WO2018029968A1 - 電極の製造方法 - Google Patents

電極の製造方法 Download PDF

Info

Publication number
WO2018029968A1
WO2018029968A1 PCT/JP2017/021384 JP2017021384W WO2018029968A1 WO 2018029968 A1 WO2018029968 A1 WO 2018029968A1 JP 2017021384 W JP2017021384 W JP 2017021384W WO 2018029968 A1 WO2018029968 A1 WO 2018029968A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
plating solution
electrode
less
mol
Prior art date
Application number
PCT/JP2017/021384
Other languages
English (en)
French (fr)
Inventor
哲也 ▲吉▼田
祐介 佐々木
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2018029968A1 publication Critical patent/WO2018029968A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrode manufacturing method, and more particularly to an electrode manufacturing method suitable for electrolysis of an alkaline aqueous solution.
  • alloy electrodes used for various industrial fields for example, electrolysis of alkaline aqueous solutions are known.
  • an alloy layer having an alloy composition of iron, carbon and nickel is formed on the substrate.
  • the present invention provides an electrode manufacturing method capable of improving the plating efficiency.
  • the present invention [1] includes a step of preparing a plating solution by dissolving a soluble salt of nickel, a soluble salt of iron, and an aminocarboxylic acid in water, immersing the substrate in the plating solution, and electroplating Forming a plating on the base material, and in the step of forming the plating, a method for producing an electrode, wherein the temperature of the plating solution exceeds 30 ° C.
  • the plating efficiency is improved. Improvements can be made.
  • the plating formed on the substrate contains nickel, iron, and carbon.
  • an electrode can be used as an anode or a cathode in the electrolysis of an alkaline aqueous solution. Therefore, according to the above method, an electrode (anode or cathode) suitable for electrolysis of an alkaline aqueous solution can be produced.
  • the present invention [2] includes the electrode manufacturing method according to [1], wherein the plating solution has a pH of less than 2.5 in the step of forming the plating.
  • the pH of the plating solution is less than the above value, the residual stress of the formed plating can be relaxed, and cracking and peeling of the plating can be suppressed.
  • the plating efficiency may be lowered.
  • the plating efficiency is sufficiently ensured even if the pH of the plating solution is less than the above value. can do.
  • the present invention [3] includes the method for producing an electrode according to [1] or [2], wherein the concentration of aminocarboxylic acid in the plating solution is 0.30 mol / L or more.
  • the concentration of the aminocarboxylic acid in the plating solution is not less than the above value, the durability of the plating can be improved.
  • the plating efficiency may be lowered.
  • the temperature of the plating solution exceeds the above value. Therefore, even if the concentration of aminocarboxylic acid in the plating solution is not less than the above value, the plating efficiency Can be secured sufficiently.
  • the present invention [4] includes the method for producing an electrode according to any one of [1] to [3], wherein in the step of preparing the plating solution, a soluble cobalt salt is further dissolved.
  • the plating formed on the substrate further contains cobalt.
  • an electrode can be suitably used as a cathode in the electrolysis of an alkaline aqueous solution, and can improve the hydrogen generation efficiency. Therefore, according to the above method, a suitable cathode can be produced by electrolysis of an alkaline aqueous solution.
  • the plating efficiency can be improved.
  • FIG. 1 is a graph showing the correlation between the plating solution temperature and the plating efficiency in Examples 1 to 9 and Comparative Examples 1 to 3.
  • FIG. 2 is a graph showing the correlation between the plating solution temperature and the plating efficiency in Examples 10 to 18 and Comparative Examples 4 to 6.
  • Electrode Manufacturing Method One embodiment of an electrode manufacturing method includes a preparation step of preparing a plating solution and a plating formation step of electroplating a substrate.
  • a plating solution is prepared by dissolving nickel soluble salt, iron soluble salt, and aminocarboxylic acid in water by a known method. To do.
  • the soluble salt of nickel is a water-soluble nickel salt, and examples thereof include nickel sulfate, nickel chloride, and nickel nitrate.
  • the soluble salt of nickel can be used alone or in combination of two or more.
  • the soluble salts of nickel, nickel sulfate and nickel chloride are preferable, and a combination of nickel sulfate and nickel chloride is more preferable.
  • the concentration of the soluble salt of nickel in the plating solution is, for example, 0.5 mol / L or more, preferably 1.0 mol / L or more, for example, 2.0 mol / L or less, preferably 1.5 mol / L or less. .
  • the concentration of nickel sulfate in the plating solution is, for example, 0.90 mol / L or more and 1.4 mol / L or less, and the concentration of nickel chloride in the plating solution is, for example, 0.8. It is 10 mol / L or more and 0.40 mol / L or less.
  • the soluble salt of iron is a water-soluble iron salt, and examples thereof include iron sulfate, iron chloride, and iron nitrate.
  • the iron ion in the soluble salt of iron may be trivalent, but is preferably divalent.
  • the soluble salt of iron can be used alone or in combination of two or more. Among the soluble salts of iron, iron (II) sulfate is preferable.
  • the concentration of the soluble salt of iron in the plating solution is, for example, 0.03 mol / L or more, preferably 0.10 mol / L or more, more preferably 0.12 mol / L or more, for example, 0.3 mol / L or less, Preferably, it is 0.20 mol / L or less.
  • Aminocarboxylic acid is dissolved in the plating solution from the viewpoint of improving the durability of plating, and examples thereof include lysine, saccharin, and arginine.
  • Aminocarboxylic acids can be used alone or in combination of two or more. Among aminocarboxylic acids, lysine is preferable.
  • the aminocarboxylic acid is preferably used as an aminocarboxylate from the viewpoint of water solubility.
  • the aminocarboxylate include aminocarboxylate hydrochloride.
  • aminocarboxylates lysine hydrochloride is preferable.
  • the concentration of aminocarboxylic acid in the plating solution is, for example, 0.20 mol / L or more, preferably 0.30 mol / L or more, more preferably more than 0.40 mol / L, and particularly preferably 0.45 mol / L. L or more, for example, 1.0 mol / L or less, preferably 0.50 mol / L or less.
  • the concentration of aminocarboxylic acid in the plating solution is equal to or higher than the above lower limit, the durability of the plating can be improved.
  • a soluble salt of cobalt can be dissolved depending on the use of the electrode.
  • Co can be contained in the plating described later, and a cathode suitable for electrolysis of an alkaline aqueous solution can be produced.
  • the soluble salt of cobalt is a water-soluble cobalt salt, and examples thereof include cobalt sulfate, cobalt chloride, and cobalt nitrate.
  • the cobalt ion in the soluble salt of cobalt may be trivalent, but is preferably divalent.
  • the soluble salts of cobalt can be used alone or in combination of two or more. Among the soluble salts of cobalt, cobalt (II) sulfate is preferable.
  • the concentration of the soluble salt of cobalt in the plating solution is, for example, 0.005 mol / L or more, preferably 0.010 mol / L or more, for example, 0.050 mol / L or less, preferably 0.025 mol / L or less. .
  • boric acid is dissolved from the viewpoint of suppressing pH change at the cathode interface due to hydrogen generation during the plating formation process
  • alkyl sulfate ester salt is dissolved from the viewpoint of improving the hydrophilicity of the electrode interface. be able to.
  • the concentration of boric acid in the plating solution is, for example, 0.10 mol / L or more, preferably 0.30 mol / L or more, for example, 1.0 mol / L or less, preferably 0.70 mol / L or less.
  • alkyl sulfate ester salt examples include sodium dodecyl sulfate and sodium benzenesulfonate.
  • the alkyl sulfate ester salts can be used alone or in combination of two or more.
  • sodium dodecyl sulfate is preferable.
  • the pH of the plating solution is, for example, 1.0 or more, preferably 1.5 or more, for example, 5.0 or less, preferably 3.0 or less, more preferably less than 2.5, and particularly preferably 2. Less than 0.0.
  • an acid for example, sulfuric acid, nitric acid, hydrochloric acid, etc. is added to the plating solution to adjust the pH of the plating solution to the above range.
  • the anode is immersed in the plating solution, and the substrate (cathode) is immersed so as to face the anode with a gap.
  • the anode is a metal plate made of nickel, for example.
  • Two anodes are preferably prepared, and the two anodes are immersed in the plating solution so as to face each other with a space therebetween.
  • the substrate is a metal plate and functions as a cathode in the plating process.
  • the material for the base material is not particularly limited, and examples thereof include nickel, iron, and cobalt. Among the materials for the substrate, nickel is preferable.
  • the substrate is immersed in the plating solution so as to face each anode with a space between the two anodes.
  • the temperature of the plating solution is heated to a predetermined temperature by a known method (for example, a water bath).
  • the temperature of the plating solution in the plating forming step exceeds 30 ° C, preferably 31 ° C or higher, more preferably 33 ° C or higher, particularly preferably 35 ° C or higher, for example, 80 ° C or lower, preferably 40 ° C. It is below °C.
  • the temperature of the plating solution is not less than the above lower limit, the plating efficiency can be improved, and when the temperature of the plating solution is not more than the above upper limit, energy required for heating the plating solution can be reduced.
  • electroplating is performed at a constant current to form a plating on the substrate.
  • the current density is, for example, 50 A / m 2 or more, preferably 100 A / m 2 or more, for example, 500 A / m 2 or less, preferably 300 A / m 2 or less.
  • the plating time is, for example, 5 minutes or more, preferably 10 minutes or more, for example, 180 minutes or less, preferably 30 minutes or less.
  • plating is formed on a base material by electroplating, and an electrode containing the base material and plating formed on the base material is prepared.
  • the plating efficiency of the plating formation step is, for example, 18% or more, preferably 20% or more, more preferably 25% or more, for example, 95% or less.
  • the plating efficiency is calculated by the method described in the examples.
  • the thickness of the plating is, for example, 0.2 ⁇ m or more, preferably 1.5 ⁇ m or more, for example, 5.0 ⁇ m or less, preferably 2.0 ⁇ m or less.
  • the plating solution contains a soluble salt of nickel, a soluble salt of iron, and an aminocarboxylic acid, and does not contain a soluble salt of cobalt
  • the plating contains an alloy containing Ni, Fe and C, and not containing Co. It is formed as plating (hereinafter referred to as Ni—Fe—C alloy plating).
  • Ni is 45 atom% or more and 96.4 atom% or less
  • Fe is 3 atom% or more and 45 atom% or less
  • C is 0.6 atom% or more and 10 atom% or less.
  • the plating solution contains a soluble salt of nickel, a soluble salt of iron, an aminocarboxylic acid, and a soluble salt of cobalt
  • the plating is an alloy plating containing Ni, Fe, Co, and C (hereinafter referred to as “plating”). Ni—Fe—Co—C alloy plating).
  • Ni is 5 atomic% to 96.4 atomic%
  • Fe is 2.9 atomic% to 65 atomic%
  • Co is 0.1 atomic% to 20 atomic%
  • C is 0.6 atomic% or more and 10 atomic% or less.
  • Such an electrode can be used in various industrial fields (for example, electrolysis of alkaline aqueous solution, electrolysis of seawater, electrolysis of saline solution in soda industry, etc.), and in particular, it can be suitably used for electrolysis of alkaline aqueous solution.
  • an electrode containing Ni—Fe—C alloy plating can be used as an anode (oxygen generating electrode) suitable for electrolysis of an alkaline aqueous solution
  • an electrode containing Ni—Fe—Co—C alloy plating is an alkaline aqueous solution. It can be used as a cathode (hydrogen generating electrode) suitable for electrolysis.
  • Ni—Fe—C electrode an electrode containing Ni—Fe—C alloy plating
  • Ni—Co—C alloy plating an electrode containing Ni—Fe—Co—C alloy plating
  • Ni—Fe—Co—C alloy plating an electrode containing Ni—Fe—Co—C alloy plating
  • alkali in the alkaline aqueous solution examples include sodium hydroxide and potassium hydroxide.
  • Alkalis can be used alone or in combination of two or more.
  • potassium hydroxide is preferable.
  • concentration of the alkali in aqueous alkali solution is 1.0 mass% or more, for example, Preferably, it is 20 mass% or more, for example, 50 mass% or less, Preferably, it is 40 mass% or less.
  • the Ni—Fe—C electrode is immersed as an anode in an alkaline aqueous solution, and the Ni—Fe—Co—C electrode as a cathode is immersed in an alkaline aqueous solution. Thereafter, the alkaline aqueous solution is electrolyzed under known conditions (for example, a temperature of 90 ° C.).
  • the temperature of the plating solution exceeds 30 ° C. in the plating formation step. Therefore, the generation of hydrogen can be suppressed and the plating efficiency can be improved.
  • the plating formed on the substrate contains nickel, iron, and carbon. Therefore, an electrode (anode or cathode) suitable for electrolysis of an alkaline aqueous solution can be produced.
  • the plating solution is repeatedly used. According to the above electrode manufacturing method, since the plating efficiency can be improved, the plating can be efficiently formed even if the plating solution is repeatedly used.
  • the plating forming step if the pH of the plating solution is less than 2.5, the residual stress of the formed plating can be relaxed, and cracking and peeling of the plating can be suppressed. Further, in the plating forming step, since the temperature of the plating solution exceeds the above value, the plating efficiency can be sufficiently ensured even if the pH of the plating solution is less than the above value.
  • the durability of the plating can be improved. Further, in the plating formation step, the temperature of the plating solution exceeds the above value, so that the plating efficiency can be sufficiently ensured even if the concentration of aminocarboxylic acid in the plating solution is not less than the above value.
  • a suitable cathode can be manufactured by electrolysis of alkaline water.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc., can be substituted with the upper limit values (numerical values defined as “below” or “less than”) or lower limit values (numerical values defined as “greater than”).
  • Examples 1 to 5 and Comparative Example 1 In 80 mL of water, nickel sulfate (II) hexahydrate [NiSO 4 .6H 2 O: soluble nickel salt] and nickel chloride (II) hexahydrate [NiCl 2 • 6H 2 O: soluble nickel salt] And iron (II) sulfate heptahydrate [FeSO 4 ⁇ 7H 2 O: soluble salt of iron], cobalt (II) sulfate heptahydrate [CoSO 4 ⁇ 7H 2 O: soluble salt of cobalt], Lysine hydrochloride [C 6 H 14 N 2 O 2 .HCl: aminocarboxylic acid], boric acid [B (OH) 3 ] and sodium dodecyl sulfate [C 12 H 25 SO 4 Na] were dissolved, A plating solution having the following composition was prepared. The pH of the plating solution at the time of preparation was 3.0. Thereafter, concentrated sulfuric acid was added to the plating solution
  • the substrate was electroplated for 10 minutes at a constant current of a current density of 300 A / m 2 while maintaining the temperature. Thereby, the alloy plating containing Ni, Fe, Co and C was formed on the base material.
  • the electrode which has a base material and the alloy plating formed on a base material was prepared.
  • the mass of the base material before plating and the base material (electrode) after plating was measured with an electronic balance.
  • the actual precipitation amount of alloy plating was computed from the mass difference of the base material (electrode) after plating, and the base material before plating.
  • the theoretical precipitation amount was calculated on the assumption that the amount of electricity supplied was all deposited with Ni. Then, the percentage of the actual precipitation amount with respect to the theoretical precipitation amount (actual precipitation amount / theoretical precipitation amount ⁇ 100) was calculated as the plating efficiency.
  • compositions of the plating solutions of Examples 10 to 14 and Comparative Example 4 were as follows, and the pH of the plating solution was 1.5.
  • the electrode had a substrate and an alloy plating formed on the substrate and containing Ni, Fe and C. Further, the plating efficiency was calculated in the same manner as described above. The results are shown in Table 2 and FIG.
  • the method for producing an electrode of the present invention is suitably used for producing an electrode that can be used in various industrial fields, for example, electrolysis of an alkaline aqueous solution, electrolysis of seawater, and electrolysis of saline solution in the soda industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

電極の製造方法は、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とを水に溶解してめっき液を調製する工程と、めっき液に基材を浸漬し、電気めっきにより、基材上にめっきを形成する工程と、を含む。めっきを形成する工程において、めっき液の液温が30℃を超過する。

Description

電極の製造方法
 本発明は、電極の製造方法、詳しくは、アルカリ水溶液の電気分解に好適な電極の製造方法に関する。
 従来、各種産業分野、例えばアルカリ水溶液の電気分解に利用される合金電極が知られている。
 そのような合金電極の製造方法として、例えば、ニッケルの可溶性塩と、鉄の可溶性塩と、リシン塩酸塩とを含有するめっき液を使用して、基材に30℃で電気めっきする酸素発生用合金電極の製造方法が提案されている(例えば、特許文献1参照)。
 そして、そのような酸素発生用合金電極の製造方法では、鉄、炭素およびニッケルからなる合金組成を有する合金層が、基材上に形成される。
特開2015-10253号公報
 しかるに、めっき液を使用する電気めっきでは、めっき効率(=実際の析出量/理論析出量×100)の向上が望まれる。しかし、特許文献1に記載の酸素発生用合金電極の製造方法では、めっき効率の向上を十分に図ることができないという不具合がある。
 そこで、本発明は、めっき効率の向上を図ることができる電極の製造方法を提供する。
 本発明[1]は、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とを水に溶解してめっき液を調製する工程と、前記めっき液に基材を浸漬し、電気めっきにより、前記基材上にめっきを形成する工程と、を含み、前記めっきを形成する工程において、前記めっき液の液温が30℃を超過する、電極の製造方法を含む。
 このような方法によれば、めっきを形成する工程において、めっき液の液温が上記の値を超過するので、めっき液の液温が上記の値以下である場合と比較して、めっき効率の向上を図ることができる。
 また、めっき液に、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とが溶解されているので、基材上に形成されるめっきは、ニッケル、鉄および炭素を含有する。そのような電極は、アルカリ水溶液の電気分解においてアノードやカソードとして使用できる。そのため、上記の方法によれば、アルカリ水溶液の電気分解に好適な電極(アノードやカソード)を製造することができる。
 本発明[2]は、前記めっきを形成する工程において、前記めっき液のpHが2.5未満である、[1]に記載の電極の製造方法を含む。
 このような方法によれば、めっき液のpHが上記の値未満であるので、形成されるめっきの残留応力の緩和を図ることができ、めっきのひび割れや剥離を抑制することができる。
 しかるに、めっき液のpHが上記の値未満であると、めっき効率が低下してしまう場合がある。しかし、上記の方法によれば、めっきを形成する工程において、めっき液の液温が上記の値を超過するので、めっき液のpHが上記の値未満であっても、めっき効率を十分に確保することができる。
 本発明[3]は、前記めっき液におけるアミノカルボン酸の濃度が0.30mol/L以上である、[1]または[2]に記載の電極の製造方法を含む。
 このような方法によれば、めっき液におけるアミノカルボン酸の濃度が上記の値以上であるので、めっきの耐久性の向上を図ることができる。
 一方、めっき液におけるアミノカルボン酸の濃度が上記の値以上である場合、めっき効率が低下する場合がある。しかし、上記の方法によれば、めっきを形成する工程において、めっき液の液温が上記の値を超過するので、めっき液におけるアミノカルボン酸の濃度が上記の値以上であっても、めっき効率を十分に確保することができる。
 本発明[4]は、前記めっき液を調製する工程において、コバルトの可溶性塩をさらに溶解する、[1]~[3]のいずれか一項に記載の電極の製造方法を含む。
 このような方法によれば、めっき液にコバルトの可溶性塩が溶解されているので、基材上に形成されるめっきはコバルトをさらに含有する。そのような電極は、アルカリ水溶液の電気分解においてカソードとして好適に使用でき、水素発生効率の向上を図ることができる。そのため、上記の方法によれば、アルカリ水溶液の電気分解により好適なカソードを製造することができる。
 本発明の電極の製造方法によれば、めっき効率の向上を図ることができる。
図1は、実施例1~9および比較例1~3におけるめっき液温度とめっき効率との相関を示すグラフである。 図2は、実施例10~18および比較例4~6におけるめっき液温度とめっき効率との相関を示すグラフである。
1.電極の製造方法
 電極の製造方法の一実施形態は、めっき液を調製する調製工程と、基材を電気めっきするめっき形成工程とを含んでいる。
(1)めっき液の調製工程
 このような電極の製造方法では、まず、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とを、公知の方法により水に溶解してめっき液を調製する。
 ニッケルの可溶性塩は、水可溶性のニッケル塩であり、例えば、硫酸ニッケル、塩化ニッケル、硝酸ニッケルなどが挙げられる。ニッケルの可溶性塩は、単独使用または2種以上併用することもできる。ニッケルの可溶性塩のなかでは、好ましくは、硫酸ニッケルおよび塩化ニッケルが挙げられ、さらに好ましくは、硫酸ニッケルおよび塩化ニッケルの併用が挙げられる。
 めっき液におけるニッケルの可溶性塩の濃度は、例えば、0.5mol/L以上、好ましくは、1.0mol/L以上、例えば、2.0mol/L以下、好ましくは、1.5mol/L以下である。
 硫酸ニッケルおよび塩化ニッケルが併用される場合、めっき液における硫酸ニッケルの濃度は、例えば、0.90mol/L以上1.4mol/L以下であり、めっき液における塩化ニッケルの濃度は、例えば、0.10mol/L以上0.40mol/L以下である。
 鉄の可溶性塩は、水可溶性の鉄塩であり、例えば、硫酸鉄、塩化鉄、硝酸鉄などが挙げられる。鉄の可溶性塩における鉄イオンは、3価であってもよいが、好ましくは、2価である。鉄の可溶性塩は、単独使用または2種以上併用することもできる。鉄の可溶性塩のなかでは、好ましくは、硫酸鉄(II)が挙げられる。
 めっき液における鉄の可溶性塩の濃度は、例えば、0.03mol/L以上、好ましくは、0.10mol/L以上、さらに好ましくは、0.12mol/L以上、例えば、0.3mol/L以下、好ましくは、0.20mol/L以下である。
 アミノカルボン酸は、めっきの耐久性向上の観点からめっき液に溶解され、例えば、リシン、サッカリン、アルギニンなどが挙げられる。アミノカルボン酸は、単独使用または2種以上併用することもできる。アミノカルボン酸のなかでは、好ましくは、リシンが挙げられる。
 アミノカルボン酸は、水溶性の観点から好ましくは、アミノカルボン酸塩として用いられる。アミノカルボン酸塩としては、例えば、アミノカルボン酸塩酸塩などが挙げられる。アミノカルボン酸塩のなかでは、好ましくは、リシン塩酸塩が挙げられる。
 めっき液におけるアミノカルボン酸の濃度は、例えば、0.20mol/L以上、好ましくは、0.30mol/L以上、さらに好ましくは、0.40mol/Lを超過し、とりわけ好ましくは、0.45mol/L以上、例えば、1.0mol/L以下、好ましくは、0.50mol/L以下である。
 めっき液におけるアミノカルボン酸の濃度が上記下限以上であれば、めっきの耐久性の向上を図ることができる。
 また、めっき液には、電極の用途に応じて、コバルトの可溶性塩を溶解することができる。めっき液にコバルトの可溶性塩が溶解される場合、後述するめっきにCoを含有させることができ、アルカリ水溶液の電気分解に好適なカソードを製造することができる。
 コバルトの可溶性塩は、水可溶性のコバルト塩であり、例えば、硫酸コバルト、塩化コバルト、硝酸コバルトなどが挙げられる。コバルトの可溶性塩におけるコバルトイオンは、3価であってもよいが、好ましくは、2価である。コバルトの可溶性塩は、単独使用または2種以上併用することもできる。コバルトの可溶性塩のなかでは、好ましくは、硫酸コバルト(II)が挙げられる。
 めっき液におけるコバルトの可溶性塩の濃度は、例えば、0.005mol/L以上、好ましくは、0.010mol/L以上、例えば、0.050mol/L以下、好ましくは、0.025mol/L以下である。
 さらに、めっき液には、必要に応じて、めっき形成工程中の水素発生による陰極界面のpH変化を抑制する観点からホウ酸、電極界面の親水性向上の観点からアルキル硫酸エステル塩などを溶解することができる。
 めっき液におけるホウ酸の濃度は、例えば、0.10mol/L以上、好ましくは、0.30mol/L以上、例えば、1.0mol/L以下、好ましくは、0.70mol/L以下である。
 アルキル硫酸エステル塩としては、例えば、ドデシル硫酸ナトリウム、ベンゼンスルホン酸ナトリウムなどが挙げられる。アルキル硫酸エステル塩は、単独使用または2種以上併用することもできる。アルキル硫酸エステル塩のなかでは、好ましくは、ドデシル硫酸ナトリウムが挙げられる。
 めっき液のpHは、例えば、1.0以上、好ましくは、1.5以上、例えば、5.0以下、好ましくは、3.0以下、さらに好ましくは、2.5未満、とりわけ好ましくは、2.0未満である。
 なお、必要により、めっき液に酸(例えば、硫酸、硝酸、塩酸など)を添加して、めっき液のpHを上記の範囲に調整する。
 (2)めっき形成工程
 次いで、めっき液に、陽極を浸漬するとともに、陽極と間隔を隔てて向かい合うように基材(陰極)を浸漬する。
 陽極は、金属板であって、例えば、ニッケルからなる。陽極は、好ましくは2枚準備され、2枚の陽極は、互いに間隔を隔てて向かい合うように、めっき液に浸漬される。
 基材は、金属板であり、めっき形成工程において陰極として機能する。基材の材料は、特に制限されず、例えば、ニッケル、鉄、コバルトなどが挙げられる。基材の材料のなかでは、好ましくは、ニッケルが挙げられる。
 そして、基材は、2枚の陽極の間において、各陽極に対して間隔を隔てて向かい合うように、めっき液に浸漬される。
 次いで、めっき液の温度を、公知の方法(例えば、ウォーターバスなど)により所定の温度に加熱する。
 めっき形成工程におけるめっき液の温度としては、30℃を超過し、好ましくは、31℃以上、さらに好ましくは、33℃以上、とりわけ好ましくは、35℃以上、例えば、80℃以下、好ましくは、40℃以下である。
 めっき液の温度が上記下限以上であると、めっき効率の向上を図ることができ、めっき液の温度が上記上限以下であると、めっき液の加熱に要するエネルギーの低減を図ることができる。
 そして、めっき液の温度を上記の範囲に維持しつつ、定電流で電気めっきして、基材上にめっきを形成する。
 電流密度は、例えば、50A/m以上、好ましくは、100A/m以上、例えば、500A/m以下、好ましくは、300A/m以下である。
 めっき時間は、例えば、5分以上、好ましくは、10分以上、例えば、180分以下、好ましくは、30分以下である。
 以上により、電気めっきによって基材上にめっきが形成され、基材と、基材上に形成されるめっきとを含有する電極が調製される。
 めっき形成工程のめっき効率は、例えば、18%以上、好ましくは、20%以上、さらに好ましくは、25%以上、例えば、95%以下である。なお、めっき効率は、実施例に記載の方法により算出される。
 めっきの厚みは、例えば、0.2μm以上、好ましくは、1.5μm以上、例えば、5.0μm以下、好ましくは、2.0μm以下である。
 めっき液が、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とを含有し、コバルトの可溶性塩を含有しない場合、めっきは、Ni、FeおよびCを含有し、Coを含有しない合金めっき(以下、Ni-Fe-C合金めっきとする。)として形成される。
 Ni-Fe-C合金中において、Niは45原子%以上96.4原子%以下、Feは3原子%以上45原子%以下、Cは0.6原子%以上10原子%以下である。
 また、めっき液が、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸と、コバルトの可溶性塩とを含有する場合、めっきは、Ni、Fe、CoおよびCを含有する合金めっき(以下、Ni-Fe-Co-C合金めっきとする。)として形成される。
 Ni-Fe-Co-C合金中において、Niは5原子%以上96.4原子%以下、Feは2.9原子%以上65原子%以下、Coは0.1原子%以上20原子%以下、Cは0.6原子%以上10原子%以下である。
 このような電極は、各種産業分野(例えば、アルカリ水溶液の電気分解、海水の電気分解、ソーダ工業における食塩水の電気分解など)に利用でき、とりわけ、アルカリ水溶液の電気分解に好適に利用できる。特に、Ni-Fe-C合金めっきを含有する電極は、アルカリ水溶液の電気分解に好適なアノード(酸素発生電極)として利用でき、Ni-Fe-Co-C合金めっきを含有する電極は、アルカリ水溶液の電気分解に好適なカソード(水素発生電極)として利用できる。
 2.アルカリ水溶液の電気分解
 次に、Ni-Fe-C合金めっきを含有する電極(以下、Ni-Fe-C電極とする。)と、Ni-Fe-Co-C合金めっきを含有する電極(以下、Ni-Fe-Co-C電極とする。)とを用いたアルカリ水溶液の電気分解について説明する。
 アルカリ水溶液のアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。アルカリは、単独使用または2種以上併用することもできる。アルカリのなかでは、好ましくは、水酸化カリウムが挙げられる。アルカリ水溶液におけるアルカリの濃度は、例えば、1.0質量%以上、好ましくは、20質量%以上、例えば、50質量%以下、好ましくは、40質量%以下である。
 そして、Ni-Fe-C電極をアノードとして、アルカリ水溶液に浸漬するとともに、Ni-Fe-Co-C電極をカソードとして、アルカリ水溶液に浸漬する。その後、公知の条件(例えば、温度90℃)で、アルカリ水溶液を電気分解する。
 これにより、Ni-Fe-C電極(アノード)において酸素が発生し、Ni-Fe-Co-C電極(カソード)において水素が発生する。
 3.作用効果
 上記の電極の製造方法では、めっき形成工程において、めっき液の液温が30℃を超過する。そのため、水素の発生を抑制でき、めっき効率の向上を図ることができる。
 また、めっき液に、ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とが溶解されているので、基材上に形成されるめっきは、ニッケル、鉄および炭素を含有する。そのため、アルカリ水溶液の電気分解に好適な電極(アノードやカソード)を製造することができる。
 また、工業的にはめっき液を繰り返し利用することが望まれている。上記の電極の製造方法によれば、めっき効率の向上を図ることができるので、めっき液を繰り返し利用しても、めっきを効率よく形成することができる。
 また、めっき形成工程において、めっき液のpHが2.5未満であると、形成されるめっきの残留応力の緩和を図ることができ、めっきのひび割れや剥離を抑制することができる。また、めっき形成工程において、めっき液の液温が上記の値を超過するので、めっき液のpHが上記の値未満であっても、めっき効率を十分に確保することができる。
 また、めっき液におけるアミノカルボン酸の濃度が0.30mol/L以上であると、めっきの耐久性の向上を図ることができる。また、めっき形成工程において、めっき液の液温が上記の値を超過するので、めっき液におけるアミノカルボン酸の濃度が上記の値以上であっても、めっき効率を十分に確保することができる。
 また、めっき液にコバルトの可溶性塩が溶解されている場合、基材上に形成されるめっきはコバルトをさらに含有する。そのため、アルカリ水の電気分解により好適なカソードを製造することができる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」として定義されている数値)に代替することができる。
・実施例1~5および比較例1
 水80mLに、硫酸ニッケル(II)六水和物[NiSO・6HO:ニッケルの可溶性塩]と、塩化ニッケル(II)六水和物[NiCl・6HO:ニッケルの可溶性塩]と、硫酸鉄(II)七水和物[FeSO・7HO:鉄の可溶性塩]と、硫酸コバルト(II)七水和物[CoSO・7HO:コバルトの可溶性塩]と、リシン塩酸塩[C14・HCl:アミノカルボン酸]と、ホウ酸[B(OH)]と、ドデシル硫酸ナトリウム[C1225SONa]とを溶解して、下記組成のめっき液を調製した。調製時のめっき液のpHは3.0であった。その後、めっき液に濃硫酸を加えて、pHを1.5に調整した(調製工程)。
 めっき液;
  NiSO・6HO・・・1.14mol/L
  NiCl・6HO・・・0.19mol/L
  FeSO・7HO・・・0.144mol/L
  CoSO・7HO・・・0.018mol/L
  C14・HCl・ 0.50mol/L
  B(OH)・・・・・・ 0.49mol/L
  C1225SONa・・・0.000104mol/L
 次いで、めっき液に、2枚のニッケルからなる陽極を互いに間隔を隔てて向かい合うように浸漬した。そして、ニッケルからなる基材(総面積:2cm)を、2枚の陽極の間において、各陽極と間隔を隔てて向かい合うように、めっき液に浸漬した。陽極と基材との距離は、4.5cmであった。
 次いで、めっき液の温度(液温)を表1に示す温度に調整した後、当該温度を維持しつつ、電流密度300A/mの定電流で10分間、基材を電気めっきした。これにより、基材上に、Ni、Fe、CoおよびCを含有する合金めっきが形成された。
 以上によって、基材と、基材上に形成される合金めっきとを有する電極を調製した。
・実施例6、7および比較例2
 めっき液のpHを2.5に調整した点以外は、比較例1、実施例2および3と同様にして、電極をそれぞれ調製した。
・実施例8、9および比較例3
 めっき液に濃硫酸を加えなかった点以外は、比較例1、実施例2および3と同様にして、電極をそれぞれ調製した。つまり、めっき液のpHは、3.0であった。
<めっき効率>
 上記の実施例および比較例におけるめっき効率を下記のように算出した。その結果を表1および図1に示す。
 電子天秤により、めっき前の基材およびめっき後の基材(電極)の質量を測定した。そして、めっき後の基材(電極)とめっき前の基材との質量差から、合金めっきの実際の析出量を算出した。また、通電電気量から全てNiで析出すると仮定して、理論析出量を算出した。そして、理論析出量に対する実際の析出量の百分率(実際の析出量/理論析出量×100)をめっき効率として算出した。
Figure JPOXMLDOC01-appb-T000001
・実施例10~14および比較例4
 めっき液に硫酸コバルト(II)七水和物を溶解しなかった点、硫酸鉄(II)七水和物の濃度を0.108mol/Lに変更した点、リシン塩酸塩の濃度を0.200mol/Lに変更した点以外は、比較例1、実施例1~5と同様にして、電極をそれぞれ調製した(調製工程)。
 つまり、実施例10~14および比較例4のめっき液の組成は、下記のとおりであり、めっき液のpHは、1.5であった。
 めっき液;
  NiSO・6HO・・・1.14mol/L
  NiCl・6HO・・・0.19mol/L
  FeSO・7HO・・・0.108mol/L
  C14・HCl・ 0.20mol/L
  B(OH)・・・・・・ 0.49mol/L
  C1225SONa・・・0.000104mol/L
 電極は、基材と、基材上に形成され、Ni、FeおよびCを含有する合金めっきとを有していた。また、上記と同様にしてめっき効率を算出した。その結果を表2および図2に示す。
 ・実施例15、16および比較例5
 めっき液のpHを2.5に調整した点以外は、比較例4、実施例11および12と同様にして、電極をそれぞれ調製した。
・実施例17、18および比較例6
 めっき液に濃硫酸を加えなかった点以外は、比較例4、実施例11および12と同様にして、電極をそれぞれ調製した。つまり、めっき液のpHは、3.0であった。
Figure JPOXMLDOC01-appb-T000002
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明の電極の製造方法は、各種産業分野、例えば、アルカリ水溶液の電気分解、海水の電気分解、ソーダ工業における食塩水の電気分解などに利用できる電極の製造に好適に用いられる。

Claims (4)

  1.  ニッケルの可溶性塩と、鉄の可溶性塩と、アミノカルボン酸とを水に溶解してめっき液を調製する工程と、
     前記めっき液に基材を浸漬し、電気めっきにより、前記基材上にめっきを形成する工程と、を含み、
     前記めっきを形成する工程において、前記めっき液の液温が30℃を超過することを特徴とする、電極の製造方法。
  2. 前記めっきを形成する工程において、前記めっき液のpHが2.5未満であることを特徴とする、請求項1に記載の電極の製造方法。
  3.  前記めっき液におけるアミノカルボン酸の濃度が0.30mol/L以上であることを特徴とする、請求項1に記載の電極の製造方法。
  4.  前記めっき液を調製する工程において、コバルトの可溶性塩をさらに溶解することを特徴とする、請求項1に記載の電極の製造方法。
PCT/JP2017/021384 2016-08-12 2017-06-08 電極の製造方法 WO2018029968A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-158573 2016-08-12
JP2016158573A JP2018024924A (ja) 2016-08-12 2016-08-12 電極の製造方法

Publications (1)

Publication Number Publication Date
WO2018029968A1 true WO2018029968A1 (ja) 2018-02-15

Family

ID=61163241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021384 WO2018029968A1 (ja) 2016-08-12 2017-06-08 電極の製造方法

Country Status (2)

Country Link
JP (1) JP2018024924A (ja)
WO (1) WO2018029968A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741389A (en) * 1980-08-22 1982-03-08 Showa Denko Kk Cathode for electrolyzing aqueous alkali metal halide and its manufacture
JP2005290500A (ja) * 2004-04-01 2005-10-20 Daiki Engineering Kk 水素発生用合金電極およびその製造方法
JP2015010253A (ja) * 2013-06-27 2015-01-19 アタカ大機株式会社 酸素発生用合金電極およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741389A (en) * 1980-08-22 1982-03-08 Showa Denko Kk Cathode for electrolyzing aqueous alkali metal halide and its manufacture
JP2005290500A (ja) * 2004-04-01 2005-10-20 Daiki Engineering Kk 水素発生用合金電極およびその製造方法
JP2015010253A (ja) * 2013-06-27 2015-01-19 アタカ大機株式会社 酸素発生用合金電極およびその製造方法

Also Published As

Publication number Publication date
JP2018024924A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
EP3097222B1 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
JP6956144B2 (ja) 水電解用複合電極一体型分離板及び水電解スタック
KR20110106303A (ko) 수소-방출 캐소드로서 적합한 전극
CN104831333A (zh) 一种钢铁表面磁性微弧氧化膜层的制备方法
CN107761142A (zh) 一种低共熔溶剂电沉积铁铬合金镀层的方法
JP3261676B2 (ja) 電気ニッケルめっき浴。
JP6208992B2 (ja) 酸素発生用合金電極およびその製造方法
WO2018029967A1 (ja) 電極の製造方法
CN113463148A (zh) 一种在钛或钛合金基材表面电镀金的方法
CN108085723A (zh) 一种低共熔溶剂电沉积镍铬合金镀层的方法
JP2007308801A (ja) ニッケル・コバルト・リン電気メッキの組成物及びその用途
WO2018029968A1 (ja) 電極の製造方法
JP4561149B2 (ja) 水素発生用合金電極およびその製造方法
JP2002241986A (ja) Ni−W−P合金めっき液及びその連続めっき方法
CN114622238B (zh) 一种过渡金属基析氢析氧双功能电极的制备及应用
JP6348743B2 (ja) 水素発生用合金電極およびその製造方法
JP4085772B2 (ja) 水素発生用合金電極およびその製造方法
JP6411042B2 (ja) 水溶液電解用電極の製造方法
Kim et al. Fabrication of 63Ni layer for betavoltaic battery
JP4803550B2 (ja) 銀酸化物膜電解形成用組成物
KR20090039944A (ko) 인바 합금 및 그 제조방법
JP4993858B2 (ja) タングステン−リン系合金電気めっき皮膜
JP2006213956A (ja) カチオン交換膜を用いたFe−W合金の電気めっき装置と前記装置による連続めっき方法及び皮膜
JPS589988A (ja) 電解槽
JPS6017096A (ja) 電極の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839043

Country of ref document: EP

Kind code of ref document: A1