WO2018024981A1 - Structure de paroi etanche - Google Patents

Structure de paroi etanche Download PDF

Info

Publication number
WO2018024981A1
WO2018024981A1 PCT/FR2017/052159 FR2017052159W WO2018024981A1 WO 2018024981 A1 WO2018024981 A1 WO 2018024981A1 FR 2017052159 W FR2017052159 W FR 2017052159W WO 2018024981 A1 WO2018024981 A1 WO 2018024981A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
strakes
thermally insulating
vessel
transverse
Prior art date
Application number
PCT/FR2017/052159
Other languages
English (en)
Inventor
Nicolas LAURAIN
Bruno Deletre
Julien COUTEAU
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN201780058360.9A priority Critical patent/CN109804195B/zh
Priority to KR1020197005081A priority patent/KR102331754B1/ko
Publication of WO2018024981A1 publication Critical patent/WO2018024981A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating vessels for storing and / or transporting fluid, such as a cryogenic fluid.
  • Sealed and thermally insulating tanks are used in particular for the storage of liquefied gas such as methane (LNG) or petroleum (LPG), which is stored at atmospheric pressure. These tanks can be installed on the ground or on a floating structure.
  • LNG methane
  • LPG petroleum
  • FR-A-2798358, FR-A-2709725, FR-A-2549575 or FR-A-2398961, storage or transport tanks for low-temperature liquefied gases are known from which the or each waterproof membrane, in particular a primary waterproof membrane in contact with the product contained in the tank, consists of thin metal sheets which are carried by a thermally insulating barrier. These thin metal sheets are connected together in a sealed manner to ensure the tightness of the tank.
  • FIG. 1 illustrates a known method of fixing said metal sheets on the thermally insulating barrier in this type of tank.
  • an upper surface 101 of the thermally insulating barrier has a groove 102 developing in the thickness of the thermally insulating barrier from the support surface 101.
  • This groove 102 has in the thickness of the thermally insulating barrier a retaining zone formed by a groove 103 which develops parallel to the support surface 101.
  • This groove 103 develops at one end of the groove 102 opposite the support surface 101 in the thickness of the thermally insulating barrier , the groove 102 having an L-shaped cross-section whose base is formed by the groove 103.
  • An L-shaped anchoring wing 104 is inserted into the groove 102.
  • This anchoring flange 104 has a base 105 housed in the groove 103 so as to retain the anchoring wing 104 on the thermally insulating barrier in a direction perpendicular to the support surface 101.
  • anchor wing 104 further comprises an anchor branch 106 having a lower portion 107 joined to the base 105 and an upper portion 108 projecting above the support surface 101.
  • a support surface 101 and metal sheets 109 are shown in FIG. 1 with a gap).
  • These metal sheets furthermore have raised lateral edges, hereinafter referred to as raised edges 1 1 1.
  • a raised edge 1 1 1 of each of the two adjacent metal sheets 109 is welded on either side of the anchoring branch 106. of the anchoring wing 104.
  • the raised edges 1 January 1 thus form with the anchoring wing 104 bellows for absorbing the forces related to the contraction of the sealed membrane, for example during a cryogenic liquid loading into the tank.
  • an anchor wing 104 does not contribute to the flexibility of the waterproof membrane. Indeed, during a contraction of the sealed membrane, the raised edges 1 1 1 deviate from the anchoring wing 104 to absorb the contraction forces of the membrane.
  • the anchoring wing 104 being biased in two opposite directions by the raised edges 1 January 1, it remains substantially static in the tank without contributing to the absorption of the contraction forces of the sealed membrane.
  • An idea underlying the invention is to provide a tank having a sealed membrane having good flexibility.
  • the invention provides a sealed and thermally insulating tank integrated in a supporting structure, said tank comprising a tank wall carried by a bearing wall of the supporting structure, the tank wall comprising
  • thermally insulating barrier fixed to the carrier wall and defining a support surface parallel to the carrier wall
  • the metal waterproof membrane having a plurality of metal strakes, each metal strake being a profiled piece extending in a longitudinal direction and whose cross-section comprises a flat medial portion resting on the support surface and two raised lateral edges projecting from the support surface, the strakes being arranged parallel to each other on the support surface, plurality of solder supports carried by the thermally insulating barrier, each solder support extending in said longitudinal direction and projecting from the support surface between two adjacent raised edges of two adjacent metal strakes, the adjacent raised edges being welded sealed to the solder support interposed between said adjacent raised edges,
  • At least one of said welding supports comprises two longitudinally extending metal wings, each metal wing having a lower portion which is sealingly connected to the lower portion of the other metal wing and an upper portion. protruding above the support surface, the upper portions of the two metal wings being adapted to bend relative to each other in a direction perpendicular to the longitudinal direction, each metal wing being welded in a sealed manner to a raised edge of a respective adjacent strake, said solder support further comprising a base anchored in the thermally insulating barrier slidably in the longitudinal direction and bonded to the lower portion of at least one of said metal wings.
  • the sealed membrane of the tank has good flexibility.
  • the welding support contributes to the absorption of the contraction forces of the waterproof membrane thus allowing a better flexibility of the waterproof membrane.
  • the deformation of the raised edge of a metal strake connected to the welding support is not disturbed by the cooperation between said welding support and the raised edge of the other metal strake connected to said support of welding.
  • such a tank may comprise one or more of the following characteristics.
  • the thermally insulating barrier has a recess dug in the thickness of the vessel wall from the support surface, the housing extending in the longitudinal direction and having a opening opening on the support surface and a retaining zone extending in a lateral direction perpendicular or oblique to the thickness direction, the base of the welding support extending in the retaining zone of the housing of the thermally insulating barrier in order to retain the solder support on the support surface. Thanks to these characteristics, the anchoring of the welding support is simple to carry out. In addition, the anchoring of the welding support can be made sliding in the longitudinal direction.
  • the thermally insulating barrier comprises a plurality of parallelepiped insulating elements juxtaposed, the insulating elements having cover panels, the support surface being formed by the cover panels of the insulating elements, the housing being formed in the thickness of at least one of said cover panels.
  • the lower portion of at least one metal wing comprises a folded portion forming the base of the welding support.
  • the two metal wings of the welding support are symmetrical in a plane developing parallel to the longitudinal direction and perpendicular to the support surface.
  • the welding support is simple to manufacture.
  • the metal strakes are made of a material selected from the group consisting of nickel steel alloys and manganese steel alloys.
  • a material having a thermal contraction coefficient of less than 10 -5 / K is chosen for applications whose liquid gas is at a temperature below -100 ° C.
  • a material having a a thermal contraction coefficient of less than 16.10 "6 / K is chosen for applications in which the liquid gas is at a temperature between -45 ° C and -100 ° C.
  • the connection between the lower portions of the two welding wings is located in the thickness of the thermally insulating barrier.
  • the connection between the lower portions of the metal flanges does not disturb the flexibility of the portion of said welding flanges projecting above the support surface.
  • a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • the invention also provides a vessel for transporting a cold liquid product having a double hull and a aforementioned tank disposed in the double hull.
  • the longitudinal direction of the metal strakes is perpendicular to a longitudinal axis of the ship.
  • the end of the metal strakes whose longitudinal direction is perpendicular to a longitudinal axis of the ship is welded to a corner angle of the sealed and thermally insulating vessel, said corner angle defining an angle of the vat extending perpendicular to the longitudinal direction of the metal strakes.
  • the corner angle is formed by a plurality of metal parts juxtaposed along the angle of the vessel with mutual spacings.
  • the metal parts are joined together by corrugated parts.
  • the corrugated pieces are offset along the longitudinal axis of the ship relative to the raised edges of the metal strakes.
  • the waterproof membrane further comprises at least two transverse strakes, each transverse strake being a profiled piece extending in a direction perpendicular to the longitudinal direction of the metal strakes and comprising a flat portion and at least one lateral edge. raised, the vessel wall further comprising at least one transverse support anchored in the thermally insulating barrier, the transverse support extending in a direction perpendicular to the longitudinal direction, said at least one raised edge of said transverse strakes being sealed welded to the transverse support of each longitudinal side of said transverse support, a longitudinal end of the metal strakes being sealed welded to the flat portion of one of the transverse strakes.
  • transverse strakes can be made in several ways.
  • the transverse strakes are arranged in a central portion of a flat wall of the tank and the waterproof membrane comprises at least two metal strakes located along the longitudinal direction on each side of the transverse strakes, at least two metal strakes being sealed welded to a respective transverse strake.
  • the transverse strakes are located in the middle of the waterproof membrane in the longitudinal direction.
  • the transverse anchoring support comprises two transverse metal wings projecting from the support surface, the transverse metal wings being able to bend relative to each other in the longitudinal direction, the raised edges. at least two transverse strakes being sealingly welded to a respective transverse metal wing.
  • the longitudinal direction of the metal strakes is parallel to a longitudinal axis of the ship.
  • the transverse strakes are arranged at the edge of a flat wall of the tank, at the junction between the longitudinal ends of metal strakes and a corner structure.
  • At least two transverse strakes are arranged between the metal strakes and an angle structure of the tank, the flat portion of one of the at least two transverse strakes being welded in a sealed manner to the corner structure and the longitudinal ends of said metal strakes being welded to the flat portion of the other of the at least two transverse strakes.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the watertight and thermally insulating vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged to connect the sealed and thermally insulating tank installed in the hull of the ship to a installation of floating or land storage and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel's sealed and thermally insulating vessel.
  • Figure 1 is a sectional view of a sealing metal membrane anchor wing of the prior art, said anchoring wing being anchored in a thermally insulating barrier of a sealed tank and thermally insulating.
  • FIG. 2 is a sectional view of a sealed and thermally insulating tank wall portion at a solder support according to a first embodiment, the welding support cooperating with two metal strakes arranged on both sides. other of said solder support.
  • FIG. 3 is a sectional view of a sealed and thermally insulating tank wall portion at a solder support according to a second embodiment, the welding support cooperating with two metal strakes arranged on both sides. other of said solder support.
  • FIG. 4 is a schematic representation illustrating the absorption of the contraction forces of the sealed membrane at the level of the welding support of FIG. 2.
  • FIGS. 5 and 6 are diagrammatic representations of a welding step between the metal strakes and the welding support of FIG.
  • FIG. 7 is a diagrammatic representation in section of a vessel vessel in which the metal strakes are arranged in a transverse direction of the vessel.
  • Figure 8 is a detail view of Figure 7 illustrating an angle of the vessel.
  • Figure 9 is a schematic representation of a sealed and thermally insulating vessel angle in which the metal strakes are arranged in a longitudinal direction of the ship.
  • Figure 10 is a detail sectional view of the waterproof membrane of Figure 9 illustrating the junction between the metal strakes and the angle structure of the vessel.
  • Figure 1 1 is a schematic representation of a variant of the sealed membrane illustrated in Figures 7 and 8.
  • Figure 12 is a schematic cutaway representation of a LNG tank tank and a loading / unloading terminal of the tank.
  • the gas may in particular be a liquefied natural gas (LNG), that is to say a gaseous mixture comprising predominantly methane and one or more other hydrocarbons, such as ethane, propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in a small proportion.
  • LNG liquefied natural gas
  • the gas may also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons from petroleum refining comprising mainly propane and butane.
  • the waterproof membrane rests on a support surface formed by a thermally insulating barrier of the vessel.
  • This watertight membrane has a repeated structure alternately comprising on the one hand sheet metal strips disposed on the support surface and, on the other hand, elongated welding supports connected to the support surface and extending parallel to the sheet metal strips. on at least part of the length of the metal strips.
  • the sheet metal strips have raised lateral edges arranged and welded against the supports of adjacent welds.
  • Such a structure is for example used in the CN096 LNG tanks marketed by the applicant.
  • FIG. 2 is a sectional view of a wall of a sealed and thermally insulating tank at the connection between two adjacent metal strakes 9 of a sealed membrane of the vessel wall and a welding support 4 anchored on a thermally insulating barrier of the tank wall.
  • a thermally insulating barrier is formed of juxtaposed insulating elements.
  • suitable insulators are described in WO2012 / 072906.
  • the insulating elements are anchored to the supporting structure by retaining members.
  • Each of the insulating elements has a rectangular parallelepiped shape having two large faces, or main faces, and four small faces, or side faces. More particularly, the adjacent metal strakes 9 rest on a support surface 14 of the thermally insulating barrier. This support surface 14 is formed by the upper face of the cover panels 12 of the insulating elements.
  • the welding support 4 is anchored in the cover panel 12 of an insulating member of the thermally insulating barrier.
  • the upper face of the cover panel 12 has a groove 2 whose section is in the form of an inverted "T".
  • a first portion 15 of the groove 2 opens on the support surface 14 formed by the cover panel 12.
  • Groove 2 develops perpendicular to the support surface 14 in the thickness of the cover panel 12, i.e. in the thickness of the thermally insulating barrier.
  • One end of the first portion 15 opposite the support surface 14 has a retaining zone 16. This retaining zone
  • the welding supports 4 are slidably inserted into the grooves 2 of the cover panels 12. The welding supports 4 are thus slidably anchored. on the cover panels 12, in the longitudinal direction of the welding supports 4.
  • the retaining zone 16 develops in a direction that is oblique with respect to the support surface 14 and has a component parallel to the support surface 14.
  • the retaining zone 16 is formed by two grooves 3 developing on either side of the first portion 15 at the end of the first portion 15 opposite to the support surface.
  • the retaining zone may also be formed from an intermediate zone of the first portion 15, said intermediate zone being located between the support surface 14 and the end of the first portion 15 opposite to the surface of the support 14.
  • the welding support 4 comprises two metal wings 17. These metal wings 17 are symmetrical with respect to a plane perpendicular to the support surface 14 and parallel to a longitudinal direction of the groove 2. Each metal wing 17 has a section in the form of "L" having a base 5 and an anchoring branch 6.
  • each metal wire 17 is housed in a respective groove 3 of the groove 2.
  • the bases 5 of the metal wings 17 develop parallel to the support surface 14.
  • lower portion 7 of each anchoring branch 6 is joined to the base 5 of the corresponding metal wing 17.
  • the lower portions 7 of the anchoring legs 6 of the two metal wings 17 are welded together by a weld line 18.
  • This weld line 18 is preferably housed in the thickness of the cover panel 12. In a embodiment not illustrated, this weld line is located at the support surface 14.
  • An upper portion 8 of the anchoring branch 6 of each of the metal wings 17 protrudes from the support surface 14 from the groove 2 , towards the inside of the tank.
  • the two adjacent metal strakes 9 are arranged on the support surface 14 on either side of the welding support 4.
  • Each metal strake 9 has a flat median portion 10 developing along a longitudinal direction of the metal strake 9.
  • Each strake metal 9 further has two raised edges 1 1 located on either side of the flat medial portion 10, that is to say along two opposite longitudinal edges of the flat medial portion 10.
  • a single raised edge 1 1 of each of the two metal strakes 9 is shown in Figure 2.
  • Each raised edge 1 1 protrudes from the support surface 14.
  • the longitudinal direction of the metal strakes 9 and the longitudinal direction of the welding support 4 are parallel.
  • a raised edge 11 of each of the two adjacent metal strakes 9 is welded to a respective metal wing 17 of the weld support 4. More particularly, each raised edge 11 is welded by a weld line 19 to the upper portion 8 of the arm anchoring 6 of a single metal wing 17.
  • Figure 3 is a sectional view of a sealed and thermally insulating tank wall portion at the junction between a welding support 4 according to a second embodiment and two metal strakes 9 of a sealed membrane.
  • elements identical or having the same function as elements described with reference to Figure 2 bear the same references.
  • This second embodiment differs from the first embodiment described above in that only one of the two metal wings 17 of the welding support 4 comprises a base 5.
  • the other metal wing 17 comprises only an anchoring branch 6.
  • the lower portions 7 of the anchoring legs 6 of the two metal wings are welded to each other by the weld line 18 and the upper portion 8 of the anchoring legs 6 of the each of the metal wings 17 is welded to a respective raised edge 1 1 by the weld line 19.
  • the retaining zone 16 of the groove 2 has only one groove 3 in which the base 5 of the the sole metal wing 17 having a base 5.
  • the groove 2 has a section of "L".
  • FIG. 4 is a schematic representation illustrating the absorption of the contraction forces of the sealed membrane at the level of the welding support of FIG.
  • each metal strake 9 contract.
  • each metal strake 9 exerts a force on the welding support 4 as illustrated by the arrows 20 in FIG. 4.
  • These forces are exerted on the weld support 4 by means of the raised edges 11 via the lines of FIG. welds 19 in opposite directions.
  • Each raised edge 11 thus constitutes with the anchoring branch 6 on which it is welded a bellows capable of open to absorb the thermal contraction of the membrane, as shown by arrows 21.
  • the two anchor branches 6 of the weld support also form a bellows that can open to absorb the thermal contraction uc ⁇ 1 1 i ic ic uvjmmc niuon c ⁇ ica ncu ico - -. Since they are connected by the weld line 18 at their lower portion 7, their upper portion 8 have a relative freedom of movement. Thus, the upper portions 8 of the anchor branches 6 can move away from each other in order to absorb the thermal stresses.
  • FIG. 2 illustrates a welding support 4 whose bellows formed on the one hand by the raised edges 1 1 and the upper portion 8 of the anchor branches 6 and, on the other hand, by the lower portions 7 of the two branches anchorage 6 are open.
  • Figures 5 and 6 are schematic representations of a welding step between the strakes and the welding support of Figure 1.
  • the weld line 18 linking together the two metal wings 17 of the weld support 4 is made by a weld at the wheel. This seam welding is performed before insertion of the welding supports 4 in the grooves 2 of the cover panels 12.
  • welding machines may be employed.
  • the welds can be made using electric welding machines, for example as described in FR-A-2172837 or FR-A-2140716. Such a welding machine moves along the welding lines 19 being maintained pressed against the metal strakes 9 which it performs the welds of the raised edges 1 January.
  • the welding machine (not shown) comprises a first set of rollers 23 and a second set of rollers 24.
  • Each set of rollers 23 and 24 cooperates with one of the edges readings 1 1 and the associated anchor branch 6.
  • Each set of rollers 23 and 24 is associated with a respective welding torch 25, for example a laser welding torch carried by the welding machine.
  • the first set of rollers 23 and the second set of rollers 24 operating in an analogous manner, only the operation of the first set of rollers rollers 23 as shown in Figure 5 is described below, this description applying by analogy to the second set of rollers 24.
  • the first set of rollers 23 comprises a first roller 28 and a second roller 38.
  • the first roller 28 is pressed against a face 26 of the anchoring branch 6 opposite the raised edge 11.
  • the second roller 38 is pressed against against a face 27 of the raised edge 11 opposite the anchoring branch 6.
  • the support of the first roller 28 against the anchoring leg 6 and the support of the second roller 38 against the raised edge 11 are made vis-à-vis facing one another so as to correctly press the raised edge 11 against the anchoring branch 6.
  • the welding torch 25 is positioned close to the first set of rollers
  • the welding torch 25 is positioned so as to that the plating of the raised edge 11 and the anchoring leg 6 precedes the laser welding during the movement of the welding machine.
  • Such a welding machine makes it possible to weld the raised edge 11 of each of the two adjacent metal strakes 9 with a respective anchoring branch 6 of the welding support 4.
  • Figure 7 is a schematic sectional representation of a vessel in which the metal strakes 9 are arranged in a transverse direction of a vessel in which the vessel is housed.
  • the bearing structure of the tank is constituted by the inner hull of a double-hulled vessel, the bottom wall of which is shown at 30, and by transverse partitions, which define compartments in the inner hull of the ship.
  • a corresponding wall of the tank is made on each wall of the supporting structure.
  • Each wall of the tank comprises, successively, in the thickness direction of the tank, from the outside to the inside, a secondary heat-insulating barrier 31, a secondary waterproof membrane 32, a primary heat-insulating barrier 33 and a waterproof membrane primary 34.
  • the secondary and secondary waterproof membranes 32 are in each case constituted by a series of metal strakes 9 parallel to the raised edges 11, which are alternately arranged with elongate welding supports 4 as described above with reference to FIGS. 4. This alternate structure is performed on the entire surface of the walls of the tank, which may involve very long lengths.
  • the raised edges 1 1 are arranged in a longitudinal direction perpendicular to the longitudinal direction of the ship.
  • the raised edges January 1 constitute bellows for absorbing the contraction forces in a longitudinal direction of the ship.
  • the metal strakes 9 and the welding supports 4 are interrupted at the angles parallel to the longitudinal direction of the ship, for example as described in WO 2012/072906 or FR2724623.
  • Figure 8 is a detail view of Figure 7 illustrating an angle of the vessel connecting two vessel walls.
  • the support surfaces 14 of the thermally insulating barrier of two adjacent vessel walls form an angle, for example of the order of 135 °.
  • the support surfaces 14 are covered with a plurality of corner pieces 35. These corner pieces 35 have an angle similar to the angle formed between the support surfaces of two adjacent walls.
  • the metal strakes 9 of the two tank walls forming the angle of the tank are sealed welded to the corner pieces 35.
  • the seal between two successive corner pieces 35 is ensured by the presence of corrugated pieces 36 which are welded on the one hand to the two adjacent corner pieces 35 and, on the other hand, to the metal strakes 9 of the two chamber walls forming the angle at the junction between the two corner pieces 35.
  • the corrugated pieces 36 are offset in the direction of the angle of the vessel relative to the welding supports 4 so that a weld support 4 is not opposite a corrugated piece 36 along the the angle of the tank.
  • One end of the metal strakes 9 forming the junction of the waterproof membrane at the angle optionally has a cut parallel to the raised edges 1 1 covered by the corrugated parts 36 to allow the deformation of said corrugated parts 36 and the stress absorption contractions.
  • the waterproof membrane thus has, along any straight line perpendicular to the longitudinal direction of the metal strakes 9, a flexibility equal to or greater than the flexibility of said metal strakes 9.
  • An embodiment of the corrugated parts 36 of the cell-tight membrane at such a vial angle is for example described in the document FR3004507, with reference to FIGS. 6 and 7.
  • the interruption of the raised edges 11 metal strakes as well as welding supports 4 can be made according to the methods described in documents WO 2012/072906 or FR2724623.
  • Figure 9 is a schematic sectional representation of a vessel in which the metal strakes 9 of the secondary waterproof membrane are arranged in a longitudinal direction of a vessel in which the vessel is housed.
  • This figure illustrates a tank angle between a longitudinal wall of the vessel and a transverse wall of the vessel, the longitudinal direction of the metal strakes 9 of the longitudinal walls of the vessel being parallel to the longitudinal direction of the vessel comprising the vessel.
  • the cell walls comprise as in Figure 7 two thermally insulating barriers and two sealed membranes. For a question of readability, only the secondary waterproof membrane is visible in Figure 9, the following description applying identically to the primary waterproof membrane not shown.
  • the tank comprises, at each angle formed by the transverse wall, a tube-shaped connecting ring 39 which makes it possible to take up the tension forces resulting from the thermal contraction, from the deformation of the shell to the sea and from the movements of the cargo.
  • a connecting ring 39 is for example described in document WO 2012/072906 or in document FR-A-2549575.
  • the connecting ring 39 is anchored to the carrying structure and comprises a flange 40 developing parallel to the angle of the supporting structure, that is to say perpendicular to the longitudinal direction of the metal strakes 9.
  • the metal strakes 9 are interrupted before the connecting ring 39.
  • a bending portion 41 allows the sealing connection between the flange 40 of the connecting ring 39 and an end end of the metal strakes 9.
  • the bending portion 41 is described in more detail with reference to FIG. 10.
  • This bending portion 41 comprises a plurality of corner strakes arranged parallel to the angle of the tank, that is to say perpendicular to the metal strakes 9.
  • An external corner strake 42 has a flat portion 43 welded along its entire length to the flange 40 of the connecting ring 39.
  • An internal corner strake 45 has a flat portion 46 on which are welded the ends of the metal strakes 9.
  • This internal corner strake 45 has on a longitudinal edge opposite the metal strakes 9 a raised edge 47 similar to the raised edges 11 of the metal strakes 9.
  • the internal corner strake 42 and the external corner strake 45 are connected by a central corner strake 48 having a structure similar to the metal strakes 9, that is to say a flat central portion 49 whose longitudinal edges each have a raised edge 50.
  • the raised edges 44, 47 and 50 adjacent strakes of angles 42, 45 and 48 are interconnected.
  • At least one connection between raised edges 44, 47, and 50 of two adjacent corner strakes 42, 45, and 48 is provided through a corner weld bracket 51 anchored in the thermally insulating barrier.
  • Such an angle welding support 51 is arranged parallel to the angle of the tank and has a structure similar to the solder supports 4 or 104 described above.
  • FIG. 10 a wing 40 of the connecting ring 39 on which the outer corner strake 42 is welded is successively observed.
  • the raised edge 44 of the outer corner strake 42 is anchored to the heat barrier. insulating through the angle welding support 51 similar to the solder support 104 described with reference to Figure 1.
  • a first raised edge 50 of a first central corner strake 48 is also welded to this welding support angle 51 on one side of the corner weld support 51 opposite the raised edge 44.
  • a second raised edge 50 of the first central corner strake 48 opposite the solder support 51 is directly welded to a first raised edge 50 of a second central corner strake 48.
  • a second raised edge 50 of the second central corner strake 48 opposite the first central corner strake 48 is directly welded to the raised edge 47 of the inner corner strake 45
  • strakes metal 9 are directly welded to the internal corner strake 45.
  • the raised edges 11 of the metal strakes 9 are interrupted before the bending portion 41 in the usual manner, for example as described in WO 2012/072906.
  • the bending portion 41 comprises at least the internal corner strake 45 and the outer corner strake 42.
  • the number of central corner strakes 48 may vary from 0 to N, where N is an integer, depending on the flexibility of the desired waterproof membrane. Indeed, the connection between the different raised edges 44, 47 and 50 of the corner strakes 42, 45 and 48 adjacent forms a bellows for absorbing thermal contraction stresses in a direction perpendicular to the longitudinal direction of the metal strakes 9 In Figure 10, N is 2.
  • the number of corner-welding supports 51 can be variable, the bending portion 41 comprising at least one connection between two raised edges 44, 47 and 50 of adjacent corner strakes 42, 45 and 48 comprising a support corner welding 51.
  • a tensile preload is applied during welding.
  • FIG. 11 is a schematic representation of a variant of the leakproof membrane illustrated in FIGS. 7 and 8.
  • the metal strakes 9 are interrupted on a central portion interconnecting two angles of the tank, for example substantially at middle of the tank wall. This interruption is carried out by a transverse flexion portion 52.
  • This transverse flexion portion 52 develops perpendicularly to the longitudinal direction of the metal strakes 9.
  • the transverse bending portion 52 is made analogously to the bending portion 41 described above with reference to FIGS. 9 and 10.
  • the transverse flexion portion 52 comprises two strakes. transverse end slips 53 and two central transverse strakes 54.
  • the transverse end strakes 53 are similar to the inner and outer corner strakes 45 and 42.
  • the central transverse strakes 54 are similar to the central corner strakes 48.
  • the strakes central transverse strands 54 are interposed between the transverse end strands 53.
  • the end transverse strakes 53 are symmetrical with respect to the central transverse strakes 54.
  • the metal strakes 9 interrupted on either side of the flexion portion transverse 52 are welded to a respective end transverse strake 53.
  • the raised edges of the various transverse strakes 53 and 54 are interconnected directly or via a transverse welding support.
  • This transverse welding support is analogous to the welding supports described above with reference to FIG. 1 or FIGS. 2 to 4.
  • the transverse bending portion comprises at least one transverse welding support.
  • the raised edges 1 1 of the metal strakes 9 and the weld supports 4 interrupted by the transverse bending portion 52 are interrupted in the usual manner, for example as described in the document WO 2012/072906 or in the document FR-A- 2549575.
  • soldering supports 4 as described above with respect to FIGS. 2 to 4 and conventional soldering supports 104 as described with reference to FIG. 1.
  • the alternation of such soldering supports may have, for example, an alternating ratio of a solder support 4 as described with reference to FIGS. 2 to 4 for a soldering support 104 of FIG. 1, or a ratio alternately one for two or one for N.
  • Such alternations are for example of the order of a weld support 4 every 2 metal strakes 9, all three metal strakes 9 or all N metal strakes 9.
  • the metal strakes 9 and the solder supports 4 described above with reference to FIGS. 2 to 9 are, for example, made of Invar ®, that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 “6 and 2.10 “ 6 K " , or in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 " 6 K “1 . other alloys may further be used.
  • Invar ® that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 “6 and 2.10 “ 6 K “ , or in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 " 6 K “1 .
  • other alloys may further be used.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 10 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, une paroi de cuve comportant - une barrière thermiquement isolante, - une membrane étanche métallique (32, 34) comportant une pluralité de virures métalliques (9) à bords relevés (11) disposées parallèlement les unes aux autres, - une pluralité de supports de soudure (4) ancrés à la barrière thermiquement isolante et intercalés et soudés à des bords relevés (11) de virures métalliques (9) adjacentes, au moins un support de soudure (4) comportant deux ailes métalliques (17) présentant chacune une portion inférieure (7) liées entre elles et une portion supérieure (8) aptes à fléchir l'une par rapport à l'autre, chaque aile métallique (17) étant soudée de manière étanche à un bord relevé (11) de virures métalliques (9) adjacentes.

Description

STRUCTURE DE PAROI ETANCHE
Domaine technique
L'invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.
Des cuves étanches et thermiquement isolantes sont notamment employées pour le stockage de gaz liquéfié comme du méthane (GNL) ou pétrole (GPL), qui est stocké, à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Arrière-plan technologique
On connaît, par exemple d'après FR-A-2798358, FR-A-2709725, FR-A- 2549575 ou FR-A-2398961 , des cuves de stockage ou de transport pour des gaz liquéfiés à basse température dont la ou chaque membrane étanche, notamment une membrane étanche primaire en contact avec le produit contenu dans la cuve, est constituée de tôles métalliques minces qui sont portées par une barrière thermiquement isolante. Ces tôles métalliques minces sont reliées entre elles de manière étanche afin d'assurer l'étanchéité de la cuve.
La figure 1 illustre un mode de fixation connu desdites tôles métalliques sur la barrière thermiquement isolante dans ce type de cuve. Sur cette figure 1 , une surface supérieure 101 de la barrière thermiquement isolante présente une rainure 102 se développant dans l'épaisseur de la barrière thermiquement isolante depuis la surface de support 101. Cette rainure 102 présente dans l'épaisseur de la barrière thermiquement isolante une zone de retenue formée par une gorge 103 qui se développe parallèlement à la surface de support 101. Cette gorge 103 se développe au niveau d'une extrémité de la rainure 102 opposée à la surface de support 101 dans l'épaisseur de la barrière thermiquement isolante, la rainure 102 présentant une section en coupe en forme en « L » dont la base est formée par la gorge 103. Une aile d'ancrage 104 en forme de « L » est insérée dans la rainure 102. Cette aile d'ancrage 104 présente une base 105 logée dans la gorge 103 de manière à retenir l'aile d'ancrage 104 sur la barrière thermiquement isolante selon une direction perpendiculaire à la surface de support 101. L'aile d'ancrage 104 comporte en outre une branche d'ancrage 106 dont une partie inférieure 107 est jointive de la base 105 et une partie supérieure 108 fait saillie au-dessus de la surface de support 101 .
Deux tôles métalliques 109 sont disposées de part et d'autre de l'aile d'ancrage 104. Ces tôles métalliques 109 présentent chacune une portion médiane nlanf- 1 1 Π <=>n aonni ¾i ir la snrfg f He si innnrt 1 01 Cnni ir une nue^tinn de lisihilité d<^ la figure, la surface de support 101 et les tôles métalliques 109 sont représentées sur la figure 1 avec un écart). Ces tôles métalliques présentent en outre des bords latéraux relevés, ci-après appelés bords relevés 1 1 1. Un bord relevé 1 1 1 de chacune des deux tôles métalliques 109 adjacentes est soudé de part et d'autre de0 la branche d'ancrage 106 de l'aile d'ancrage 104.
Les bords relevés 1 1 1 forment ainsi avec l'aile d'ancrage 104 des soufflets permettant d'absorber les efforts liés à la contraction de la membrane étanche, par exemple lors d'un chargement de liquide cryogénique dans la cuve.
Cependant, une telle aile d'ancrage 104 ne contribue pas à la souplesse de5 la membrane étanche. En effet, lors d'une contraction de la membrane étanche, les bords relevés 1 1 1 s'écartent de l'aile d'ancrage 104 pour absorber les efforts de contraction de la membrane. L'aile d'ancrage 104 étant sollicitée selon deux directions opposées par les bords relevés 1 1 1 , elle reste sensiblement statique dans la cuve sans contribuer à l'absorption des efforts de contraction de la0 membrane étanche.
Résumé
Une idée à la base de l'invention est de fournir une cuve comportant une membrane étanche présentant une bonne souplesse.
Selon un mode de réalisation, l'invention fournit une cuve étanche et5 thermiquement isolante intégrée dans une structure porteuse, ladite cuve comportant une paroi de cuve portée par une paroi porteuse de la structure porteuse, la paroi de cuve comportant
une barrière thermiquement isolante fixée sur la paroi porteuse et définissant une surface de support parallèle à la paroi porteuse,
0 - une membrane étanche métallique portée par la surface de support, la membrane étanche métallique comportant une pluralité de virures métalliques, chaque virure métallique étant une pièce profilée s'étendant selon une direction longitudinale et dont la section transversale comporte une portion médiane plane reposant sur la surface de support et deux bords latéraux relevés faisant saillie depuis la surface de support, les virures étant disposées parallèlement les unes aux autres sur la surface de support, - une pluralité de supports de soudure portés par la barrière thermiquement isolante, chaque support de soudure s'étendant selon ladite direction longitudinale et faisant saillie depuis la surface de support entre deux bords relevés adjacents de deux virures métalliques adjacentes, les bords relevés adjacents étant soudés de manière étanche au support de soudure intercalé entre lesdits bords relevés adjacents,
dans laquelle au moins l'un desdits supports de soudure comporte deux ailes métalliques s'étendant dans la direction longitudinale, chaque aile métallique présentant une portion inférieure qui est liée de manière étanche à la portion inférieure de l'autre aile métallique et une portion supérieure faisant saillie au- dessus de la surface de support, les portions supérieures des deux ailes métalliques étant aptes à fléchir l'une par rapport à l'autre selon une direction perpendiculaire à la direction longitudinale, chaque aile métallique étant soudée de manière étanche à un bord relevé d'une virure adjacente respective, ledit support de soudure comportant en outre une base ancrée dans la barrière thermiquement isolante de manière coulissante dans la direction longitudinale et liée à la portion inférieure d'au moins une desdites ailes métalliques.
Grâce à ces caractéristiques, la membrane étanche de la cuve présente une bonne souplesse. En effet, le support de soudure contribue à l'absorption des efforts de contraction de la membrane étanche permettant ainsi une meilleure souplesse de la membrane étanche. En outre, grâce à ces caractéristiques, la déformation du bord relevé d'une virure métallique liée au support de soudure n'est pas perturbée par la coopération entre ledit support de soudure et le bord relevé de l'autre virure métallique liée audit support de soudure.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la barrière thermiquement isolante présente un logement creusé dans l'épaisseur de la paroi de cuve depuis la surface de support, le logement s'étendant selon la direction longitudinale et présentant une ouverture débouchant sur la surface de support et une zone de retenue s'étendant dans une direction latérale perpendiculaire ou oblique à la direction d'épaisseur, la base du support de soudure s'étendant dans la zone de retenue du logement de la barrière thermiquement isolante de manière à retenir le support de soudure sur la surface de support. Grâce à ces caractéristiques, l'ancrage du support de soudure est simple à réaliser. En outre, l'ancrage du support de soudure peut être réalisé coulissant selon la direction longitudinale.
Selon un mode de réalisation, la barrière thermiquement isolante comporte une pluralité d'éléments isolants parallélépipédiques juxtaposés, les éléments isolants comportant des panneaux de couvercle, la surface de support étant formée par les panneaux de couvercle des éléments isolants, le logement étant ménagé dans l'épaisseur d'au moins un desdits panneaux de couvercle.
Selon un mode de réalisation, la portion inférieure d'au moins une aile métallique comporte une portion pliée formant la base du support de soudure.
Selon un mode de réalisation, les deux ailes métalliques du support de soudure sont symétriques selon un plan se développant parallèlement à la direction longitudinale et perpendiculaire à la surface de support.
Grâce à ces caractéristiques, le support de soudure est simple à fabriquer.
Selon un mode de réalisation, les virures métalliques sont constituées d'un matériau choisi dans le groupe constitué des alliages d'acier au nickel et des alliages d'acier au manganèse. De manière préférentielle, un matériau présentant un coefficient de contraction thermique inférieur à 10"5/K est choisi pour les applications dont le gaz liquide est à une température en-dessous de -100°C. Selon un mode de réalisation, un matériau présentant un coefficient de contraction thermique inférieur à 16.10"6/K est choisi pour les applications dont le gaz liquide est à une température comprise entre -45°C et -100°C.
Selon un mode de réalisation, la liaison entre les portions inférieures des deux ailes de soudure est située dans l'épaisseur de la barrière thermiquement isolante. Ainsi, la liaison entre les portions inférieures des ailes métallique ne perturbe pas la flexibilité de la portion desdites ailes de soudure faisant saillie au- dessus de la surface de support. Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, l'invention fournit également un navire pour le transport d'un produit liquide froid comportant une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, la direction longitudinale des virures métalliques est perpendiculaire à un axe longitudinal du navire.
Selon un mode de réalisation, l'extrémité des virures métalliques dont la direction longitudinale est perpendiculaire à un axe longitudinal du navire est soudée sur une cornière d'angle de la cuve étanche et thermiquement isolante, ladite cornière d'angle définissant un angle de la cuve s'étendant perpendiculairement à la direction longitudinale des virures métalliques. Selon un mode de réalisation, la cornière d'angle est formée par une pluralité de pièces métalliques juxtaposées le long de l'angle de la cuve avec des espacements mutuels.
Selon un mode de réalisation, les pièces métalliques sont jointes entre elles par des pièces ondulées. Selon un mode de réalisation, les pièces ondulées sont décalées le long de l'axe longitudinal du navire par rapport aux bords relevés des virures métalliques.
Selon un mode de réalisation, la membrane étanche comporte en outre au moins deux virures transverses, chaque virure transverse étant une pièce profilée s'étendant selon une direction perpendiculaire à la direction longitudinale des virures métalliques et comportant une portion plane et au moins un bord latéral relevé, la paroi de cuve comportant en outre au moins un support transverse ancré dans la barrière thermiquement isolante, le support transverse s'étendant selon une direction perpendiculaire à la direction longitudinale, lesdits au moins un bord relevé desdites virures transverses étant soudés de manière étanche au support transverse de chaque côté longitudinal dudit support transverse, une extrémité longitudinale des virures métalliques étant soudée de manière étanche sur la portion plane d'une des virures transverse. De telles virures transverses peuvent être réalisées de plusieurs manières. Selon un premier mode de réalisation, les virures transverses sont agencées dans une portion centrale d'une paroi plane de la cuve et la membrane étanche comporte au moins deux virures métalliques situées le long de la direction longitudinale de chaque côté des virures transverses, lesdites au moins deux virures métalliques étant soudées de manière étanche sur une virure transverse respective.
Selon un mode de réalisation, les virures transverses sont situées au milieu de la membrane étanche selon la direction longitudinale.
Selon un mode de réalisation, le support d'ancrage transverse comporte deux ailes métalliques transverses faisant saillie de la surface de support, les ailes métalliques transverses étant aptes à fléchir l'une par rapport à l'autre selon la direction longitudinale, les bords relevés desdites au moins deux virures transverses étant soudés de manière étanche à une aile métallique transverse respective.
Selon un mode de réalisation, la direction longitudinale des virures métalliques est parallèle à un axe longitudinal du navire.
Selon un second mode de réalisation, les virures transverses sont agencées au bord d'une paroi plane de la cuve, à la jonction entre les extrémités longitudinales de virures métalliques et d'une structure d'angle.
Dans ce cas, au moins deux virures transverses sont disposées entre les virures métalliques et une structure d'angle de la cuve, la portion plane de l'une des au moins deux virures transverses étant soudée de manière étanche à la structure d'angle et les extrémités longitudinales desdites virures métalliques étant soudées à la portion plane de l'autre des au moins deux virures transverses.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve étanche et thermiquement isolante du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve étanche et thermiquement isolante installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve étanche et thermiquement isolante du navire.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
« La figure 1 est une vue en coupe d'une aile d'ancrage de membrane métallique étanche de l'art antérieur, ladite aile d'ancrage étant ancrée dans une barrière thermiquement isolante d'une cuve étanche et thermiquement isolante.
• La figure 2 est une vue en coupe d'une portion de paroi de cuve étanche et thermiquement isolante au niveau d'un support de soudure selon un premier mode de réalisation, le support de soudure coopérant avec deux virures métalliques disposées de part et d'autre dudit support de soudure.
• La figure 3 est une vue en coupe d'une portion de paroi de cuve étanche et thermiquement isolante au niveau d'un support de soudure selon un deuxième mode de réalisation, le support de soudure coopérant avec deux virures métalliques disposées de part et d'autre dudit support de soudure.
• La figure 4 est une représentation schématique illustrant l'absorption des efforts de contraction de la membrane étanche au niveau du support de soudure de la figure 2.
• Les figures 5 et 6 sont des représentations schématiques d'une étape de soudure entre les virures métalliques et le support de soudure de la figure 2.
· La figure 7 est une représentation schématique en coupe d'une cuve de navire dans laquelle les virures métalliques sont disposées selon une direction transversale du navire. • La figure 8 est une vue de détail de la figure 7 illustrant un angle de la cuve.
• La figure 9 est une représentation schématique d'un angle de cuve étanche et thermiquement isolante dans lequel les virures métalliques sont disposées selon une direction longitudinale du navire.
• La figure 10 est une vue en coupe de détail de la membrane étanche de la figure 9 illustrant la jonction entre les virures métalliques et la structure d'angle de la cuve.
« La figure 1 1 est une représentation schématique d'une variante de la membrane étanche illustrée sur les figures 7 et 8.
• La figure 12 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation
Dans la description ci-dessous, on fait référence à une membrane étanche dans le cadre d'une cuve étanche et thermiquement isolante. Une telle cuve comporte un espace interne destiné à être rempli de gaz combustible ou non combustible. Le gaz peut notamment être un gaz naturel liquéfié (GNL), c'est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu'un ou plusieurs autres hydrocarbures, tels que l'éthane, le propane, le n-butane, le i- butane, le n-pentane le i-pentane, le néopentane, et de l'azote en faible proportion. Le gaz peut également être de l'éthane ou un gaz de pétrole liquéfié (GPL), c'est-à- dire un mélange d'hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
La membrane étanche repose sur une surface de support formée par une barrière thermiquement isolante de la cuve. Cette membrane étanche présente une structure répétée comportant alternativement d'une part des bandes de tôle disposées sur la surface de support et, d'autre part, des supports de soudure allongés liés à la surface de support et s'étendant parallèlement aux bandes de tôle sur au moins une partie de la longueur des bandes de tôle. Les bandes de tôle comportent des bords latéraux relevés disposés et soudés contre les supports de soudure adjacents. Une telle structure est par exemple utilisée dans les cuves de méthanier de type N096 commercialisées par la déposante.
La figure 2 est une vue en coupe d'une paroi d'une cuve étanche et thermiquement isolante au niveau de la liaison entre deux virures métalliques 9 adjacentes d'une membrane étanche de la paroi de cuve et un support de soudure 4 ancré sur une barrière thermiquement isolante de la paroi de cuve. Une telle barrière thermiquement isolante est formée d'éléments isolants juxtaposés. Par exemple, des éléments isolants adaptés sont décrits dans le document WO2012/072906. Les éléments isolants sont ancrés à la structure porteuse par des organes de retenue. Chacun des éléments isolants présente une forme de parallélépipède rectangle présentant deux grandes faces, ou faces principales, et quatre petites faces, ou faces latérales. Plus particulièrement, les virures métalliques 9 adjacentes reposent sur une surface de support 14 de la barrière thermiquement isolante. Cette surface de support 14 est formée par la face supérieure de panneaux de couvercle 12 des éléments isolants. Le support de soudure 4 est ancré dans le panneau de couvercle 12 d'un élément isolant de la barrière thermiquement isolante.
Afin d'ancrer le support de soudure 4 dans le panneau de couvercle 12, la face supérieure du panneau couvercle 12 comporte une rainure 2 dont la section est en forme de « T » inversé. Une première portion 15 de la rainure 2 débouche sur la surface de support 14 formée par le panneau de couvercle 12. La première portion
15 de la rainure 2 se développe perpendiculairement à la surface de support 14 dans l'épaisseur du panneau de couvercle 12, c'est-à-dire dans l'épaisseur de la barrière thermiquement isolante. Une extrémité de la première portion 15 opposée à la surface de support 14 présente une zone de retenue 16. Cette zone de retenue
16 se développe dans l'épaisseur du panneau de couvercle 12 parallèlement à la surface de support 14. Les supports de soudure 4 sont insérés par coulissement dans les rainures 2 des panneaux de couvercle 12. Les supports de soudure 4 sont ainsi ancrés de manière coulissante sur les panneaux de couvercle 12, selon la direction longitudinale des supports de soudure 4.
Dans un mode de réalisation non illustré, la zone de retenue 16 se développe selon une direction qui est oblique par rapport à la surface de support 14 et comporte une composante parallèle à la surface de support 14. Dans le premier mode de réalisation illustré sur la figure 2, la zone de retenue 16 est formée par deux gorges 3 se développant de part et d'autre de la première portion 15 au niveau de l'extrémité de la première portion 15 opposée à la surface de support.
Selon un autre mode de réalisation, la zone de retenue peut également être ménagée depuis une zone intermédiaire de la première portion 15, ladite zone intermédiaire étant située entre la surface de support 14 et l'extrémité de la première portion 15 opposée à la surface de support 14.
Le support de soudure 4 comporte deux ailes métalliques 17. Ces ailes métalliques 17 sont symétriques par rapport à un plan perpendiculaire à la surface de support 14 et parallèle à une direction longitudinale de la rainure 2. Chaque aile métallique 17 présente une section en forme de « L » comportant une base 5 et une branche d'ancrage 6.
La base 5 de chaque aiie métallique 17 est logée dans une gorge 3 respective de la rainure 2. Dans le premier mode de réalisation illustré sur la figure 2, les bases 5 des ailes métalliques 17 se développent parallèlement à la surface de support 14. Une portion inférieure 7 de chaque branche d'ancrage 6 est jointive de la base 5 de l'aile métallique 17 correspondante. En outre, les portions inférieures 7 des branches d'ancrage 6 des deux ailes métalliques 17 sont soudées entre elles par une ligne de soudure 18. Cette ligne de soudure 18 est de préférence logée dans l'épaisseur du panneau de couvercle 12. Dans un mode de réalisation non illustré, cette ligne de soudure est située au niveau de la surface de support 14. Une portion supérieure 8 de la branche d'ancrage 6 de chacune des ailes métalliques 17 fait saillie de la surface de support 14 depuis la rainure 2, vers l'intérieur de la cuve.
Les deux virures métalliques 9 adjacentes sont disposées sur la surface de support 14 de part et d'autre du support de soudure 4. Chaque virure métallique 9 présente une portion médiane plane 10 se développant selon une direction longitudinale de la virure métallique 9. Chaque virure métallique 9 présente en outre deux bords relevés 1 1 situés de part et d'autre de la portion médiane plane 10, c'est-à-dire le long de deux bords longitudinaux opposés de la portion médiane plane 10. Un seul bord relevé 1 1 de chacune des deux virures métalliques 9 est représenté sur la figure 2. Chaque bord relevé 1 1 fait saillie de la surface de support 14. La direction longitudinale des virures métalliques 9 et la direction longitudinale du support de soudure 4 sont parallèles. Un bord relevé 11 de chacune des deux virures métalliques 9 adjacentes est soudé à une aile métallique 17 respective du support de soudure 4. Plus particulièrement, chaque bord relevé 11 est soudé par une ligne de soudure 19 à la portion supérieure 8 de la branche d'ancrage 6 d'une unique aile métallique 17.
La figure 3 est une vue en coupe d'une portion de paroi de cuve étanche et thermiquement isolante au niveau de la jonction entre un support de soudure 4 selon un deuxième mode de réalisation et deux virures métalliques 9 d'une membrane étanche. Sur cette figure, les éléments identiques ou ayant la même fonction que des éléments décrits en regard de la figure 2 portent les mêmes références.
Ce deuxième mode de réalisation diffère du premier mode de réalisation décrit ci-dessus en ce que seule une des deux ailes métalliques 17 du support de soudure 4 comporte une base 5. L'autre aile métallique 17 comporte uniquement une branche d'ancrage 6. De manière analogue au premier mode de réalisation, les portions inférieures 7 des branches d'ancrage 6 des deux ailes métalliques sont soudées l'une à l'autre par la ligne de soudure 18 et la portion supérieure 8 des branches d'ancrage 6 de chacune des ailes métalliques 17 est soudée à un bord relevé 1 1 respectif par la ligne de soudure 19. Par ailleurs, la zone de retenue 16 de la rainure 2 ne comporte qu'une unique gorge 3 dans laquelle est logée la base 5 de l'unique aile métallique 17 présentant une base 5. Ainsi, la rainure 2 présente une section en forme de « L ».
La figure 4 est une représentation schématique illustrant l'absorption des efforts de contraction de la membrane étanche au niveau du support de soudure de la figure 1.
Lors d'une contraction de la membrane étanche, par exemple liée à l'introduction de GNL dans la cuve, les virures métalliques 9 se contractent. En se contractant, chaque virure métallique 9 exerce un effort sur le support de soudure 4 comme illustré par les flèches 20 sur la figure 4. Ces efforts sont exercés sur le support de soudure 4 par l'intermédiaire des bords relevés 11 via les lignes de soudures 19 selon des directions opposées. Chaque bord relevé 11 constitue ainsi avec la branche d'ancrage 6 sur laquelle il est soudé un soufflet susceptible de s'ouvrir pour absorber la contraction thermique de la membrane, comme illustré par les flèches 21.
En outre, les deux branches d'ancrages 6 du support de soudure forment également un soufflet susceptible de s'ouvrir pour absorber la contraction thermique uc ια 1 1 i lui ai ic, uvjmmc niuon c μαι ica ncu ico - --. ι_ι ι unci, ico ai 101 ico d'ancrage 6 étant liées par la ligne de soudure 18 au niveau de leur portion inférieure 7, leur portion supérieure 8 présentent une liberté de mouvement relatif. Ainsi, les portions supérieures 8 des branches d'ancrage 6 peuvent s'écarter l'une de l'autre afin d'absorber les contraintes thermiques. La figure 2 illustre un support de soudure 4 dont les soufflets formés d'une part par les bords relevés 1 1 et la portion supérieure 8 des branches d'ancrage 6 et, d'autre part, par les portions inférieures 7 des deux branches d'ancrage 6 sont ouverts.
Les figures 5 et 6 sont des représentations schématiques d'une étape de soudure entre les virures et le support de soudure de la figure 1.
Selon un mode de réalisation, la ligne de soudure 18 liant entre elles les deux ailes métalliques 17 du support de soudure 4 est réalisée par une soudure à la molette. Cette soudure à la molette est réalisée avant insertion des supports de soudure 4 dans les rainures 2 des panneaux de couvercle 12.
Pour réaliser les soudures étanches entre les virures métalliques 9 et les ailes métalliques 17 sur de grandes longueurs, des machines de soudage (non illustrées) peuvent être employées. Les soudures peuvent être réalisées à l'aide de machines de soudage électrique, par exemple comme décrit dans les documents FR-A-2172837 ou FR-A-2140716. Une telie machine de soudage se déplace le long des lignes de soudage 19 en étant maintenue plaquée contre les virures métalliques 9 dont elle réalise les soudures des bords relevés 1 1.
Selon le mode de réalisation illustré sur les figures 5 et 6, la machine de soudure (non illustrée) comporte un premier jeu de galets 23 et un deuxième jeu de galets 24. Chaque jeu de galets 23 et 24 coopère avec l'un des bords relevés 1 1 et la branche d'ancrage 6 associée. Chaque jeu de galets 23 et 24 est associé à une torche de soudure 25 respective, par exemple une torche de soudure laser portée par la machine de soudure. Le premier jeu de galets 23 et le deuxième jeu de galets 24 fonctionnant de manière analogue, seul le fonctionnement du premier jeu de galets 23 tel qu'illustré sur la figure 5 est décrit ci-après, cette description s'appliquant par analogie au deuxième jeu de galets 24.
Le premier jeu de galets 23 comporte un premier galet 28 et un deuxième galet 38. Le premier galet 28 est plaqué en appui contre une face 26 de la branche d'ancrage 6 opposée au bord relevé 11. Le deuxième galet 38 est plaqué en appui contre une face 27 du bord relevé 11 opposée à la branche d'ancrage 6. L'appui du premier galet 28 contre la branche d'ancrage 6 et l'appui du deuxième galet 38 contre le bord relevé 11 sont réalisés en vis-à-vis l'un de l'autre de manière à plaquer correctement le bord relevé 11 contre la branche d'ancrage 6.
La torche de soudure 25 est positionnée proche du premier jeu de galets
23 de manière à réaliser une soudure laser entre le bord relevé 11 et la branche d'ancrage 6 dans une position plaquée desdits bord relevé 11 et de la branche d'ancrage 6. De préférence, la torche de soudure 25 est positionnée de façon à ce que le plaquage du bord relevé 11 et de la branche d'ancrage 6 précède la soudure laser lors du déplacement de la machine de soudure.
Une telle machine de soudure permet de souder le bord relevé 11 de chacune des deux virures métalliques 9 adjacentes avec une branche d'ancrage 6 respective du support de soudure 4.
La figure 7 est une représentation schématique en coupe d'une cuve dans laquelle les virures métalliques 9 sont disposées selon une direction transversale d'un navire dans lequel la cuve est logée.
La structure porteuse de la cuve est ici constituée par la coque interne d'un navire à double coque, dont on a représenté la paroi de fond au chiffre 30, et par des cloisons transversales, qui définissent des compartiments dans la coque interne du navire. Sur chaque paroi de la structure porteuse, une paroi correspondante de la cuve est réalisée. Chaque paroi de la cuve comporte successivement, dans la direction d'épaisseur de la cuve, de l'extérieur vers l'intérieur, une barrière thermiquement isolante secondaire 31 , une membrane étanche secondaire 32, une barrière thermiquement isolante primaire 33 et une membrane étanche primaire 34.
Les membranes étanches secondaires 32 et primaires 34 sont à chaque fois constituées d'une série de virures métalliques 9 parallèles aux bords relevés 11 , qui sont disposées alternativement avec des supports de soudure 4 allongés ainsi que décrit ci-dessus en regard des figures 2 à 4. Cette structure alternée est réalisée sur toute la surface des parois de la cuve, ce qui peut impliquer de très grandes longueurs.
Sur la figure 7, les bords relevés 1 1 sont disposés selon une direction longitudinale perpendiculaire à la direction longitudinale du navire. Ainsi, les bords relevés 1 1 constituent des soufflets permettant d'absorber les efforts de contraction dans une direction longitudinale du navire. Les virures métalliques 9 ainsi que les supports de soudure 4 sont interrompus au niveau des angles parallèles à la direction longitudinale du navire, par exemple de la façon décrite dans le document WO 2012/072906 ou bien FR2724623.
La figure 8 est une vue de détail de la figure 7 illustrant un angle de la cuve reliant deux parois de cuves. Dans un tel angle de cuve, les surfaces de support 14 de la barrière thermiquement isolante de deux parois de cuve adjacentes forment un angle par exemple de l'ordre de 135°. Afin d'assurer l'étanchéité entre les membranes étanches au niveau de cet angle de la cuve, les surfaces de support 14 sont recouvertes d'une pluralité de pièces d'angle 35. Ces pièces d'angle 35 présentent un angle analogue à l'angle formé entre les surfaces de support de deux parois adjacentes.
Les virures métalliques 9 des deux parois de cuve formant l'angle de la cuve sont soudées de manière étanche sur les pièces d'angle 35. L'étanchéité entre deux pièces d'angle 35 successive est assurée par la présence de pièces ondulées 36 qui sont soudées d'une part sur les deux pièces d'angles 35 adjacentes et, d'autre part, sur les virures métalliques 9 des deux parois de cuves formant l'angle au droit de la jonction entre les deux pièces d'angle 35. Les pièces ondulées 36 sont décalées selon la direction de l'angle de la cuve par rapport aux supports de soudure 4 de sorte qu'un support de soudure 4 ne soit pas en vis-à-vis d'une pièce ondulée 36 le long de l'angle de la cuve. Une extrémité des virures métalliques 9 formant la jonction de la membrane étanche au niveau de l'angle présente éventuellement une découpe parallèle aux bords relevés 1 1 recouverte par les pièces ondulées 36 afin de permettre la déformation desdites pièces ondulées 36 et l'absorption de contraintes de contractions. La membrane étanche présente ainsi selon toute droite perpendiculaire à la direction longitudinale des virures métalliques 9 une souplesse égale ou supérieure à la souplesse desdites virures métalliques 9. Un mode de réalisation des pièces ondulées 36 de la membrane étanche de cuve au niveau d'un tel angle de cuve est par exemple décrit dans le document FR3004507, en regard des figures 6 et 7. Par ailleurs, l'interruption des bords relevés 11 des virures métallique ainsi que des supports de soudure 4 peut être réalisée selon les méthodes décrites dans les documents WO 2012/072906 ou bien FR2724623.
La figure 9 est une représentation schématique en coupe d'une cuve dans laquelle les virures métalliques 9 de la membrane étanche secondaire sont disposées selon une direction longitudinale d'un navire dans lequel la cuve est logée. Cette figure illustre un angle de cuve entre une paroi longitudinale de la cuve et une paroi transversale de la cuve, la direction longitudinale des virures métalliques 9 des parois longitudinales de la cuve étant parallèle à la direction longitudinale du navire comportant la cuve. Sur cette figure, les parois de cuves comportent comme sur la figure 7 deux barrières thermiquement isolantes et deux membranes étanches. Pour une question de lisibilité, seule la membrane étanche secondaire est visible sur la figure 9, la description ci-après s'appliquant de manière identique à la membrane étanche primaire non représentée.
La cuve comporte au niveau de chaque angle formé par la paroi transversale un anneau de raccordement 39 en forme de tube qui permet de reprendre les efforts de tension résultant de la contraction thermique, de la déformation de la coque à la mer et des mouvements de la cargaison. Un tel anneau de raccordement 39 est par exemple décrit dans le document WO 2012/072906 ou encore dans le document FR-A-2549575.
L'anneau de raccordement 39 est ancré sur la structure porteuse et comporte une aile 40 se développant parallèlement à l'angle de la structure porteuse, c'est-à-dire perpendiculairement à la direction longitudinale des virures métalliques 9. Les virures métalliques 9 sont interrompues avant l'anneau de raccordement 39. Une portion de flexion 41 permet la jonction étanche entre l'aile 40 de l'anneau de raccordement 39 et une extrémité terminale des virures métalliques 9.
La portion de flexion 41 est décrite plus en détail en regard de la figure 10. Cette portion de flexion 41 comporte une pluralité de virures d'angle disposées parallèlement à l'angle de la cuve, c'est-à-dire perpendiculairement aux virures métalliques 9.
Une virure d'angle externe 42 comporte une portion plane 43 soudée sur toute sa longueur à l'aile 40 de l'anneau de raccordement 39. Cette virure d'angle aviarma AO n
Figure imgf000018_0001
nmr\r\rio ci ir un hnrri Innniti iHincal nnnncô à l'anneau Ho rarrnrrlomont
39 un bord relevé 44 analogue aux bords relevés 1 1 des virures métalliques 9.
Une virure d'angle interne 45 comporte une portion plane 46 sur laquelle sont soudées les extrémités des virures métalliques 9. Cette virure d'angle interne 45 présente sur un bord longitudinal opposé aux virures métalliques 9 un bord relevé 47 analogue aux bords relevés 11 des virures métalliques 9.
La virure d'angle interne 42 et la virure d'angle externe 45 sont reliées par une virure d'angle centrale 48 présentant une structure analogue aux virures métalliques 9, c'est-à-dire une portion centrale plane 49 dont les bords longitudinaux présentent chacun un bord relevé 50. Les bords relevés 44, 47 et 50 des virures d'angles 42, 45 et 48 adjacentes sont reliés entre eux.
Au moins une liaison entre les bords relevés 44, 47 et 50 de deux virures d'angle 42, 45 et 48 adjacentes est réalisée par l'intermédiaire d'un support de soudure d'angle 51 ancrée sur dans la barrière thermiquement isolante. Un tel support de soudure d'angle 51 est disposé parallèlement à l'angle de la cuve et présente une structure analogue aux supports de soudure 4 ou 104 décrits ci- dessus.
Ainsi, sur la figure 10, on observe successivement une aile 40 de l'anneau de raccordement 39 sur laquelle est soudée la virure d'angle externe 42. Le bord relevé 44 de la virure d'angle externe 42 est ancré sur la barrière thermiquement isolante par l'intermédiaire du support de soudure d'angle 51 analogue au support de soudure 104 décrit en regard de la figure 1. Un premier bord relevé 50 d'une première virure d'angle centrale 48 est également soudé sur ce support de soudure d'angle 51 sur une face du support de soudure d'angle 51 opposée au bord relevé 44. Un second bord relevé 50 de la première virure d'angle centrale 48 opposé au support de soudure 51 est directement soudé à un premier bord relevé 50 d'une seconde virure d'angle centrale 48. Un second bord relevé 50 de la seconde virure d'angle centrale 48 opposé à la première virure d'angle centrale 48 est directement soudé au bord relevé 47 de la virure d'angle interne 45. Enfin, les virures métalliques 9 sont directement soudées sur la virure d'angle interne 45. Les bords relevés 11 des virures métalliques 9 sont interrompus avant la portion de flexion 41 de façon usuelle, par exemple comme décrit dans le document WO 2012/072906.
La portion de flexion 41 comporte à minima la virure d'angle interne 45 et la virure d'angle externe 42. Le nombre de virures d'angle centrales 48 peut varier de 0 à N, N étant un nombre entier, selon la souplesse de la membrane étanche désirée. En effet, la liaison entre les différents bords relevés 44, 47 et 50 des virures d'angle 42, 45 et 48 adjacentes forme un soufflet permettant d'absorber les contraintes de contraction thermique selon une direction perpendiculaire à la direction longitudinale des virures métalliques 9. Sur la figure 10, N est égal à 2.
De même, le nombre de support de soudure d'angle 51 peut être variable, la portion de flexion 41 comportant au moins une liaison entre deux bords relevés 44, 47 et 50 de virures d'angle 42, 45 et 48 adjacentes comportant un support de soudure d'angle 51.
Dans certains cas et ceux afin d'éviter de faire travailler en compression les virures métalliques, une précontrainte en traction est appliquée lors du soudage.
La figure 11 est une représentation schématique d'une variante de la membrane étanche illustrée sur les figures 7 et 8. Dans cette variante, les virures métalliques 9 sont interrompues sur une portion centrale reliant entre eux deux angles de la cuve, par exemple sensiblement au milieu de la paroi de cuve. Cette interruption est réalisée par une portion de flexion transverse 52. Cette portion de flexion transverse 52 se développe perpendiculairement à la direction longitudinale des virures métalliques 9.
La portion de flexion transverse 52 est réalisée de façon analogue à la portion de flexion 41 décrite ci-dessus en regard des figures 9 et 10. Ainsi, sur la membrane étanche représentée sur la figure 1 1 la portion de flexion transverse 52 comporte deux virures transverses d'extrémité 53 et deux virures transverses centrales 54. Les virures transverses d'extrémité 53 sont analogues aux virures d'angle interne et externe 45 et 42. Les virures transverses centrales 54 sont analogues aux virures d'angles centrales 48. Les virures transverses centrales 54 sont intercalées entre les virures transverses d'extrémité 53. Les virures transverses d'extrémité 53 sont symétriques par rapport aux virures transverses centrales 54. Les virures métalliques 9 interrompues de part et d'autre de la portion de flexion transverse 52 sont soudées sur une virure transverse d'extrémité 53 respective. Les bords relevés des différentes virures transverses 53 et 54 sont reliées entre elles directement ou par l'intermédiaire d'un support de soudure transverse. Ce support de soudure transverse est analogue aux supports de soudure décrits ci-dessus en regard de la figure 1 ou des figures 2 à 4. La portion de flexion transverse comporte au moins un support de soudure transverse. Les bords relevés 1 1 des virures métalliques 9 et les supports de soudures 4 interrompus par la portion de flexion transverse 52 sont interrompus de façon usuelle comme par exemple ainsi que décrit dans le document WO 2012/072906 ou encore dans le document FR-A- 2549575.
En regard des figures 7 à 1 1 , il est possible d'alterner des supports de soudure 4 tels que décrits ci-dessus en regard des figures 2 à 4 et des supports de soudure classiques 104 tels que décrits en regard de la figure 1. L'alternance de tels supports de soudure peut présenter, par exemple, un rapport d'alternance de un support de soudure 4 tel que décrits en regard des figures 2 à 4 pour un support de soudure 104 de la figure 1 , ou encore un rapport d'alternance d'un pour deux ou bien un pour N. De même, il est possible d'alterner des supports de soudures 4 tels que décrits ci-dessus en regard des figures 2 à 4 avec des soufflets formés par la soudure directe entre deux bords relevés 1 1 de virures métalliques 9 adjacentes. De telles alternances sont par exemple de l'ordre d'un support de soudure 4 toutes les 2 virures métalliques 9, toutes les trois virures métalliques 9 ou encore toutes les N virures métalliques 9.
Par ailleurs, les virures métalliques 9 et les supports de soudure 4 décrits ci-dessus en regard des figures 2 à 9 sont, par exemple, réalisés en Invar ®, c'est- à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10"6 et 2.10"6 K" , ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l'ordre de 7.10"6 K"1. D'autres alliages peuvent en outre être utilisés.
La technique décrite ci-dessus pour réaliser une membrane étanche de cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane étanche d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre. En référence à la figure 10, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 10 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75. Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante intégrée dans une structure porteuse, ladite cuve comportant une paroi de cuve portée par une paroi porteuse de la structure porteuse, la paroi de cuve comportant
- une barrière thermiquement isolante (31 , 33) fixée sur la paroi porteuse et définissant une surface de support (14) parallèle à la paroi porteuse,
- une membrane étanche métallique (32, 34) portée par la surface de support(14), la membrane étanche métallique (32, 34) comportant une pluralité de virures métalliques (9), chaque virure métallique (9) étant une pièce profilée s'étendant selon une direction longitudinale et dont la section transversale comporte une portion médiane plane (10) reposant sur la surface de support (14) et deux bords latéraux relevés (11) faisant saillie depuis la surface de support (14), les virures métalliques (9) étant disposées parallèlement les unes aux autres sur la surface de support (14),
- une pluralité de supports de soudure (4) portés par la barrière thermiquement isolante, chaque support de soudure (4) s'étendant selon ladite direction longitudinale et faisant saillie depuis la surface de support (14) entre deux bords relevés (11) adjacents de deux virures métalliques (9) adjacentes, les bords relevés (11 ) adjacents étant soudés de manière étanche au support de soudure (4) intercalé entre lesdits bords relevés adjacents (11),
dans laquelle au moins l'un des supports de soudure (4) comporte deux ailes métalliques (17) s'étendant dans la direction longitudinale, chaque aile métallique (17) présentant une portion inférieure (7) qui est liée de manière étanche à la portion inférieure (7) de l'autre aile métallique (17) et une portion supérieure (8) faisant saillie au-dessus de la surface de support (14), les portions supérieures (8) des deux ailes métalliques (17) étant aptes à fléchir l'une par rapport à l'autre selon une direction perpendiculaire à la direction longitudinale, chaque aile métallique (17) étant soudée de manière étanche à un bord relevé (11) d'une virure métallique (9) adjacente respective, ledit support de soudure (4) comportant en outre une base (5) ancrée dans la barrière thermiquement isolante de manière coulissante dans la direction longitudinale et liée à la portion inférieure (7) d'au moins une desdites ailes métalliques (17).
2. Cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle la barrière thermiquement isolante (31 , 33) présente un logement (2) creusé dans l'épaisseur de la paroi de cuve depuis la surface de support (14), le logement (2) s'étendant selon la direction longitudinale et présentant une ouverture débouchant sur la surface de support (14) et une zone de retenue (16) s'étendant dans une direction latérale perpendiculaire ou oblique à la direction d'épaisseur, la base (5) du support de soudure (4) s'étendant dans la zone de retenue (16) du logement (3) de la barrière thermiquement isolante de manière à retenir le support de soudure (4) sur la surface de support (14).
3. Cuve étanche et thermiquement isolante selon la revendication 2, dans laquelle la barrière thermiquement isolante comporte une pluralité d'éléments isolants parallélépipédiques juxtaposés, les éléments isolants comportant des panneaux de couvercle (12), la surface de support (14) étant formée par les panneaux de couvercle (12) des éléments isolants, le logement étant ménagé dans l'épaisseur d'au moins un desdits panneaux de couvercle (12).
4. Cuve étanche et thermiquement isolante selon les revendications 1 à 3, dans laquelle la portion inférieure (7) d'au moins une aile métallique (17) comporte une portion pliée formant la base (5) du support de soudure (4).
5. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 4, dans laquelle les deux ailes métalliques (17) du support de soudure (4) sont symétriques selon un plan se développant parallèlement à la direction longitudinale et perpendiculaire à la surface de support (4).
6. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 5, dans laquelle les virures métalliques (9) sont constituées d'un matériau choisi dans le groupe constitué des alliages d'acier au nickel et des alliages d'acier au manganèse présentant un coefficient de contraction thermique inférieur à 1 ,6.10"5/K.
7. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 6, dans laquelle la liaison (18) entre les portions inférieures (7) des deux ailes de soudure (17) est située dans l'épaisseur de la barrière thermiquement isolante.
8. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve étanche et thermiquement isolante selon l'une des revendications 1 à 7 disposée dans la double coque.
9. Navire selon la revendication 8, dans lequel la direction longitudinale des virures métalliques (9) est perpendiculaire à un axe longitudinal du navire.
10. Navire selon la revendication 9, dans lequel l'extrémité des virures métalliques (9) dont la direction longitudinale est perpendiculaire à un axe longitudinal du navire est soudée sur une cornière d'angle de la cuve étanche et thermiquement isolante, ladite cornière d'angle définissant un angle de la cuve s'étendant perpendiculairement à la direction longitudinale des virures métalliques (9), la cornière d'angle étant formée par une pluralité de pièces métalliques (35) juxtaposées le long de l'angle de la cuve avec des espacements mutuels, les pièces métalliques étant jointes entre elles par des pièces ondulées (36).
11. Navire selon la revendication 10, dans lequel les pièces ondulées
(36) sont décalées le long de l'axe longitudinal du navire par rapport aux bords relevés (11) des virures métalliques.
12. Navire selon la revendication 8, dans lequel la direction longitudinale des virures métalliques (9) est parallèle à un axe longitudinal du navire.
13. Navire selon l'une des revendications 8 à 12, dans lequel la membrane étanche comporte en outre au moins deux virures transverses (42, 45, 48, 52, 53), chaque virure transverse (42, 45, 48, 52, 53) étant une pièce profilée s'étendant selon une direction perpendiculaire à la direction longitudinale des virures métalliques et comportant une portion plane (43, 46, 49) et au moins un bord latéral relevé (44, 47, 50), la paroi de cuve comportant en outre au moins un support transverse (51) ancré dans la barrière thermiquement isolante, le support transverse (51) s'étendant selon une direction perpendiculaire à la direction longitudinale, lesdits au moins un bord relevé (44, 47, 50) desdites virures transverses (42, 45, 48, 52, 53) étant soudés de manière étanche au support transverse (51) de chaque côté longitudinal dudit support transverse (51 ), une extrémité longitudinale des virures métalliques (9) étant soudée de manière étanche sur la portion plane (43, 46, 49) d'une des virures transverse (42, 45, 48, 52, 53).
14. Navire selon la revendication 13, dans lequel les virures transverses (53, 54) sont agencées dans une portion centrale d'une paroi plane de la cuve et la membrane étanche comporte au moins deux virures métalliques (9) situées le long de la direction longitudinale de chaque côté des virures transverses (53, 54), lesdites au moins deux virures métalliques (9) étant soudées de manière étanche sur une virure transverse respective.
15. Navire selon la revendication 13, dans lequel les virures transverses (42, 45, 48) sont agencées au bord d'une paroi plane de la cuve, à la jonction entre les extrémités longitudinales de virures métalliques (9) et d'une structure d'angle (39), au moins deux virures transverses (42, 45, 48) étant disposées entre les virures métalliques (9) et la structure d'angle (39) de la cuve, la portion plane (43) de l'une des au moins deux virures transverses étant soudée de manière étanche à la structure d'angle (39) et les extrémités longitudinales desdites virures métalliques (9) étant soudées a portion plane (45) de l'autre des au moins deux virures transverses.
16. Procédé de chargement ou déchargement d'un navire (70) selon l'une des revendications 8 à 15, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve étanche et thermiquement isolante du navire (71 ).
17. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon l'une des revendications 8 à 15, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve étanche et thermiquement isolante (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve étanche et thermiquement isolante du navire.
PCT/FR2017/052159 2016-08-02 2017-08-01 Structure de paroi etanche WO2018024981A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780058360.9A CN109804195B (zh) 2016-08-02 2017-08-01 绝热密封罐,船和输送系统以及装载或卸载船的方法
KR1020197005081A KR102331754B1 (ko) 2016-08-02 2017-08-01 불침투성 벽체 구조물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1657496 2016-08-02
FR1657496A FR3054872B1 (fr) 2016-08-02 2016-08-02 Structure de paroi etanche

Publications (1)

Publication Number Publication Date
WO2018024981A1 true WO2018024981A1 (fr) 2018-02-08

Family

ID=57233656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052159 WO2018024981A1 (fr) 2016-08-02 2017-08-01 Structure de paroi etanche

Country Status (4)

Country Link
KR (1) KR102331754B1 (fr)
CN (1) CN109804195B (fr)
FR (1) FR3054872B1 (fr)
WO (1) WO2018024981A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881957A (zh) * 2019-04-04 2019-06-14 北京高能时代环境技术股份有限公司 一种金属板与防渗土工膜之间的密封结构
FR3080905A1 (fr) * 2018-05-07 2019-11-08 Gaztransport Et Technigaz Paroi de cuve etanche comprenant une membrane d'etancheite
KR20200123157A (ko) * 2018-02-21 2020-10-28 가즈트랑스포르 에 떼끄니가즈 보강 구역을 포함하는 밀봉 멤브레인을 포함하는 유체 기밀식 용기 벽
CN112543691A (zh) * 2018-07-26 2021-03-23 气体运输技术公司 焊接罐的隔热体的密封膜
RU2780113C2 (ru) * 2018-05-07 2022-09-19 Газтранспорт Эт Технигаз Герметичная стенка резервуара, содержащая уплотнительную мембрану
FR3135773A1 (fr) 2022-05-23 2023-11-24 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087141B1 (fr) 2018-10-16 2020-10-02 Gaztransport Et Technigaz Soudage d'une membrane etanche d'une cuve
FR3111176B1 (fr) 2020-06-09 2022-09-02 Gaztransport Et Technigaz Paroi de cuve pour cuve étanche et thermiquement isolante
CN113070598B (zh) * 2021-03-30 2022-05-03 广州文冲船舶修造有限公司 一种fpso下输油平台i型管的制作及安装方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140716A5 (en) 1971-03-12 1973-01-19 Gaz Transport Electric welding machine with separate transformer - - for welding raised sheet edges
FR2172837A2 (en) 1972-02-24 1973-10-05 Gaz Transport Electric welding machine - for the raised edges of metal plates
FR2398961A1 (fr) 1977-07-26 1979-02-23 Gaz Transport Cuve thermiquement isolante pour le stockage terrestre d'un liquide a basse temperature, en particulier de gaz naturels liquefies
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
WO2012072906A1 (fr) 2010-12-01 2012-06-07 Gaztransport Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR2987100A1 (fr) * 2012-02-20 2013-08-23 Gaztransp Et Technigaz Elements calorifuge pour cuve etanche et thermiquement isolee
FR3004507A1 (fr) 2013-04-11 2014-10-17 Gaztransp Et Technigaz Decouplage des ondulations d'une barriere etanche

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE619064A (fr) * 1961-06-20
CA2067083C (fr) * 1992-01-21 1998-06-23 Stephen P. Farwell Element de surpression a rupture et methode de fabrication connexe
BR9607554A (pt) * 1995-10-30 1998-07-07 Enron Lng Dev Corp Sistema baseado em navio para transporte de gás natural comprimido
FR2781036B1 (fr) * 1998-07-10 2000-09-08 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante a barriere isolante simplifiee, integree dans une structure porteuse de navire
KR200452032Y1 (ko) * 2008-09-10 2011-01-26 대우조선해양 주식회사 액화천연가스 운반선 화물창의 엔드 스트레이크 구조
CN104968584B (zh) * 2013-09-12 2018-02-13 松下知识产权经营株式会社 具有真空隔热构件的隔热容器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140716A5 (en) 1971-03-12 1973-01-19 Gaz Transport Electric welding machine with separate transformer - - for welding raised sheet edges
FR2172837A2 (en) 1972-02-24 1973-10-05 Gaz Transport Electric welding machine - for the raised edges of metal plates
FR2398961A1 (fr) 1977-07-26 1979-02-23 Gaz Transport Cuve thermiquement isolante pour le stockage terrestre d'un liquide a basse temperature, en particulier de gaz naturels liquefies
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
WO2012072906A1 (fr) 2010-12-01 2012-06-07 Gaztransport Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR2987100A1 (fr) * 2012-02-20 2013-08-23 Gaztransp Et Technigaz Elements calorifuge pour cuve etanche et thermiquement isolee
FR3004507A1 (fr) 2013-04-11 2014-10-17 Gaztransp Et Technigaz Decouplage des ondulations d'une barriere etanche

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200123157A (ko) * 2018-02-21 2020-10-28 가즈트랑스포르 에 떼끄니가즈 보강 구역을 포함하는 밀봉 멤브레인을 포함하는 유체 기밀식 용기 벽
KR102581424B1 (ko) * 2018-02-21 2023-09-20 가즈트랑스포르 에 떼끄니가즈 보강 구역을 포함하는 밀봉 멤브레인을 포함하는 유체 기밀식 용기 벽
FR3080905A1 (fr) * 2018-05-07 2019-11-08 Gaztransport Et Technigaz Paroi de cuve etanche comprenant une membrane d'etancheite
WO2019215404A1 (fr) * 2018-05-07 2019-11-14 Gaztransport Et Technigaz Paroi de cuve étanche comprenant une membrane d'étanchéité
KR20210005680A (ko) * 2018-05-07 2021-01-14 가즈트랑스포르 에 떼끄니가즈 밀봉 멤브레인을 포함하는 단단한 탱크 벽
RU2780113C2 (ru) * 2018-05-07 2022-09-19 Газтранспорт Эт Технигаз Герметичная стенка резервуара, содержащая уплотнительную мембрану
KR102657084B1 (ko) * 2018-05-07 2024-04-15 가즈트랑스포르 에 떼끄니가즈 밀봉 멤브레인을 포함하는 단단한 탱크 벽
CN112543691A (zh) * 2018-07-26 2021-03-23 气体运输技术公司 焊接罐的隔热体的密封膜
CN109881957A (zh) * 2019-04-04 2019-06-14 北京高能时代环境技术股份有限公司 一种金属板与防渗土工膜之间的密封结构
CN109881957B (zh) * 2019-04-04 2024-04-05 中国科学院高能物理研究所 一种金属板与防渗土工膜之间的密封结构
FR3135773A1 (fr) 2022-05-23 2023-11-24 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2023227551A1 (fr) 2022-05-23 2023-11-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse

Also Published As

Publication number Publication date
FR3054872A1 (fr) 2018-02-09
KR102331754B1 (ko) 2021-11-29
CN109804195B (zh) 2021-06-15
KR20190040208A (ko) 2019-04-17
CN109804195A (zh) 2019-05-24
FR3054872B1 (fr) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2018024981A1 (fr) Structure de paroi etanche
EP3232112B1 (fr) Cuve etanche a membranes d&#39;etancheite ondulees
WO2018024982A1 (fr) Structure de paroi etanche
WO2017064413A1 (fr) Cuve étanche et thermiquement isolante
EP3198186A1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
WO2019012236A1 (fr) Cuve etanche et thermiquement isolante
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
WO2012123656A1 (fr) Bloc isolant pour la fabrication d&#39;une paroi de cuve etanche
WO2019215404A1 (fr) Paroi de cuve étanche comprenant une membrane d&#39;étanchéité
FR3084347A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
WO2013124556A1 (fr) Cuve etanche et thermiquement isolante comportant une piece d&#39;angle
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3068763A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere.
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
WO2019162596A1 (fr) Paroi de cuve etanche comprenant une membrane d&#39;etancheite comportant une zone renforcee
FR3068762A1 (fr) Cuve etanche et thermiquement isolante
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
FR3084346A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d&#39;un fluide
EP3827195A1 (fr) Cuve etanche et thermiquement isolante
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2019239053A1 (fr) Cuve etanche munie d&#39;un element de jonction ondule
WO2024125850A1 (fr) Cuve étanche et thermiquement isolante comportant un élément traversant
WO2024125849A1 (fr) Cuve étanche et thermiquement isolante comportant un élément traversant

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17758596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005081

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17758596

Country of ref document: EP

Kind code of ref document: A1