WO2018025903A1 - はんだペースト用フラックス、及び、はんだペースト - Google Patents

はんだペースト用フラックス、及び、はんだペースト Download PDF

Info

Publication number
WO2018025903A1
WO2018025903A1 PCT/JP2017/028007 JP2017028007W WO2018025903A1 WO 2018025903 A1 WO2018025903 A1 WO 2018025903A1 JP 2017028007 W JP2017028007 W JP 2017028007W WO 2018025903 A1 WO2018025903 A1 WO 2018025903A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder paste
mass
fatty acid
solder
flux
Prior art date
Application number
PCT/JP2017/028007
Other languages
English (en)
French (fr)
Inventor
佑樹 山本
怜史 大谷
光康 古澤
Original Assignee
株式会社弘輝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社弘輝 filed Critical 株式会社弘輝
Priority to US16/321,873 priority Critical patent/US11425825B2/en
Priority to KR1020197001402A priority patent/KR20190034196A/ko
Priority to JP2018531947A priority patent/JP7022434B2/ja
Priority to CN201780045759.3A priority patent/CN109475983B/zh
Priority to EP17837005.2A priority patent/EP3495090A4/en
Publication of WO2018025903A1 publication Critical patent/WO2018025903A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3615N-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a solder paste flux and a solder paste formed using the solder paste flux.
  • a solder paste containing solder powder and flux is applied to the electrode portion on the substrate surface, and the electrode portion of the bonding component is applied to the electrode portion.
  • the substrate and the joining component are joined via the solder joint portion formed from the solder paste.
  • solder alloy sold-free solder alloy
  • solder powder using a lead-free solder alloy for example, a mixture of Sn-based metal particles made of Sn or Sn alloy and Cu-based metal particles made of Cu or Cu alloy has been proposed ( Patent Document 1).
  • solder paste using such solder powder is heated to form the solder joint as described above, Sn-based metal particles having a melting point lower than that of the Cu-based metal particles are first melted.
  • the molten Sn-based metal reacts with Cu on the surface of the Cu-based metal particles, so that an intermetallic compound (specifically, CuSn alloy) layer (hereinafter referred to as an IMC layer) is formed on the surface of the Cu-based metal particles.
  • an intermetallic compound specifically, CuSn alloy
  • the IMC layer has a melting point higher than that of the Sn-based metal, the solder joint is less likely to be remelted even when the solder joint is heated again. For this reason, even if it is a case where it is necessary to heat a joining structure again, the joining state in a solder joint part can be maintained favorably.
  • voids are easily formed in the solder joint.
  • a volatile component such as a flux is volatilized to generate a gas, which remains as bubbles in the Sn-based metal in which the gas is melted.
  • a gas does not escape even when the Sn-based metal is cured, and remains in the solder joint portion to form a void. If many such voids are present in the solder joint portion, the contact area between the substrate and the joining component decreases, so that the electrical resistance increases and there is a risk of heat generation.
  • an object of the present invention is to provide a solder paste flux capable of forming a solder joint with few voids and to provide a solder paste using the solder paste flux.
  • the solder paste flux according to the present invention contains an organic component composed of a fatty acid and an aliphatic primary amine as a main component.
  • the mass ratio of the organic component to the mass of the solder paste flux is preferably 70% by mass or more and 100% by mass or less.
  • solder paste flux is configured such that a molar ratio of the fatty acid to the aliphatic primary amine is 1: 0.5 or more and 1.5 or less.
  • the fatty acid is at least one of a saturated fatty acid and an unsaturated fatty acid, the saturated fatty acid has 10 or less carbon atoms in the main chain, and the unsaturated fatty acid has 18 or less carbon atoms. Preferably there is.
  • the unsaturated fatty acid is preferably at least one selected from the group consisting of oleic acid, linoleic acid, and linolenic acid.
  • the fatty acid is composed of saturated fatty acid and unsaturated fatty acid, and the ratio of the number of moles of unsaturated fatty acid to the total number of moles of saturated fatty acid and unsaturated fatty acid is 20 mol% or less. It is preferable.
  • the aliphatic primary amine is at least one of a saturated aliphatic primary amine and an unsaturated aliphatic primary amine, and the saturated aliphatic primary amine has a main chain carbon number of 8 or less,
  • the unsaturated aliphatic primary amine preferably has 18 or less carbon atoms.
  • the unsaturated aliphatic primary amine is preferably oleylamine.
  • solder paste according to the present invention contains any of the above solder paste fluxes and solder powder, and the solder powder includes Sn-based metal particles made of Sn or Sn alloy, and Cu or Cu. It contains at least one of Cu-based metal particles made of an alloy.
  • the solder paste preferably has a solder paste flux content of 5% by mass to 12% by mass.
  • the solder paste preferably has an average particle size of the solder powder of 5 ⁇ m to 35 ⁇ m.
  • the solder paste flux according to the present invention contains an organic component composed of a fatty acid and an aliphatic primary amine as a main component.
  • the mass ratio of the organic component to the mass of the solder paste flux is preferably 65% by mass or more and 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less.
  • the molar ratio of the fatty acid to the aliphatic primary amine is preferably 1: 0.5 or more and 1.5 or less, more preferably 1: 0.7 or more and 1.3 or less. : 1 is particularly preferred.
  • the fatty acid it is preferable to use a fatty acid at room temperature.
  • normal temperature means the temperature of 25 degreeC or more and 30 degrees C or less.
  • the fatty acid is preferably one that does not vaporize to the temperature at which the solder paste is reflowed.
  • the boiling point is preferably 140 ° C. or higher and 400 ° C. or lower, more preferably 200 ° C. or higher and 360 ° C. or lower. It is particularly preferably 230 ° C. or higher and 270 ° C. or lower.
  • the fatty acid is preferably at least one of a saturated fatty acid and an unsaturated fatty acid.
  • the saturated fatty acid is not particularly limited, and, for example, one having 10 or less carbon atoms in the main chain is preferable, and one having 9 or less is more preferable.
  • the saturated fatty acid includes at least one selected from the group consisting of octanoic acid, nonanoic acid, decanoic acid, 4-methylnonanoic acid, and 2-hexyldecanoic acid.
  • the unsaturated fatty acid is not particularly limited, and for example, those having 24 or less carbon atoms are preferred, and those having 18 or less are more preferred.
  • examples of the unsaturated fatty acid include at least one selected from the group consisting of oleic acid, linoleic acid, and linolenic acid.
  • the ratio of the number of moles of the unsaturated fatty acid to the total number of moles of the saturated fatty acid and the unsaturated fatty acid is preferably 20 mol% or less, and 10 mol%. The following is more preferable.
  • an aliphatic primary amine that is liquid at room temperature.
  • the aliphatic primary amine preferably has a boiling point of 70 ° C. or higher and 400 ° C. or lower, and more preferably 75 ° C. or higher and 180 ° C. or lower.
  • the aliphatic primary amine is preferably at least one of a saturated aliphatic primary amine and an unsaturated aliphatic primary amine.
  • the saturated aliphatic primary amine is not particularly limited, and for example, those having a main chain having 8 or less carbon atoms are preferred, and those having 6 or less are more preferred.
  • the saturated aliphatic primary amine includes at least one selected from the group consisting of butylamine, hexylamine, octylamine, and 2-ethylhexylamine.
  • the unsaturated aliphatic primary amine is not particularly limited, and for example, those having 18 or less carbon atoms are preferable.
  • an oleylamine is mentioned as an unsaturated aliphatic primary amine.
  • the solder paste flux as described above may contain components other than the above fatty acids and aliphatic primary amines.
  • a solvent or a thixotropic agent may be contained for the purpose of adjusting the viscosity.
  • the solvent is not particularly limited.
  • diethylene glycol monohexyl ether hexyl diglycol
  • diethylene glycol dibutyl ether diethylene glycol mono 2-ethylhexyl ether (2 ethylhexyl diglycol)
  • diethylene glycol monobutyl ether Glycol ethers such as (butyldiglycol); aliphatic compounds such as n-hexane, isohexane and n-heptane; esters such as isopropyl acetate, methyl propionate and ethyl propionate; methyl ethyl ketone and methyl-n-propyl ketone , Ketones such as diethyl ketone; alcohols such as ethanol, n-propanol, isopropanol, isobutanol, and octanediol , Terpineol, menthol, phen
  • the said solvent may be used independently and may be used in mixture of multiple types.
  • the amount of the solvent used is not particularly limited, and is preferably 0% by mass or more and 20% by mass or less, and preferably 0% by mass or more and 16% by mass with respect to the mass of the solder paste flux. The following is more preferable.
  • the thixotropic agent is not particularly limited, and examples thereof include amide type thixotropic agents, hardened castor oil, beeswax, carnauba wax, and higher fatty acid amides such as stearamide.
  • the amount of the thixotropic agent is not particularly limited, and is preferably 0% by mass or more and 20% by mass or less, and preferably 0% by mass or more and 16% by mass with respect to the mass of the solder paste flux. % Or less is more preferable.
  • the solder paste flux as described above is kneaded with solder powder to form a solder paste.
  • the mass ratio of the solder paste flux to the mass of the solder paste is not particularly limited, and is preferably 5% by mass or more and 12% by mass or less, for example, 5.5% by mass or more and 8% by mass or less. More preferably, it is more preferably 5.5% by mass or more and 6% by mass or less.
  • the viscosity of the solder paste is not particularly limited, and can be adjusted according to the supply method such as printing and dispensing. For example, it is preferably 10 Pa ⁇ s or more and 350 Pa ⁇ s or less, and more preferably 100 Pa ⁇ s or more and 300 Pa ⁇ s or less.
  • the viscosity is measured based on a viscosity value at 10 rpm using a spiral type viscosity measuring device (PCU-205 manufactured by Malcolm).
  • the solder powder is not particularly limited, and general solder powder can be used.
  • Sn-Ag solder, Sn-Ag-Cu solder, Sn-Ag-Cu-Bi solder, Sn-Ag-In-Bi solder, Sn-Cu solder used as lead-free solder, Metal powder constituting lead-free solder such as Sn—Zn solder, Sn—Bi solder, Sn—Sb solder, Sn—Au solder, Sn—In solder can be used.
  • the solder powder it is preferable to use a mixture of Sn-based metal particles made of Sn or Sn alloy and Cu-based metal particles made of Cu or Cu alloy (hereinafter also referred to as SnCu solder powder). .
  • the Sn-based metal particles may be Sn particles composed of 100% by mass of Sn, or one or more selected from the group consisting of Sn and In, Ag, Cu, Sb, Ni, Ge, Fe, Co, and Bi.
  • Sn alloy particles made of other metals.
  • the Sn alloy particles preferably include those having a composition of Sn—Ag, Sn—Cu, Sn—Sb, or Sn—Ag—Cu.
  • the Sn-based metal particles preferably have an average particle diameter D50 (median diameter) of 1 ⁇ m or more and 70 ⁇ m or less, and more preferably 5 ⁇ m or more and 35 ⁇ m or less.
  • the Sn-based metal particles preferably have a 90% particle diameter D90 of 100 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the Cu metal particles include Cu particles composed of 100% by mass of Cu, or Cu alloy particles composed of Cu and one or more other metals selected from the group consisting of In, Ag, Sn, and Bi. Can be mentioned.
  • the Cu alloy particles preferably include those having a composition of Cu—Ag—Sn—Bi—In.
  • the average particle diameter D50 (median diameter) of the Cu-based metal particles is preferably 1 ⁇ m or more and 70 ⁇ m or less, and more preferably 5 ⁇ m or more and 35 ⁇ m or less.
  • the Cu-based metal particles preferably have a 90% particle diameter D90 of 100 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • average particle diameter D50 (median diameter)
  • 90% particle diameter D90 are values measured by a laser diffraction particle size distribution measuring apparatus.
  • the mixing ratio of the Sn-based metal particles and the Cu-based metal particles is not particularly limited.
  • the Sn-based metal particles are preferably 35% by mass or more and 85% by mass or less, and more preferably 50% by mass or more and 65% by mass or less.
  • the Cu-based metal particles are preferably 15% by mass or more and 65% by mass or less, and more preferably 35% by mass or more and 50% by mass or less.
  • the metal particles constituting the solder powder as described above may further include other metal particles in addition to the Sn-based metal particles and the Cu-based metal particles.
  • grain the metal particle containing Ni etc. is mentioned, for example.
  • Such other metal particles preferably have a content of 1% by mass to 20% by mass with respect to the mass of the solder powder.
  • solder paste flux and the solder paste according to the present invention it is possible to form a solder joint with few voids.
  • solder paste formed by kneading a solder paste flux containing a fatty acid and an organic component composed of an aliphatic primary amine as a main component and solder powder, a bonding component such as an electronic component is formed on a substrate. It is possible to reduce the occurrence of voids in the solder joints when bonded to each other.
  • solder paste flux and the solder paste according to the present invention are not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course.
  • Aliphatic primary amine butylamine (manufactured by Tokyo Chemical Industry Co., Ltd., product name: butylamine) ⁇ Hexylamine (manufactured by Tokyo Chemical Industry Co., Ltd., product name: hexylamine) ⁇ 2-Ethylhexylamine (product name: 2-ethylhexylamine, manufactured by Guangei Chemical Industry Co., Ltd.) ⁇ Octylamine (product name: n-octylamine, manufactured by Tokyo Chemical Industry Co., Ltd.) ⁇ Oleylamine (manufactured by Tokyo Chemical Industry Co., Ltd., product name: oleylamine) 3.
  • Resin component / Super light rosin (Arakawa Chemicals, product name: KR-612) ⁇ Disproportionated rosin (Arakawa Chemical Co., Ltd., product name: Longis R) 4).
  • Solvent, hexyl diglycol (manufactured by Nippon Emulsifier Co., Ltd., product name: HeDG) ⁇ Tarpineol (Product name: Turpineol, manufactured by Yashara Chemical Co., Ltd.) 5).
  • Thixotropic agent N′-hexamethylene-bis-12-hydroxystearylamide product name: J-630, manufactured by Ito Oil Co., Ltd.
  • -Castor hydrogenated oil manufactured by Ito Oil Co., Ltd., product name: castor hydrogenated oil
  • Honey wax Honey wax (Miki Chemical Industry Co., Ltd., product name: red bee bleached beeswax) 6
  • Activator, adipic acid product name: adipic acid, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Trans-2,3-dibromo-2-butene-1,4-diol manufactured by JAIN SPECIALITY FINE CHEMICALS, product name: DBBD
  • Solder powder 1 A material comprising Sn-based metal particles made of Sn (average particle size: 19.8 ⁇ m) and Cu-based metal particles made of Cu alloy (average particle size: 11.7 ⁇ m) was used.
  • the composition of the Cu alloy was 65 mass% Cu, 15 mass% Sn, 10 mass% Ag, 5 mass% Bi, and 5 mass% In.
  • the mass ratio of each particle to the mass of the solder powder was 65 mass% for the Sn-based metal particles and 35 mass% for the Cu-based metal particles.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter. 8).
  • Solder powder 2 First Sn-based metal particles made of Sn (average particle size: 19.8 ⁇ m), second Sn-based metal particles made of Sn alloy (average particle size: 30.8 ⁇ m), and Cu-based metal made of Cu alloy And particles (average particle size: 11.7 ⁇ m).
  • the composition of the Sn alloy was 95% by mass for Sn and 5% by mass for Sb.
  • the composition of the Cu alloy was 65 mass% Cu, 15 mass% Sn, 10 mass% Ag, 5 mass% Bi, and 5 mass% In.
  • the mass ratio of each particle to the mass of the solder powder is 32.5 mass% for the first Sn-based metal particles, 32.5 mass% for the second Sn-based metal particles, and 35 mass% for the Cu-based metal particles. %.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter.
  • Solder powder 3 First Sn-based metal particles made of Sn (average particle size: 19.8 ⁇ m), second Sn-based metal particles made of Sn alloy (average particle size: 28.4 ⁇ m), and Cu-based metal made of Cu alloy And particles (average particle size: 11.7 ⁇ m).
  • Ag was 1.1 mass%
  • Cu was 0.7 mass%
  • Ni was 0.07 mass%
  • Ge was 0.01 mass%
  • the balance was only Sn.
  • the mass ratio of each particle to the mass of the solder powder is 32.5 mass% for the first Sn-based metal particles, 32.5 mass% for the second Sn-based metal particles, and 35 mass% for the Cu-based metal particles. %.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter. 10.
  • Solder powder 4 A material comprising Sn-based metal particles (average particle size: 19.8 ⁇ m) made of Sn and Cu-based metal particles (average particle size: 1.1 ⁇ m) made of Cu was used.
  • the mass ratio of each particle to the mass of the solder powder was 65 mass% for the Sn-based metal particles and 35 mass% for the Cu-based metal particles.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter. 11.
  • Solder powder 5 A material comprising Sn-based metal particles made of Sn (average particle size: 19.8 ⁇ m) and Cu-based metal particles made of Cu alloy (average particle size: 11.7 ⁇ m) was used.
  • the composition of the Cu alloy was 65 mass% Cu, 15 mass% Sn, 10 mass% Ag, 5 mass% Bi, and 5 mass% In.
  • the mass ratio of each particle with respect to the mass of the solder powder was 50 mass% for Sn-based metal particles and 50 mass% for Cu-based metal particles.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter.
  • Solder powder 6 A material comprising Sn-based metal particles made of Sn (average particle size: 19.8 ⁇ m) and Cu-based metal particles made of Cu alloy (average particle size: 11.7 ⁇ m) was used.
  • the composition of the Cu alloy was 65 mass% Cu, 15 mass% Sn, 10 mass% Ag, 5 mass% Bi, and 5 mass% In.
  • the mass ratio of each particle with respect to the mass of the solder powder was 40 mass% for Sn-based metal particles and 60 mass% for Cu-based metal particles.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter. 13.
  • Solder powder 7 A material comprising Sn-based metal particles (average particle size: 7.3 ⁇ m) made of Sn and Cu-based metal particles (average particle size: 9.6 ⁇ m) made of a Cu alloy was used.
  • the composition of the Cu alloy was 65 mass% Cu, 15 mass% Sn, 10 mass% Ag, 5 mass% Bi, and 5 mass% In.
  • the mass ratio of each particle to the mass of the solder powder was 65 mass% for the Sn-based metal particles and 35 mass% for the Cu-based metal particles.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter.
  • Solder powder 8 What consists of the Sn-type metal particle
  • the composition of the Sn alloy was 96.5% by mass of Sn, 3.0% by mass of Ag, and 0.5% by mass of Cu.
  • said average particle diameter (D50) is measured by the laser diffraction particle size distribution measuring apparatus by Beckman Coulter.
  • solder paste was prepared by kneading the flux of Comparative Example 1 and the above-described solder powder 1 with the composition shown in Table 2 below.
  • Voids were evaluated under the same conditions as in Comparative Example 1 except that test specimens were prepared using the solder pastes prepared as described above.
  • the void ratio of each example is shown in Tables 7 and 8 below.
  • ⁇ Test 2 (Examples 25 to 48)> 1. Production of Flux Flux was produced in the same manner as in Test 1 except that each fatty acid and each aliphatic primary amine were used in the combinations shown in Table 9 below.
  • ⁇ Test 3 (Examples 49 to 55)> 1. Production of Flux Flux was produced in the same manner as in Test 1 except that fatty acids and aliphatic primary amines were used in the combinations shown in Table 12 below and the molar ratio of fatty acids was as shown in Table 12 below.
  • ⁇ Test 4 (Examples 56 to 60)> 1.
  • Production of Flux and Solder Paste A solder paste was produced in the same manner as in Test 1 except that the flux of Example 30 of Test 2 was produced and the flux was used and blended as shown in Table 13 below.
  • Voids were evaluated under the same conditions as in Comparative Example 1 except that test specimens were prepared using the solder pastes prepared as described above.
  • the void ratio of each example is shown in Table 13 below.
  • ⁇ Test 5 (Examples 61 to 67)> 1.
  • Preparation of Flux and Solder Paste Soldering was performed in the same manner as in Test 1 except that the fluxes of Examples 26 and 30 in Test 2 were prepared and solder fluxes 2 to 7 were used as shown in Table 14 below. A paste was prepared.
  • Voids were evaluated under the same conditions as in Comparative Example 1 except that test specimens were prepared using the solder pastes prepared as described above.
  • the void ratio of each example is shown in Table 14 below.
  • ⁇ Test 7 (Example 70)> 1. Production of Flux Flux was produced in the same manner as in Test 1 except that fatty acids and aliphatic primary amines were used in the combinations shown in Table 16 below, and the molar fraction of aliphatic primary amines was as shown in Table 16 below.
  • solder paste was prepared in the same manner as in Test 1 except that the above flux was used.
  • voids were evaluated under the same conditions as in Comparative Example 1 except that a test specimen was produced using the solder paste produced as described above.
  • the void fraction of Example 70 is shown in Table 16 below.
  • solder paste was prepared in the same manner as in Test 1 except that the above flux was used.
  • voids were evaluated under the same conditions as in Comparative Example 1 except that a test specimen was produced using the solder paste produced as described above.
  • the void ratio of each example is shown in Table 17 below.
  • Example 73 > 1. Production of Flux Flux was produced in the same manner as in Test 1 except that the composition of the flux was as shown in Table 18 below. 2. Preparation of Solder Paste and Evaluation of Void A solder paste was prepared in the same manner as in Test 1 except that the above flux was used and the composition shown in Table 19 below was used. In addition, voids were evaluated under the same conditions as in Comparative Example 1 except that a test specimen was produced using the solder paste produced as described above. The void fraction of Example 73 is shown in Table 18 below.
  • Example 74 Production of Flux and Solder Paste of Example 74 A solder paste was produced in the same manner as in Test 1 except that the flux of Example 6 was produced and the flux and solder powder 8 were used.
  • Examples 1 to 3, 5 to 7, and 9 to 11 in Tables 7 and 8 were compared with Examples 4, 8, and 12 to 24, Examples 1 to 3, 5 to 7, and 9 to 11 were compared. It can be seen that the void fraction is effectively reduced. That is, the void ratio can be more effectively reduced by using a fatty acid having a main chain having 10 or less carbon atoms and using an aliphatic primary amine having a main chain having 8 or less carbon atoms.
  • each Example has a lower void ratio. That is, the void ratio can be reduced even when a fatty acid having a low boiling point (10 or less carbon atoms) and a fatty acid having a high boiling point (18 carbon atoms) are used in combination.
  • the void ratios of Examples 49 to 52 shown in Table 12 are compared with the void ratios of Examples 53 to 55, it is recognized that the void ratios of Examples 49 to 52 are lower. That is, the void ratio can be more effectively reduced when the ratio of the number of moles of unsaturated fatty acid to the total number of moles of saturated fatty acid and unsaturated fatty acid is 20 mol% or less.
  • each Example has a lower void ratio. That is, by using the solder paste flux of the present invention, the void ratio can be reduced without being affected by the flux content in the solder paste. Particularly, when the content of the solder paste flux is 5.5% by mass or more and 6% by mass or less, the void ratio can be more effectively reduced.
  • each Example has a lower void ratio. That is, by using the solder paste flux of the present invention, the void ratio can be reduced without being affected by the type of metal particles, the mixing ratio, and the particle size range.
  • each Example has a lower void ratio. That is, in the solder paste flux of the present invention, the void ratio can be reduced by configuring the molar ratio of the fatty acid and the aliphatic primary amine to be 1: 0.5 or more and 1.5 or less. .
  • Example 70 has a lower void ratio. That is, even when an aliphatic primary amine having a low boiling point (10 or less carbon atoms) and an aliphatic primary amine having a high boiling point (18 carbon atoms) are used in combination, the void ratio can be reduced.
  • each Example has a lower void ratio. That is, in the solder paste flux of the present invention, even when the fatty acid and the aliphatic primary amine are branched, the void ratio can be reduced.
  • Example 73 has a lower void ratio. That is, in the solder paste flux of the present invention, the void ratio can be reduced by containing the fatty acid and the aliphatic primary amine as the main components.
  • Example 74 has a lower void ratio. That is, the solder paste flux of the present invention can reduce the void ratio even when the solder paste is made using solder powder made of only Sn-based metal particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本願発明は、ボイドが少ないはんだ接合部を形成することができるはんだペースト用フラックスを提供することを目的とする。本願発明のはんだペースト用フラックスは、脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有する。

Description

はんだペースト用フラックス、及び、はんだペースト 関連出願の相互参照
 本願は、日本国特願2016-152043号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、はんだペースト用フラックス、及び、該はんだペースト用フラックスを用いて形成されたはんだペーストに関する。
 電子部品等の接合部品が基板に接合された接合構造体を製造する際には、はんだ粉とフラックスとを含むはんだペーストを基板表面の電極部に塗布し、該電極部に接合部品の電極部を接触させた状態で加熱することで、はんだペーストから形成されたはんだ接合部を介して基板と接合部品とが接合されている。
 近年では、環境への配慮から、はんだペースト中のはんだ粉を構成するはんだ合金として、鉛を含まないもの(鉛フリーはんだ合金)を使用することが望まれている。鉛フリーはんだ合金を使用したはんだ粉としては、例えば、Sn又はSn合金からなるSn系金属の粒子と、Cu又はCu合金からなるCu系金属の粒子とが混合されたものが提案されている(特許文献1参照)。
 斯かるはんだ粉を用いたはんだペーストは、上記のようなはんだ接合部を形成するべく加熱されると、まずCu系金属の粒子よりも融点の低いSn系金属の粒子が溶融する。そして、溶融したSn系金属がCu系金属の粒子の表面のCuと反応することで、Cu系金属の粒子の表面に金属間化合物(具体的には、CuSn合金)層(以下、IMC層とも記す)が形成される。該IMC層は、Sn系金属よりも融点が高いため、はんだ接合部が再度加熱された場合であってもはんだ接合部が再溶融しにくくなる。このため、接合構造体を再度加熱することが必要な場合であっても、はんだ接合部における接合状態を良好に維持することができる。
 しかしながら、上記のように、融点の異なる金属の粒子が混合されたはんだペーストを用いてはんだ接合部を形成すると、はんだ接合部内にボイド(空隙)が形成され易くなる。具体的には、上記のようなはんだペーストが加熱されると、フラックス等の揮発成分が揮発してガスが発生し、該ガスが溶融したSn系金属中に気泡として残存することになる。斯かるガスは、Sn系金属が硬化する際にも抜けることなくはんだ接合部に残存してボイドが形成される。このようなボイドがはんだ接合部中に多く存在すると、基板と接合部品との接触面積が減少するため電気抵抗が増加して発熱等の虞がある。
日本国特開2010-149185号公報
 そこで、本願発明は、ボイドが少ないはんだ接合部を形成することができるはんだペースト用フラックスを提供すると共に、該はんだペースト用フラックスを用いたはんだペーストを提供することを課題とする。
 本発明に係るはんだペースト用フラックスは、脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有する。
 前記はんだペースト用フラックスは、前記はんだペースト用フラックスの質量に対する前記有機成分の質量割合が70質量%以上100質量%以下であることが好ましい。
 前記はんだペースト用フラックスは、前記脂肪酸と前記脂肪族一級アミンとのモル比が1:0.5以上1.5以下となるように構成されることが好ましい。
 前記はんだペースト用フラックスは、前記脂肪酸が飽和脂肪酸及び不飽和脂肪酸の少なくとも一方であり、前記飽和脂肪酸は、主鎖の炭素数が10以下であり、前記不飽和脂肪酸は、炭素数が18以下であることが好ましい。
 前記不飽和脂肪酸は、オレイン酸、リノール酸、及び、リノレン酸からなる群から選択される少なくとも一つであることが好ましい。
 前記はんだペースト用フラックスは、前記脂肪酸が飽和脂肪酸と不飽和脂肪酸とから構成されると共に、飽和脂肪酸と不飽和脂肪酸との合計のモル数に対する不飽和脂肪酸のモル数の割合が20mol%以下であることが好ましい。
 前記はんだペースト用フラックスは、前記脂肪族一級アミンが飽和脂肪族一級アミン及び不飽和脂肪族一級アミンの少なくとも一方であり、前記飽和脂肪族一級アミンは、主鎖の炭素数が8以下であり、前記不飽和脂肪族一級アミンは、炭素数が18以下であることが好ましい。
 前記不飽和脂肪族一級アミンは、オレイルアミンであることが好ましい。
 本発明に係るはんだペーストは、上記の何れかのはんだペースト用フラックスと、はんだ粉とを含有しており、前記はんだ粉は、Sn又はSn合金からなるSn系金属の粒子、及び、Cu又はCu合金からなるCu系金属の粒子の少なくとも一方を含む。
 前記はんだペーストは、前記はんだペースト用フラックスの含有量が5質量%以上12質量%以下であることが好ましい。
 前記はんだペーストは、前記はんだ粉の平均粒径が5μm以上35μm以下であることが好ましい。
 以下、本発明の実施形態について説明する。なお、本発明は、下記の実施形態に限定されるものではない。
 本発明に係るはんだペースト用フラックスは、脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有するものである。前記はんだペースト用フラックスの質量に対する前記有機成分の質量割合は、65質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。また、前記脂肪酸と前記脂肪族一級アミンとのモル比は、1:0.5以上1.5以下となることが好ましく、1:0.7以上1.3以下となることがより好ましく、1:1であることが特に好ましい。
 前記脂肪酸としては、常温で液状であるものを用いることが好ましい。なお、常温とは25℃以上30℃以下の温度をいう。また、前記脂肪酸としては、はんだペーストをリフローする際の温度まで気化しないものが好ましく、例えば、沸点が140℃以上400℃以下であることが好ましく、200℃以上360℃以下であることがより好ましく、230℃以上270℃以下であることが特に好ましい。
 また、前記脂肪酸は、飽和脂肪酸及び不飽和脂肪酸の少なくとも一方であることが好ましい。飽和脂肪酸としては、特に限定されるものではなく、例えば、主鎖の炭素数が10以下のものが好ましく、9以下のものがより好ましい。具体的には、飽和脂肪酸としては、オクタン酸、ノナン酸、デカン酸、4-メチルノナン酸、及び、2-ヘキシルデカン酸からなる群から選択される少なくとも一つが挙げられる。不飽和脂肪酸としては、特に限定されるものではなく、例えば、炭素数が24以下のものが好ましく、18以下のものがより好ましい。具体的には、不飽和脂肪酸としては、オレイン酸、リノール酸、及び、リノレン酸からなる群から選択される少なくとも一つが挙げられる。
 なお、前記脂肪酸として、飽和脂肪酸及び不飽和脂肪酸を使用する場合、飽和脂肪酸と不飽和脂肪酸との合計のモル数に対する不飽和脂肪酸のモル数の割合が20mol%以下であることが好ましく、10mol%以下であることがより好ましい。
 前記脂肪族一級アミンとしては、常温で液状であるものを用いることが好ましい。また、前記脂肪族一級アミンとしては、沸点が70℃以上400℃以下であることが好ましく、75℃以上180℃以下であることがより好ましい。また、脂肪族一級アミンとしては、前記脂肪酸よりも沸点が低いものであることがより好ましい。
 また、脂肪族一級アミンは、飽和脂肪族一級アミン及び不飽和脂肪族一級アミンの少なくとも一方であることが好ましい。飽和脂肪族一級アミンとしては、特に限定されるものではなく、例えば、主鎖の炭素数が8以下のものが好ましく、6以下のものがより好ましい。また、飽和脂肪族一級アミンとしては、ブチルアミン、ヘキシルアミン、オクチルアミン、及び、2-エチルヘキシルアミンからなる群から選択される少なくとも一つが挙げられる。不飽和脂肪族一級アミンとしては、特に限定されるものではなく、例えば、炭素数が18以下のものが好ましい。また、不飽和脂肪族一級アミンとしては、オレイルアミンが挙げられる。
 上記のようなはんだペースト用フラックスには、上記の脂肪酸、及び、脂肪族一級アミン以外の他の成分が含有されてもよい。例えば、粘度を調整する等の目的で、溶剤やチキソ剤等が含有されてもよい。
 前記溶剤としては、特に限定されるものではなく、例えば、ジエチレングリコールモノヘキシルエーテル(ヘキシルジグリコール)、ジエチレングリコールジブチルエーテル(ジブチルジグリコール)、ジエチレングリコールモノ2-エチルヘキシルエーテル(2エチルヘキシルジグリコール)、ジエチレングリコールモノブチルエーテル(ブチルジグリコール)などのグリコールエーテル類;n-ヘキサン、イソヘキサン、n-ヘプタンなどの脂肪族系化合物;酢酸イソプロピル、プロピオン酸メチル、プロピオン酸エチルなどのエステル類;メチルエチルケトン、メチル-n-プロピルケトン、ジエチルケトンなどのケトン類;エタノール、n-プロパノール、イソプロパノール、イソブタノール、オクタンジオールなどのアルコール類、ターピネオール、メントール、フェニルエタノール、リナロール、ゲラニオール等のテルペン系アルコール類等が挙げられる。前記溶剤は、単独で用いてもよく、複数種類を混合して用いてもよい。また、溶剤の使用量としては、特に限定されるものではなく、例えば、はんだペースト用フラックスの質量に対して、0質量%以上20質量%以下であることが好ましく、0質量%以上16質量%以下であることがより好ましい。
 前記チキソ剤としては、特に限定されるものではなく、例えば、アマイド系チキソ剤、硬化ひまし油、蜜ロウ、カルナバワックス、ステアリン酸アミド等の高級脂肪酸アミドなどが挙げられる。また、チキソ剤の使用量としては、特に限定されるものではなく、例えば、はんだペースト用フラックスの質量に対して、0質量%以上20質量%以下であることが好ましく、0質量%以上16質量%以下であることがより好ましい。
 以上のようなはんだペースト用フラックスは、はんだ粉と混練されてはんだペーストを形成する。はんだペーストの質量に対するはんだペースト用フラックスの質量割合としては、特に限定されるものではなく、例えば、5質量%以上12質量%以下であることが好ましく、5.5質量%以上8質量%以下であることがより好ましく、5.5質量%以上6質量%以下であることがより好ましい。
 また、はんだペーストの粘度としては、特に限定されるものではなく、印刷やディスペンス塗布など、供給方法に応じて調整することができる。例えば、10Pa・s以上350Pa・s以下であることが好ましく、100Pa・s以上300Pa・s以下であることがより好ましい。なお、前記粘度は、スパイラル式粘度測定装置(マルコム社製PCU-205)を使用し、10rpmでの粘度値に基づいて測定されるものである。
 前記はんだ粉としては、特に限定されるものではなく、一般的なはんだ粉を用いることができる。例えば、鉛フリーはんだとして用いられているSn-Ag系はんだ、Sn-Ag-Cu系はんだ、Sn-Ag-Cu-Bi系はんだ、Sn-Ag-In-Bi系はんだ、Sn-Cu系はんだ、Sn-Zn系はんだ、Sn-Bi系はんだ、Sn-Sb系はんだ、Sn-Au系はんだ、Sn-In系はんだ等の鉛フリーはんだを構成する金属粉末を用いることができる。特に、はんだ粉として、Sn又はSn合金からなるSn系金属の粒子と、Cu又はCu合金からなるCu系金属の粒子とが混合されたもの(以下、SnCuはんだ粉とも記す)を用いることが好ましい。
 前記Sn系金属の粒子としては、Sn100質量%からなるSn粒子、あるいは、Snと、In、Ag、Cu、Sb、Ni,Ge,Fe,Co、及び、Biからなる群から選ばれる一種以上の他の金属とからなるSn合金粒子等が挙げられる。Sn合金粒子としては、好ましくは、Sn-Ag、Sn-Cu、Sn-Sb、又は、Sn-Ag-Cuの組成を有するものが挙げられる。
 Sn系金属の粒子は、例えば、平均粒径D50(メジアン径)が、1μm以上70μm以下であることが好ましく、5μm以上35μm以下であることがより好ましい。また、Sn系金属の粒子は、90%粒子径D90が、100μm以下であることが好ましく、60μm以下であることがより好ましい。Sn系金属の粒子が前記範囲のような粒子径である場合には、60μm厚以下の薄い印刷が可能となるため、はんだ接合部の厚みを薄くすることができる。はんだ接合部の厚みが薄い方が放熱性を向上させることができる。
 前記Cu系金属の粒子としては、Cu100質量%からなるCu粒子、あるいは、Cuと、In、Ag、Sn、及びBiからなる群から選ばれる一種以上の他の金属とからなるCu合金粒子等が挙げられる。Cu合金粒子としては、好ましくは、Cu-Ag-Sn-Bi-Inの組成を有するものが挙げられる。
 Cu系金属の粒子は、例えば、平均粒径D50(メジアン径)が、1μm以上70μm以下であることが好ましく、5μm以上35μm以下であることがより好ましい。また、Cu系金属の粒子は、90%粒子径D90が、100μm以下であることが好ましく、60μm以下であることがより好ましい。Cu系金属の粒子が前記範囲のような粒子径である場合には、60μm厚以下の薄い印刷が可能となるため、はんだ接合部の厚みを薄くすることができる。はんだ接合部の厚みが薄い方が放熱性を向上させることができる。
 なお、上記の「平均粒径D50(メジアン径)」および「90%粒子径D90」とは、レーザー回折式粒度分布測定装置で測定される値をいう。
 Sn系金属の粒子とCu系金属の粒子との混合割合としては、特に限定されるものではない。例えば、Sn系金属の粒子が35質量%以上85質量%以下であることが好ましく、50質量%以上65質量%以下であることがより好ましい。また、Cu系金属の粒子が15質量%以上65質量%以下であることが好ましく、35質量%以上50質量%以下であることがより好ましい。このような混合割合となることで、はんだペーストが加熱された際に、溶融したSn系金属がCu系金属の粒子の表面のCuと反応し、Cu系金属の粒子の表面に十分な金属間化合物(具体的には、CuSn合金)層(以下、IMC層とも記す)が形成される。
 なお、上記のようなはんだ粉を構成する金属の粒子として、Sn系金属の粒子及びCu系金属の粒子の他に他の金属の粒子を更に含んでもよい。別の金属の粒子としては、例えば、Ni等を含有する金属粒子が挙げられる。このような他の金属の粒子は、はんだ粉の質量に対して1質量%以上20質量%以下の含有量であることが好ましい。
 以上のように、本発明に係るはんだペースト用フラックス、及び、はんだペーストによれば、ボイドが少ないはんだ接合部を形成することができる。
 即ち、脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有するはんだペースト用フラックスと、はんだ粉とが混練されて形成されるはんだペーストを用いて、電子部品等の接合部品を基板に接合した際に、はんだ接合部にボイドが生じるのを低減することができる。
 なお、本発明に係るはんだペースト用フラックス、及び、はんだペーストは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよい(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよい)ことは勿論である。
 以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されるものではない。
<使用材料>
1.脂肪酸
・オクタン酸(東京化成工業社製、製品名:n-オクタン酸)
・ノナン酸(東京化成工業社製、製品名:ノナン酸)
・4-メチルノナン酸(東京化成工業社製、製品名:4-メチルノナン酸)
・デカン酸(東京化成工業社製、製品名:デカン酸)
・ステアリン酸(東京化成工業社製、製品名:ステアリン酸)
・オレイン酸(和光純薬工業社製、製品名:オレイン酸)
・リノール酸(ALDRICH社製、製品名:リノール酸)
・リノレン酸(東京化成工業社製、製品名:リノレン酸)
・2-ヘキシルデカン酸(東京化成工業社製、製品名:2-ヘキシルデカン酸)
 
2.脂肪族一級アミン
・ブチルアミン(東京化成工業社製、製品名:ブチルアミン)
・ヘキシルアミン(東京化成工業社製、製品名:ヘキシルアミン)
・2-エチルヘキシルアミン(広栄化学工業社製、製品名:2-エチルヘキシルアミン)
・オクチルアミン(東京化成工業社製、製品名:n-オクチルアミン)
・オレイルアミン(東京化成工業社製、製品名:オレイルアミン)
 
3.樹脂成分
・超淡色ロジン(荒川化学社製、製品名:KR-612)
・不均化ロジン(荒川化学社製、製品名:ロンジスR)
 
4.溶剤
・ヘキシルジグリコール(日本乳化剤社製、製品名:HeDG)
・ターピネオール(ヤスハラケミカル社製、製品名:ターピネオール)
 
5.チキソ剤
・N.N’-ヘキサメチレン-ビス-12-ヒドロキシステアリルアミド(伊藤製油社製、製品名:J-630)
・ひまし硬化油(伊藤製油社製、製品名:ひまし硬化油)
・ハニーワックス(三木化学工業社製、製品名:赤印晒蜜蝋)
 
6.活性剤
・アジピン酸(東京化成工業社製、製品名:アジピン酸)
・trans-2,3-ジブロモ-2-ブテン-1,4-ジオール(JAIN SPECIALITY FINE CHEMICALS社製、製品名:DBBD)
 
7.はんだ粉1
 SnからなるSn系金属の粒子(平均粒径:19.8μm)と、Cu合金からなるCu系金属の粒子(平均粒径:11.7μm)とからなるものを用いた。Cu合金の組成は、Cuが65質量%、Snが15質量%、Agが10質量%、Biが5質量%、Inが5質量%とした。また、はんだ粉の質量に対する各粒子の質量割合は、Sn系金属の粒子が65質量%であり、Cu系金属の粒子が35質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
8.はんだ粉2
 Snからなる第一Sn系金属の粒子(平均粒径:19.8μm)と、Sn合金からなる第二Sn系金属の粒子(平均粒径:30.8μm)と、Cu合金からなるCu系金属の粒子(平均粒径:11.7μm)とからなるものを用いた。Sn合金の組成は、Snが95質量%、Sbが5質量%とした。Cu合金の組成は、Cuが65質量%、Snが15質量%、Agが10質量%、Biが5質量%、Inが5質量%とした。また、はんだ粉の質量に対する各粒子の質量割合は、第一Sn系金属の粒子が32.5質量%、第二Sn系金属の粒子が32.5質量%、Cu系金属の粒子が35質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
9.はんだ粉3
 Snからなる第一Sn系金属の粒子(平均粒径:19.8μm)と、Sn合金からなる第二Sn系金属の粒子(平均粒径:28.4μm)と、Cu合金からなるCu系金属の粒子(平均粒径:11.7μm)とからなるものを用いた。Sn合金の組成は、Agが1.1質量%、Cuが0.7質量%、Niが0.07質量%、Geが0.01質量%、残部がSnのみとした。また、はんだ粉の質量に対する各粒子の質量割合は、第一Sn系金属の粒子が32.5質量%、第二Sn系金属の粒子が32.5質量%、Cu系金属の粒子が35質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
10.はんだ粉4
 SnからなるSn系金属の粒子(平均粒径:19.8μm)と、CuからなるCu系金属の粒子(平均粒径:1.1μm)とからなるものを用いた。また、はんだ粉の質量に対する各粒子の質量割合は、Sn系金属の粒子が65質量%であり、Cu系金属の粒子が35質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
11.はんだ粉5
 SnからなるSn系金属の粒子(平均粒径:19.8μm)と、Cu合金からなるCu系金属の粒子(平均粒径:11.7μm)とからなるものを用いた。Cu合金の組成は、Cuが65質量%、Snが15質量%、Agが10質量%、Biが5質量%、Inが5質量%とした。また、はんだ粉の質量に対する各粒子の質量割合は、Sn系金属の粒子が50質量%であり、Cu系金属の粒子が50質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
12.はんだ粉6
 SnからなるSn系金属の粒子(平均粒径:19.8μm)と、Cu合金からなるCu系金属の粒子(平均粒径:11.7μm)とからなるものを用いた。Cu合金の組成は、Cuが65質量%、Snが15質量%、Agが10質量%、Biが5質量%、Inが5質量%とした。また、はんだ粉の質量に対する各粒子の質量割合は、Sn系金属の粒子が40質量%であり、Cu系金属の粒子が60質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
13.はんだ粉7
 SnからなるSn系金属の粒子(平均粒径:7.3μm)と、Cu合金からなるCu系金属の粒子(平均粒径:9.6μm)とからなるものを用いた。Cu合金の組成は、Cuが65質量%、Snが15質量%、Agが10質量%、Biが5質量%、Inが5質量%とした。また、はんだ粉の質量に対する各粒子の質量割合は、Sn系金属の粒子が65質量%であり、Cu系金属の粒子が35質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
 
14.はんだ粉8
 Sn合金からなるSn系金属の粒子(平均粒径:28.8μm)からなるものを用いた。Sn合金の組成は、Snが96.5質量%、Agが3.0質量%、Cuが0.5質量%とした。なお、上記の平均粒径(D50)は、ベックマンコールター製レーザー回折粒度分布測定装置によって測定されるものである。
<比較例1>
1.フラックスの作製
 上記の樹脂成分、活性剤、チキソ剤、溶剤を下記表1の配合で混練してフラックス(比較例1)を作製した。
Figure JPOXMLDOC01-appb-T000001
2.はんだペーストの作製
 比較例1のフラックスと上記のはんだ粉1とを下記表2の配合で混練してはんだペーストを作製した。
Figure JPOXMLDOC01-appb-T000002
3.ボイドの評価
(1)疑似基板の作製
 Cu板(過硫酸アンモニウムエッチング処理をしたもの)に、比較例1のはんだペーストを、60μmの厚みでマスク開口率が100%となるように印刷し、疑似基板を作製した。
(2)加熱処理
 得られた疑似基板を、高温観察装置(山陽精工社製、SK-5000)を用いて加熱処理した。加熱処理の温度条件としては、熱処理開始(常温)から120℃までを1.6℃/秒で昇温し、その後120℃を300秒間維持し、120℃から常温までを0.8℃/秒で冷却する条件とした(温度プロファイル1)。また、加熱処理は、酸素濃度が500ppm以下の窒素雰囲気下で行った。
 温度プロファイル1で加熱処理した後の疑似基板のはんだペースト上にSiチップ(サイズ:0.3×5.0×5.0)を重ねて0.4MPaで加圧した状態で、温度プロファイル1とは異なる温度条件で加熱処理を行い、試験体を得た。加熱処理の温度条件としては、熱処理開始(常温)から150℃までを2.1℃/秒で昇温し、150℃から180℃までを0.25℃/秒で昇温し、180℃から250℃までを2℃/秒で昇温し、その後250℃を60秒間維持し、250℃から常温までを3.8℃/秒で冷却する条件とした(温度プロファイル2)。
(3)ボイド率の算出
 そして、得られた試験体をSiチップを備える位置で切断し、その断面を観察することで、ボイド率(空隙率)を算出した。具体的には、ハイロックス社製デジタルマイクロスコープKH-8700を用いてボイド部分の面積を算出し、接合部全体の面積部で除してボイド率を算出した。算出されたボイド率については、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
<試験1(実施例1~24)>
1.フラックスの作製
 各脂肪酸と各脂肪族一級アミンとを下記表4の組合せで使用し、下記表5の配合で混練してフラックスを作製した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
2.はんだペーストの作製
 上記の実施例1~24の各フラックスと上記のはんだ粉1とを下記表6の配合で混練してはんだペーストを作製した。
Figure JPOXMLDOC01-appb-T000006
3.ボイドの評価
 上記のように作製した各はんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表7,8に示す。
 
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<試験2(実施例25~48)>
1.フラックスの作製
 各脂肪酸と各脂肪族一級アミンとを下記表9の組合せで使用したこと以外は、試験1と同様にフラックスを作製した。
Figure JPOXMLDOC01-appb-T000009
2.はんだペーストの作製と、ボイドの評価
 上記の実施例25~48の各フラックスを用いたこと以外は、試験1と同様にはんだペーストを作製した。
 また、上記のように作製した各はんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表10,11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<試験3(実施例49~55)>
1.フラックスの作製
 下記表12の組合せで脂肪酸と脂肪族一級アミンとを使用し、脂肪酸のモル比を下記表12の通りとしたこと以外は、試験1と同様にフラックスを作製した。
2.はんだペーストの作製と、ボイドの評価
 上記の実施例49~55の各フラックスを用いたこと以外は、試験1と同様にはんだペーストを作製した。
 また、上記のように作製した各はんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表12に示す。
Figure JPOXMLDOC01-appb-T000012
<試験4(実施例56~60)>
1.フラックス、及び、はんだペーストの作製
 試験2の実施例30のフラックスを作製し、該フラックスを用いて下記表13の配合としたこと以外は、試験1と同様にはんだペーストを作製した。
2.ボイドの評価
 上記のように作製した各はんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表13に示す。
Figure JPOXMLDOC01-appb-T000013
<試験5(実施例61~67)>
1.フラックス、及び、はんだペーストの作製
 試験2の実施例26,30のフラックスを作製し、該フラックスと、下記表14のようにはんだ粉2~7を用いたこと以外は、試験1と同様にはんだペーストを作製した。
2.ボイドの評価
 上記のように作製した各はんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表14に示す。
Figure JPOXMLDOC01-appb-T000014
<試験6(実施例68,69)>
1.フラックス、及び、はんだペーストの作製
フラックスの配合が下記表15に記載の配合となるようにしたこと以外は、試験1と同様にはんだペーストを作製した。
2.ボイドの評価
 下記表15の配合で作製したはんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表15に示す。
Figure JPOXMLDOC01-appb-T000015
<試験7(実施例70)>
1.フラックスの作製
 下記表16の組合せで脂肪酸と脂肪族一級アミンとを使用し、脂肪族一級アミンのモル分率を下記表16の通りとしたこと以外は、試験1と同様にフラックスを作製した。
2.はんだペーストの作製と、ボイドの評価
 上記のフラックスを用いたこと以外は、試験1と同様にはんだペーストを作製した。
 また、上記のように作製したはんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。実施例70のボイド率は、下記表16に示す。
Figure JPOXMLDOC01-appb-T000016
<試験8(実施例71,72)>
1.フラックスの作製
 フラックスの配合が下記表17に記載の配合としたこと以外は、試験1と同様にフラックスを作製した。
2.はんだペーストの作製と、ボイドの評価
 上記のフラックスを用いたこと以外は、試験1と同様にはんだペーストを作製した。
 また、上記のように作製したはんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。各実施例のボイド率は、下記表17に示す。
Figure JPOXMLDOC01-appb-T000017
<試験9(実施例73)>
1.フラックスの作製
 フラックスの配合が下記表18に記載の配合となるようにしたこと以外は、試験1と同様にフラックスを作製した。
2.はんだペーストの作製と、ボイドの評価
 上記のフラックスを用い、下記表19に記載の配合となるようにしたこと以外は、試験1と同様にはんだペーストを作製した。
 また、上記のように作製されたはんだペーストを用いて試験体を作製したこと以外は、比較例1と同一条件で、ボイドの評価を行った。実施例73のボイド率は、下記表18に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
<試験10(比較例2,実施例74)>
1.比較例2のフラックス、及び、はんだペーストの作製
 比較例1のフラックスを作製し、該フラックスと、はんだ粉8とを用いたこと以外は、比較例1と同様にはんだペーストを作製した。
2.実施例74のフラックス、及び、はんだペーストの作製
 実施例6のフラックスを作製し、該フラックスと、はんだ粉8とを用いたこと以外は、試験1と同様にはんだペーストを作製した。
3.ボイドの評価
(1)疑似基板の作製
 FR-4樹脂基板(OSP処理をしたもの)に、上記の各はんだペーストを、120μmの厚みでマスク開口率が100%となるように印刷し、疑似基板を作製した。
(2)加熱処理
 得られた疑似基板のはんだペースト上にPwTrチップを重ね、はんだリフロー装置(エイテック製、NIS-20-82-C)を用いて酸素濃度1000ppmの窒素雰囲気下で加熱処理を行い、試験体を得た。加熱処理の温度条件としては、熱処理開始(常温)から180℃までを1.5℃/秒で昇温し、その後180℃を100秒間維持した。その後180℃から250℃までを2.0℃/秒で昇温し、250℃を15秒間維持した後、250℃から常温までを3.0/秒で冷却する条件とした(温度プロファイル3)。
(3)ボイド率の算出
 そして、加熱処理後の試験体をPwTrチップを備える位置で切断し、その断面を観察することで、ボイド率(空隙率)を算出した。具体的には、ハイロックス社製デジタルマイクロスコープKH-8700を用いてボイド部分の面積を算出し、接合部全体の面積部で除してボイド率を算出した。算出されたボイド率については、下記表20に示す。
Figure JPOXMLDOC01-appb-T000020
<まとめ>
 表3に示す比較例1のボイド率と、表7,8,10~18に示す実施例1~73のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有したはんだペースト用フラックスを用いることで、ボイド率の低減を図ることができる。
 また、表7,8の実施例1~3、5~7、9~11と実施例4,8,12~24とを比較すると、実施例1~3、5~7、9~11の方がボイド率が効果的に低減されることが認められる。つまり、脂肪酸として主鎖の炭素数が10以下のものを用い、脂肪族一級アミンとして主鎖の炭素数が8以下のものを用いることで、ボイド率をより効果的に低減できる。
 また、表3に示す比較例1のボイド率と、表10~12に示す実施例25~55のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、低沸点(炭素数10以下)の脂肪酸と、高沸点(炭素数18)の脂肪酸とを併用した場合であってもボイド率の低減を図ることができる。
 また、表12に示す実施例49~52のボイド率と、実施例53~55のボイド率とを比較すると、実施例49~52の方がボイド率が低いことが認められる。つまり、飽和脂肪酸と不飽和脂肪酸との合計のモル数に対する不飽和脂肪酸のモル数の割合が20mol%以下であることで、より効果的にボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表13に示す実施例56~60のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスを用いることで、はんだペースト中のフラックスの含有量に影響されることなく、ボイド率の低減を図ることができる。特に、はんだペースト用フラックスの含有量が5.5質量%以上6質量%以下であることで、より効果的にボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表14に示す実施例61~67のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスを用いることで、金属の粒子の種類、混合比、及び、粒径範囲に影響されることなく、ボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表15に示す実施例68,69のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスにおいて、脂肪酸と脂肪族一級アミンとのモル比が1:0.5以上1.5以下となるように構成することで、ボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表16に示す実施例70のボイド率とを比較すると、実施例70の方がボイド率が低いことが認められる。つまり、低沸点(炭素数10以下)の脂肪族一級アミンと、高沸点(炭素数18)の脂肪族一級アミンとを併用した場合であってもボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表17に示す実施例71,72のボイド率とを比較すると、各実施例の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスにおいて、脂肪酸及び脂肪族一級アミンが分枝鎖型であっても、ボイド率の低減を図ることができる。
 また、表3に示す比較例1のボイド率と、表18に示す実施例73のボイド率とを比較すると、実施例73の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスにおいて、脂肪酸及び脂肪族一級アミンが主成分として含有されることで、ボイド率の低減を図ることができる。
 また、表20に示す比較例2のボイド率と実施例74のボイド率とを比較すると、実施例74の方がボイド率が低いことが認められる。つまり、本願発明のはんだペースト用フラックスは、Sn系金属の粒子のみからなるはんだ粉を用いてはんだペーストを作製した場合であっても、ボイド率の低減を図ることができる。

Claims (11)

  1.  脂肪酸と、脂肪族一級アミンとからなる有機成分を主成分として含有するはんだペースト用フラックス。
  2.  前記はんだペースト用フラックスの質量に対する前記有機成分の質量割合は、70質量%以上100質量%以下である請求項1に記載のはんだペースト用フラックス。
  3.  前記脂肪酸と前記脂肪族一級アミンとのモル比が1:0.5以上1.5以下となるように構成される請求項1又は2に記載のはんだペースト用のフラックス。
  4.  前記脂肪酸は、飽和脂肪酸及び不飽和脂肪酸の少なくとも一方であり、
     前記飽和脂肪酸は、主鎖の炭素数が10以下であり、
     前記不飽和脂肪酸は、炭素数が18以下である請求項1乃至3の何れか一項に記載のはんだペースト用フラックス。
  5.  前記不飽和脂肪酸は、オレイン酸、リノール酸、及び、リノレン酸からなる群から選択される少なくとも一つである請求項4に記載のはんだペースト用フラックス。
  6.  前記脂肪酸は、飽和脂肪酸と不飽和脂肪酸とから構成されると共に、飽和脂肪酸と不飽和脂肪酸との合計のモル数に対する不飽和脂肪酸のモル数の割合が20mol%以下である請求項1乃至5の何れか一項に記載のはんだペースト用フラックス。
  7.  前記脂肪族一級アミンは、飽和脂肪族一級アミン及び不飽和脂肪族一級アミンの少なくとも一方であり、
     前記飽和脂肪族一級アミンは、主鎖の炭素数が8以下であり、
     前記不飽和脂肪族一級アミンは、炭素数が18以下である請求項1乃至6の何れか一項に記載のはんだペースト用フラックス。
  8.  前記不飽和脂肪族一級アミンは、オレイルアミンである請求項7に記載のはんだペースト用フラックス。
  9.  請求項1乃至8の何れか一項に記載のはんだペースト用フラックスと、はんだ粉とを含有しており、
     前記はんだ粉は、Sn又はSn合金からなるSn系金属の粒子、及び、Cu又はCu合金からなるCu系金属の粒子の少なくとも一方を含むはんだペースト。
  10.  前記はんだペースト用フラックスの含有量が5質量%以上12質量%以下である請求項9に記載のはんだペースト。
  11.  前記はんだ粉は、平均粒径が5μm以上35μm以下である請求項9又は10に記載のはんだペースト。
     
PCT/JP2017/028007 2016-08-02 2017-08-02 はんだペースト用フラックス、及び、はんだペースト WO2018025903A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/321,873 US11425825B2 (en) 2016-08-02 2017-08-02 Solder paste using a solder paste flux and solder powder
KR1020197001402A KR20190034196A (ko) 2016-08-02 2017-08-02 땜납 페이스트용 플럭스, 및 땜납 페이스트
JP2018531947A JP7022434B2 (ja) 2016-08-02 2017-08-02 はんだペースト用フラックス、及び、はんだペースト
CN201780045759.3A CN109475983B (zh) 2016-08-02 2017-08-02 焊膏用助焊剂和焊膏
EP17837005.2A EP3495090A4 (en) 2016-08-02 2017-08-02 FLUX OF BRAZING PASTE AND BRAZING PASTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152043 2016-08-02
JP2016152043 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025903A1 true WO2018025903A1 (ja) 2018-02-08

Family

ID=61073690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028007 WO2018025903A1 (ja) 2016-08-02 2017-08-02 はんだペースト用フラックス、及び、はんだペースト

Country Status (7)

Country Link
US (1) US11425825B2 (ja)
EP (1) EP3495090A4 (ja)
JP (1) JP7022434B2 (ja)
KR (1) KR20190034196A (ja)
CN (1) CN109475983B (ja)
TW (1) TWI824999B (ja)
WO (1) WO2018025903A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800948B2 (en) * 2018-08-02 2020-10-13 Xerox Corporation Conductive adhesive compositions and method for the same
CN112469531A (zh) * 2018-08-10 2021-03-09 株式会社弘辉 助焊剂和焊膏
WO2021261356A1 (ja) * 2020-06-26 2021-12-30 日本電気硝子株式会社 蓋部材の製造方法
WO2022065389A1 (ja) * 2020-09-23 2022-03-31 株式会社弘輝 フラックス及びソルダペースト
US11581239B2 (en) 2019-01-18 2023-02-14 Indium Corporation Lead-free solder paste as thermal interface material
JP7496131B2 (ja) 2018-08-10 2024-06-06 株式会社弘輝 フラックス及びソルダペースト

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604506B1 (ko) 2017-06-12 2023-11-21 오르멧 서키츠 인코퍼레이티드 양호한 사용가능 시간 및 열전도성을 갖는 금속성 접착제 조성물, 이의 제조 방법 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505006A (ja) * 1994-09-09 1998-05-19 フライ’ズ メタルス,インク. ロジンを含まず、低vocの、清浄を必要としないはんだ付用フラックスおよびその使用法
JP2004176179A (ja) * 2002-11-15 2004-06-24 Chubu Kiresuto Kk 電子部品端子の水溶性半田濡れ性向上処理剤および処理法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887319B2 (en) * 2002-04-16 2005-05-03 Senju Metal Industry Co., Ltd. Residue-free solder paste
JP5139659B2 (ja) 2006-09-27 2013-02-06 Dowaエレクトロニクス株式会社 銀粒子複合粉末およびその製造法
JP5584909B2 (ja) 2008-11-28 2014-09-10 株式会社弘輝 接続構造体
JP5311147B2 (ja) * 2010-08-25 2013-10-09 株式会社豊田中央研究所 表面被覆金属ナノ粒子、その製造方法、およびそれを含む金属ナノ粒子ペースト
JP6096035B2 (ja) 2013-03-29 2017-03-15 株式会社タムラ製作所 はんだ付け用フラックス組成物およびそれを用いた電子基板の製造方法
JP5812230B2 (ja) 2013-08-12 2015-11-11 千住金属工業株式会社 フラックス及びソルダペースト
US10207373B2 (en) 2014-06-30 2019-02-19 Nippon Steel Chemical & Material Co., Ltd. Nickel particle composition, bonding material, and bonding method in which said material is used
CN106660176B (zh) * 2014-08-27 2020-11-10 贺利氏德国有限两合公司 用于制造焊接接头的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505006A (ja) * 1994-09-09 1998-05-19 フライ’ズ メタルス,インク. ロジンを含まず、低vocの、清浄を必要としないはんだ付用フラックスおよびその使用法
JP2004176179A (ja) * 2002-11-15 2004-06-24 Chubu Kiresuto Kk 電子部品端子の水溶性半田濡れ性向上処理剤および処理法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495090A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800948B2 (en) * 2018-08-02 2020-10-13 Xerox Corporation Conductive adhesive compositions and method for the same
CN112469531A (zh) * 2018-08-10 2021-03-09 株式会社弘辉 助焊剂和焊膏
JPWO2020031693A1 (ja) * 2018-08-10 2021-08-12 株式会社弘輝 フラックス及びソルダペースト
EP3834982A4 (en) * 2018-08-10 2021-12-22 Koki Company Limited FLUX AND SOLDER PASTE
US11833622B2 (en) 2018-08-10 2023-12-05 Koki Company Limited Flux and solder paste
JP7496131B2 (ja) 2018-08-10 2024-06-06 株式会社弘輝 フラックス及びソルダペースト
US11581239B2 (en) 2019-01-18 2023-02-14 Indium Corporation Lead-free solder paste as thermal interface material
WO2021261356A1 (ja) * 2020-06-26 2021-12-30 日本電気硝子株式会社 蓋部材の製造方法
JP7473877B2 (ja) 2020-06-26 2024-04-24 日本電気硝子株式会社 蓋部材の製造方法
WO2022065389A1 (ja) * 2020-09-23 2022-03-31 株式会社弘輝 フラックス及びソルダペースト
US11806817B2 (en) 2020-09-23 2023-11-07 Koki Company Limited Flux and solder paste

Also Published As

Publication number Publication date
JP7022434B2 (ja) 2022-02-18
TWI824999B (zh) 2023-12-11
US20190182966A1 (en) 2019-06-13
JPWO2018025903A1 (ja) 2019-06-06
EP3495090A4 (en) 2020-01-01
US11425825B2 (en) 2022-08-23
TW201817889A (zh) 2018-05-16
EP3495090A1 (en) 2019-06-12
CN109475983A (zh) 2019-03-15
KR20190034196A (ko) 2019-04-01
CN109475983B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
JP7022434B2 (ja) はんだペースト用フラックス、及び、はんだペースト
JP5533876B2 (ja) ソルダペースト、それを用いた接合方法、および接合構造
WO2012066795A1 (ja) 導電性材料、それを用いた接続方法、および接続構造
TWI655989B (zh) Solder alloy, solder paste and electronic circuit substrate
JP6683243B2 (ja) 接合体の製造方法及び接合材料
WO2015198497A1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
WO2013038816A1 (ja) 導電性材料、それを用いた接続方法、および接続構造
TWI661890B (zh) 急加熱工法用助焊劑及急加熱工法用軟焊膏
JP2014028391A (ja) はんだ合金、ソルダペーストおよび電子回路基板
JP2014008523A (ja) はんだ合金、ソルダペーストおよび電子回路基板
JP6511768B2 (ja) はんだバンプの形成方法
WO2017154330A1 (ja) 接合材料及び接合体の製造方法
JPWO2016039056A1 (ja) 金属組成物、接合材
JP5654716B1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
KR102068946B1 (ko) 땜납 조성물
JP6720515B2 (ja) Au−Snはんだ粉末及びこの粉末を含むはんだ用ペースト
WO2019022193A1 (ja) はんだペースト用フラックス、はんだペースト、はんだペーストを用いたはんだバンプの形成方法及び接合体の製造方法
WO2016076353A1 (ja) Au-Sn合金はんだペースト、Au-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層
JP6566095B2 (ja) はんだペースト用フラックス、はんだペースト、はんだペーストを用いたはんだバンプの形成方法及び接合体の製造方法
JP5966449B2 (ja) バンプ用はんだ合金粉末、バンプ用はんだペースト及びはんだバンプ
JP6511773B2 (ja) Au−Sn合金はんだペースト、Au−Sn合金はんだペーストの製造方法、Au−Sn合金はんだ層の製造方法
JP2008062241A (ja) はんだペースト組成物
WO2020262631A1 (ja) フラックス及びソルダペースト
JPWO2019117041A1 (ja) ソルダペースト、接合構造体及び接合構造体の製造方法
JP2004058104A (ja) はんだ付け用フラックス及びはんだペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197001402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017837005

Country of ref document: EP

Effective date: 20190304