WO2018021882A1 - 다방향성 리간드에 기반한 유기금속 복합체 - Google Patents

다방향성 리간드에 기반한 유기금속 복합체 Download PDF

Info

Publication number
WO2018021882A1
WO2018021882A1 PCT/KR2017/008182 KR2017008182W WO2018021882A1 WO 2018021882 A1 WO2018021882 A1 WO 2018021882A1 KR 2017008182 W KR2017008182 W KR 2017008182W WO 2018021882 A1 WO2018021882 A1 WO 2018021882A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
pentyl
compound represented
metal
organometallic
Prior art date
Application number
PCT/KR2017/008182
Other languages
English (en)
French (fr)
Inventor
이동환
김중환
권원종
배용진
Original Assignee
주식회사 엘지화학
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 서울대학교산학협력단 filed Critical 주식회사 엘지화학
Priority to US16/084,959 priority Critical patent/US10556886B2/en
Priority to EP17834823.1A priority patent/EP3406615B1/en
Priority to JP2018566181A priority patent/JP6625768B2/ja
Priority to CN201780021140.9A priority patent/CN108884109B/zh
Publication of WO2018021882A1 publication Critical patent/WO2018021882A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/48Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/70Metal complexes of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/86Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/06Potassium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • C07F13/005Compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0013Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/16Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of hydrazones

Definitions

  • the present invention relates to a multidirectional ligand for organometallic complexes and organometallic complexes based thereon.
  • Schiff base is formed through the condensation of amines with aldehydes.
  • Schiff bases are commonly found in biological systems where the amine functionality of the lysine residues of the enzyme intermediates reversibly reacts with the cofactor or substrate.
  • the enzyme cofactor PLP forms a Schiff base with lysine residues to participate in transaldimination reactions of the substrate.
  • the cofactor retinal forms a Schiff base with lysine residues of rhodopsin.
  • Schiff bases are also one of the representative ligands in coordination chemistry.
  • the nitrogen layer of the imine functional group has nucleophilic / Lewis basicity and also exhibits pi-receptor properties.
  • a representative multidentate ligand based on the Schiff base is a salen type ligand, and in particular, a chiral Schiff base has been widely used as a ligand of an asymmetric synthesis catalyst.
  • a planar multidentate ligand skeleton having a large number of nitrogen donor atoms using a Schiff base it is possible to secure an empty space at the bottom and top of the planar coordination structure, thereby accessing the substrate to the metal center. Can improve.
  • Schiff bases participating in pi-conjugation also exhibit various optoelectronic properties. Based on this, a plurality of Schiff base functional groups
  • Composite materials are used as electronic devices for organic solar cells or perovskite solar cells.
  • the present invention is to provide a multi-directional ligand compound having a wide range of expandability in structure and function for the production of organometallic composite.
  • the present invention is to provide an organometallic complex based on the multi-directional ligand compound.
  • the present invention is an organometal formed by the coordination bond of the compound represented by the formula (1) or salts thereof and metal silver Provide the complex:
  • R are each independently, -R 1; -NH-CO-R2, or -NH-R 2 ,
  • 3 ⁇ 4 are each independently —OH, Ce-60 aryl, Cwo alkyl, or an amino acid residue,
  • 3 ⁇ 4 comprises Cwo alkyl, C 6 -60 aryl, or any one of N, 0 and S
  • the compound represented by Chemical Formula 1 is a compound for preparing an organometallic composite showing porosity, electrical conductivity, and electrochromi sm.
  • 3 ⁇ 4 is each independently —OH, phenyl, naphthyl, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, tert-pentyl, neopentyl, isopentyl, sec- Pentyl, 3-pentyl, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, histidine, isoleucine, lysine, leucine methionine, asparagine, pyrrolysine, glutamine, arginine, serine, threonine, salenocysteine, valine, tryptophan, Residues of any one amino acid selected from the
  • the amino acid residue in the above means the structure except an amine group from the structure of an amino acid.
  • Amine groups condense with aldehydes to form imines.
  • propionic acid except for an amine group in the structure of alanine becomes an amino acid residue.
  • 3 ⁇ 4 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, tert-pentyl, neopentyl, isopentyl, sec-pentyl, 3-pentyl, nuclear chamber, octyl, phenyl , Naphthyl, or pyridinyl.
  • the compound represented by Chemical Formula 1 includes a carboxyl group, it may be present in the form of a salt.
  • the counter i on may be Na + , K +, or the like.
  • Representative examples of the compound represented by Chemical Formula 1 are any one of the compounds represented by the following Chemical Formulas 1-1 to 1-5:
  • the compound represented by Chemical Formula 1 has a mother-nucleus structure of biphenyl, and charge transfer is possible through pi-conjugation.
  • the compound represented by Formula 1 has a hydroxy group in each benzene ring, and the It has two imine groups at the ortho position, and through these hydroxyl groups and imine groups, coordination bonds with metals are possible.
  • the compound represented by the formula (1) in addition to the hydroxy group and the imine group, the substituent R substituted in the imine group is Ri substituent capable of additional coordination bond with the metal ion, amide bond (-NH-C0-R 2 ), It is characterized by having an amine group (-NH-R 2 ).
  • the compound represented by Formula 1 and the metal ions form a two-dimensional or three-dimensional network structure.
  • FIG. 1 A representative example of the network structure of the organometallic composite as described above is shown in FIG. 1.
  • the compound represented by Chemical Formula 1, which is an organic ligand, and a metal ion are combined to form a network structure.
  • the material having crystallinity is called MOFs metal-organic frameworks
  • a substance containing a solvent without having a polymer is called a gel.
  • the organometallic composite according to the present invention becomes easier to transfer charges, and also has an excellent electrical conductivity, compared to a polymer capable of charge transfer only by pi-conjugat ion or an i molecule capable of charge transfer in one direction. This can be improved, and long-distance charge transfer can be expected.
  • organic-based conductive polymers through the interaction between the transition metal center and the ligand pi-conjugat ion, which can transmit mult i-electrons.
  • New electrical properties that are difficult to do can also be expected.
  • the metal of the metal ion is not particularly proposed, for example Ti, V, Mn,
  • the organometallic composite may be prepared by mixing the compound represented by Formula 1 and the precursor of the metal.
  • a basic material so that the compound represented by the formula (1) is silver, for example, an amine (such as triethylamine) can be used.
  • the organometallic composite according to the present invention exhibits an optical characteristic showing strong absorption in the visible region, in addition to the characteristics of charge transfer in the network as described above, and also has a gel form.
  • the gel form can be maintained even at a high temperature (about 140 ° C), which improves the mechanical properties as the compound and the metal ions represented by the above formula (1) have a two-dimensional or three-dimensional network structure through the coordination bond Due to being.
  • these metal ions can be used as a catalyst to be used.
  • the metal silver is arranged at regular intervals inside the organometallic composite, the catalytic activity can be further improved.
  • the organometallic composite according to the present invention is porous, it can be applied to gas separation or gas adsorption.
  • the present invention provides a method for producing a compound represented by the above formula (1), such as the following semiungung 1
  • the preparation method the step of preparing a compound represented by the formula 3 1 by reacting the compound represented by the formula (1 '), the compound represented by the formula (2) and trifluoroacetic acid (step 1) ; And reacting the compound represented by Formula 3 'with the compound represented by Formula 4'.
  • Step 1 is a Duf f react ion, in which the aldehyde group is substituted at the ortho position of the hydroxyl group of the compound represented by Formula 1 '.
  • the molar ratio of the compound represented by Formula 1 and the compound represented by Formula 2 is 1:20.
  • the trifluoroacetic acid also serves as a solvent, it is preferable to use the compound represented by the formula (1) and the compound represented by the formula (2) to the extent that can be dissolved.
  • the reaction temperature of step 1 is ioo ° c to i50 ° c.
  • the reaction time of step 1 is from 1 day to 10 days.
  • a step of obtaining a product may be added. As an example, a reaction mixture is added to 1 to 5 moles of excess hydrochloric acid, and from 1 day to
  • Step 2 is a reaction in which aldehyde and hydroxyamine react to form an aldoxime, which is an reaction for forming an aldoxime in an aldehyde of the compound represented by Formula 3 '.
  • the definition of R is as defined in Formula 1 above.
  • a step of obtaining a product may be added.
  • the precipitate formed by adding excess water is filtered and washed sequentially with water and acetone to obtain a compound represented by Chemical Formula 1.
  • the obtained compound represented by Formula 1 when the obtained compound represented by Formula 1 is obtained in a gel state, it may further comprise the step of removing the solvent by treating with supercritical carbon dioxide, if necessary.
  • the compound represented by Formula 1 according to the present invention is characterized in that coordination bonds with metal ions to form an organometallic complex in both directions or in multiple directions. Accordingly, the present invention can be used in the synthesis of organometallic materials using precursors capable of synthesizing various ligands using amine-aldehyde condensation and the precursors.
  • FIG. 1 illustrates a network structure in which a compound according to an embodiment of the present invention is formed by coordinating metal ions.
  • Figure 2 shows that the organometallic composite of the present invention is prepared in the form of a gel will be.
  • FIG. 4 shows the results of SEM observation of the surface of the organometallic composite (cobalt (II) metallogel) of the present invention.
  • FIG. 5 shows the results of SEM observation of the surface of the organometallic composite (nickel (II) metallogel) of the present invention.
  • FIG. 6 shows the results of preparing the organometallic composite of the present invention with a xerogel.
  • the organometallic composite of the present invention is prepared by a zero gel (xerogel), and shows the result of observing the surface by SEM.
  • Example 1
  • HMTAChexamethylenetetramine (7.530 g 53.70 ⁇ l ol) was added to the dried isometric bottom flask. Purge the flask with argon, TFACtrifluoroacetic acid, 50 mL) was added. After completely dissolving HMTA, biphenyl-4,4'-diol (1.000 g, 5.370 ⁇ l ol) was added quickly. After confirming that the mixture became orange, it was heated to 120 ° C. for 7 days. The product was dark red in color and poured into 4N HCK100 mL) to filter the yellow precipitate. The precipitate was recrystallized with hot DMS0 to give 2.460 g (yield: 65.1%) of yellow microcrystals.
  • the compound prepared in Step 1 (0.296 g, 1.000 ⁇ l ol) and NH 2 0H-HC 1 (0.420 g, 6.0 ⁇ l ol) were added thereto.
  • Water (7 mL) was added and then heated to 80 ° C. Methanol was added dropwise until the mixture became clear.
  • the reactor was tightly sealed and then heated with locrc for 1 hour. After cooling to room temperature, water was added to induce a precipitate, which was filtered and washed with water to obtain a light yellow product (powder, 0.360 g).
  • Tetraformylbiphenol (0.500 g, 1.678 ⁇ ol) and nicotinic hydrazide (0.920 g, 6.710 ⁇ ol) prepared in Step 1 of Example 1 were added to the reaction vessel, followed by ethane. 13 mL was added. The reaction vessel was sealed and heated at 100 ° C. for 8 hours. The reaction mixture was cooled to room temperature and poured into 100 mL of water. The precipitate was filtered off and washed with acetone to give a yellow powdery product (0.8971 g, 69.1%).
  • Tetraformylbiphenol (0.500 g, 1.678 ⁇ ⁇ ) prepared in Step 1 of Example 1 and ⁇ — in a reaction vessel.
  • Octanohadrazide n-octanohydrazide, 1.062 g, 6.710 ⁇ ol
  • 13 mL of ethanol was added thereto.
  • the reaction vessel was sealed and heated at 10 CTC for 8 hours.
  • the reaction mixture was cooled to room temperature and poured into 100 mL of water.
  • the precipitate was filtered off and washed with acetone to give a yellow powdery product (0.8072 g, 56.0%).
  • Example 2 To the vial was added the compound prepared in Example 1 (50.0 mg, 0.140 ⁇ ol) and DMF 1.0 mL) was dissolved. Triethylamine (0.12 mL, 0.840 ⁇ l) was added dropwise to confirm that the solution became orange, and then the substances of Table 1 were added quickly. After stirring the mixture for 5 seconds, the mixture was heated to 100 ° C. to form a gel, in which a gel gradually formed.
  • Example 2 To the vial was added the compound prepared in Example 1 (50.0 mg, 0.140 ⁇ ol) and DMF (1.0 mL) was added to dissolve it. After complete dissolution, the materials in Table 2 were added. Thereafter, triethylamine (0.12 mL, 0.840 ⁇ l) was added dropwise, and a black gel formed immediately after the dropwise addition. The mixture was stirred for 5 seconds and then heated to 100 ° C. to homogenize the gel and increase the strength. After about an hour the gel was completed.
  • Example 2 To the vial was prepared the compound prepared in Example 1 (50.0 mg, 0.140 ⁇ ol) DMF (1.0 mL) was added to dissolve it. Triethylamine (0. 12 mL, 0.840 mmol) was added dropwise to confirm that the solution became orange, and then the materials of Table 3 were added quickly. Immediately after addition, the formation of the gel began. The mixture was stirred for 5 seconds, then heated to lCX C to homogenize the gel and increase in strength, and the gel was completed after about 1 hour.
  • each prepared organometallic composite was prepared in the form of a gel (gel).
  • Example 2 To the vial was added the compound prepared in Example 1 (50.0 mg, 0. 140 mmol) and DMF (1.0 mL) was added to dissolve it. After dissolving sodium mesoside (22.5 mg, 0.420 mmol) in 1.0 mL of ethanol, it was added dropwise to confirm that the solution became orange, and then the substances of Table 4 were quickly added. Immediately after addition, the formation of the gel began. The mixture was stirred for 5 seconds and then heated to 100 ° C. to homogenize the gel and increase the strength. After about an hour the gel was completed.
  • Experimental Example 2 Measurement of Fluorescence of Gel After applying the gel prepared in Experimental Example 1-9 to the slide glass, it was dried for 2 hours in a vacuum oven at 80 ° C. The fluorescence of the dried gel was measured, the absorption wavelength was 450 nm, and the maximum emission wavelength was 629 nm as shown in FIG. 3. Experimental Example 3: Observation of SEM Image of Gel
  • the cobalt gel prepared in Experimental Example 1-3 was dried for 12 hours in a vacuum to obtain a SEM image. Specifically, the dried gel was dispersed in a stub to which a carbon double-sided tape was attached, which was then coated with platinum and observed under a 15 kV voltage condition. The results are shown in FIG. .
  • the gel prepared in Experimental Examples 1-2 to 1-10 was treated with supercritical carbon dioxide to prepare a gel (xerogel) through a process of drying the solvent. Specifically, the gel prepared above was put in a cylinder made of stainless steel, and then installed in a supercritical carbon dioxide device. Supercritical carbon dioxide of 200 atm at 40 ° C. was flowed at a rate of 0.1 mL / min to remove the solvent to obtain a powdery product. The result of observing some of them visually is shown in FIG. Experimental Example 5: Analysis of Zero Gel

Abstract

본 발명에 따른 화학식 1로 표시되는 화합물은, 금속 이온과 배위 결합하여 양방향 또는 다방향의 유기금속 복합체를 형성할 수 있다는 특징이 있다. 따라서, 본 발명은 아민-알데하이드 축합을 이용하여 다양한 리간드를 합성할 수 있는 전구체와 그 전구체를 이용해서 유기금속재료 합성에 이용할 수 있다.

Description

【명세서】
【발명의 명칭】
다방향성 리간드에 기반한 유기금속 복합체
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 7월 29일자 한국 특허 출원 제 10-2016— 0096905호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 유기금속 복합체 제조를 위한 다방향성 리간드 및 이에 기반한 유기금속 복합체에 관한 것이다.
【배경기술】
쉬프 베이스 (Schi f f base)는 아민과 알데하이드의 축합을 통해 형성된다. 쉬프 베이스는 생체 시스템에서 흔히 발견되는데, 효소 증간체의 라이신 잔기의 아민 작용기는 보조 인자 또는 기질과 가역적으로 반웅한다. 예를 들면, 효소 보조 인자인 PLP는 라이신 잔기와 쉬프 베이스를 형성하여 기질의 트랜스알디민화 반웅에 참여한다. 이와 유사한 메커니즘을 통해, 보조인자 레티날은 로돕신의 라이신 잔기와 쉬프 베이스를 형성한다. 또한, 쉬프 베이스는 배위 화학에서 대표적 리간드 가운데 하나이다. 이민 작용기의 질소 층심은 친핵성 /루이스 염기성을 갖는 동시에, 파이- 받개 성질도 나타낸다. 쉬프 베이스에 기반한 대표적 멀티덴테이트 리간드로 살렌 (salen) 유형의 리간드가 있으며 , 특히 키랄성 쉬프 베이스는 비대칭 합성 촉매의 리간드로 많이 사용되어 왔다. 쉬프 베이스를 이용하여 다수의 질소 주개 원자를 갖는 평면 구조의 멀티덴테이트 리간드 골격을 구축할 경우, 평면 배위구조의 아랫쪽과 윗쪽에 빈 공간을 확보할 수 있고, 이를 통해 금속 중심에 대한 기질의 접근성을 향상시킬 수 있다. 파이-컨쥬게이션에 참여하는 쉬프 베이스는 다양한 광전자적 성질 또한 나타낸다. 이에 기반하여, 쉬프 베이스 작용기를 갖는 다수의 복합소재가 유기 태양전지 혹은 페로브스카이트 태양 전지의 전자 소자로 사용되고 있다. 또한, 아민-알데히드 축합반웅의 가역성을 이용하여 공유 유기 구조체 (coval ent organi c framework ; COF) 형성에도 쉬프 베이스 구조 모티프를 이용하는 연구가 최근 각광받고 있다. 상기와 같이, 쉬프 베이스가 갖는 고유한 구조적 특성, 반웅성, 광전자적 특성을 이용하기 위해, 이차원 또는 삼차원 네트워크 구조로 연결된 새로운 구조체를 만드는 연구가 활발히 진행되고 있다. 예를 들어, 최근에 보고된 문헌 (R . Banerj ee et al . J. Am. Chem. Soc. 2016, 138, 2823-2828)에 따르면, Z¾h 대칭성을 갖는 분자인 1,3,5- 트리포밀플로로글루시놀의 알데하이드를 세 방향의 아민을 갖는 구아니디늄과 축합시켜 쉬프 베이스를 포함하는 이온성 공유결합 유기 나노평면 구조체를 만든 연구가 있다. 다른 문헌 (P . Sun et al . Cryst . Growth. Des. 2015 , 15, 5360-5367)에서는 쉬프 베이스 축합 반웅을 이용해 만든 리간드를 금과 반웅시켜 메탈로젤을 만들었다. 본 발명자들은 금속 -유기 리간드 사이의 가역적 상호결합을 극대화하기 위해 쉬프 베이스에 기반한 다뱡향성 리간드를 설계하고, 2차원 양방향으로 성장하는 평면 단위구조체 사이의 초분자 상호작용을 통해 네트워크 구조를 갖는 유기금속 복합체가 형성됨을 확인하여 본 발명을 완성하였다.
【발명의 내용】
【해결하려는 과제】
본 발명은 유기금속 복합체의 제조를 위하여, 구조 및 기능면에서 폭넓은 확장성을 갖는 다방향성 리간드 화합물을 제공하기 위한 것이다. 또한, 본 발명은 상기 다방향성 리간드 화합물에 기반한 유기금속 복합체를 제공하기 위한 것이다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 염과 금속 이은의 배위 결합으로 형성된 유기금속 복합체를 제공한다:
[화학식 1]
Figure imgf000005_0001
상기 화학식 1에서,
R은 각각 독립적으로, -R1 ; -NH-CO-R2 , 또는 -NH-R2이고,
¾은 각각 독립적으로, -OH , Ce-60 아릴, Cwo 알킬, 또는 아미노산 잔기이고,
¾는 Cwo 알킬, C6-60 아릴, 또는 N , 0 및 S 중 어느 하나를 포함하는
C4-60 헤테로아릴이다. 상기 화학식 1로 표시되는 화합물은, 다공성, 전기 전도성, electrochromi sm을 나타내는 유기금속 복합체를 제조하기 위한 화합물이다. 바람직하게는, ¾은 각각 독립적으로, — 0H, 페닐, 나프틸, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 터트-부틸, 펜틸, 터트-펜틸, 네오펜틸, 이소펜틸, sec-펜틸, 3-펜틸, 또는 알라닌, 시스테인, 아스파르트산, 글루탐산, 페닐알라닌, 히스티딘, 아이소류신, 라이신, 류신 메티오닌, 아스파라긴, 피롤라이신, 글루타민, 아르기닌, 세린, 트레오닌, 샐레노시스테인, 발린, 트립토판, 타이로신으로 구성되는 군으로부터 선택되는 어느 하나의 아미노산의 잔기이다. 상기에서 아미노산 잔기란, 아미노산의 구조에서 아민기를 제외한 구조를 의미한다. 아민기는 알데하이드와 축합하여 이민을 형성한다. 예컨대, 알라닌 (al anine)의 경우, 알라닌의 구조에서 아민기를 제외한 프로판산 (propioni c acid)이 아미노산 잔기가 된다. 또한 바람직하게는, ¾는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 터트—부틸, 펜틸, 터트-펜틸, 네오펜틸, 이소펜틸, sec-펜틸, 3- 펜틸, 핵실, 옥틸, 페닐, 나프틸, 또는 피리디닐이다. 또한 상기 화학식 1로 표시되는 화합물이 카르복시기를 포함하는 경우에는 염의 형태로 존재할 수 있으며, 이때 반대 이은 (counter i on)은 Na+ , K+ 등이 될 수 있다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기 화학식 1-1 내지 1-5로 표시되는 화합물 중 어느 하나이다:
Figure imgf000006_0001
[화학식 1-2]
Figure imgf000007_0001
-3]
Figure imgf000007_0002
[화학식 1-4]
Figure imgf000008_0001
상기 화학식 1로 표시되는 화합물은 비페닐 (bi phenyl)의 모핵 구조를 가지고 있으며, 파이 -컨쥬게이션 ( π-conjugation)을 통하여 전하 이동 (charge transfer)이 가능하다. 또한, 상기 화학식 1로 표시되는 화합물은 각 벤젠 고리에 하이드록시기를 가지고 있으며, 하이드록시기의 오르쏘 (ortho) 위치에 2개의 이민기를 가지고 있으며, 이러한 하이드록시기와 이민기를 통하여 금속과 배위 결합이 가능하다. 특히, 상기 화학식 1로 표시되는 화합물은, 하이드록시기 및 이민기 외에, 이민기에 치환되어 있는 치환기 R가 금속 이온과 추가적인 배위 결합이 가능한 Ri 치환기 , 아미드 결합 (-NH-C0-R2) , 또는 아민기 (-NH-R2)를 가질 수 있다는 특징이 있다. 이에 따라 상기 하이드록시기 및 이민기를 통한 금속 이은과의 배위 결합 외에도, 추가적으로 금속 이온과 배위 결합이 가능하여, 상기 화학식 1로 표시되는 화합물과 금속 이온은 2차원 또는 3차원의 네트워크 구조가 형성된다. 상기와 같은 유기금속 복합체의 네트워크 구조의 대표적인 예를 도 1에 나타내었다. 본 발명과 같은 유기금속 복합체는, 유기 리간드인 상기 화학식 1로 표시되는 화합물과 금속 이온이 결합되어 네트워크 구조를 형성하는 것으로, 결정성을 가지는 물질을 MOFs metal-organi c frameworks)라고 하고, 결정성을 지니지 않고, 용매를 포함하는 물질을 젤 (gel )이라고 한다. 이러한 네트워크 구조에서 상기 화학식 1로 표시되는 화합물의 비페닐 (biphenyl )의 파이 -컨쥬게이션 ( π— conjugat ion) 및 배위된 금속 이온을 통하여 전하 이동이 가능할 것으로 예측할 수 있다. 또한, 상술한 바와 같이 상기 네트워크 내 전하의 이동은 일방향이 아니라 양방향, 또는 다방향으로 가능하다. 따라서, 파이 -컨쥬게이션 ( π - conjugat ion) 만으로 전하 이동이 가능한 고분자, 또는 일방향으로 전하 이동이 가능한 i분자에 비하여, 본 발명에 따른 유기금속 복합체는 전하 이동이 보다 용이해지고, 전기 전도도 또한 획기적으로 향상시킬 수 있으며, 원거리 전하 이동도 기대할 수 있다. 또한, 산화-환원의 전기적 특성올 가지면 다중전자 (mul t i-electron) 전달도 가능한 전이금속 중심과 리간드 파이 -컨쥬게이션 ( π -conjugat ion) 사이의 상호작용을 통해 유기물 기반 전도성 고분자로는 구현하기 힘든 새로운 전기적 특성 또한 기대할 수 있다. 상기 금속 이온의 금속은 특별히 제안되지 않으며, 일례로 Ti , V, Mn,
Fe , Co, Ni , Cu, Zn 을 포함하는 1주기 전이금속, Zr , Mo , Ru, R , Pd, Ag 등 2주기 전이금속, Ir , Pt , Au 등 3주기 전이금속뿐만 아니라, Tb , Eu, Yb 등 란탄족 금속도 포함한다. 또한, 상기 유기금속 복합체는, 상술한 화학식 1로 표시되는 화합물 및 상기 금속의 전구체를 흔합하여 제조할 수 있다. 이때, 상기 화학식 1로 표시되는 화합물이 이은화 될 수 있도록, 염기성 물질을 사용하는 것이 바람직하며, 예를 들어 아민 (트리에틸아민 등)을 사용할 수 있다. 본 발명에 따른 유기금속 복합체는 상술한 바와 같은 상기 네트워크 내 전하의 이동의 특징 외에도, 가시광 영역에서 강한 흡수를 보이는 광학적 특성을 나타내며, 또한 젤 형태를 띠고 있다는 특징이 있다. 특히, 고온 (약 140°C )에서도 젤 형태를 유지할 수 있으며, 이는 상술한 화학식 1로 표시되는 화합물 및 금속 이온이 배위 결합을 통하여 2차원 또는 3차원의 네트워크 구조를 가짐에 따라 기계적 특성이 향상되는 것에 기인한다. 또한, 금속 이온을 포함함으로써, 이러한 금속 이온이 사용되는 촉매로 사용할 수 있다. 특히, 금속 이은이 유기금속 복합체 내부에 일정 간격으로 배열되어 있기 때문에, 촉매 활성을 보다 향상시킬 수 있다. 또한, 금속 이온의 상태에 따라 광학 특성이 변화하는 특성이 있어, 이를 이용한 각종 센서로 웅용할 수 있다. 나아가, 본 발명에 따른 유기금속 복합체는 다공성이므로 가스 분리, 또는 가스 흡착에도 응용할 수 있다. 또한, 본 발명은 상술한 화학식 1로 표시되는 화합물의 제조 방법으로서 , 하기 반웅식 1과 같은 제조 방법을 제공한다:
[반웅식 1]
Figure imgf000011_0001
구체적으로, 상기 제조 방법은, 상기 화학식 1 '로 표시되는 화합물, 상기 화학식 2 '로 표시되는 화합물 및 트리플루오로아세트산을 반웅시켜, 상기 화학식 31로 표시되는 화합물을 제조하는 단계 (단계 1) ; 및 상기 화학식 3 '로 표시되는 화합물을 상기 화학식 4 '로 표시되는 화합물과 반웅시키는 단계를 포함한다. 상기 단계 1은, Duf f 반웅 (Duf f react ion)으로서, 상기 화학식 1 '로 표시되는 화합물의 하이드록시기의 오르쏘 (ortho) 위치에 알데하이드기를 치환시키는 반웅이다. 바람직하게는, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 몰비는 1 : 20이다. 또한, 상기 트리플루오로아세트산은 용매의 역할도 동시에 하는 것으로, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물을 모두 용해'시킬 수 있을 정도로 사용하는 것이 바람직하다. 바람직하게는, 상기 단계 1의 반옹 온도는 ioo°c 내지 i50°c이다. 또한 바람직하게는, 상기 단계 1의 반웅 시간은 1일 내지 10일이다. 상기 단계 1의 반웅 후, 생성물을 수득하는 단계가 추가될 수 있다. 일례로, 1몰 내지 5몰의 과량의 염산에 반웅 흔합물을 첨가하고, 1일 내지
3일 동안 교반하여 침전물을 얻을 수 있다. 이의 정제를 위하여, 침전물을 다이메틸설폭사이드로 재결정하여 화학식 3 '로 표시되는 화합물을 얻을 수 있다. 상기 단계 2는, 알데하이드와 하이드록시아민이 반웅하여 알도옥심을 형성하는 반웅으로서, 상기 화학식 3 '로 표시되는 화합물의 알데하이드에 알도옥심을 형성시키는 반웅이다. 상기 화학식 4 '로 표시되는 화합물에서, R의 정의는 앞서 화학식 1에서 정의한 바와 같다.
. 상기 단계 2의 반응의 용매로는 물, d-4 알코올, 또는 이들의 흔합 용매가 바람직하며, 물 /에탄올 흔합 용매, 또는 물 /메탄올 흔합 용매가 보다 바람직하다. 상기 단계 2의 반웅 후, 생성물을 수득하는 단계가 추가될 수 있다. 일례로, 상기 단계 2의 반웅 후, 과량의 물을 첨가하여 생성되는 침전물을 여과하고, 물과 아세톤으로 차례로 세척하여 화학식 1로 표시되는 화합물을 얻을 수 있다. 또한, 상기 얻어진 화학식 1로 표시되는 화합물이 젤 상태로 얻어지는 경우, 필요에 따라 초임계 이산화탄소로 처리하여 용매를 제거하는 단계를 추가로 포함할 수 있다.
【발명의 효과】
상술한 바와 같이, 본 발명에 따른 화학식 1로 표시되는 화합물은, 금속 이온과 배위 결합하여 양방향 또는 다방향의 유기금속 복합체를 형성할 수 있다는 특징이 있다. 따라서, 본 발명은 아민 -알데하이드 축합을 이용하여 다양한 리간드를 합성할 수 있는 전구체와 그 전구체를 이용해서 유기금속 재료 합성에 이용할 수 있다.
【도면의 간단한 설명】
도 1은, 본 발명의 일실시예에 따른 화합물이 금속 이온과 배위 결합으로 형성되는 네트워크 구조를 나타낸 것이다.
도 2는, 본 발명의 유기금속 복합체가 겔 형태로 제조됨을 나타낸 것이다.
도 3은, 본 발명의 유기금속 복합체 (terbium(III) metallogel)의 형광성을 측정한 결과를 나타낸 것이다 (고체 형광, 흡수 파장 = 450 nm, 최대 방출 파장 = 629 ran, 기준선 보정됨).
도 4는, 본 발명의 유기금속 복합체 (cobalt(II) metallogel)의 표면을 SEM으로 관찰한 결과를 나타낸 것이다.
도 5는, 본 발명의 유기금속 복합체 (nickel(II) metallogel)의 표면을 SEM으로 관찰한 결과를 나타낸 것이다.
도 6은, 본 발명의 유기금속 복합체를 제로젤 (xerogel)로 제조한 결과를 나타낸 것이다.
도 7 내지 14는, 본 발명의 유기금속 복합체를 제로젤 (xerogel)로 제조하여, SEM으로 표면을 관찰한 결과를 나타낸 것이다.
도 15 내지 도 23은, 본 발명의 유기금속 복합체를 제로젤 (xerogel)로 제조하여 , 에너지 분산 X선 분광분석 (EDS)으로 시료 내 각 원소의 함량과 그 분포를 관찰한 결과를 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 실시예 1
(단계 1)
건조된 등근 바닥 플라스크에 HMTAChexamethylenetetramine, 7.530 g 53.70 睡 ol)을 넣었다. 상기 플라스크를 아르곤으로 퍼징하고, TFACtrifluoroacetic acid, 50 mL)를 넣었다. HMTA를 완전히 용해시킨 후, 비페닐 -4,4'-디올 (1.000 g, 5.370 睡 ol)을 빠르게 넣었다. 상기 흔합물이 오렌지색이 된 것을 확인한 후, 120°C로 7일 동안 가열하였다. 생성물은 검붉은색이었으며, 이를 4N HCK100 mL)에 부어 노란색 침전물을 여과하였다. 침전물을 뜨거운 DMS0로 재결정하여 노란색의 미세결정 2.460 g (수율: 65.1%)을 얻었다.
(단계 2)
반웅기에 상기 단계 1에서 제조한 화합물 (0.296 g, 1.000 圆 ol) 및 NH20H-HC 1(0.420 g, 6.0 隱 ol)을 넣었다. 물 (7 mL)을 첨가한 후, 80°C로 가열하였다. 상기 흔합물이 투명해질 때까지 메탄올을 적가하였다. 반웅기를 단단히 밀봉한 후 locrc로 1시간 동안 가열하였다. 상온으로 넁각한 후 물을 첨가하여 침전물을 유도하고, 이를 여과 및 물로 세척하여 밝은 노란색의 생성물 (powder, 0.360 g)을 얻었다.
¾ NMR (300 MHz, DMS0-d) δ 11,60 (s, 4H), 10.88 (s, 2H) , 8.45
(s, 4H), 7.83 (s, 4H)
Figure imgf000014_0001
반웅 용기에 수산화칼륨 (6.80 醒 ol, 0.38 g)과 10 mL의 에탄을을 넣고 교반하였다. 교반 중인 흔합물에 글라이신 (glycine) (6.80 mmol, 0.510 g)을 넣은 후, 고체 시료가 모두 녹을 때까지 교반하였다. 상기 실시예 1의 단계 1에서 제조한 테트라포밀비페놀 (tetraformylbiphenol,- 1.70 誦 ol , 0.500 g)을 10 mL의 에탄을에 분산시킨 흔합물을 별도로 준비한 후, 교반중인 반응용기에 느리게 첨가하였다. 첨가 과정 동안 흔합물은 붉은 색으로 변하였다. 첨가 과정이 끝난 흔합물을 8시간 동안 추가로 교반하였다. 반웅이 끝난 흔합물을 20 mL의 물에 부은 후, 녹지 않은 고체물질은 여과하여 제거하였다. 낮은 압력으로 물을 제거한 후 남은 물질을 다이메틸포름아마이드 (dimethyl formamide) 용매에 분산시키고 걸러서 주황색 가루 형태의 결과물을 얻었다 (0.4654 g, 74.6%) .
¾ NMR (300 MHz , D20) δ 3.31 (s , 8H), 7.91 (s , 4H)
Figure imgf000015_0001
상기 실시예 1의 단계 1에서 제조한 테트라포밀비페놀 (tetrafomylbiphenol, 0.500 g , 1.678 醒 ol )을 넣은 반웅 용기에 에탄올 13 mL을 추가하였다. 흔합물을 교반하면서, 페닐 하이드라진 (phenyl hydrazine , 0.726 g, 6.710 讓 ol )을 주사기로 첨가하였다. 반웅 용기를 밀폐하고 10CTC에서 8시간 동안 가열하였다. 반웅 흔합물을 상온으로 식힌 후, 100 mL의 물에 부었다. 침전물을 거르고, 아세톤으로 씻어서 노란색의 가루 형태의 결과물을 얻었다 (0.7797 g, 70.6%) .
LC-MS : cal cul ated for C40H34N802 [M]+ 658.28 , found 659.4 실시예 4
Figure imgf000016_0001
반웅 용기에 상기 실시예 1의 단계 1에서 제조한 테트라포밀비페놀 (tetraformylbiphenol , 0.500 g, 1.678 誦 ol)과 니코티닉 하이드라자이드 (nicotinic hydrazide, 0.920 g, 6.710 隱 ol)를 넣은 후, 에탄을 13 mL를 첨가했다. 반웅 용기를 밀폐하고 100°C에서 8시간 동안 가열하였다. 반웅 흔합물을 상온으로 식힌 후 100 mL의 물에 부었다. 침전물을 거르고, 아세톤으로 씻어서 노란색의 가루 형태의 결과물을 얻었다 0.8971 g, 69.1%).
MALDI-TOF: calculated for C40H30N1206 [M]+ 774.24, found 775.5
Figure imgf000016_0002
반웅 용기에 상기 실시예 1의 단계 1에서 제조한 테트라포밀비페놀 (tetraformylbiphenol, 0.500 g, 1.678 讓 ΰΐ)과 η— 옥타노하아드라자이드 (n-octanohydrazide, 1.062 g, 6.710 匪 ol)을 넣은 후, 에탄올 13 mL를 첨가하였다. 반웅 용기를 밀폐하고 10CTC에서 8시간 동안 가열하였다. 반웅 흔합물을 상온으로 식힌 후, 100 mL의 물에 부었다. 침전물을 거르고, 아세톤으로 씻어서 노란색의 가루 형태의 결과물을 얻었다 (0.8072 g, 56.0%).
LC-MS : calculated for C48H74N806 [M] + 858.57, found 859.7 실험예 1: 젤 (gel)의 제조
1) 실험예 1-1
바이알에 상기 실시예 1에서 제조한 화합물 (50.0 mg, 0.140 隱 ol)을 넣고 DMF 1.0 mL)를 넣어 이를 용해시켰다. 트리에틸아민 (0.12 mL, 0.840 匪 ol)을 적가하여 용액이 오렌지색이 된 것을 확인한 후, 하기 표 1의 물질을 빠르게 첨가하였다. 5초 동안 상기 흔합물을 교반한 후, 젤의 형성을 위해 100°C로 가열하였으며, 이 과정에서 점진적으로 젤이 형성되었다.
【표 1】
실험예 1-1 Mn(0Ac)2 · 4H20 (90.0 mg, 0.240 mmol) dissolved in DMF (3.0 mL).
2) 실험예 1-2
바이알에 상기 실시예 1에서 제조한 화합물 (50.0 mg, 0.140誦 ol)을 넣고 DMF(1.0 mL)를 넣어 이를 용해시켰다. 완전히 용해된 후, 하기 표 2의 물질을 첨가하였다. 이후, 빠르게 트리에틸아민 (0.12 mL, 0.840 匪 ol)을 적가하였고, 적가 직후 검은색의 젤이 형성되었다. 5초 동안 상기 흔합물을 교반한 후, 젤의 균질화와 강도 증가를 위해 100°C로 가열하였다. 약 1시간 후에 젤이 완성되었다.
【표 2】
실험예 1-2 FeCl2 (90.0 mg, 0.240 mmol) dissolved in DMF (3.0 mL)
3) 실험예 1-3내지 1-6
바이알에 상기 실시예 1에서 제조한 화합물 (50.0 mg, 0.140 隱 ol)을 넣고 DMF( 1.0 mL)를 넣어 이를 용해시켰다. 트리에틸아민 (0. 12 mL , 0.840 mmol )을 적가하여 용액이 오렌지색이 된 것을 확인한 후, 하기 표 3의 물질을 빠르게 첨가하였다. 첨가 직후, 젤의 형성이 시작되었다. 5초 동안 상기 흔합물을 교반한 후, 젤의 균질화와 강도 증가를 위해 lCX C로 가열하였으며, 약 1시간 후에 젤이 완성되었다.
【표 3】
Figure imgf000018_0001
한편, 상기 실험예 1-1, 1-3, 1—4, 및 1-6에서 각각 제조된 젤을 도 2에 나타내었다. 도 2에 나타난 바와 같이, 각 제조된 유기금속 복합체는 젤 (gel ) 형태로 제조되었다.
4) 실험예 1-7 내지 1-10
바이알에 상기 실시예 1에서 제조한 화합물 (50.0 mg, 0. 140 mmol )을 넣고 DMF( 1.0 mL)를 넣어 이를 용해시켰다. 소듐 메특사이드 (22.5 mg, 0.420 mmol )를 1.0 mL의 에탄올에 녹인 용액을 적가하여 용액이 오렌지색이 된 것을 확인한 후, 하기 표 4의 물질을 빠르게 첨가하였다. 첨가 직후, 젤의 형성이 시작되었다. 5초 동안 상기 흔합물을 교반한 후, 젤의 균질화와 강도 증가를 위해 100°C로 가열하였다. 약 1시간 후에 젤이 완성되었다.
【표 4】
Figure imgf000018_0002
실험예 2 : 젤의 형광성 측정 상기 실험예 1-9에서 제조한 젤을 슬라이드 글라스에 바른 후, 80°C의 진공 오븐에서 2시간 동안 건조하였다. 이렇게 건조된 젤의 형광성을 측정하였으며, 흡수 파장은 450 nm이었고, 도 3에 나타난 바와 같이 최대 방출 파장은 629 nm 이었다. 실험예 3: 젤의 SEM 이미지 관찰
1) 실험예 3-1
상기 실험예 1-3에서 제조한 코발트 젤을 진공에서 12시간 건조한 결과물을 이용하여, SEM 이미지를 얻었다. 구체적으로, 건조된 젤을 카본 양면 테이프를 붙인 스터브 (stub)에 분산시켜서, 백금 코팅을 하였고, 15 kV 전압 조건에서 관찰하였다. 그 결과를 도 4에 나타내었다. .
2) 실험예 3-2
상기 실험예 1-4에서 제조한 니켈 젤을 진공에서 12시간 건조한 결과물을 이용하여, SEM 이미지를 얻었다. 구체적으로, 건조된 젤을 카본 양면 테이프를 붙인 스터브 (stub)에 분산시켜서, 백금 코팅을 하였고, 5-15 kV 전압 조건에서 관찰하였다. 그 결과를 도 5에 나타내었다. 실험예 4: 제로젤 (xerogel )의 제조
상기 실험예 1-2 내지 1-10에서 제조한 젤을 초임계 이산화탄소로 처리하여 용매를 건조시키는 과정을 통해 제로젤 (xerogel )을 만들었다. 구체적으로, 스테인레스강으로 만든 실린더에 위에서 제조한 젤을 넣은 후, 초임계 이산화탄소 기기에 설치했다. 40 °C 은도에서 200 기압의 초임계 이산화탄소를 0. 1 mL/분 속도로 흐르게 하여 용매를 제거하여 가루 형태의 결과물을 얻었다. 그 중 일부를 육안으로 관찰한 결과를 도 6에 나타내었다. 실험예 5: 제로젤의 분석
상기 실험예 4에서 제조된 제로젤을 이용하여, SEM 이미지를 얻었다. 구체적으로, 제로젤을 카본 양면 테이프를 붙인 스터브 (Stub)에 분산시키고, 백금 코팅을 하였고, 5-15 kV 전압 조건에서 관찰하여 그 결과를 도 7 내지 15에 나타내었다. 동시에, 제로젤 표면의 원소 분포를 확인하기 위해 EDS (energy di spers ive X-ray spectroscopy; 에너지 분산 X선 분광분석)를 측정하였고, 그 결과를 도 16 내지 도 23에 나타내었다. 각 도면의 내용은 하기 표 5와 같다.
【표 5】
Figure imgf000020_0001

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 화합물 또는 이의 염과 금속 이온의 배위 결합으로 형성된 유기금속 복합체:
[화학식 1]
Figure imgf000021_0001
상기 화학식 1에서,
R은 각각 독립적으로, -¾, -NH-C0-R2 , 또는 -ΝΗ- 이고,
¾은 각각 독립적으로, -OH , C6-60 아릴, d-!Q 알킬, 또 아미노산 잔기이고,
R2는 알킬, C6-60 아릴, 또는 N , 0 및 S 중 어느 하나 포함하는 C4-60 헤테로아릴이다.
【청구항 2】
제 1항에 있어서,
¾은 각각 독립적으로, -0H, 페닐, 나프틸, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 터트-부틸, 펜틸, 터트-펜틸, 네오펜틸, 이소펜틸, sec-펜틸, 3-펜틸, 또는 알라닌, 시스테인, 아스파르트산, 글루탐산, 페닐알라닌, 히스티딘, 아이소류신, 라이신, 류신, 메티오닌, 아스파라긴, 피롤라이신, 글루타민, 아르기닌, 세린, 트레오닌, 셀레노시스테인, 발린, 트립토판, 타이로신으로 구성되는 군으로부터 선택되는 어느 하나의 아미노산의 잔기인 것을 특징으로 하는,
유기금속 복합체 .
【청구항 3】
제 1항에 있어서,
R2는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 터트-부틸, 펜틸, 터트-펜틸, 네오펜틸, 이소펜틸, sec-펜틸, 3-펜틸, 핵실, 옥틸, 페닐, 나프틸, 또는 피리디닐인 것을 특징으로 하는,
유기금속 복합체 .
【청구항 4]
제 1항에 있어서,
상기 화학식 1로 표시되는 화합물은, 하기 화학식 1—1 내지 1-5로 표시되는 화합물인 것을 특징으로 하는,
유기금속 복합체 :
Figure imgf000022_0001
[화학식 1-2] 0、 ,0
4K
O 、ᄋ -3]
Figure imgf000023_0001
[화학식 1-4]
Figure imgf000024_0001
Figure imgf000024_0002
【청구항 5]
제 1항에 있어서,
상기 금속 이온의 금속은, 1주기 전이금속, 2주기 전이 L속, 3주기 전이금속, 또는 란탄족 금속인 것을 특징으로 하는, 유기금속 복합체 .
【청구항 6]
제 1항에 있어서,
상기 금속 이온의 금속은, Ti, V, Mn, Fe, Co, Ni , Cu, Zn, Zr, Mo, Ru, Rh, Pd, Ag, Ir, Pt, Au, Tb, Eu, 또는 Yb인 것을 특징으로 하는,
유기금속 복합체 .
PCT/KR2017/008182 2016-07-29 2017-07-28 다방향성 리간드에 기반한 유기금속 복합체 WO2018021882A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/084,959 US10556886B2 (en) 2016-07-29 2017-07-28 Metal-organic hybrid structures built with multi-directional polydentate ligands
EP17834823.1A EP3406615B1 (en) 2016-07-29 2017-07-28 Multi-directional ligand-based organometallic complex
JP2018566181A JP6625768B2 (ja) 2016-07-29 2017-07-28 多方向性リガンドに基づく有機金属複合体
CN201780021140.9A CN108884109B (zh) 2016-07-29 2017-07-28 用多向多齿配体构建的金属-有机杂化结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0096905 2016-07-29
KR20160096905 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021882A1 true WO2018021882A1 (ko) 2018-02-01

Family

ID=61016525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008182 WO2018021882A1 (ko) 2016-07-29 2017-07-28 다방향성 리간드에 기반한 유기금속 복합체

Country Status (6)

Country Link
US (1) US10556886B2 (ko)
EP (1) EP3406615B1 (ko)
JP (1) JP6625768B2 (ko)
KR (1) KR101974184B1 (ko)
CN (1) CN108884109B (ko)
WO (1) WO2018021882A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465962B2 (en) * 2018-01-26 2022-10-11 Lg Chem, Ltd. Composition for detecting acidic compound
CN116041726A (zh) * 2023-03-07 2023-05-02 中国科学院宁波材料技术与工程研究所 一种锆基金属有机框架纳米材料及其制备方法与应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841667B1 (ko) 2016-07-29 2018-03-23 주식회사 엘지화학 유기금속 복합체용 다방향성 리간드
AU2020253315A1 (en) 2019-04-01 2021-09-16 Exxonmobil Research And Engineering Company Metal-organic framework materials comprising a diimine scaffold and methods for production thereof
CN110157008A (zh) * 2019-06-25 2019-08-23 哈尔滨理工大学 一种亚胺键联接的双孔共价有机骨架材料及其制备与应用
CN110229347B (zh) * 2019-06-25 2021-10-01 哈尔滨理工大学 一种金属螯合的双孔共价有机骨架材料及其制备与应用
CN112174883B (zh) * 2020-10-29 2022-05-03 西北师范大学 一种能单一选择性识别l-精氨酸的荧光传感器的合成及应用
CN112209849B (zh) * 2020-10-29 2023-03-24 西北师范大学 一种能单一选择性识别甲苯的荧光传感器的合成及应用
CN113304261B (zh) * 2021-05-28 2022-07-22 江南大学 一种电荷反转型智能光线诊疗平台的构建及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070104371A (ko) * 2004-12-30 2007-10-25 이 아이 듀폰 디 네모아 앤드 캄파니 유기금속 착체
US20110186835A1 (en) * 2004-08-18 2011-08-04 E.I. Du Pont De Nemours And Company Electronic devices made with metal schiff base complexes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645932B2 (ko) 1972-12-23 1981-10-29
JPS5496676A (en) 1978-01-13 1979-07-31 Saiichi Okamoto Vibration control
US4322563A (en) 1980-04-14 1982-03-30 Merck & Co., Inc. Substituted biphenyl-2-carboxaldehydes
GB9108221D0 (en) 1991-04-18 1991-06-05 Ici Plc Compound preparation and use
FR2816946B1 (fr) 2000-11-17 2004-04-02 Ppg Sipsy Diphosphines chirales dissymetriques, leurs utilisations pour la preparation de complexes diphosphino-metalliques, et les complexes diphosphino-metalliques ainsi obtenus
US20070185343A1 (en) 2004-02-26 2007-08-09 Universiteit Gent Metal complexes for use in olefin metathesis and atom group transfer reactions
ATE512945T1 (de) 2004-02-26 2011-07-15 Telene Sas Metallkomplexe und deren verwendung in der olefinmetathese und atom- oder gruppenübertragungsreaktionen
KR20060082676A (ko) 2005-01-13 2006-07-19 현대자동차주식회사 금속-유기 하이브리드계 결정성 나노다공체 및 이의제조방법과 수소저장체로의 응용
DE102005056564B4 (de) 2005-11-25 2009-11-12 Gkss-Forschungszentrum Geesthacht Gmbh Polymerelektrolytmembran mit Koordinationspolymer, Verfahren zu seiner Herstellung sowie Verwendung in einer Brennstoffzelle
CN101679459B (zh) 2007-06-12 2015-04-01 Lg化学株式会社 有机金属配合物衍生物及使用该有机金属配合物衍生物的有机发光器件
EP2325160B1 (en) 2008-08-19 2013-10-16 Kuraray Co., Ltd. Metal complex and manufacturing method therefor
CN101391970A (zh) 2008-11-06 2009-03-25 上海交通大学 轴手性含双席夫碱配体
CN101392006A (zh) 2008-11-06 2009-03-25 上海交通大学 轴手性含双席夫碱双膦配体
CN102503966B (zh) 2011-10-25 2015-04-01 中国科学院上海有机化学研究所 基于席夫碱配体的稀土金属配合物、制备方法和用途
CN103102480B (zh) 2013-01-24 2016-03-02 大连理工大学 用于合成立构规整性聚碳酸酯的双金属催化剂
CN103396457B (zh) 2013-08-12 2016-03-23 中国科学院长春应用化学研究所 一种席夫碱钴化合物、其制备方法及聚碳酸酯的制备方法
JP6336870B2 (ja) 2013-09-30 2018-06-06 日本ポリプロ株式会社 ビフェノール化合物及びそれを用いるオレフィン重合用触媒並びにオレフィン重合体の製造方法
CN104557988B (zh) 2015-01-28 2016-04-13 山东理工大学 氮杂环希夫碱银配合物及其制备方法和应用
KR101841667B1 (ko) 2016-07-29 2018-03-23 주식회사 엘지화학 유기금속 복합체용 다방향성 리간드

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110186835A1 (en) * 2004-08-18 2011-08-04 E.I. Du Pont De Nemours And Company Electronic devices made with metal schiff base complexes
KR20070104371A (ko) * 2004-12-30 2007-10-25 이 아이 듀폰 디 네모아 앤드 캄파니 유기금속 착체

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASATO, E. ET AL.: "First 'Back-to-back' Shaped Compartmental Ligand; Structural Characterization of a Tetranuclear Zinc (II) Complex in a Highly Flattened Form", CHEMISTRY LETTERS, vol. 29, no. 6, 2000, pages 678 - 679, XP055525527 *
CHE, C.-M. ET AL.: "Metal Complexes of Chiral Binaphthyl Schiff-base Ligands and Their Application in Stereoselective Organic Transformations", COORDINATION CHEMISTRY REVIEWS, vol. 242, no. 1-2, July 2003 (2003-07-01), pages 97 - 113, XP009175646 *
JOHANSSON, F. B. ET AL.: "Functional Tetrametallic Linker Modules for Coordination Polymers and Metal-Organic Frameworks", INORGANIC CHEMISTRY, vol. 46, no. 6, March 2007 (2007-03-01), pages 2224 - 2236, XP055457459 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465962B2 (en) * 2018-01-26 2022-10-11 Lg Chem, Ltd. Composition for detecting acidic compound
CN116041726A (zh) * 2023-03-07 2023-05-02 中国科学院宁波材料技术与工程研究所 一种锆基金属有机框架纳米材料及其制备方法与应用
CN116041726B (zh) * 2023-03-07 2024-04-12 中国科学院宁波材料技术与工程研究所 一种锆基金属有机框架纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
US10556886B2 (en) 2020-02-11
CN108884109B (zh) 2021-06-22
JP6625768B2 (ja) 2019-12-25
CN108884109A (zh) 2018-11-23
KR20180013805A (ko) 2018-02-07
EP3406615A4 (en) 2019-04-03
KR101974184B1 (ko) 2019-04-30
EP3406615A1 (en) 2018-11-28
JP2019508500A (ja) 2019-03-28
US20190077788A1 (en) 2019-03-14
EP3406615B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6625768B2 (ja) 多方向性リガンドに基づく有機金属複合体
JP6675771B2 (ja) 有機金属複合体用多方向性リガンド
Cinčić et al. Schiff base derived from 2-hydroxy-1-naphthaldehyde and liquid-assisted mechanochemical synthesis of its isostructural Cu (II) and Co (II) complexes
Chen et al. Nanoporous lanthanide-carboxylate frameworks based on 5-nitroisophthalic acid
Clegg et al. Cobalt (II) complexes of 6-methyl-2-oxypyridine (mhp): crystal structure of Co12 (OH) 6 (O2CCH3) 6 (mhp) 12
EP3591393B1 (en) Use of a composition for detecting acidic compound
Ming et al. Tandem structural transformations from 4-fold to 5-fold interpenetrated Cd (II) metal-organic frameworks
Opozda et al. Synthesis and Characterization of some Unsymmetrical Schiff Base Ligands and their Nickel (II) Complexes Incorporating o‐Phenylenediimine Units
US20170092879A1 (en) Phototunable metal-organic framework compositions, and methods of synthesis thereof
Koksharova et al. Syntheses and Characterization of Coordination Compounds of 3 d-Metal 5-Sulfosalicylates with Phenylacethydrazide: Crystal Structure of [Ni (L) 3] HSSal· 3H 2 O (L is Phenylacethydrazide, and HSSal 2–is 5-Sulfosalicylic Acid Anion)
CN104525265B (zh) 2,4-二羟基-5-氯代苯甲醛缩氨基酸铜配合物催化剂、制备方法及应用
Harding et al. Synthesis and electrochemical studies of octahedral nickel β-diketonate complexes
Koike et al. Two new coordination polymers, a trinuclear metal complex and their interconversion depending on the solvent
Zerguini et al. Synthesis, crystal structure and Chan-Evans-Lam CN cross coupling catalysis of monohydrated tetrapyrazole copper (II) sulfate
Panyarat et al. A series of new microporous lanthanide frameworks [Ln (C8H3NO6)(L) 0.5 (H2O)]· 3H2O (Ln= Pr, Nd, Sm and Gd, and L= C8H4O4 or C8H4O4/C8H3NO6): Syntheses, characterization and photoluminescence properties
Song et al. Hetero-binuclear complexes containing a Ru 0→ M n+ bond bridged by P, N-phosphine ligands: convenient synthesis of tridentate organometallic trans-Ru (CO) 3 (L) 2 (L= phosphine bearing an N-donor substituent) ligands
Pal et al. Two simple precursor 2, 2′-bisoxazoline complexes of ruthenium
Gavrikov et al. Preparation and properties of uncommon Cd‐Mn carboxylate complexes—per se and as precursors for CdMn2O4‐based ceramics
KR102570721B1 (ko) 신규한 다성분계 유기금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 제조하는 방법
JP4016097B2 (ja) 二重らせん型複核錯体およびその製造法
Arockiasamy et al. Schiff Base based nickel complexes as precursors for chemical vapour deposition (CVD) Process: Designing, synthesis, characterization and thermo gravimetric (TG/DTA) evaluation
Mejonang et al. A Nanochanneled Silver-Deficient Oxalatocobaltate (Iii) Complex Anion with Hydronium as Counter Cation: Synthesis, Crystal Structure, Thermal Analysis and Magnetism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017834823

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018566181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017834823

Country of ref document: EP

Effective date: 20180823

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE