WO2018030184A1 - エポキシ樹脂組成物およびこれを含む導電性接着剤 - Google Patents

エポキシ樹脂組成物およびこれを含む導電性接着剤 Download PDF

Info

Publication number
WO2018030184A1
WO2018030184A1 PCT/JP2017/027496 JP2017027496W WO2018030184A1 WO 2018030184 A1 WO2018030184 A1 WO 2018030184A1 JP 2017027496 W JP2017027496 W JP 2017027496W WO 2018030184 A1 WO2018030184 A1 WO 2018030184A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
epoxy resin
resin composition
parts
mass
Prior art date
Application number
PCT/JP2017/027496
Other languages
English (en)
French (fr)
Inventor
総一 太田
鈴木 崇史
加藤 誠
仁志 真舩
長田 誠之
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to JP2018532937A priority Critical patent/JP7430892B2/ja
Priority to CN201780047946.5A priority patent/CN109563238B/zh
Priority to US16/321,555 priority patent/US10995245B2/en
Priority to KR1020197002082A priority patent/KR102312045B1/ko
Publication of WO2018030184A1 publication Critical patent/WO2018030184A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/223Di-epoxy compounds together with monoepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to an epoxy resin composition and a conductive adhesive containing the same.
  • Japanese Patent Laid-Open No. Sho 62-145601 describes a conductive resin composition containing an epoxy resin. Although the composition is excellent in low-temperature curability, it has a problem that storage stability is lowered.
  • JP-A-2005-132854 describes a conductive adhesive using a low molecular weight epoxy resin as a reactive diluent, and the composition can achieve both low-temperature curability and storage stability. Are listed.
  • the composition described in JP-A-2005-132854 has a high curing temperature (150 ° C.) and insufficient low-temperature curability.
  • the composition described in the document has a problem that the initial viscosity is high (over 50 Pa ⁇ s) and the workability is poor.
  • an object of the present invention is to provide an epoxy resin composition having a low initial viscosity and good low-temperature curability and excellent storage stability, and a conductive adhesive containing the same.
  • the first embodiment of the present invention is an epoxy resin composition containing the components (A) to (C).
  • the second embodiment of the present invention is the epoxy resin composition according to the first embodiment, wherein the component (C) is an epoxy adduct type latent curing agent.
  • the third embodiment of the present invention is the epoxy resin composition according to the first or second embodiment, wherein the component (A) has two or more epoxy groups in the molecule.
  • the fourth embodiment of the present invention is the epoxy according to any one of the first to third embodiments, comprising 100 to 200 parts by mass of the component (B) with respect to 100 parts by mass of the component (A). It is a resin composition.
  • the fifth embodiment of the present invention is the epoxy resin composition according to any one of the first to fourth embodiments, which further contains a reaction inhibitor as the component (D).
  • a sixth embodiment of the present invention is the epoxy resin composition according to the fifth embodiment, comprising 0.1 to 10 parts by mass of the component (D) with respect to 100 parts by mass of the component (A). is there.
  • the component (B) comprises neodecanoic acid 2-oxiranyl methyl ester, a mixture of C11-C15 alcohol glycidyl ether, p-tert-butylphenylglycidyl ether and p-sec-butyl.
  • the epoxy resin composition according to any one of the first to sixth embodiments, comprising at least one selected from the group consisting of phenyl glycidyl ethers.
  • the eighth embodiment of the present invention further includes a conductive filler as the component (E), and includes 400 to 2000 parts by mass of the component (E) with respect to 100 parts by mass of the component (A). It is an epoxy resin composition in any one of seven embodiments.
  • a ninth embodiment of the present invention is a conductive adhesive containing the epoxy resin composition according to the eighth embodiment.
  • An epoxy resin composition according to an embodiment of the present invention (hereinafter also simply referred to as a composition) includes (A) component: epoxy resin (excluding the following component (B)), (B) component: epoxy group in the molecule.
  • X to Y are used to mean that the numerical values (X and Y) described before and after that are included as the lower limit value and the upper limit value. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the epoxy resin composition which concerns on this invention contains the epoxy resin except the following (B) component as (A) component.
  • the component (A) preferably has two or more epoxy groups in the molecule.
  • the component (A) preferably has 2 to 3 epoxy groups in the molecule, and particularly preferably has 2 epoxy groups in the molecule.
  • a component may be used individually by 1 type and may be used together 2 or more types.
  • the epoxy equivalent of component (A) is preferably 50 to 500 g / eq, more preferably 100 to 300 g / eq. If it exists in the said range, the effect of this invention will improve further.
  • component (A) examples include those obtained by condensation of epichlorohydrin with polyhydric phenols such as bisphenols and polyhydric alcohols, such as bisphenol A type, brominated bisphenol A type, hydrogenated bisphenol A type, Glycidyl ethers such as bisphenol F type, bisphenol S type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, novolac type, phenol novolac type, orthocresol novolak type, tris (hydroxyphenyl) methane type, tetraphenylolethane type A type epoxy resin can be exemplified.
  • polyhydric phenols such as bisphenols and polyhydric alcohols
  • bisphenol A type brominated bisphenol A type
  • hydrogenated bisphenol A type Glycidyl ethers
  • bisphenol F type bisphenol S type
  • bisphenol AF type bisphenol AF type
  • biphenyl type biphenyl type
  • naphthalene type fluor
  • the component (A) preferably has at least one of a bisphenol A skeleton and a bisphenol F skeleton, and more preferably has both a bisphenol A skeleton and a bisphenol F skeleton.
  • the epoxy resin composition according to the present invention contains, as component (B), an epoxy resin having one epoxy group in the molecule and having a surface tension of 28.5 to 35.0 mN / m.
  • component (B) an epoxy resin having one epoxy group in the molecule and having a surface tension of 28.5 to 35.0 mN / m.
  • component (B) examples include neodecanoic acid 2-oxiranyl methyl ester, a mixture of C11 to C15 alcohol glycidyl ether, p-tert-butylphenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, and the like. However, it is not limited to these. Among these, neodecanoic acid 2-oxiranyl methyl ester or p-tert-butylphenyl glycidyl ether is preferable from the viewpoint of further improving the storage stability.
  • the “mixture of C11 to C15 alcohol glycidyl ether” means at least two kinds selected from the group consisting of monodecyl glycidyl ether, dodecyl glycidyl ether, tridecyl glycidyl ether, tetradecyl glycidyl ether and pentadecyl glycidyl ether.
  • a mixture containing The composition ratio of each component in the mixture is not particularly limited as long as the surface tension of the mixture satisfies the range of 28.5 to 35.0 mN / m.
  • component (B) commercially available products may be used, such as Cardura (registered trademark) E-10P manufactured by Momentive Performance Materials, Denacol (registered trademark) EX-192 manufactured by Nagase Chemtech Co., Ltd., NOF
  • Examples of the Epiol (registered trademark) series manufactured by Co., Ltd. include, but are not limited to, TB and SB.
  • a component may be used individually by 1 type and may be used together 2 or more types.
  • the addition amount of the component (B) is preferably 50 to 250 parts by weight, more preferably 100 to 200 parts by weight, and further 150 to 200 parts by weight with respect to 100 parts by weight of the component (A). More preferred.
  • the component (B) is 50 parts by mass or more (preferably 100 parts by mass or more)
  • the viscosity can be lowered, and when it is 250 parts by mass or less (preferably 200 parts by mass or less), storage stability is maintained. be able to.
  • the epoxy resin composition according to the present invention contains a latent curing agent as the component (C).
  • the latent curing agent is a one-part epoxy resin in which the curing agent solid at 25 ° C. is dispersed with respect to an epoxy resin that is liquid at 25 ° C.
  • a curing agent that can ensure storage stability.
  • any latent curing agent capable of curing the components (A) and (B) can be used, and examples thereof include a compound pulverized into a powder form.
  • an epoxy adduct type latent curing agent which is a powder obtained by pulverizing an epoxy adduct compound in which a reaction is stopped in the middle by adding a tertiary amine to a powdered imidazole derivative or an epoxy resin at room temperature, etc.
  • the component (C) is particularly preferably the epoxy adduct type latent curing agent.
  • the component (C) is preferably curable at 100 ° C. or lower, and more preferably curable at 90 ° C. or lower.
  • component (C) commercially available products may be used.
  • a component may be used individually by 1 type and may use 2 or more types together.
  • the addition amount of the component (C) is preferably 10 to 100 parts by weight, more preferably 40 to 90 parts by weight, and 60 to 80 parts by weight with respect to 100 parts by weight of the component (A). Even more preferred.
  • the curability does not decrease, and when it is 100 parts by mass or less, the storage stability can be maintained.
  • the epoxy resin composition according to the present invention preferably further contains a reaction inhibitor as the component (D) in addition to the components (A) to (C).
  • the reaction inhibitor is a compound that suppresses the reaction between the (A) component and the (B) component epoxy resin and the (C) component.
  • the influence of the component (B) greatly affects the storage stability, but the reaction can be further suppressed by using the component (D).
  • component (D) phosphoric acid, boric acid ester, alkyl phosphoric acid ester, p-toluenesulfonic acid or its ester can be used.
  • borate esters examples include tributyl borate (tributyl borate), trimethoxyboroxine, triethyl borate (triethyl borate), tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, and tripentyl borate.
  • boric acid ester an epoxy resin and / or a phenol resin previously mixed may be used.
  • a cure duct (registered trademark) series L-made by Shikoku Kasei Kogyo Co., Ltd. may be used. 01B, L-07N (epoxy-phenol-boric acid ester blend) and the like can be used.
  • alkyl phosphate ester trimethyl phosphate, tributyl phosphate and the like can be used, but are not limited thereto.
  • Examples of the p-toluenesulfonic acid ester include, but are not limited to, methyl p-toluenesulfonate, ethyl p-toluenesulfonate, and the like.
  • component (D) Component may be used alone or in combination.
  • the component (D) is preferably phosphoric acid, tributyl borate (tributyl borate), trimethoxyboroxine, or methyl p-toluenesulfonate.
  • the addition amount of the component (D) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the component (A). Even more preferred is ⁇ 4 parts by weight.
  • the component (D) is 0.1 part by mass or more, the storage stability can be maintained better, and when it is 10 parts by mass or less, higher low-temperature curability can be expressed.
  • the epoxy resin composition according to the present invention preferably further contains a conductive filler as the component (E) in addition to the components (A) to (C).
  • a conductive filler the material of the particles and the shape of the particles are not limited as long as they exhibit conductivity.
  • the material for the conductive particles include silver powder, nickel powder, palladium powder, carbon powder, tungsten powder, and plating powder. Silver powder is particularly preferable.
  • examples of the shape of the conductive particles include a spherical shape, an indeterminate shape, a flake shape (scale shape), a filament shape (needle shape), and a dendritic shape. A plurality of types may be mixed and used.
  • conductive particles obtained by silver plating an insulating metal oxide, nickel powder or insulating powder are preferable.
  • the insulating metal oxide specifically includes copper powder, aluminum powder, iron powder, and the like, and is a metal in which passivation is formed on the metal surface and conductivity is not exhibited.
  • the component (E) in consideration of cost and conductivity, it is preferable to use at least one of silver powder and silver plating powder, and it is more preferable to use both silver powder and silver plating powder.
  • the 50% average particle size of the component (E) is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, and 6 ⁇ m or less. It is particularly preferred.
  • the lower limit of the 50% average particle size of the component (E) is not particularly limited, but is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
  • the component (E) it is preferable to use conductive fillers having different 50% average particle diameters from the viewpoint of coexistence of the fluidity of the adhesive and the electrical properties of the cured product, and the 50% average particle diameters are 1 ⁇ m or more and 5 ⁇ m. Less conductive filler (hereinafter also referred to as (E-1) component) and 50% average particle size of 5 ⁇ m or more and less than 10 ⁇ m (hereinafter also referred to as (E-2) component). More preferred. In this specification, the value measured by a laser particle size meter is adopted as the 50% average particle size of the component (E).
  • the specific surface area of the component (E) is preferably from 0.1 to 5 m 2 / g, and more preferably from 0.3 to 3 m 2 / g.
  • conductive fillers having different specific surface areas and conductive fillers having a specific surface area of 0.1 m 2 / g or more and less than 1 m 2 / g (( It is more preferable to use E′-1) component) in combination with a conductive filler having a specific surface area of 1 m 2 / g or more and less than 3 m 2 / g (component (E′-2)).
  • a value calculated by the BET method is adopted as the specific surface area.
  • the tap density of the component (E) is preferably 0.2 to 10 g / cm 3 , more preferably 0.5 to 6 g / cm 3 .
  • the component (E) is preferably contained in an amount of 400 to 2000 parts by mass, more preferably 400 to 1000 parts by mass, and more preferably 400 to 700 parts by mass with respect to 100 parts by mass of the component (A).
  • the component (E) is 400 parts by mass or more, the electroconductivity is good, and when it is 2000 parts by mass or less, stringing or the like hardly occurs and the workability becomes better.
  • the epoxy resin composition according to one preferred embodiment of the present invention further includes a conductive filler as the component (E), and the component (E) is 400 to 2000 parts by mass with respect to 100 parts by mass of the component (A). Including parts.
  • the mass ratio of the component (E-1) to the component (E-2) is preferably 40:60 to 90:10, more preferably 50:50 to 80:20, and even more preferably 60:40 to 70:30. If it exists in the said range, the fluidity
  • the mass ratio of the (E′-1) component to the (E′-2) component ((E′-1) component: (E′-2) component) is 40:60 to 90 : 10 is preferable, 50:50 to 80:20 is more preferable, and 60:40 to 70:30 is still more preferable.
  • the curing agent other than the component (C) may include a curing agent that is liquid at 25 ° C. such as an acid anhydride, a phenol compound, and a thiol compound.
  • a curing agent that is liquid at 25 ° C. such as an acid anhydride, a phenol compound, and a thiol compound.
  • the component (C) can act as a curing accelerator for the liquid curing agent.
  • fillers can be added as long as the characteristics of the present invention are not impaired.
  • Fillers are classified into inorganic fillers and organic fillers.
  • inorganic fillers include metal powder that does not exhibit electrical conductivity (metal powder whose powder surface has formed a passive state due to oxidation), alumina powder, calcium carbonate powder, talc powder, silica powder, fumed silica powder, and the like.
  • organic filler include acrylic particles, rubber particles, and styrene particles, but are not limited thereto.
  • the powder characteristics such as the average particle diameter and shape are not particularly limited, but the average particle diameter is preferably 0.001 to 50 ⁇ m in consideration of ease of dispersion in the composition and nozzle clogging.
  • the addition of fumed silica powder imparts thixotropy and maintains storage stability.
  • Specific examples of the fumed silica powder include AEROSIL R805, R972 manufactured by Nippon Aerosil Co., Ltd., but are not limited thereto.
  • 0.1 to 10 parts by mass of the filler is added to 100 parts by mass of the component (A).
  • the filler is 0.1 part by mass or more, fluidity is stabilized and workability is improved, and when it is 10 parts by mass or less, storage stability can be maintained.
  • additives such as colorants such as pigments and dyes, flame retardants, antioxidants, antifoaming agents, coupling agents, and leveling agents may be blended in appropriate amounts within a range not impairing the characteristics of the present invention. .
  • an adhesive having excellent conductivity, resin strength, adhesive strength, workability, storage stability, or the like, or a cured product thereof can be obtained.
  • Example 1 to 20 and Comparative Examples 1 to 20 The following components were prepared to prepare an epoxy resin and a conductive adhesive.
  • a mixture of C11 to C15 alcohol glycidyl ether (Denacol (registered trademark, the same shall apply hereinafter) EX-192 manufactured by Nagase Chemtech Co., Ltd.) P-tert-butylphenylglycidyl ether (Epiol (registered trademark, the same shall apply hereinafter) TB manufactured
  • the surface tension was measured using an automatic surface tension meter YD-200 manufactured by Kyowa Interface Science Co., Ltd. in a 25 ° C. environment.
  • the probe touches the surface of the liquid, the liquid gets wet with respect to the probe.
  • surface tension acts along the periphery of the probe, so that the probe is drawn into the liquid. This pulling force is read and is defined as “surface tension (mN / m)”.
  • a platinum plate was used as the measuring element. The results are summarized in Table 1.
  • (B) component or (B ') component is equivalent to a reactive diluent, and surface tension changes with structures. Although the reason is not clear, it may affect the solubility of the component (C) in the composition.
  • the initial viscosity (Pa ⁇ s) is determined by the above initial viscosity measurement. Thereafter, the container containing the composition is stored in an atmosphere at 25 ° C. After 1, 2, 4, 6, 8, 24, 36, 48 and 72 hours from the start of storage, the viscosity is measured in the same manner as the initial viscosity measurement. When the viscosity shows twice or more of the initial viscosity, it is judged that the stability has been lost, and the immediately preceding measurement time is defined as “storage stability (time)”. That is, when the viscosity is more than twice the initial viscosity after 36 hours, the storage stability is 24 hours. In addition, when it is not doubled or more at 72 hours, it is described as “72 or more”. Considering the change in viscosity at the time of working, it is preferable to maintain the storage stability for longer than 24 hours, and more preferable to have the storage stability of 36 hours or more.
  • the initial viscosities of Comparative Examples and Examples 1 to 16 excluding Comparative Examples 4, 8, 12, and 16 are 1 Pa ⁇ s or less.
  • the storage stability differs greatly between the example and the comparative example, with the example being longer than 24 hours and the comparative example being less than 24 hours, with 24 hours as a boundary.
  • Examples 1, 5, 9 and 13 have a difference in the amount of reaction inhibitor added, but the storage stability is not affected by this, so depending on the type of component (B) or component (B ′) It can be seen that the storage stability changes. The same applies to Examples 3, 7, 11 and 15.
  • Examples 17 to 20 and Comparative Examples 17 to 20 were subjected to initial viscosity measurement, storage stability confirmation, curability confirmation (the same method as described above), and volume resistivity measurement. The results are summarized in Table 5. Hereinafter, it is also simply referred to as a composition.
  • the initial viscosity (Pa ⁇ s) is determined by the above initial viscosity measurement. Thereafter, the container containing the composition is stored in an atmosphere at 25 ° C. After 1, 2, 4, 6, 8, 24, 36 and 48 hours from the start of storage, the viscosity is measured in the same manner as the initial viscosity measurement. When the viscosity shows twice or more of the initial viscosity, it is judged that the stability has been lost, and the immediately preceding measurement time is defined as “storage stability (time)”. When it is not doubled or more at 48 hours, it is expressed as “48 or more”. Considering the change in viscosity during work, it is preferable to maintain the storage stability for longer than 24 hours.
  • the volume resistivity is calculated from (resistance value) ⁇ (width of cured product ⁇ thickness of cured product (cross-sectional area)) / (distance between electrodes), and “conductivity ( ⁇ 10 ⁇ 4 ⁇ ⁇ m)” is obtained. To do. From the viewpoint of ensuring conductivity, the conductivity is preferably 10.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less.
  • Examples 17 to 20 have better storage stability than Comparative Examples 17 to 20.
  • the conductive filler of component (E) and component (C) By stirring together the conductive filler of component (E) and component (C), there is a risk that the component (C) is scraped and easily gelled, but in Examples 17 to 20, the storage stability is maintained.
  • the characteristics other than the storage stability are not different from those of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】本発明は、低い初期粘度および良好な低温硬化性を有しつつ、保存安定性に優れるエポキシ樹脂組成物およびこれを含む導電性接着剤を提供する。 【解決手段】(A)~(C)成分を含むエポキシ樹脂組成物: (A)成分:エポキシ樹脂(下記(B)成分を除く) (B)成分:分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mであるエポキシ樹脂 (C)成分:潜在性硬化剤。

Description

エポキシ樹脂組成物およびこれを含む導電性接着剤
 本発明は、エポキシ樹脂組成物およびこれを含む導電性接着剤に関する。
 特開昭62-145601号公報には、エポキシ樹脂を含む導電性樹脂組成物が記載されている。当該組成物は、低温硬化性に優れるが、保存安定性が低下するという問題を有していた。
 一方、特開2005-132854号公報には、低分子量のエポキシ樹脂を反応性希釈剤として使用した導電性接着剤が記載されており、当該組成物は低温硬化性および保存安定性を両立できることが記載されている。
 しかしながら、特開2005-132854号公報に記載の組成物は、硬化温度が高く(150℃)、低温硬化性が不十分であった。加えて、当該文献に記載の組成物は、初期粘度が高く(50Pa・s超過)、作業性に乏しいという問題を有していた。
 このように、従来は、初期粘度が低く、かつ良好な保存安定性を有する、低温硬化型のエポキシ樹脂組成物およびこれを用いた導電性接着剤を実現することは困難であった。特に、導電性接着剤の場合、導電性フィラーを多量に添加するため、ゲル化しやすくなるという問題を抱えており、保存安定性の向上が求められていた。
 したがって、本発明は、低い初期粘度および良好な低温硬化性を有しつつ、保存安定性に優れるエポキシ樹脂組成物およびこれを含む導電性接着剤を提供することを目的とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見いだし、本発明を完成するに至った。
 本発明の第一の実施態様は、(A)~(C)成分を含むエポキシ樹脂組成物である。
(A)成分:エポキシ樹脂(下記(B)成分を除く)
(B)成分:分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mであるエポキシ樹脂
(C)成分:潜在性硬化剤。
 本発明の第二の実施態様は、前記(C)成分がエポキシアダクト型潜在性硬化剤である、第一の実施態様に記載のエポキシ樹脂組成物である。
 本発明の第三の実施態様は、前記(A)成分が分子内にエポキシ基を2つ以上有する、第一または第二の実施態様に記載のエポキシ樹脂組成物である。
 本発明の第四の実施態様は、前記(A)成分100質量部に対して、前記(B)成分を100~200質量部含む、第一から第三の実施態様のいずれかに記載のエポキシ樹脂組成物である。
 本発明の第五の実施態様は、さらに(D)成分として反応抑制剤を含む、第一から第四の実施態様のいずれかに記載のエポキシ樹脂組成物である。
 本発明の第六の実施態様は、前記(A)成分100質量部に対して、前記(D)成分を0.1~10質量部含む、第五の実施態様に記載のエポキシ樹脂組成物である。
 本発明の第七の実施態様は、前記(B)成分が、ネオデカン酸2-オキシラニルメチルエステル、C11~C15アルコールグリシジルエーテルの混合物、p-tert-ブチルフェニルグリシジルエーテルおよびp-sec-ブチルフェニルグリシジルエーテルからなる群より選択される少なくとも一種を含む、第一から第六の実施態様のいずれかに記載のエポキシ樹脂組成物である。
 本発明の第八の実施態様は、さらに(E)成分として導電性フィラーを含み、(A)成分100質量部に対して、当該(E)成分を400~2000質量部含む、第一から第七の実施態様のいずれかに記載のエポキシ樹脂組成物である。
 本発明の第九の実施態様は、第八の実施態様に記載のエポキシ樹脂組成物を含む導電性接着剤である。
 本発明の一実施形態に係るエポキシ樹脂組成物(以下、単に組成物とも称する)は、(A)成分:エポキシ樹脂(下記(B)成分を除く)、(B)成分:分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mであるエポキシ樹脂および(C)成分:潜在性硬化剤を含む。当該構成を有することにより、低い初期粘度および良好な低温硬化性を有しつつ、保存安定性に優れるエポキシ樹脂組成物およびこれを含む導電性接着剤が提供される。
 なお、本明細書において、「X~Y」は、その前後に記載される数値(XおよびY)を下限値および上限値として含む意味で使用する。また、特記しない限り、操作および物性等の測定は、室温(20~25℃)/相対湿度40~50%RHの条件で行う。
 本発明の詳細を次に説明する。
 <(A)成分>
 本発明に係るエポキシ樹脂組成物は、(A)成分として、下記(B)成分を除くエポキシ樹脂を含む。硬化によりネットワークを形成し、硬化性を高める観点から、(A)成分は、分子内に2つ以上のエポキシ基を有することが好ましい。中でも、(A)成分は、分子内に2~3つのエポキシ基を有することがより好ましく、分子内に2つのエポキシ基を有することが特に好ましい。(A)成分は、1種単独で使用してもよいし、2種以上併用してもよい。
 (A)成分のエポキシ当量は、50~500g/eqであることが好ましく、100~300g/eqであることがより好ましい。上記範囲内にあれば、本発明の効果が一層向上する。
 (A)成分の具体例としては、エピクロルヒドリンとビスフェノール類などの多価フェノール類や多価アルコールとの縮合によって得られるもので、例えばビスフェノールA型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオレン型、ノボラック型、フェノールノボラック型、オルソクレゾールノボラック型、トリス(ヒドロキシフェニル)メタン型、テトラフェニロールエタン型などのグリシジルエーテル型エポキシ樹脂を例示することができる。その他エピクロルヒドリンとフタル酸誘導体や脂肪酸などのカルボン酸との縮合によって得られるグリシジルエステル型エポキシ樹脂、エピクロルヒドリンとアミン類、シアヌル酸類、ヒダントイン類との反応によって得られるグリシジルアミン型エポキシ樹脂、さらには様々な方法で変性したエポキシ樹脂を挙げられるが、これらに限定されるものではない。中でも、硬化物の物性を考慮すると、(A)成分は、ビスフェノールA骨格およびビスフェノールF骨格の少なくとも一方を有することが好ましく、ビスフェノールA骨格およびビスフェノールF骨格の両方を有することがより好ましい。
 (A)成分としては、市販品を用いてもよく、三菱化学株式会社製のjER(登録商標)シリーズとして827、828EL、YL983U等、DIC株式会社製のEPICLON(登録商標)シリーズとして830、EXA-835LV等が挙げられる。新日鉄住金株式会社製のエポトート(登録商標)シリーズとしてYD-128、YDF-170等が挙げられるが、これらに限定されるものではない。
 <(B)成分>
 本発明に係るエポキシ樹脂組成物は、(B)成分として、分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mであるエポキシ樹脂を含む。(B)成分の表面張力が28.5mN/m未満または35.0mN/mを超える場合、エポキシ樹脂組成物としての保存安定性が低下する(本願比較例1~16参照)。この理由は定かではないが、(B)成分の表面張力が28.5mN/m未満または35.0mN/mを超える場合、下記(C)成分が組成物中で溶解し、硬化反応が進行してしまう可能性が考えられる。
 (B)成分の具体例としては、ネオデカン酸2-オキシラニルメチルエステル、C11~C15アルコールグリシジルエーテルの混合物、p-tert-ブチルフェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテルなどが挙げられるが、これらに限定されるものではない。中でも、保存安定性のさらなる向上の観点から、ネオデカン酸2-オキシラニルメチルエステルまたはp-tert-ブチルフェニルグリシジルエーテルであることが好ましい。ここで、「C11~C15アルコールグリシジルエーテルの混合物」とは、モノデシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテル、テトラデシルグリシジルエーテルおよびペンタデシルグリシコールエーテルからなる群より選択される少なくとも2種を含む混合物をいう。当該混合物における各成分の組成比は、混合物の表面張力が28.5~35.0mN/mの範囲を満たすのであれば、特に制限されない。
 (B)成分としては市販品を用いてもよく、モメンティブ・パフォーマンス・マテリアルズ社製のカージュラ(登録商標)E-10P、ナガセケムテック株式会社製のデナコール(登録商標)EX-192、日油株式会社製のエピオール(登録商標)シリーズとしてTB、SBなどがあるがこれらに限定されるものではない。
 (B)成分は、1種単独してもよいし、2種以上併用してもよい。
 本発明の組成物において、(A)成分100質量部に対して、(B)成分の添加量は、50~250質量部が好ましく、100~200質量部がより好ましく、150~200質量がさらにより好ましい。(B)成分が50質量部以上(好ましくは100質量部以上)の場合は粘度をより低くすることができ、250質量部以下(好ましくは200質量部以下)の場合は保存安定性を維持することができる。
 <(C)成分>
 本発明に係るエポキシ樹脂組成物は、(C)成分として、潜在性硬化剤を含む。ここで、潜在性硬化剤とは、25℃で液状のエポキシ樹脂に対し、25℃で固体の前記硬化剤が分散された一液型エポキシ樹脂において、経時による粘度変化や物性変化が少ないなどの保存安定性が確保できる硬化剤をいう。
 (C)成分としては、(A)成分と(B)成分を硬化させることができる潜在性硬化剤であれば使用することができ、粉末状に粉砕された化合物が挙げられる。具体的には、室温で粉体のイミダゾール誘導体やエポキシ樹脂に三級アミンを付加させて反応を途中で止めているエポキシアダクト化合物を粉砕した粉末であるエポキシアダクト型潜在性硬化剤などが挙げられるが、これらに限定されるものではない。保存安定性および低温硬化性を両立する観点から、(C)成分としては、前記エポキシアダクト型潜在性硬化剤であることが特に好ましい。(C)成分は、100℃以下で硬化可能であることが好ましく、90℃以下で硬化可能であることがより好ましい。
 (C)成分としては、市販品を用いてもよく、味の素ファインテクノ株式会社製のアミキュア(登録商標)シリーズや、株式会社T&K TOKA製のフジキュアー(登録商標)シリーズのFXR-1020、FXR-1081等や旭化成ケミカルズ株式会社製のノバキュア(登録商標)シリーズなどが挙げられる。
 (C)成分は、1種単独で使用してもよいし、2種以上を併用してもよい。
 本発明の組成物において、(A)成分100質量部に対して、(C)成分の添加量は、10~100質量部が好ましく、40~90質量部がより好ましく、60~80質量部がさらにより好ましい。10質量部以上の場合は硬化性が低下せず、100質量部以下の場合は保存安定性を維持することができる。
 <(D)成分>
 本発明に係るエポキシ樹脂組成物は、上記(A)~(C)成分以外に、(D)成分として、反応抑制剤をさらに含むことが好ましい。反応抑制剤とは、(A)成分および(B)成分のエポキシ樹脂と(C)成分との反応を抑制する化合物である。本発明では(B)成分による影響が保存安定性に大きく影響しているが、(D)成分も使用することでさらに反応を抑制することができる。特に、(B)成分としてC11~C15アルコールグリシジルエーテルの混合物またはp-sec-ブチルフェニルグリシジルエーテルを用いる場合には、(D)成分をさらに含むと保存安定性が顕著に向上するため、好ましい。
 (D)成分としては、リン酸、ホウ酸エステル、アルキルリン酸エステル、p-トルエンスルホン酸またはそのエステルなどを使用することができる。
 ホウ酸エステルとしては、トリブチルボレ-ト(ホウ酸トリブチル)、トリメトキシボロキシン、トリエチルボレート(ホウ酸トリエチル)、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレートなどが挙げられるが、これらに限定されるものではない。ホウ酸エステルとしては、エポキシ樹脂または/およびフェノール樹脂と予め混合したものを使用してもよく、そのような市販品としては、四国化成工業株式会社製のキュアダクト(登録商標)シリーズのL-01B、L-07N(エポキシ-フェノール-ホウ酸エステル配合物)等を使用することができる。
 アルキルリン酸エステルとしては、リン酸トリメチル、リン酸トリブチルなどを使用することができるが、これらに限定されるものではない。
 p-トルエンスルホン酸エステルとしては、p-トルエンスルホン酸メチル、p-トルエンスルホン酸エチル等が挙げられるが、これらに限定されるものではない。
 (D)成分は単独でも複数を混合して使用しても良い。保存安定性を考慮すると、(D)成分は、リン酸、トリブチルボレート(ホウ酸トリブチル)、トリメトキシボロキシン、p-トルエンスルホン酸メチルであることが好ましい。
 本発明の組成物において、(A)成分100質量部に対して、前記(D)成分の添加量は、0.1~10質量部が好ましく、0.5~4質量部がより好ましく、2~4質量部がさらにより好ましい。(D)成分が0.1質量部以上の場合は保存安定性をより良好に維持することができ、10質量部以下の場合はより高い低温硬化性を発現することができる。
 <(E)成分>
 本発明に係るエポキシ樹脂組成物は、上記(A)~(C)成分以外に、(E)成分として、導電性フィラーをさらに含むことが好ましい。導電性フィラーとしては、導電性を発現すれば良く粒子の材質、粒子の形状は限定されない。導電性粒子の材質としては、銀粉、ニッケル粉、パラジウム粉、カーボン粉、タングステン粉、メッキ粉など挙げられ、特に銀粉が好ましい。また、導電性粒子の形状としては、球状、不定形、フレーク状(鱗片状)、フィラメント状(針状)および樹枝状など挙げられる。複数の種類を混合して使用しても良い。特に、原料原価が安いことから、絶縁性酸化金属、ニッケル粉または絶縁体の粉体を銀メッキ処理した導電性粒子(銀メッキ粉)が好ましい。絶縁性酸化金属とは、具体的に銅粉、アルミニウム粉または鉄粉などが挙げられ、金属表面に不動態が形成されており導電性が発現しない様な金属である。
 (E)成分としては、コストおよび導電性を考慮すると、銀粉および銀メッキ粉の少なくとも一方を使用することが好ましく、銀粉および銀メッキ粉の両方を使用することがより好ましい。
 樹脂成分に混練するためには、(E)成分の50%平均粒径が100μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることがさらにより好ましく、6μm以下であることが特に好ましい。(E)成分の50%平均粒径の下限値は、特に制限されないが、1μm以上であることが好ましく、2μm以上であることがより好ましい。
 (E)成分としては、接着剤の流動性および硬化物の電気的特性の両立の観点から、50%平均粒径の異なる導電性フィラーを併用することが好ましく、50%平均粒径1μm以上5μm未満の導電性フィラー(以下、(E-1)成分とも称する)と、50%平均粒径5μm以上10μm未満の導電性フィラー(以下、(E-2)成分とも称する)とを併用することがより好ましい。なお、本明細書において、(E)成分の50%平均粒径は、レーザー粒度計によって測定される値を採用するものとする。
 (E)成分の比表面積は、0.1~5m/gであることが好ましく、0.3~3m/gであることがより好ましい。また、上記と同様の理由により、(E)成分としては、比表面積が異なる導電性フィラーを併用することが好ましく、比表面積0.1m/g以上1m/g未満の導電性フィラー((E’-1)成分)と、比表面積1m/g以上3m/g未満の導電性フィラー((E’-2)成分)とを併用することがより好ましい。なお、本明細書において、比表面積は、BET法によって算出される値を採用するものとする。
 (E)成分のタップ密度は、好ましくは0.2~10g/cmであり、より好ましくは0.5~6g/cmである。
 (A)成分100質量部に対して、(E)成分を400~2000質量部含むことが好ましく、400~1000質量部含むことがより好ましく、400~700質量部含むことがより好ましい。(E)成分が400質量部以上の場合には導電性が良好であり、2000質量部以下の場合には糸ひき等が発生しにくく、作業性がより良好となる。
 すなわち、本発明の好ましい一実施形態に係るエポキシ樹脂組成物は、(E)成分として導電性フィラーをさらに含み、(A)成分100質量部に対して、前記(E)成分を400~2000質量部含む。
 (E)成分として(E-1)成分と(E-2)成分とを併用する場合、(E-1)成分と(E-2)成分との質量比((E-1)成分:(E-2)成分)は、40:60~90:10であることが好ましく、50:50~80:20であることがより好ましく、60:40~70:30であることがさらにより好ましい。上記範囲内にあれば、接着剤の流動性および硬化物の電気的特性をより高度に両立することができる。また、同様の理由により、(E’-1)成分と(E’-2)成分との質量比((E’-1)成分:(E’-2)成分)は、40:60~90:10であることが好ましく、50:50~80:20であることがより好ましく、60:40~70:30であることがさらにより好ましい。
 <その他の成分>
 [硬化剤]
 本発明の特性を損なわない範囲において、(C)成分以外の硬化剤として、酸無水物、フェノール化合物、チオール化合物などの25℃で液状の硬化剤も含んでよい。通常、前記液状硬化剤を単独で使用しても硬化が遅いが、(C)成分と併用することで、(C)成分が上記液状硬化剤の硬化促進剤として作用することができる。
 [充填剤]
 さらに、本発明の特性を損なわない範囲において、充填剤(但し(E)成分に該当するものを除く)を添加することができる。充填剤は、無機充填剤や有機充填剤に分類される。無機充填剤として、導電性を発現しない金属粉(粉体表面が酸化による不動態を形成した金属粉)、アルミナ粉、炭酸カルシウム粉、タルク粉、シリカ粉、ヒュームドシリカ粉等が挙げられ、有機充填剤としては、アクリル粒子、ゴム粒子、スチレン粒子などが挙げられるが、これらに限定されるものではない。充填剤を添加することで粘度やチクソ性を制御することができると共に、強度の向上を計ることができる。平均粒径や形状などの粉体特性については特に限定はないが、組成物への分散のし易さとノズル詰まりを考慮すると、平均粒径は0.001~50μmが好ましい。特に、ヒュームドシリカ粉は添加することでチクソ性を付与すると共に保存安定性も維持される。ヒュームドシリカ粉の具体例としては、日本アエロジル株式会社製のAEROSIL R805、R972などが挙げられるがこれらに限定されるものではない。
 (A)成分100質量部に対して、充填剤は0.1~10質量部添加されることが好ましい。充填剤が0.1質量部以上の場合は流動性を安定化すると共に作業性を向上することができ、10質量部以下の場合は保存安定性を維持することができる。
 本発明には、本発明の特性を損なわない範囲において顔料、染料などの着色剤、難燃剤、酸化防止剤、消泡剤、カップリング剤、レベリング剤等の添加剤を適量配合しても良い。これらの添加により導電性、樹脂強度、接着強さ、作業性、保存安定性等に優れた接着剤またはその硬化物が得られる。
 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 [実施例1~20および比較例1~20]
 エポキシ樹脂および導電性接着剤を調製するために下記成分を準備した。
 (A)成分:エポキシ樹脂((B)成分を除く)
 ・ビスフェノールA型エポキシ樹脂/ビスフェノールF型エポキシ樹脂混合物(重量比50/50)(EPICLON(登録商標)EXA-835LV DIC株式会社製、分子内エポキシ基数2個、エポキシ当量165g/eq)
 (B)成分:分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mのエポキシ樹脂
 ・ネオデカン酸2-オキシラニルメチルエステル(カージュラ(登録商標)E-10P モメンティブ・パフォーマンス・マテリアルズ社製)
 ・C11~C15アルコールグリシジルエーテルの混合物(デナコール(登録商標、以下同じ)EX-192 ナガセケムテック株式会社製)
 ・p-tert-ブチルフェニルグリシジルエーテル(エピオール(登録商標、以下同じ)TB 日油株式会社製)
 ・p-sec-ブチルフェニルグリシジルエーテル(エピオールSB 日油株式会社製)
 (B’)成分:(B)成分以外の分子内にエポキシ基を有するエポキシ樹脂
 ・2-エチレンヘキサグリシジルエーテル(デナコールEX-121 ナガセケムテック株式会社製)
 ・ネオペンチルグリコールジグリシジルエーテル(ED-523T 株式会社ADEKA製)
 ・フェニルグリシジルエーテル(デナコールEX-141 ナガセケムテック株式会社製)
 ・多官能グリシジルアミン型エポキシ樹脂(EP-3950S 株式会社ADEKA製)
 (C)成分:潜在性硬化剤
 ・エポキシアダクト型潜在性硬化剤(フジキュアー(登録商標)FXR-1081 株式会社T&K TOKA製)
 (D)成分:反応抑制剤
 ・エポキシ-フェノール-ホウ酸エステル配合物(キュアダクト(登録商標)L-07N 四国化成工業株式会社製)
 (E)成分:導電性フィラー
 ・導電性フィラー1:以下の粉体特性を有する銀粉
  タップ密度:5.9g/cm
  50%平均粒径:2.5μm
  BET比表面積:0.3m/g
 ・導電性フィラー2:以下の粉体特性を有する銀メッキ銅粉
  タップ密度:0.7g/cm
  50%平均粒径:6.0μm
  BET比表面積:1.9m/g
 [表面張力測定]
 (B)成分および(B’)成分の表面張力の測定を行った。具体的には、25℃環境下にて協和界面科学株式会社製の自動表面張力計YD-200を用いて表面張力の測定を行った。測定子が液体の表面に触れると、液体が測定子に対してぬれ上がり、このとき、測定子の周辺に沿って表面張力が働くため、測定子を液中に引き込もうとする。この引き込む力を読み取り、「表面張力(mN/m)」とする。測定子は白金プレートを用いた。その結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 (B)成分または(B’)成分は、反応性希釈剤に相当し、構造などによって表面張力が異なる。明確な理由は分かっていないが、組成物における(C)成分の溶解性に影響を与えている可能性がある。
 [実施例1~16および比較例1~16の調製]
 エポキシ樹脂組成物を調製するため、(A)成分、(B)成分(または(B’)成分)および(D)成分を秤量して撹拌機用の撹拌釜に投入する。均一にするため30分間撹拌する。その後、(C)成分を秤量して同じ撹拌釜に投入し、さらに30分間攪拌する。詳細な調製量は表2-1~2-4に従い、数値は全て質量部で表記する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~16および比較例1~16に対して、初期粘度測定、保存安定性確認、硬化性確認を実施した。その結果を表3にまとめた。
 [初期粘度測定]
 ポリテトラフルオロエチレン製の棒で撹拌した後に組成物を2.0mL計量し、温調装置により25℃に設定した状態でブルックフィールド(型番:DV-2+Pro)を用いて粘度を測定する。測定条件としては、コーンロータにはCPE-41(3°×R2.4)を使用し、回転速度は10rpmにて行う。3分後の粘度を「初期粘度(Pa・s)」とする。導電性フィラーをさらに添加した場合の取扱性を考慮すると、1Pa・s以下であることが好ましい。
 [保存安定性確認]
 上記の初期粘度測定により初期粘度(Pa・s)とする。その後、組成物を入れた容器を25℃雰囲気下に保管する。保管開始から1、2、4、6、8、24、36、48および72時間後に、初期粘度測定と同じ方法で粘度測定を行う。粘度が初期粘度の2倍以上を示した時点で安定性を損なったと判断して、その1つ前の測定時点を「保存安定性(時間)」とする。すなわち、36時間後に初期粘度の2倍以上の粘度を示した場合、保存安定性は24時間とする。また、72時間の時点で2倍以上になっていない場合は、「72以上」と表記する。作業時の粘度変化を考慮すると、24時間より長く保存安定性を保持することが好ましく、36時間以上の保存安定性を有することがより好ましい。
 [硬化性確認]
 長さ100mm×幅50mm×厚さ2.0mmのガラス板上に、長さ100mm×幅10mmになる様に、厚さ50μmマスキングテープを貼り付け、組成物をスキージして均一な塗膜を形成してテストピースを作成する(1つの条件当たりn=2)。テストピースを80℃雰囲気下の熱風乾燥炉にそれぞれ投入して、それぞれ10、20、30および40分放置した後、熱風乾燥炉からテストピースを取り出す。テストピースの温度が25℃に下がった後に、ポリテトラフルオロエチレン製の棒で硬化物の表面を触り、硬化物に跡が残らなくなった時間を「硬化性」として評価する。低温硬化性を維持するためには、40分未満で硬化することが好ましく、30分以下で硬化することがより好ましい。
Figure JPOXMLDOC01-appb-T000006
 比較例4、8、12および16を除いた比較例および実施例1~16の初期粘度は1Pa・s以下である。しかしながら、保存安定性は実施例と比較例とで大きく異なり、24時間を境目として、実施例は24時間より長く、比較例は24時間未満である。例えば、実施例1、5、9および13は反応抑制剤の添加量の違いがあるが、保存安定性についてはその影響を受けていないため、(B)成分や(B’)成分の種類により保存安定性が変わることが分かる。実施例3、7、11および15についても同様である。
 [実施例17~20および比較例17~20の調製]
 (A)成分、(B)成分(または(B’)成分)および(D)成分を秤量して撹拌機用の撹拌釜に投入する。均一にするため30分間撹拌する。その後、(C)成分を秤量して同じ撹拌釜に投入し、さらに30分間攪拌する。さらに、(E)成分を秤量して同じ撹拌釜に投入し、真空脱泡しながら30分間攪拌する。詳細な調製量は表4に従い、数値は全て質量部で表記する。
Figure JPOXMLDOC01-appb-T000007
 実施例17~20および比較例17~20に対して、初期粘度測定、保存安定性確認、硬化性確認(前記と同様の方法)、体積抵抗率測定を実施した。その結果を表5にまとめた。以下、単に組成物とも呼ぶ。
 [初期粘度測定]
 ポリテトラフルオロエチレン製の棒で撹拌した後に組成物を0.5cc計量し、温調装置により25℃に設定した状態でブルックフィールド(型番:DV-2+Pro)を用いて粘度を測定する。測定条件としては、コーンロータにはCPE-52(3°×R1.2)を使用し、回転速度は5rpmにて行う。3分後の粘度を「初期粘度(Pa・s)」とする。取扱性を考慮すると、50Pa・s以下であることが好ましい。
 [保存安定性確認]
 上記の初期粘度測定により初期粘度(Pa・s)とする。その後、組成物を入れた容器を25℃雰囲気下に保管する。保管開始から1、2、4、6、8、24、36および48時間後に、初期粘度測定と同じ方法で粘度測定を行う。粘度が初期粘度の2倍以上を示した時点で安定性を損なったと判断して、その1つ前の測定時点を「保存安定性(時間)」とする。48時間の時点で2倍以上になっていない場合は、「48以上」と表記する。作業時の粘度変化を考慮すると、24時間より長く保存安定性を保持することが好ましい。
 [体積抵抗率測定]
 厚さ2.0mm×幅50mm×長さ100mmのガラス板上に、長さ100mm×幅10mmになる様にマスキングテープ(50μm厚)を貼り付け、組成物をスキージして均一な塗膜を形成してテストピースを作成する(n=2)。テストピースを80℃雰囲気下の熱風乾燥炉にそれぞれ投入して、60分間放置した後、熱風乾燥炉からテストピースを取り出す。テストピースの温度が25℃に下がった後に、板状の電極を付けたデュアルディスプレイマルチメータを用いて、電極間の距離が50mmの状態で「抵抗値(Ω)」を測定する。(抵抗値)×(硬化物の幅×硬化物の厚さ(断面積))/(電極間の距離)より体積抵抗率を計算し、「導電性(×10-4Ω・m)」とする。導電性を確保する観点から、導電性は10.0×10-4Ω・m以下であることが好ましい。
Figure JPOXMLDOC01-appb-T000008
 表3の比較検討と同様に、実施例17~20は比較例17~20と比較して、保存安定性が良好である。(E)成分の導電性フィラーと(C)成分を一緒に撹拌することにより、(C)成分が削れてゲル化し易くなるリスクがあるが、実施例17~20では、保存安定性が維持されていると共に保存安定性以外の特性は比較例と違いは無い。
 家電製品などの電気電子機器は軽量化や価格低減の要求に対応するため、耐熱性が低い材料の使用の機会が多くなっている。そのため、エポキシ樹脂組成物や導電性接着剤の加熱硬化工程はより低温での硬化が望まれるが、一方で保存安定性との両立も望まれ、組成物の硬化性を損なわずに保存安定性を向上させる手法が希求されている。本発明では、反応性希釈剤の選定により、硬化性を低下させることなく、25℃雰囲気下での保存安定性を向上させた有用な技術であり、本願発明の組成物を様々な用途に使用することができる。

Claims (9)

  1.  (A)~(C)成分を含むエポキシ樹脂組成物:
     (A)成分:エポキシ樹脂(下記(B)成分を除く)
     (B)成分:分子内にエポキシ基を1つ有し、かつ表面張力が28.5~35.0mN/mであるエポキシ樹脂
     (C)成分:潜在性硬化剤。
  2.  前記(C)成分がエポキシアダクト型潜在性硬化剤である、請求項1に記載のエポキシ樹脂組成物。
  3.  前記(A)成分が分子内にエポキシ基を2つ以上有する、請求項1または2に記載のエポキシ樹脂組成物。
  4.  前記(A)成分100質量部に対して、前記(B)成分を100~200質量部含む、請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。
  5.  (D)成分として反応抑制剤をさらに含む、請求項1~4のいずれか1項に記載のエポキシ樹脂組成物。
  6.  前記(A)成分100質量部に対して、前記(D)成分を0.1~10質量部含む、請求項5に記載のエポキシ樹脂組成物。
  7.  前記(B)成分が、ネオデカン酸2-オキシラニルメチルエステル、C11~C15アルコールグリシジルエーテルの混合物、p-tert-ブチルフェニルグリシジルエーテルおよびp-sec-ブチルフェニルグリシジルエーテルからなる群より選択される少なくとも1種を含む、請求項1~6のいずれか1項に記載のエポキシ樹脂組成物。
  8.  (E)成分として導電性フィラーをさらに含み、(A)成分100質量部に対して、前記(E)成分を400~2000質量部含む、請求項1~7のいずれか1項に記載のエポキシ樹脂組成物。
  9.  請求項8に記載のエポキシ樹脂組成物を含む、導電性接着剤。
PCT/JP2017/027496 2016-08-10 2017-07-28 エポキシ樹脂組成物およびこれを含む導電性接着剤 WO2018030184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018532937A JP7430892B2 (ja) 2016-08-10 2017-07-28 エポキシ樹脂組成物およびこれを含む導電性接着剤
CN201780047946.5A CN109563238B (zh) 2016-08-10 2017-07-28 环氧树脂组合物以及含有其的导电性胶粘剂
US16/321,555 US10995245B2 (en) 2016-08-10 2017-07-28 Epoxy resin composition and electro-conductive adhesive containing the same
KR1020197002082A KR102312045B1 (ko) 2016-08-10 2017-07-28 에폭시 수지 조성물 및 이를 포함하는 도전성 접착제

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157127 2016-08-10
JP2016-157127 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030184A1 true WO2018030184A1 (ja) 2018-02-15

Family

ID=61162070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027496 WO2018030184A1 (ja) 2016-08-10 2017-07-28 エポキシ樹脂組成物およびこれを含む導電性接着剤

Country Status (5)

Country Link
US (1) US10995245B2 (ja)
JP (1) JP7430892B2 (ja)
KR (1) KR102312045B1 (ja)
CN (1) CN109563238B (ja)
WO (1) WO2018030184A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975418A (zh) * 2022-07-27 2023-04-18 上海亿尚金属有限公司 一种防静电纳米树脂涂层及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187938A (ja) * 2000-10-11 2002-07-05 Sumitomo Bakelite Co Ltd ダイアタッチペースト及び半導体装置
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2011114037A (ja) * 2009-11-24 2011-06-09 Hitachi Chem Co Ltd 回路接続材料及び接続体
CN103820065A (zh) * 2014-02-24 2014-05-28 湖南皓志新材料股份有限公司 一种户外用led封装导电胶
JP2014531495A (ja) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA 銀被覆粒子含有導電性接着剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145601A (ja) 1985-12-19 1987-06-29 住友ベークライト株式会社 導電性樹脂ペ−スト
US5721323A (en) * 1990-05-21 1998-02-24 The Dow Chemical Company Cure inhibited epoxy resin compositions and laminates prepared from the compositions
GB9301000D0 (en) * 1993-01-20 1993-03-10 Glaxo Group Ltd Chemical compounds
JP3665070B2 (ja) * 1993-11-02 2005-06-29 ダウ グローバル テクノロジーズ インコーポレイティド 硬化が抑制されたエポキシ樹脂組成物およびその組成物から調製された積層板
CA2269378C (en) * 1998-04-17 2008-04-01 Ajinomoto Co., Inc. Curable resin composition
TWI281478B (en) * 2000-10-11 2007-05-21 Sumitomo Bakelite Co Die-attaching paste and semiconductor device
JP2005132854A (ja) 2003-10-28 2005-05-26 Tamura Kaken Co Ltd 導電性接着剤組成物
WO2009054387A1 (ja) * 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. 被覆導電性粉体およびそれを用いた導電性接着剤
JP6175515B2 (ja) * 2013-01-23 2017-08-02 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング アンダーフィル組成物およびそれを使用したパッケージング工程
TWI500737B (zh) * 2013-05-06 2015-09-21 Chi Mei Corp 導電性接著劑

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187938A (ja) * 2000-10-11 2002-07-05 Sumitomo Bakelite Co Ltd ダイアタッチペースト及び半導体装置
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2011114037A (ja) * 2009-11-24 2011-06-09 Hitachi Chem Co Ltd 回路接続材料及び接続体
JP2014531495A (ja) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA 銀被覆粒子含有導電性接着剤
CN103820065A (zh) * 2014-02-24 2014-05-28 湖南皓志新材料股份有限公司 一种户外用led封装导电胶

Also Published As

Publication number Publication date
CN109563238A (zh) 2019-04-02
US10995245B2 (en) 2021-05-04
JPWO2018030184A1 (ja) 2019-06-06
JP7430892B2 (ja) 2024-02-14
KR20190035699A (ko) 2019-04-03
US20190177582A1 (en) 2019-06-13
KR102312045B1 (ko) 2021-10-12
CN109563238B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
JP6989785B2 (ja) 熱硬化型導電性接着剤
JP5651913B2 (ja) 導電性樹脂組成物
CN102076733B (zh) 环氧树脂组合物
KR101259446B1 (ko) 양이온 중합 개시제 및 열경화성 에폭시 수지 조성물
CN104017529A (zh) 一种单组份环氧树脂导电银胶组合物及其制备方法
WO2013150907A1 (ja) 導電性組成物
JP5267958B2 (ja) 接着剤組成物
JP7430892B2 (ja) エポキシ樹脂組成物およびこれを含む導電性接着剤
CN113831872A (zh) 环氧胶粘剂组合物、环氧胶粘剂、和制备环氧胶粘剂的方法
JP2017088825A (ja) 硬化性組成物
JP6439924B2 (ja) 熱伝導性樹脂組成物
JP7475012B2 (ja) 樹脂組成物
JP2008174577A (ja) ダイボンディングペーストおよびそれを用いた半導体装置
JP2013072011A (ja) 処理硬化触媒、一液型エポキシ樹脂組成物及び硬化物
JP2015101633A (ja) エポキシ樹脂組成物
JP5159684B2 (ja) 熱硬化性樹脂組成物
TWI621685B (zh) 導電性接著劑及半導體裝置
JP2020169314A (ja) エポキシ樹脂粉体塗料
JPWO2018159564A1 (ja) 樹脂組成物
WO2023038146A1 (ja) 導電性樹脂組成物、及びその硬化物
WO2024029541A1 (ja) 導電性組成物、導電性接着剤および硬化物
CN107406581B (zh) 阳离子聚合引发剂和环氧树脂组合物
JP6653152B2 (ja) エポキシ樹脂組成物
JP2001253933A (ja) 半導体封止用エポキシ樹脂成形材料及びこれを用いた半導体装置
JP5772450B2 (ja) 一液性エポキシ樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002082

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018532937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839257

Country of ref document: EP

Kind code of ref document: A1