto silane coupling agent and an aminosilane coupling agent;
- the PET substrate after hydroxylation by strong alkali chemical treatment, it is modified with a coupling agent having a mercapto group and an amino group; the chemical modification uses a coupling which can be grafted together with a substrate, a metal nanowire, a graphene or a nano metal oxide. The agent is modified.
- the coupling agent also contains a binding group with a functional coating such as a substrate and silver nanowire graphene, and chemical grafting can be achieved according to different coupling agents under certain process conditions.
- the coating film of the step 3 adopts a wet precision coating process, and includes one of a slant plate coating, a curtain coating, a slit coating, a roller printing, a gravure coating method and the like.
- the surface tension of the solution and the substrate is adjusted so that the contact angle of the solution on the substrate is minimized.
- the method of adjusting the surface tension depends on the nature of the substrate and the solution.
- the surface of the substrate can be hydroxylated or lightly oxidized (carboxylated) to achieve hydrophilic hydrophilicity; for example, glass.
- the surface of the substrate is hydroxylated by a strong acid or a mixture of a strong acid and a strong oxidizing agent; the PET substrate is chemically hydroxylated by a strong base; or PET, the glass is treated with an oxygen plasma carboxylation.
- the metal nanowire-antioxidant material composite transparent conductive film product of the invention belongs to a new generation of transparent conductive film, can overcome various shortcomings of the traditional transparent conductive film, has rich material sources, is relatively easy to prepare, has low cost, and is cost-effective. High, flexible, non-toxic, environmentally resistant, chemically stable, not easy to restore.
- the metal nanowire-antioxidant material composite transparent conductive film has excellent sheet resistance and light transmittance, and excellent properties such as flexibility.
- Example 1 is a scanning electron micrograph of a silver nanowire in Example 1.
- Graphene transparent conductive film the sheet resistance is below 300 ohms, and the process is adjustable, which solves the problem of the combination of graphene and substrate, and has the outstanding advantages of high mechanical stability, high uniformity, good flexibility, etc., bending 10000 times (bend)
- the diameter of the fold is 2 mm) and the conductivity is reduced by 2% or less.
- the silver nanowire transparent conductive film has a light transmittance of 92% or more, a sheet resistance of 80 ohms or less, and these performance processes are adjustable, the haze is 1.5%, and the mechanical stability is high, the uniformity is high, and the like, and the bending is 10,000 times (bending) The diameter of 2mm) decreases by 2% or less.
- silver nanowire films have the following serious drawbacks:
- the resistance is significantly increased, resulting in unstable sheet resistance of the silver nanowire film and a large sheet resistance.
- the silver nanowire film prepared by our experiment has an initial sheet resistance of 50 ohms. Under pure oxygen at 30 ° C, the sheet resistance becomes 120 ohms after 100 hours, and becomes 80 ohms after 600 hours in air at 40 ° C. The instability of the sheet resistance seriously affects the industrial application of the silver nanowire transparent wire film.
- the conductive mechanism of the silver nanowire film is that the silver nanowires form a grid conductive, and the grid size is generally 10 square micrometers, which can meet the demand for some less demanding applications, but because the silver nanowire film is in the grid Among them, it is insulative, resulting in insufficient uniformity of conductivity, and is not suitable for transparent conductive films with high requirements such as OLED display. Copper nanowire films also have these problems. Gold, palladium nanowires, or copper/gold, silver/gold (heart/shell) nanowire films have many higher oxidation resistances, but are expensive, and grids are not sufficiently conductive. The use of copper/gold, silver/gold (heart/shell) nanowire films has the advantage of lower cost than gold and palladium nanowires in addition to the oxidation resistance of gold and palladium nanowire films.
- the nano-zinc oxide prepared by the sol method and the oxide film such as nano-iron oxide have high light transmittance and good oxidation resistance stability, but the conductivity is poor. Although the film prepared by the high-temperature sputtering method has improved conductivity, the device is complicated. High energy consumption.
- a method for preparing a graphene transparent conductive film is a CVD method, and a continuous transparent conductive film is prepared.
- the method has the advantages of high preparation cost, complicated process, difficult control, and easy cracking during processing.
- the composite transparent conductive film prepared by the solution coating method has the advantages of simple process, easy preparation, and can be directly prepared on the substrate, has the advantages of continuous processing, oxidation resistance, high stability, and the whole surface is electrically conductive (non-square The outstanding advantages of conduction).
- graphene is also an anti-corrosion coating with outstanding performance. Except for hydrogen atoms, graphene film can not penetrate all other atoms and molecules, which can effectively isolate the inner layer material from the surrounding environment. Table 1 compares the performance of ITO transparent conductive film and a new generation of transparent conductive film:
- the invention combines a metal nanowire transparent conductive film with a graphene transparent conductive film or a high light transmissive nano metal oxide film, first prepares a suitable substrate, such as PET, glass, etc., and prepares a metal nanowire transparent conductive film on the substrate. Then, a layer of graphene sheet or a highly transparent metal oxide film is further coated on the metal nanowire transparent conductive film to form a graphene or metal oxide transparent conductive film.
- the silver nanowire-graphene/metal oxide composite transparent conductive film thus prepared has the advantages of both, and overcomes the respective disadvantages.
- the present invention is also directed to the metal nanowire film and the solution coating method, the graphene transparent conductive film is easy to fall off during the processing, the silver nanowire or the graphene sheet is easy to fall off, causing the electrical property to be degraded, the post processing is difficult, the yield is low, and the like, the transparent conductive
- the substrate of the film (PET, glass, etc.) is chemically modified to achieve a weak van der Waals force bond between the silver nanowire and the graphene or the combination of the nano-oxide and the transparent substrate to a strong covalent bond or ionic bond.
- the flexibility of the transparent conductive film is improved, the bending resistance is increased, the stability is high during the processing, and the yield and performance can be greatly improved.
- 0.1 micromolar of AgNO 3 and 0.1 micromole of copper chloride are mixed, and an appropriate amount of ethylene glycol and an appropriate amount of PVP of appropriate molecular weight are added, and heated to 140 ° C for 40 minutes to obtain silver having a diameter of 40 nm and a length of 18-25 ⁇ m.
- Nanowires. 40 mesh flake graphite powder was added to the aqueous solution and stirred with a high speed disperser to obtain an aqueous graphene solution in which the graphene sheet occupied 60-70% of the graphene sheet or less.
- the 50 micron PET film is hydroxylated with 20% sodium hydroxide, and then the mercaptosilane coupling agent and the aminosilane coupling agent are simultaneously modified, and the silver coating is applied by spin coating (large-area film is also prepared by ramp coating).
- the nanowire dispersion was dried at 120 ° C, and then spin-coated with a graphene dispersion, and treated at 180 ° C for 1 minute to obtain a silver nanowire graphene transparent conductive film.
- the silver nanographene wire composite transparent conductive film has a sheet resistance of 50 ohms and a light transmittance of 89%.
- the conductivity in the 200 ° C pure oxygen environment is reduced by 0.2% or less in 200 days, and the conductive points are finely reached to the 1 nm level; (2 mm in diameter)
- the conductivity decreased by 2% or less, and the haze was less than 1.2%.
- a silver nanowire dispersion was prepared in accordance with the method of Example 1.
- the 50-mesh flake graphite powder is oxidized by concentrated sulfuric acid and potassium permanganate, and the graphene oxide solution is obtained by ultrasonic dispersion, and is reduced into graphite by hydrazine hydrate. Alkene solution.
- the 50 micron flexible glass is treated with concentrated sulfuric acid and hydrogen peroxide mixture, hydroxylated, and then modified with mercaptosilane and aminosilane, and then spin-coated (large-area film is also coated by curtain coating, gravure coating) Preparation) Coating of the silver nanowire dispersion, treatment at 120 ° C for one minute, then spin coating the graphene dispersion, and treating at 180 ° C for one minute.
- the silver nanographene wire composite transparent conductive film has a sheet resistance of 50 ohms and a light transmittance of 89%.
- the conductivity of the 200 days in a pure oxygen environment of 200 ° C is reduced by 0.2% or less, and the conductive points are finely 1 nanometer; bending 10,000 times (2 mm in diameter)
- the conductivity decreased by 2% or less, and the haze was less than 1.2%.
- a silver nanowire dispersion was prepared according to the method in Example 1, and a zinc oxide nanoparticle sol was purchased, and the two dispersions were mixed.
- the 50 micron flexible glass is treated with a mixture of concentrated sulfuric acid and hydrogen peroxide to be hydroxylated, simultaneously modified with mercaptosilane and aminosilane, and then spin-coated (large-area film can also be coated by curtain coating or gravure coating).
- Preparation coating a mixed dispersion of silver nanowires and nano zinc oxide, treating at 120 ° C for one minute, 180 ° C for one minute, composite transparent conductive film sheet resistance of 50 ohms, light transmittance of 92%, in a pure oxygen environment of 200 ° C
- the conductivity of 200 days decreased by 0.2% or less, and the conductive points were fine to 1 nanometer level; the conductivity decreased by 2% or less and the haze was less than 1.2% after bending 10,000 times (diameter 2mm).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
Abstract
一种金属纳米线-抗氧化材料复合的透明导电膜,涉及透明电极技术领域。该透明导电膜包括高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。所述透明导电膜,材料来源丰富,制备相对容易,成本低,性价比高,柔性好,无毒,耐环境,化学稳定性好,不易还原,并且具有良好的方块电阻和透光率,以及柔性等优良性能。
Description
本发明涉及透明电极技术领域,具体涉及一种金属纳米线-抗氧化材料复合的透明导电膜及其制备。
透明导电材料是一类具有导电性功能的透明材料,已经在众多工业领域广泛应用,如电子工业用透明抗静电密封材料、透明电极材料、电致变色显示材料、智能窗材料、透明电热材料、非线性光学材料以及透明抗电磁辐射材料等。工业上得到最广泛的应用的透明氧化物薄膜是氧化铟锡(indium tin oxide)薄膜,简称ITO薄膜。ITO薄膜是兼备透光性和导电性的一种重要的光电材料,具有导电性好(电阻率ρ约为10-4Ω·cm),对可见光透明(透过率可达85%以上),对红外光反射性强(反射率大于80%),对微波衰减率大于85%,而且加工性能良好,便于刻蚀,膜层硬度高,既耐磨又耐化学腐蚀等优良特性。但是使用ITO存在许多问题,主要表现在下面几个方面:第一,铟是稀有贵重金属,技术的发展带来世界范围的需求使得其供不应求。第二,其制备方法非常昂贵,例如制备的靶材高达近万元每公斤,溅射法、蒸化沉积、脉冲激光沉积等制备方法非常复杂,设备要求很高,需要高真空、高精确的化学配比控制以及严格的氧化物结构形态控制,工艺控制困难。第三,ITO等氧化物薄膜是一种脆性的结晶材料,施加应力就会破损,导致其导电性和光学清晰度大幅度下降(电导率会下降几个数量级)而致使用上受很大限制,在新型的触摸显示屏、柔性显示屏和其他柔性导电透明膜的应用上有很大的限制,这一点是所有的氧化物基于透明导电薄膜都有的缺点。第四,重金属铟具有毒性,在制备和应用过程中会对人
体有害;另外Sn和In的原子量较大,成膜过程中容易渗入到衬底内部,毒化衬底材料,尤其在液晶显示器件中污染严重致使使用受到限制。第五,ITO在氢气等环境中会被还原,而氢气是太阳能电池制备所必须的,ITO还原后会降低太阳能电池的效率。因此其进一步应用发展前景正受到新型透明导电材料的挑战。这些新一代透明导电材料包括:1)新型氧化物透明导电材料FTO(SnO:F)、AZO、GZO(ZnO:Gd)等,2)聚噻吩等有机导电透明材料3)石墨烯,碳纳米管,纳米银线等纳米导电透明薄膜。
发明内容
有鉴于此,有必要针对上述的问题,提供一种金属纳米线-抗氧化材料复合的透明导电膜及其制备。
为实现上述目的,本发明采取以下的技术方案:
本发明的金属纳米线-抗氧化材料复合的透明导电膜,包括高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。
进一步的,所述金属纳米线包括:银纳米线、铜纳米线、金纳米线、钯纳米线、合金纳米线、或铜心/金壳,银心/金壳纳米线。
进一步的,所述金属纳米线平均直径小于80纳米,长径比大于400;所述石墨烯5层以下的百分比在70%或以上。
进一步的,所述金属纳米线平均直径小于50纳米;所述石墨烯5层以下的百分比在80%或以上。
进一步的,所述金属纳米线平均直径小于30纳米;所述石墨烯5层以下的百分比在90%或以上。
进一步的,所述纳米金属氧化物包括纳米氧化锌和纳米氧化铁。
一种金属纳米线-石墨烯复合的透明导电薄膜的制备方法,包括:
步骤1:分散液的制备
(1)采用本领域常规的金属纳米线制备工艺制备金属纳米线分散液,包括:金属孪晶在有机配体的保护下选择晶面各向异型生长形成较大长径比的纳米线;
(2)石墨烯分散液的制备:采用氧化-还原法或高速分散法制备石墨烯溶液;所述石墨烯溶液采用20-200目的鳞片石墨粉制备,石墨烯溶液中5层以下的石墨烯片占70-90%;
或采用本领域常规的溶胶法制备纳米金属氧化物;
步骤2:对基底进行化学修饰
对基底表面采用强酸、强酸与强氧化剂的混合液、强碱羟基化或用氧等离子体处理羧基化或者羟基化处理后,使用含有巯基和氨基的偶联剂进行修饰;
步骤3:涂膜
先将金属纳米线分散液涂布在基底上,再涂布步骤1制备好的抗氧化材料于上成膜,形成均匀稳定的透明导电薄膜;本发明为了得到结合牢固稳定的透明导电薄膜,采用化学修饰接枝的方法,实现了金属纳米线、石墨烯薄片与玻璃、PET等基底的化学键合。
步骤4:后处理
涂布后,采用热蒸法除去溶剂、加热实现基底与金属纳米线、抗氧化材料的化学健合。
进一步的,步骤2所述基底为玻璃基底或PET基底;对于玻璃基底表面,经过强酸或强酸与强氧化剂的混合液处理羟基化后,用巯基硅烷偶联剂和氨基硅烷偶联剂进行修饰;对于PET基底,通过强碱化学处理羟基化后,使用有巯基和氨基的偶联剂修饰;化学修饰采用可以同时与基底、金属纳米线、石墨烯或者纳米金属氧化物结合接枝起来的偶联剂进行修饰。因银等纳米线容易和巯基结合,石墨烯平面上常常有羧基、环氧基和羟基,可以和氨基等基团健合。
偶联剂同时含有与基底和银纳米线石墨烯等功能涂层的结合基团,根据不同的偶联剂在一定的的工艺条件下即可实现化学接枝。
进一步的,步骤3所述涂膜采用湿式精密涂布工艺,包括斜板式涂布、淋幕式涂布、狭缝式涂布、滚筒印刷、凹版涂布法等中的一种。
进一步的,步骤3中所述的涂膜前,调节溶液和基底的表面张力,使得溶液在基底上的接触角尽量减小。本发明中,调节表面张力的方法视基底和溶液的性质而定,如用酒精或者水溶液时,可以使基底表面羟基化或者轻度氧化(羧基化),即可实现亲水亲酒精;如玻璃基底表面,经过强酸或强酸与强氧化剂的混合液羟基化处理;PET基底,通过强碱化学羟基化处理;或者PET,玻璃用氧等离子体羧基化处理。
本发明的有益效果为:
本发明的金属纳米线-抗氧化材料复合的透明导电膜产品,属于新一代的透明导电薄膜,可以克服传统透明导电薄膜的各种缺点,它的材料来源丰富,制备相对容易,成本低,性价比高,柔性好,无毒,耐环境,化学稳定性好,不易还原。金属纳米线-抗氧化材料复合的透明导电薄膜具有最佳的方块电阻和透光率,以及柔性等优良性能。
图1为实施例1中银纳米线的扫描电镜照片。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案作进一步清楚、完整地描述。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
石墨烯透明导电膜,方块电阻在300欧姆以下,而且工艺可调,解决了石墨烯和基底的结合问题,具有机械稳定性高,均匀性高,柔性好等突出优点,弯折10000次(弯折直径2mm)电导率下降2%以下。
银纳米线透明导电膜透光率92%以上,方块电阻80欧姆以下,而且这些性能工艺可调,雾度1.5%,具有机械稳定性高,均匀性高等突出优点,弯折10000次(弯折直径2mm)电导率下降2%以下。
然而银纳米线膜具有下述严重的缺点:
第一,在空气中容易氧化:Ag+O2→Ag2O
银氧化后,电阻显著变大,导致银纳米线薄膜方块电阻不稳定,方块电阻变大。经试验,我们制备的银纳米线薄膜初始方块电阻为50欧姆,在30℃纯氧下,100小时后方块电阻变成120欧姆,在40℃空气中,600小时后变为80欧姆。方块电阻的不稳定严重影响了银纳米线透明的导线薄膜的工业应用。
第二,银纳米线薄膜的导电机理是银纳米线形成网格导电,网格大小一般是10平方微米,这对于一些要求不高的应用时可以满足需求,但是由于银纳米线薄膜在网格之中是绝缘性的,导致导电均匀性不够细致,对于OLED显示等要求高的透明导电薄膜就不适用了。铜纳米线薄膜同样具有这些问题。金、钯纳米线,或者铜/金,银/金(心/壳)纳米线薄膜抗氧化性高许多,但是价格昂贵,同时也有网格导电不够细致。应用铜/金,银/金(心/壳)纳米线薄膜在保持了和金、钯纳米线薄膜的抗氧化性外具有比金、钯纳米线成本低的优点。
溶胶法制备的纳米氧化锌,纳米氧化铁等氧化物薄膜透光性高,抗氧化性稳定性好,但是导电性很差,高温溅射法制备的薄膜虽然导电性有改善,但是设备复杂,能耗高。
通常制备石墨烯透明导电薄膜的方法为CVD法,制备得连续透明导电薄膜,该方法目前存在制备成本高,工艺复杂,控制困难,加工时容易破裂等突出困难。
本发明采取溶液涂覆的方法制备的复合透明导电膜,该方法工艺简单,制备容易,可以在基底上直接制备,具有继续加工容易,耐氧化,稳定性高,整个面都导电(非方格导电)的突出优点。
此外,石墨烯还是一种性能突出的抗腐蚀涂层,石墨烯膜除了氢原子外,其他所有的原子、分子都不能透过,可以有效的把内层物质和周围环境隔离开来。表1是ITO透明导电薄膜和新一代的透明导电薄膜的性能对比:
表1不同导电薄膜的性能参数
透明导电膜类型 | ITO | 银纳米线 | 石墨烯 | 碳纳米管 |
方块电阻/Ω | 150 | 30-50 | 300 | 400 |
透光率/% | 88 | 90 | 90 | 88 |
颜色 | 浅黄或浅棕 | 无色 | 无色 | 无色 |
耐弯曲性 | 差 | 很好 | 好 | 好 |
耐环境性 | 好 | 差 | 好 | 好 |
规模化 | 好 | 好 | 好 | 好 |
本发明将金属纳米线透明导电薄膜和石墨烯透明导电薄膜或高透光性纳米金属氧化物薄膜复合起来,首先制备合适的基底,如PET,玻璃等,在基底上制备金属纳米线透明导电薄膜,然后在金属纳米线透明导电薄膜上再涂覆一层石墨烯薄片或者高透光性金属氧化物薄膜,形成一层石墨烯或者金属氧化物透明导电薄膜。这样制备的银纳米线-石墨烯/金属氧化物复合透明导电薄膜具有两者的优点,而克服了各自的缺点。具有方块电阻低(比银纳米线透明导电薄膜还低),而在里面的银纳米线在石墨烯薄片或者纳米金属氧化物薄膜的保护下,又可以抗氧化,从而保持了整个透明导电薄膜的电性能的稳定性,并且导电的石墨烯薄片或纳米金属氧化物填充了银纳米线网格之间的空隙,将空隙处
的点通过石墨烯或纳米金属氧化物和银纳米线联通起来,实现了整个面的导电,导电的细致性好。同时由于是溶液涂覆工艺,具有工艺简单易实现,可以直接制备在适用的基底上,后加工容易,因此规模化工业实现的可行性很高。
此外本发明还针对金属纳米线薄膜和溶液涂覆法石墨烯透明导电薄膜在加工过程中银纳米线或者石墨烯薄片容易脱落,引起电性能下降,后加工困难,成品率低等问题,对透明导电薄膜的基底(PET,玻璃等)进行了化学修饰,实现了银纳米线和石墨烯或者纳米氧化物与透明基底之间结合的弱的范德华力结合转变为强的共价键或者离子键结合,使得透明导电薄膜的柔性提高,抗弯折性增高,在加工过程中稳定性高,成品率和性能都能大大提高。
实施例1
0.1微摩尔的AgNO3和0.1微摩尔的氯化铜混合,加入适量乙二醇和适量适当分子量的PVP,加热到140℃,保持40分钟,即可得到直径40纳米,长度18-25微米的银纳米线。将40目的鳞片石墨粉加入水溶液中,用高速分散机搅拌,得到石墨烯水溶液,其中石墨烯溶液中石墨烯片5层以下的占据60-70%。
50微米的PET膜用20%氢氧化钠羟基化,然后同时修饰巯基硅烷偶联剂和氨基硅烷偶联剂,用旋涂法(大面积的膜也用斜坡式涂布法制备)涂上银纳米线分散液,120℃烘干,然后再旋涂上石墨烯分散液,180℃处理1分钟,就得到了银纳米线石墨烯透明导电薄膜。银纳米石墨烯线复合透明导电膜方块电阻50欧姆,透光率89%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
实施例2
按照实施例1中的方法制备银纳米线分散液。采用浓硫酸和高锰酸钾氧化50目的鳞片石墨粉,经超声分散后得到氧化石墨烯溶液,经水合肼还原成石墨
烯溶液。
50微米的柔性玻璃经过浓硫酸和双氧水混合液处理后羟基化,再用巯基硅烷和氨基硅烷同时修饰,然后再经旋涂法(大面积膜也用淋幕式涂布法、凹版涂布法制备)涂布银纳米线分散液,120℃处理一分钟,然后旋涂石墨烯分散液,180℃处理一分钟。银纳米石墨烯线复合透明导电薄膜方块电阻50欧姆,透光率89%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
实施例3
按照实施例1中的方法制备银纳米线分散液,外购氧化锌纳米颗粒溶胶,两种分散液混合。
50微米的柔性玻璃经过浓硫酸和双氧水混合液处理后羟基化,在用巯基硅烷和氨基硅烷同时修饰,然后再经旋涂法(大面积膜也可用淋幕式涂布法、凹版涂布法制备)涂布银纳米线与纳米氧化锌的混合分散液,120℃处理一分钟,180℃处理一分钟,复合透明导电薄膜方块电阻50欧姆,透光率92%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,包括:高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。
- 根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线包括:银纳米线、铜纳米线、金纳米线、钯纳米线、合金纳米线、或铜心/金壳,银心/金壳纳米线。
- 根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于80纳米,长径比大于400;所述石墨烯5层以下的百分比在70%或以上。
- 根据权利要求3所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于50纳米;所述石墨烯5层以下的百分比在80%或以上。
- 根据权利要求4所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于30纳米;所述石墨烯5层以下的百分比在90%或以上。
- 根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述纳米金属氧化物包括纳米氧化锌和纳米氧化铁。
- 一种权利要求1-6任意一项所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,包括:步骤1:分散液的制备(1)采用本领域常规的金属纳米线制备工艺制备金属纳米线分散液,包括:金属孪晶在有机配体的保护下选择晶面各向异型生长形成较大长径比的纳米线;(2)石墨烯分散液的制备:采用氧化-还原法或高速分散法制备石墨烯溶液;所述石墨烯溶液采用20-200目的鳞片石墨粉制备,石墨烯溶液中5层以下的石墨烯片占70-90%;或采用本领域常规的溶胶法制备纳米金属氧化物;步骤2:对基底进行化学修饰对基底表面采用强酸、强酸与强氧化剂的混合液、强碱羟基化或用氧等离子体处理羧基化或者羟基化处理后,使用含有巯基和氨基的偶联剂进行修饰;步骤3:涂膜先将金属纳米线分散液涂布在基底上,再涂布步骤1制备好的抗氧化材料于上成膜,形成均匀稳定的透明导电薄膜;步骤4:后处理涂布后,采用热蒸法除去溶剂、加热实现基底与金属纳米线、抗氧化材料的化学健合。
- 根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤2所述基底为玻璃基底或PET基底;对于玻璃基底表面,经过强酸或强酸与强氧化剂的混合液处理羟基化后,用巯基硅烷偶联剂和氨基硅烷偶联剂进行修饰;对于PET基底,通过强碱化学处理羟基化后,使用有巯基和氨基的偶联剂修饰。
- 根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤3所述涂膜采用湿式精密涂布工艺,包括斜板式涂布、淋幕式涂布、狭缝式涂布、滚筒印刷、凹版涂布法中的一种。
- 根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤3中所述的涂膜前,调节溶液和基底的表面张力,减小溶液在基底上的接触角。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610703852.6A CN106297966A (zh) | 2016-08-22 | 2016-08-22 | 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 |
CN201610703852.6 | 2016-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018036428A1 true WO2018036428A1 (zh) | 2018-03-01 |
Family
ID=57662153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/098069 WO2018036428A1 (zh) | 2016-08-22 | 2017-08-18 | 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106297966A (zh) |
WO (1) | WO2018036428A1 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110258126A (zh) * | 2019-07-22 | 2019-09-20 | 中国科学院工程热物理研究所 | 一种红外隐身迷彩布料及其制备方法 |
CN114635106A (zh) * | 2020-12-15 | 2022-06-17 | 安徽宇航派蒙健康科技股份有限公司 | 采用金属-纳米碳导电膜制备透明电热器件的方法 |
CN115073792A (zh) * | 2022-04-29 | 2022-09-20 | 湖北大学 | 一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器 |
WO2022261301A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-cancer agents |
WO2022261310A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-body drug conjugates |
WO2023077030A1 (en) | 2021-10-29 | 2023-05-04 | Gilead Sciences, Inc. | Cd73 compounds |
WO2023076983A1 (en) | 2021-10-28 | 2023-05-04 | Gilead Sciences, Inc. | Pyridizin-3(2h)-one derivatives |
WO2023122581A2 (en) | 2021-12-22 | 2023-06-29 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023122615A1 (en) | 2021-12-22 | 2023-06-29 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023147418A1 (en) | 2022-01-28 | 2023-08-03 | Gilead Sciences, Inc. | Parp7 inhibitors |
EP4245756A1 (en) | 2022-03-17 | 2023-09-20 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023201268A1 (en) | 2022-04-13 | 2023-10-19 | Gilead Sciences, Inc. | Combination therapy for treating tumor antigen expressing cancers |
WO2023201267A1 (en) | 2022-04-13 | 2023-10-19 | Gilead Sciences, Inc. | Combination therapy for treating trop-2 expressing cancers |
WO2023205719A1 (en) | 2022-04-21 | 2023-10-26 | Gilead Sciences, Inc. | Kras g12d modulating compounds |
WO2024006929A1 (en) | 2022-07-01 | 2024-01-04 | Gilead Sciences, Inc. | Cd73 compounds |
WO2024097812A1 (en) | 2022-11-04 | 2024-05-10 | Gilead Sciences, Inc. | Therapy for treating bladder cancer |
WO2024137852A1 (en) | 2022-12-22 | 2024-06-27 | Gilead Sciences, Inc. | Prmt5 inhibitors and uses thereof |
CN118434249A (zh) * | 2024-07-02 | 2024-08-02 | 浙江省白马湖实验室有限公司 | 一种太阳能电池用柔性透明电极及其制备方法和应用 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106297966A (zh) * | 2016-08-22 | 2017-01-04 | 广东纳路纳米科技有限公司 | 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 |
CN107103843B (zh) * | 2017-05-15 | 2019-09-06 | 京东方科技集团股份有限公司 | 一种柔性显示器的制备方法、柔性显示器和显示设备 |
CN107610814B (zh) * | 2017-08-30 | 2020-08-11 | 中国科学院宁波材料技术与工程研究所 | 一种基于超薄金属网格的透明电极及其制备方法 |
CN107464635B (zh) * | 2017-09-17 | 2019-06-07 | 湖北中暖石墨烯科技有限公司 | 基于石墨烯/银纳米线/壳聚糖的柔性透明导电薄膜 |
CN107799236A (zh) * | 2017-10-31 | 2018-03-13 | 南京旭羽睿材料科技有限公司 | 一种石墨烯电极快速制备方法 |
CN109785991B (zh) * | 2017-11-10 | 2020-07-31 | 上海宝银电子材料有限公司 | 一种客车前挡玻璃用的抗氧化银浆及其制备方法 |
CN109961871B (zh) * | 2018-08-15 | 2020-09-15 | 浙江光达电子科技有限公司 | 一种用于丝印烧结形成透明导体的浆料和应用 |
CN109518458A (zh) * | 2018-11-19 | 2019-03-26 | 南通纺织丝绸产业技术研究院 | 一种以蚕丝为基底的金属纳米线/石墨烯导电材料及其制备方法 |
CN109473200A (zh) * | 2018-12-12 | 2019-03-15 | 北京石墨烯研究院 | 透明导电玻璃及其制备方法 |
CN109949974B (zh) * | 2019-03-15 | 2020-08-25 | 广东格瑞纳思薄膜科技有限公司 | 一种共价键合的pet基纳米银线石墨烯复合透明柔性导电膜及其制备方法 |
CN111743529B (zh) * | 2019-03-27 | 2024-01-12 | 紫石能源有限公司 | 表皮电极及其制作方法 |
CN110132315A (zh) * | 2019-04-08 | 2019-08-16 | 清华大学深圳研究生院 | 一种柔性传感器及其制备方法和可穿戴智能设备 |
CN110085350B (zh) * | 2019-04-28 | 2020-10-13 | 南京信息职业技术学院 | 石墨烯包覆银纳米线透明导电薄膜及其制备方法 |
CN111482617B (zh) * | 2020-01-30 | 2021-09-17 | 浙江大学 | 银纳米线表面原位生长金属氧化物核点复合材料制备方法 |
DE102020006108A1 (de) * | 2020-10-06 | 2022-04-07 | Giesecke+Devrient Currency Technology Gmbh | Transparente, leitfähige Folie und Verwendung derselben |
CN112635103B (zh) * | 2020-12-18 | 2022-07-29 | 深圳先进技术研究院 | 导电图案及其制备方法、柔性电子设备 |
CN112904625B (zh) * | 2021-01-25 | 2022-09-27 | 北海惠科光电技术有限公司 | 导电边框胶的制备方法、导电边框胶及显示面板 |
CN113470979B (zh) * | 2021-07-08 | 2023-01-24 | 安徽大学 | 一种具有电场传感功能的透明柔性锌离子混合电容器及其制备方法 |
CN114038623A (zh) * | 2021-10-25 | 2022-02-11 | 南京邮电大学 | 一种银纳米线-生物材料复合透明导电薄膜及其制备方法与应用 |
CN114420373A (zh) * | 2022-01-22 | 2022-04-29 | 安徽粤智徽源生物科技有限公司 | 一种透明且油墨强粘附性的柔性透明导电电极的制备方法及应用 |
CN115662676B (zh) * | 2022-04-26 | 2024-06-11 | 广东江玻玻璃科技有限公司 | 一种导电浆料及其制备方法和应用 |
CN116549840B (zh) * | 2023-07-07 | 2023-10-31 | 江苏鱼跃医疗设备股份有限公司 | 一种用于耳迷走神经电极的加工工艺 |
CN118276710B (zh) * | 2024-06-04 | 2024-09-06 | 浙江大华技术股份有限公司 | 一种银纳米线触控电极单元及其制备方法、触控面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103377775A (zh) * | 2012-06-01 | 2013-10-30 | 苏州诺菲纳米科技有限公司 | 低雾度透明导电电极 |
CN104616717A (zh) * | 2015-01-13 | 2015-05-13 | 浙江大学 | 一种石墨烯薄膜和金属纳米结构复合的导电材料及制备方法 |
CN104882223A (zh) * | 2015-04-27 | 2015-09-02 | 国家纳米科学中心 | 氧化石墨烯/银纳米线复合透明导电薄膜及其制备方法 |
CN105810304A (zh) * | 2014-12-30 | 2016-07-27 | 北京生美鸿业科技有限公司 | 一种石墨烯/金属纳米丝网格复合透明导电电极及其应用 |
CN106297966A (zh) * | 2016-08-22 | 2017-01-04 | 广东纳路纳米科技有限公司 | 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101991676B1 (ko) * | 2012-03-08 | 2019-06-21 | 주식회사 동진쎄미켐 | 투명 전극 형성용 전도성 잉크 조성물 |
CN103903817B (zh) * | 2014-03-18 | 2016-04-13 | 中科院广州化学有限公司南雄材料生产基地 | 一种透明导电薄膜的制备方法及其应用 |
CN105023629B (zh) * | 2014-04-28 | 2017-02-01 | 中国科学院上海硅酸盐研究所 | 石墨烯‑铜纳米线复合薄膜及其制备方法 |
CN104992752B (zh) * | 2015-07-16 | 2016-12-14 | 城步新鼎盛电子科技有限公司 | 一种纳米银线透明导电薄膜的生产方法 |
-
2016
- 2016-08-22 CN CN201610703852.6A patent/CN106297966A/zh active Pending
-
2017
- 2017-08-18 WO PCT/CN2017/098069 patent/WO2018036428A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103377775A (zh) * | 2012-06-01 | 2013-10-30 | 苏州诺菲纳米科技有限公司 | 低雾度透明导电电极 |
CN105810304A (zh) * | 2014-12-30 | 2016-07-27 | 北京生美鸿业科技有限公司 | 一种石墨烯/金属纳米丝网格复合透明导电电极及其应用 |
CN104616717A (zh) * | 2015-01-13 | 2015-05-13 | 浙江大学 | 一种石墨烯薄膜和金属纳米结构复合的导电材料及制备方法 |
CN104882223A (zh) * | 2015-04-27 | 2015-09-02 | 国家纳米科学中心 | 氧化石墨烯/银纳米线复合透明导电薄膜及其制备方法 |
CN106297966A (zh) * | 2016-08-22 | 2017-01-04 | 广东纳路纳米科技有限公司 | 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110258126A (zh) * | 2019-07-22 | 2019-09-20 | 中国科学院工程热物理研究所 | 一种红外隐身迷彩布料及其制备方法 |
CN114635106A (zh) * | 2020-12-15 | 2022-06-17 | 安徽宇航派蒙健康科技股份有限公司 | 采用金属-纳米碳导电膜制备透明电热器件的方法 |
CN114635106B (zh) * | 2020-12-15 | 2023-12-26 | 安徽宇航派蒙健康科技股份有限公司 | 采用金属-纳米碳导电膜制备透明电热器件的方法 |
US11931424B2 (en) | 2021-06-11 | 2024-03-19 | Gilead Sciences, Inc. | Combination MCL-1 inhibitors with anti-body drug conjugates |
US11957693B2 (en) | 2021-06-11 | 2024-04-16 | Gilead Sciences, Inc. | Combination MCL-1 inhibitors with anti-cancer agents |
WO2022261301A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-cancer agents |
WO2022261310A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-body drug conjugates |
WO2023076983A1 (en) | 2021-10-28 | 2023-05-04 | Gilead Sciences, Inc. | Pyridizin-3(2h)-one derivatives |
WO2023077030A1 (en) | 2021-10-29 | 2023-05-04 | Gilead Sciences, Inc. | Cd73 compounds |
WO2023122615A1 (en) | 2021-12-22 | 2023-06-29 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023122581A2 (en) | 2021-12-22 | 2023-06-29 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023147418A1 (en) | 2022-01-28 | 2023-08-03 | Gilead Sciences, Inc. | Parp7 inhibitors |
EP4245756A1 (en) | 2022-03-17 | 2023-09-20 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023178181A1 (en) | 2022-03-17 | 2023-09-21 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
WO2023201268A1 (en) | 2022-04-13 | 2023-10-19 | Gilead Sciences, Inc. | Combination therapy for treating tumor antigen expressing cancers |
WO2023201267A1 (en) | 2022-04-13 | 2023-10-19 | Gilead Sciences, Inc. | Combination therapy for treating trop-2 expressing cancers |
WO2023205719A1 (en) | 2022-04-21 | 2023-10-26 | Gilead Sciences, Inc. | Kras g12d modulating compounds |
CN115073792B (zh) * | 2022-04-29 | 2023-08-04 | 湖北大学 | 一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器 |
CN115073792A (zh) * | 2022-04-29 | 2022-09-20 | 湖北大学 | 一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器 |
WO2024006929A1 (en) | 2022-07-01 | 2024-01-04 | Gilead Sciences, Inc. | Cd73 compounds |
WO2024097812A1 (en) | 2022-11-04 | 2024-05-10 | Gilead Sciences, Inc. | Therapy for treating bladder cancer |
WO2024137852A1 (en) | 2022-12-22 | 2024-06-27 | Gilead Sciences, Inc. | Prmt5 inhibitors and uses thereof |
CN118434249A (zh) * | 2024-07-02 | 2024-08-02 | 浙江省白马湖实验室有限公司 | 一种太阳能电池用柔性透明电极及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106297966A (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018036428A1 (zh) | 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备 | |
KR101388682B1 (ko) | 은 나노와이어 및 그라핀을 이용한 하이브리드 전극 및 이의 제조방법 | |
US9972742B2 (en) | Method for forming a transparent conductive film with metal nanowires having high linearity | |
CN103730194B (zh) | 一种银纳米线基多层结构的复合透明导电薄膜的制备方法 | |
Zhu et al. | PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility | |
CN107316708B (zh) | 银纳米线-可剥离树脂复合透明导电薄膜的制备方法 | |
CN106941019A (zh) | 电导体、其制造方法和包括其的电子装置 | |
CN102938262A (zh) | 一种透明导电薄膜及其制备方法 | |
CN108316011A (zh) | 一种基于纳米颗粒和纳米线复合改性的透明导电的智能纺织品的制备方法 | |
CN103730195B (zh) | 一种铜纳米线基多层结构的复合透明导电薄膜及其制备方法 | |
CN103212711A (zh) | 一种高导电性氧化石墨烯的制备方法 | |
CN112053806B (zh) | 纳米片-纳米线复合结构透明加热薄膜的制备方法 | |
CN107256741B (zh) | 一种溶剂蒸发退火增强金属纳米线透明导电薄膜性能的方法 | |
TW201416314A (zh) | 碳材料鍍銀之方法 | |
Wang et al. | Enhanced stability of silver nanowire transparent conductive films against ultraviolet light illumination | |
Gu et al. | Conductivity enhancement of silver nanowire networks via simple electrolyte solution treatment and solvent washing | |
KR20160012403A (ko) | 투명 전도성 그래핀 나노복합체 박막 및 이의 제조방법 | |
TWI723425B (zh) | 石墨烯與金屬形成共晶層之方法、包覆有石墨烯之導電線材及板材 | |
CN109192359B (zh) | 一种具有铆钉结构的石墨烯透明导电薄膜及其制备方法 | |
CN113488287A (zh) | 一种降低纳米银线导电膜蚀刻痕的方法 | |
KR20060066590A (ko) | 금 나노입자를 이용한 투명 전극의 제조방법 및 이로부터얻은 투명 전극 | |
CN111899917B (zh) | 一种还原氧化石墨烯掺杂碳纳米管的柔性透明电极及其制备方法 | |
CN111112862A (zh) | 一种化学焊接银纳米线的方法 | |
Hu et al. | Cohesively improved conductivity, transparency, and stability of Ag NW flexible transparent conductive thin films by covering Al2O3 layer | |
Kim et al. | Effects of copper metal organic decomposition ink on properties of single-walled carbon nanotube based flexible transparent electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17842851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17842851 Country of ref document: EP Kind code of ref document: A1 |