WO2018021577A1 - 電気化学デバイス用電解質、電解液ならびに電気化学デバイス - Google Patents

電気化学デバイス用電解質、電解液ならびに電気化学デバイス Download PDF

Info

Publication number
WO2018021577A1
WO2018021577A1 PCT/JP2017/027584 JP2017027584W WO2018021577A1 WO 2018021577 A1 WO2018021577 A1 WO 2018021577A1 JP 2017027584 W JP2017027584 W JP 2017027584W WO 2018021577 A1 WO2018021577 A1 WO 2018021577A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
formula
group
compound
unit represented
Prior art date
Application number
PCT/JP2017/027584
Other languages
English (en)
French (fr)
Inventor
中川 泰治
祥久 徳丸
章二 引田
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to CN201780039465.XA priority Critical patent/CN109478472B/zh
Priority to JP2018530445A priority patent/JP6921825B2/ja
Priority to US16/320,208 priority patent/US11114695B2/en
Publication of WO2018021577A1 publication Critical patent/WO2018021577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention suppresses generation of OH - ions, that is, alkalinization even during electrochemical alteration, and does not become a strong alkaline solution having a pH of 10 or more. As a result, it is used as a sealing material for electrochemical devices.
  • the present invention relates to an electrolytic solution that reduces deterioration and corrosion of a resin, rubber, or metal, and improves the reliability of an electrochemical device, an electrolyte used in the electrolytic solution, and an electrochemical device using the electrolytic solution.
  • Electrodes have dramatically larger storage capacity than conventional capacitors (or capacitors) such as electrolytic capacitors, and are beginning to be used in fields that have not been used before, such as power assist applications. Particularly in recent years, it has been used for regenerative energy applications in automobiles and has begun to contribute to an energy-saving society.
  • electrochemical devices such as electrolytic capacitors and electric double layer capacitors, quaternary ammonium salts and the like are used as the electrolyte of the electrolytic solution.
  • electrochemical devices such as these electric double layer capacitors, etc.
  • a voltage is applied, a very small amount of water in the electrolytic solution is reduced together with oxygen, and OH - ions (hydroxide ions) are generated in the vicinity of the negative electrode, so that the electrolytic solution gradually shows strong alkalinity.
  • This OH ⁇ ion corrodes the resin, rubber, metal or the like in the sealing portion of the negative electrode and causes leakage of the electrolytic solution, resulting in a problem of reducing the reliability of the electrochemical device.
  • the generated hydroxide ions are considered to form a salt corresponding to the electrolyte to be used.
  • N-ethyl-N-methylpyrrolidine salt for example, tetrafluoroborate salt
  • the formation of a salt represented by the following formula is assumed.
  • Patent Documents 1 and 2 A method of effectively reducing OH ⁇ ions generated by use (Patent Documents 1 and 2), a method of adding a substance having an alkalinization-inhibiting effect (Patent Documents 3 and 4), and tetramethylammonium tetrafluoroborate A method of adding a small amount of (Patent Document 5) is disclosed.
  • Patent Documents 1 and 2 by using an electrolyte that uses a quaternary salt having an amidine group as an electrolyte, it is compared with an electrolyte using a quaternary ammonium salt that has been used as an electrolyte in the past. It is disclosed that abnormalities such as liquid leakage due to deterioration of the sealing rubber during constant current electrolysis are not observed, and OH ⁇ ions are effectively reduced.
  • electrolytes using these quaternary salts with amidine groups generally have a lower withstand voltage than quaternary ammonium salts, and there are restrictions on the voltage that can be used. There is a problem that it is difficult to apply to an electrochemical device that needs to be made.
  • Patent Document 5 is a method in which a small amount of tetramethylammonium tetrafluoroborate, which is the same quaternary ammonium salt (electrolyte), is added in addition to the electrolyte mainly composed of quaternary ammonium. Resisting suppresses electrolysis and, as a result, secondarily suppresses alkalinization (decreases the alkalinization rate), and is not effective in suppressing alkalinization.
  • the object of the present invention is to suppress an increase in OH ⁇ ion concentration even during electrochemical alteration, to reduce deterioration and corrosion of resin, rubber or metal, and to improve the reliability of electrochemical devices. It is to provide an electrolytic solution that can be used and an electrolyte used for the electrolytic solution, and to provide an electrochemical device using the electrolytic solution.
  • an electrolyte for example, a quaternary ammonium salt
  • an electrolytic solution containing the electrolyte applies a voltage to an electrolytic solution containing the electrolyte.
  • the electrolyte does not become highly alkaline, that is, are electrolytes that have a high alkalinity-inhibiting effect, and have intensively studied to complete the present invention.
  • composition (electrolyte composition) of the present invention includes a compound having a cation unit represented by the following formula (1) and an electrolyte.
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or an alkoxyalkyl group, and R 1 and R 2 and R 3 and R 4 together form a ring.
  • R 1 may have the following formula (X)
  • R 5 represents an alkylene group
  • R 2 , R 3 and R 4 are the same as above
  • the cationic group represented by these may be sufficient.
  • R 1 and R 2 may each be a C 1-6 alkyl group or a C 1-4 alkoxy C 1-6 alkyl group, and R 3 and R 4 are combined together. A ring may be formed.
  • the cation unit represented by the formula (1) may typically be a cation unit represented by the following formula (1A).
  • n represents an integer of 1 or 2, and R 1 and R 2 are the same as above.
  • R 1 may be a cation unit that is a methyl group, R 1 is a methyl group, and R 2 is an ethyl group.
  • a certain cation unit may be sufficient.
  • the electrolyte may be, for example, a compound having a quaternary ammonium cation unit (or a quaternary ammonium salt), and is typically represented by the following formula (2).
  • a compound having a cation unit may also be used.
  • n an integer of 1 or 2, and R 1 and R 2 are the same as above.
  • Particularly cationic unit represented by the formula (2) may be a cationic units R 1 is a methyl group, R 1 is a methyl group, R 2 may be a cationic unit is ethyl.
  • the compound having a cation unit represented by the formula (1) includes a compound having a cation unit represented by the formula (1A), and the electrolyte is represented by the formula (2).
  • a compound having a cation unit may be contained.
  • the compound having a cation unit represented by the above formula (1) and the anion constituting the electrolyte are not limited, and in particular, a fluorine-containing anion [or a fluorine-containing anion such as a tetrafluoroborate ion (BF 4 ⁇ )]. It may be.
  • the ratio of the compound having the cation unit represented by the formula (1) is, for example, about 1 ⁇ 10 ⁇ 7 to 0.1 parts by weight with respect to 1 part by weight of the electrolyte. Also good.
  • the present invention includes an electrolytic solution containing the electrolyte composition.
  • an electrolytic solution may typically be an electrolytic solution containing the electrolyte composition and an organic solvent.
  • the organic solvent may be at least one selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, acetonitrile, and sulfolane. Good.
  • the present invention includes an electrochemical device using the electrolyte solution (or provided with the electrolyte solution).
  • an electrochemical device may be, for example, an electric double layer capacitor, a lithium ion capacitor, a lithium ion battery, or the like.
  • the compound having a cation unit represented by the formula (1) can suppress an increase in pH value in an electrolyte solution (or a combination with an electrolyte), as will be described in detail later. Therefore, the present invention is an agent for suppressing a pH increase in an electrolyte solution (or a combination with an electrolyte), and is a pH increase inhibitor composed of a compound having a cation unit represented by the formula (1). Includes agents.
  • the present invention also relates to a method for suppressing an increase in pH in an electrolytic solution (or a combination with an electrolyte), which is a compound having a cation unit represented by the above formula (1) (or represented by the above formula (1). And a method of adding (mixing or adding) a pH increase inhibitor composed of a compound having a cationic unit to the electrolyte solution.
  • the present invention also includes a compound having a cation unit represented by the formula (1).
  • a compound having a cation unit represented by the formula (1) may exclude the compound in which R 1 , R 2 and R 3 are isopropyl groups and R 4 is an ethyl group in the formula (1).
  • the electrolyte and electrolytic solution of the present invention can suppress an increase in OH ⁇ ion concentration and suppress high alkalinity even during electrochemical alteration of the electrolytic solution, such as application of voltage. Metal degradation and corrosion can be reduced, and the reliability of electrochemical devices can be improved. As a result, the electrochemical device using the electrolytic solution of the present invention can improve reliability.
  • FIG. 1 is a front view of a laminated electric double layer capacitor.
  • FIG. 2 is an internal configuration diagram of the laminated electric double layer capacitor.
  • FIG. 3 is a graph showing the change over time of the pH value in the negative electrode (cathode) of constant current electrolysis of Example 7 and Comparative Examples 1 to 4.
  • the electrolyte composition of the present invention includes a compound having a specific cation unit and an electrolyte.
  • the compound having a cation unit has a cation unit represented by the following formula (1).
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or an alkoxyalkyl group, and R 1 and R 2 and R 3 and R 4 together form a ring.
  • R 1 may have the following formula (X)
  • R 5 represents an alkylene group
  • R 2 , R 3 and R 4 are the same as above
  • the cationic group represented by these may be sufficient.
  • examples of the alkyl group in R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • a C 1-20 alkyl group such as an isobutyl group, a tert-butyl group, a sec-butyl group (eg, a C 1-10 alkyl group), preferably a C 1-6 alkyl group, more preferably a C 1-4 alkyl group
  • a methyl group and an ethyl group are preferable.
  • Examples of the alkoxyalkyl group in R 1 , R 2 , R 3 and R 4 include C 1-10 alkoxy C 1-20 such as methoxymethyl group, ethoxymethyl group, propoxymethyl group, methoxyethyl group, ethoxyethyl group and the like.
  • An alkyl group (for example, a C 1-8 alkoxy C 1-10 alkyl group), preferably a C 1-6 alkoxy C 1-6 alkyl group, more preferably a C 1-4 alkoxy C 1-6 alkyl group may be mentioned.
  • C 1-4 alkoxymethyl groups such as methoxymethyl group and ethoxymethyl group are preferable.
  • R 1 and R 2 , R 3 and R 4 may be combined to form a ring.
  • a ring includes an alkyl group or an alkoxyalkyl group [or a group corresponding thereto, for example, an alkylene group (C 2-6 alkylene group such as ethylene group, trimethylene group, propylene group, tetramethylene group, preferably C 2 -4 alkylene group, more preferably a C 2-3 alkylene group)] and the like as a linking group to form a ring together with the nitrogen atom, there is no particular limitation.
  • an alkylene group C 2-6 alkylene group such as ethylene group, trimethylene group, propylene group, tetramethylene group, preferably C 2 -4 alkylene group, more preferably a C 2-3 alkylene group
  • azetidine ring, pyrrolidine ring, piperidine ring, aza examples include a cycloheptane ring (azahexamethyleneimine ring) and an azacycloheptane ring, and a pyrrolidine ring and a piperidine ring (particularly a pyrrolidine ring) are preferable.
  • any one or both of R 1 and R 2 and R 3 and R 4 may form a ring, and in particular, at least R 3 and R 4 have a ring. It may be formed.
  • Examples of such a typical cation unit in which R 3 and R 4 form a ring include a cation unit represented by the following formula (1A).
  • n represents an integer of 1 or 2, and R 1 and R 2 are the same as above.
  • R 1 and R 2 form a ring.
  • Cation units such as a cation unit represented by the following formula (1A-1).
  • examples of the alkylene group (or alkylidene group) in R 5 include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • a C 1-20 alkylene group such as a group, preferably a C 2-10 alkylene group, more preferably a C 2-6 alkylene group, particularly a C 2-4 alkylene group.
  • R 2 , R 3 and R 4 may be the same or different from each other. Further, as described above, R 3 and R 4 may be combined to form a ring. Examples of such a typical cation unit in which R 3 and R 4 form a ring include a cation unit represented by the following formula (1XA).
  • 2-hydroxy-N, N-dialkylpyrrolidinium (a unit in which m is 1, R 1 and R 2 are alkyl groups in the formula (1A), for example, 2-hydroxy-N, N-dimethylpyrrolidinium, 2-hydroxy-N, N-diethylpyrrolidinium, 2-hydroxy-N-ethyl-N-methylpyrrolidinium, 2-hydroxy-N-methyl-N-propylpyrrolidinium, 2-hydroxy-N-butyl -N-methylpyrrolidinium, 2-hydroxy-N, N-diC 1-6 alkylpyrrolidinium such as 2-hydroxy-N-ethyl-N-propylpyrrolidinium), 2-hydroxy-N-alkyl-N-alkoxyalkylpyrrolidinium (in the formula (1A), m is 1, R 1 is an alkyl group, and R 2 is an alkoxyalkyl group such as 2-hydroxy-N— Meth
  • R 1 and R 2 are alkyl groups (for example, a methyl group or an ethyl group), such as 2-hydroxy-N, N-dimethylpyrrolidinium, 2-hydroxy-
  • R 1 is a methyl group and R 2 is a methyl group or an ethyl group (particularly an ethyl group) such as N-ethyl-N-methylpyrrolidinium is preferred.
  • the cationic units may be used alone or in combination of two or more.
  • the form of inclusion in the electrolyte composition is not particularly limited.
  • a salt is formed with an anion (counter anion). It may be contained.
  • the salt may be ionized.
  • an electrolyte is used separately from a compound having a cation unit, but a compound having a cation unit may also function as an electrolyte.
  • Specific anions include, for example, halogen (or halide ions, chlorine, bromine, iodine or ions thereof), fluorine-containing anions [tetrafluoroborate ion (BF 4 ⁇ ), hexafluorophosphate ion (PF 6 ⁇ ), hexafluoroantimonic acid (SbF 6 ⁇ ), CF 3 CO 2 ⁇ , CF 3 SO 3 ⁇ , N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , N (CF 3 CF 2 SO 2 ) 2 ⁇ , N (FSO 2 ) (CF 3 SO 2 ) (CF 3 SO 2 ) ⁇ , N (CF 3 SO 2 ) (CF 3 CF 2 SO 2 ) ⁇ , C (CF 3 SO 2 ) 3 ⁇ , N (CF 3 SO 2 ) (CF 3 CO) ⁇ , CF 3 BF 3 ⁇ , C 2 F 5 BF 3 ⁇
  • anions may be used alone or in combination of two or more.
  • halogen fluorine-containing anions and the like are preferable, and tetrafluoroborate ion (BF 4 ⁇ ) is particularly preferable.
  • the compounds having a cation unit may be used alone or in combination of two or more.
  • the compound having a cation unit can be produced by a conventional method, and the production method is not particularly limited.
  • it can be produced by quaternizing 2-hydroxy tertiary amine produced according to the method described in Korean Patent KR1325589.
  • a quaternization method a known method such as a reaction between the 2-hydroxy tertiary amine and an alkyl halide may be used.
  • the electrolyte is not particularly limited as long as it does not belong to the category of the compound having a cation unit and functions as an electrolyte, and examples thereof include a compound having a quaternary ammonium cation unit (quaternary ammonium salt).
  • the quaternary ammonium cation unit includes a chain ammonium unit [tetraalkylammonium (eg, tetra C 1-6 alkylammonium such as tetraethylammonium, triethylmethylammonium, trimethylpropylmethylammonium, dimethyldiethylammonium), an alkylalkoxyalkylammonium.
  • tetraalkylammonium eg, tetra C 1-6 alkylammonium such as tetraethylammonium, triethylmethylammonium, trimethylpropylmethylammonium, dimethyldiethylammonium
  • alkylalkoxyalkylammonium etraalkylammonium
  • tri-C 1-6 alkyl mono C 1-4 alkoxy C 1-6 such as N, N, N-trimethyl-N-methoxymethylammonium, N-ethyl-N, N-di
  • Alkyl ammonium [for example, imidazole cations (for example, 1,3-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1,3-dimethyl-2- Mono-tetra-C 1-6 alkylimidazoliums such as phenylimidazolium), pyrrolidine cations, piperidine cations, etc.].
  • imidazole cations for example, 1,3-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1,3-dimethyl-2- Mono-tetra-C 1-6 alkylimidazoliums such as phenylimidazolium
  • pyrrolidine cations for example, 1,3-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1,3-dimethyl-2- Mono-tetra-C 1-6 alkylimidazoliums such as phenylimidazolium
  • pyrrolidine cation or piperidine cation for example, a compound having a cation unit represented by the following formula (2) may be preferably used.
  • n an integer of 1 or 2, and R 1 and R 2 are the same as above.
  • R 1 and R 2 are the same as those in the cation unit represented by the formula (1), that is, an alkyl group or an alkoxyalkyl group, and form a ring. May be.
  • alkyl group and alkoxyalkyl group are the same as described above.
  • Representative alkyl groups for R 1 and R 2 include, for example, C such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, etc.
  • Examples thereof include a 1-20 alkyl group (for example, a C 1-10 alkyl group), preferably a C 1-6 alkyl group, and more preferably a C 1-4 alkyl group.
  • a methyl group, an ethyl group, Groups are preferred.
  • Examples of the alkoxyalkyl group in R 1 and R 2 include C 1-10 alkoxy C 1-20 alkyl groups such as methoxymethyl group, ethoxymethyl group, propoxymethyl group, methoxyethyl group, ethoxyethyl group (for example, C 1-8 alkoxy C 1-10 alkyl group), preferably C 1-6 alkoxy C 1-6 alkyl group, more preferably C 1-4 alkoxy C 1-4 alkyl group.
  • C 1-4 alkoxymethyl groups such as methoxymethyl group and ethoxymethyl group are preferable.
  • the cation unit represented by the formula (2) include: N, N-dialkylpyrrolidinium (in the cationic unit represented by the formula (2), n is 1, R 1 and R 2 are alkyl groups such as N, N-dimethylpyrrolidinium, N, N-diethylpyrrolidinium, N-ethyl-N-methylpyrrolidinium, N-methyl-N-propylpyrrolidinium, N-butyl-N-methylpyrrolidinium, N-ethyl-N-propylpyrrolidinium N, N-diC 1-6 alkylpyrrolidinium such as N-alkyl-N-alkoxyalkylpyrrolidinium (in the cationic unit represented by the formula (2), n is 1, R 1 is an alkyl group, and R 2 is an alkoxyalkyl group, for example, N-methyl- N—C 1- 1 such as N-methoxymethylpyrrolidinium, N-methyl-N-
  • R 1 is a methyl group and R 2 is a methyl group or an ethyl group (especially an ethyl group), such as N-ethyl-N-methylpyrrolidinium, is preferred, and in particular, N-ethyl-N-methylpyrrolidinium Is preferred.
  • the cationic units may be used alone or in combination of two or more.
  • the compound (or electrolyte) having a quaternary ammonium cation unit is not particularly limited as long as it has a quaternary ammonium cation unit, but for example, a salt with an anion (counter anion) And may be contained.
  • the salt may be ionized.
  • anion examples include the same anions as described above. Of these, halogen and fluorine-containing anions (fluorine-containing anions) are preferable, and tetrafluoroborate ion (BF 4 ⁇ ) is particularly preferable.
  • the electrolyte (or the compound having a cation unit having a quaternary ammonium cation unit) may be used alone or in combination of two or more.
  • electrolyte a commercially available product may be used, or an electrolyte produced according to a known method (for example, the method described in Japanese Patent Publication No. 08-31401) may be used.
  • the proportion of the compound having a cation unit represented by the formula (1) is, for example, 1 part by weight or less (for example, 1 ⁇ 10 ⁇ 8 to 1 part by weight) with respect to 1 part by weight of the electrolyte.
  • it is about 0.1 parts by weight or less (eg, 1 ⁇ 10 ⁇ 7 to 0.1 part by weight), more preferably about 0.01 parts by weight or less (eg, 1 ⁇ 10 ⁇ 6 to 0.01 part by weight). It may be.
  • the electrolyte composition of the present invention contains substances other than the compound having the cation unit represented by the above formula (1) and the electrolyte, if desired, as long as the effects of the present invention are exhibited. It doesn't matter.
  • the present invention includes an electrolytic solution containing the above-described electrolyte composition of the present invention.
  • Such an electrolytic solution may not necessarily contain an organic solvent, such as when the electrolyte composition is a liquid (ionic liquid), but may usually contain an organic solvent.
  • An electrolytic solution containing such an organic solvent can be obtained by dissolving the electrolyte composition of the present invention in an organic solvent.
  • a method for preparing an electrolytic solution by dissolving an electrolyte composition in an organic solvent has been well established in the past, and the present invention may be followed accordingly.
  • the environment for preparing the electrolytic solution is not particularly limited as long as it is an environment in which air does not enter because moisture and oxygen adversely affect the performance of the electric double layer capacitor, but the working environment is a dew point of ⁇ 30 ° C. or lower. It is preferable. If the dew point exceeds ⁇ 30 ° C., as the working time elapses, the electrolyte solution absorbs moisture in the atmosphere, so that the moisture in the electrolyte solution increases.
  • moisture content in electrolyte solution can be measured with a Karl Fischer moisture meter, and this water
  • the organic solvent used in the present invention is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, acetonitrile, sulfolane and the like. These solvents can be used alone or in combination of two or more.
  • the organic solvent is preferably propylene carbonate.
  • commercially available ones may be used, or those further purified by distillation or the like may be used as necessary.
  • the content of the electrolyte or the electrolyte composition is not particularly limited, but is such a content that the electrolyte composition does not precipitate during use of the electrolytic solution. It is preferable.
  • the content is usually about 0.1 to 70% by weight, preferably about 1 to 50% by weight, and more preferably about 10 to 30% by weight with respect to the total amount of the electrolytic solution.
  • the electrolyte solution of the present invention may contain substances other than the electrolyte composition of the present invention and the organic solvent, such as lithium salts such as LiBF 4 and LiPF 6 , if desired, as long as the effects of the present invention are exhibited. .
  • the electrolytic solution of the present invention suppresses high alkalinity during electrochemical alteration such as application of voltage, as compared with an electrolytic solution that does not contain a compound having a cation unit represented by the formula (1).
  • the pH value does not become highly alkaline (eg, pH 10 ⁇ ).
  • a method for applying a voltage to the electrolytic solution is not particularly limited, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • constant current electrolysis can be used.
  • the method for measuring the alkalinity when a voltage is applied to the electrolytic solution is not particularly limited, but the method for measuring the pH value in constant current electrolysis may be in accordance with a conventional method, for example, as described in Japanese Patent No. 4802243. It can be measured according to a method or the like.
  • the electrolyte solution (and electrolyte composition) of the present invention preferably has a pH value of less than 10 when a voltage is applied to the electrolyte solution, usually 5 hours after the start of voltage application.
  • pH value is the value measured using the method as described in the below-mentioned Example.
  • the present invention also includes an electrochemical device in which the above-described electrolytic solution of the present invention is used.
  • the electric device is not particularly limited, and examples thereof include an electric double layer capacitor, a lithium ion capacitor, a lithium ion battery, a solar cell, and a fuel cell, and preferably an electric double layer capacitor, a lithium ion capacitor, and a lithium ion. Batteries.
  • the electrochemical device of the present invention is not particularly limited as long as it uses the electrolytic solution of the present invention as an electrolytic solution, and a conventionally known method can be used.
  • a method for producing an electrochemical device using an electrolytic solution has been well established in the past, and the present invention may be followed accordingly.
  • the electrochemical device of the present invention can be obtained by a known method, for example, Japanese Patent No. 5430464, Japanese Patent No. 5063172, Japanese Patent No. 5433909, Japanese Patent Application Laid-Open No. 2012-18916, Japanese Patent Application Laid-Open No. 8-1007048, Japanese Patent Application Laid-Open No. 2013-20835. It can be produced according to the method described in the publication.
  • the electrochemical device of the present invention uses the above-described electrolytic solution of the present invention to suppress an increase in the OH ⁇ ion concentration in the electrolytic solution even during the electrochemical alteration of the electrolytic solution, such as when a voltage is applied. Further, since the alkalinity of the electrolytic solution can be suppressed, deterioration and corrosion of the resin, rubber or metal can be reduced, and the reliability of the electrochemical device can be improved.
  • an example of the electric double layer capacitor is a laminate type.
  • the shape of the electric double layer capacitor is not limited to the laminate type, but is a laminated type in which electrodes are stacked and accommodated in a can body, a wound type in which the electrodes are wound and stored, or an insulating type It may be a so-called coin type made of a metal can electrically insulated by a gasket.
  • coin type made of a metal can electrically insulated by a gasket.
  • FIGS. 1 and 2 are drawings showing a laminated electric double layer capacitor.
  • the capacitor electrode 3 and the aluminum tab 1 are bonded, and the two electrodes 3 are arranged to face each other with the separator 4 interposed therebetween, and are stored in the laminate 2.
  • the electrode is composed of a polarizable electrode portion made of a carbon material such as activated carbon and a current collector portion.
  • the laminate container body 2 is sealed by thermocompression bonding so that moisture and air from the outside of the container do not enter.
  • the polarizable electrode material is preferably a material having a large specific surface area and high electrical conductivity, and needs to be electrochemically stable with respect to the electrolyte within the range of applied voltage to be used.
  • examples of such materials include carbon materials, metal oxide materials, conductive polymer materials, and the like.
  • the polarizable electrode material is preferably a carbon material.
  • the carbon material an activated carbon material is preferable, and specific examples include sawdust activated carbon, coconut shell activated carbon, pitch coke activated carbon, phenol resin activated carbon, polyacrylonitrile activated carbon, and cellulose activated carbon.
  • the metal oxide material include ruthenium oxide, manganese oxide, and cobalt oxide.
  • Examples of the conductive polymer material include a polyaniline film, a polypyrrole film, a polythiophene film, and a poly (3,4-ethylenedioxythiophene) film.
  • the electrode can be obtained in accordance with a known technique.
  • the above polarizable electrode material is kneaded with a binder such as PTFE (polytetrafluoroethylene), and then pressure-molded to form an aluminum foil or the like with a conductive adhesive.
  • a binder such as PTFE (polytetrafluoroethylene)
  • An aluminum foil or the like obtained by binding the current collector to a current collector or mixing the polarizable electrode material with a binder and a thickener such as CMC (carboxymethylcellulose) or an organic solvent such as pyrrolidone. After applying to the current collector, it can be obtained by drying.
  • CMC carboxymethylcellulose
  • organic solvent such as pyrrolidone
  • the separator one having high electronic insulation, excellent wettability of the electrolyte and high ion permeability is preferable, and it is necessary to be electrochemically stable within the applied voltage range.
  • the material of the separator is not particularly limited, but papermaking made of rayon, Manila hemp or the like; polyolefin-based porous film; polyethylene nonwoven fabric; polypropylene nonwoven fabric or the like is preferably used.
  • a lithium ion capacitor as an electrochemical device is a capacitor in which, for example, electrodes facing each other across a separator and an electrolytic solution are contained in a container, in which the positive electrode is activated carbon and the negative electrode is ionized lithium.
  • Two types of electrodes are used for lithium ion capacitors, and each polarizable electrode is composed of a carbon material that can be occluded and desorbed in the ionized state of lithium, which serves as a negative electrode and one polarizability.
  • the electrode can adsorb anions on the activated carbon, which becomes the positive electrode.
  • the positive electrode is preferably composed of activated carbon and a conductive agent imparting electronic conductivity.
  • Examples of the carbon material that constitutes the electrode include activated carbon that can be used for the positive electrode, such as coconut shell activated carbon and petroleum coke activated carbon.
  • Other examples of the conductive agent that imparts electronic conductivity include highly conductive carbon black, acetylene black, natural graphite, and artificial graphite. The amount of the conductive agent used may be 1 to 50% by weight of the activated carbon.
  • Carbon materials that can be occluded and desorbed in the ionized state of lithium, which is the main constituent material of the negative electrode, include natural graphite, artificial graphite, graphitized mesophase carbon microspheres, graphitized mesophase carbon fiber, graphite whisker, and graphitized carbon. Examples thereof include thermal decomposition products of fibers, furfuryl alcohol resins, thermal decomposition products of novolac resins, and thermal decomposition products of condensed polycyclic hydrocarbon compounds such as pitch and coke.
  • the electrodes can be obtained according to known techniques.
  • the positive electrode side polarizable electrode can be obtained by kneading the activated carbon powder, a conductive agent and a binder such as polytetrafluoroethylene in the presence of alcohol, molding the sheet into a sheet, and then drying.
  • the negative electrode mainly composed of a carbonaceous material in which lithium is previously occluded in a carbon material that can be occluded and desorbed in an ionized state of lithium is preferably a carbon material that can be occluded in an ionized state of lithium. Consists of binders. This negative electrode can be formed, for example, by the following method.
  • a powder of carbon material that can be occluded in an ionized state of lithium and a binder are kneaded in the presence of alcohol, formed into a sheet, and then dried to form a negative electrode.
  • the negative electrode is bonded to a current collector using a conductive adhesive or the like, and the lithium foil is sealed in the container in contact with the negative electrode, and then heated, so that lithium is occluded in the carbon material.
  • the amount of the binder used may be 0.5 to 20% by weight.
  • the separator a separator having high insulating properties, excellent wettability of the electrolyte, and high ion permeability is preferable, and an electrochemically stable separator is preferable.
  • the material is not particularly limited, but cellulose (paper), polyolefin porous film, and the like are suitable.
  • a lithium salt such as LiBF 4 or LiPF 6 can be added to the electrolytic solution.
  • These lithium salts are preferably added to an electrolytic solution containing the compound represented by the formula (1) so as to be 0.1 to 2.5 mol / L, and more preferably 0.2 to 2. It is more preferable to add so that it may become 0 moL / L.
  • a lithium ion battery as an electrochemical device is a secondary battery in which the capacity of the negative electrode is represented by a capacity component by occlusion and winding of lithium, which is an electrode reactant, and a separator inside a metallic or film-like exterior member
  • a non-aqueous electrolyte or non-aqueous electrolyte is provided together with a positive electrode and a negative electrode opposed to each other, and, for example, a wound electrode body to which a positive electrode lead and a negative electrode lead are attached is formed inside a film-like exterior member. The thing which has the structure accommodated in is mentioned.
  • a positive electrode active material for the positive electrode, a positive electrode active material, a binder, and a conductive agent are mixed to prepare a positive electrode mixture, and a slurry dispersed in a solvent such as N-methyl-2-pyrrolidone is applied to the positive electrode current collector and dried. And can be produced by compression molding.
  • the positive electrode active material is composed of one or more positive electrode materials capable of occluding and winding lithium, which is an electrode reactant, and includes lithium composite oxide, lithium phosphorous oxide, lithium sulfide, and lithium. And lithium-containing compounds such as intercalation compounds.
  • binder examples include synthetic rubbers such as styrene butadiene rubber, fluorine rubber, and ethylene propylene diene rubber; and polymer materials such as polyvinylidene fluoride.
  • conductive agent examples include carbon materials such as graphite and carbon black, and one or more of these may be used in combination.
  • the negative electrode is prepared by mixing a negative electrode active material and a binder to prepare a negative electrode mixture, and applying a slurry dispersed in a solvent such as N-methyl-2-pyrrolidone to the negative electrode current collector and drying it. It can be produced by compression molding.
  • the negative electrode active material include a material made of a negative electrode material capable of occluding and winding lithium, which is an electrode reactant, and containing at least one of a metal element and a metalloid element as a constituent element. Examples of such a material include lithium metal, and a material that forms an alloy with these metals may be used.
  • the binder those shown in the case of the positive electrode can be used.
  • the produced positive electrode and negative electrode are piled up via a separator and wound to form a wound electrode body, which is housed inside the exterior member. Then, after inject
  • the separator include a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, and polyethylene, or a porous film made of ceramic.
  • a lithium salt such as LiBF 4 or LiPF 6 added to the electrolytic solution can be used.
  • These lithium salts are preferably added to the electrolytic solution so as to have a concentration of 0.1 to 2.5 mol / L, and more preferably 0.2 to 2.0 mol / L.
  • the reaction solution was analyzed with a liquid chromatograph mass spectrometer (LC / MS) to produce the desired 2-hydroxy-N-ethyl-N-methylpyrrolidinium tetrafluoroborate (2-OH-EMPy-BF4). After confirmation, the reaction solution was filtered, and the filtrate was concentrated, and propylene carbonate (purity 99.99%, GC analysis value) was added to the resulting residue to prepare a 1% propylene carbonate solution. The production yield of the target product was estimated from the consumption of the raw material 2-hydroxy-N-methylpyrrolidine and was 50% in this reaction.
  • LC / MS liquid chromatograph mass spectrometer
  • the mass-to-charge ratio m / Z obtained from the MASS spectrum of 2-OH-EMPy-BF4 was 130.1241, which completely matched the theory (calculated value) m / Z (130.12).
  • Example 2 2-hydroxy-N, N-diethyl-N-methylpyrrolidinium obtained from 2-hydroxy-N-ethylpyrrolidine obtained by reacting in the same manner as in Example 1 using N-ethylpyrrolidone instead of N-methylpyrrolidone Tetrafluoroborate was produced. Yield 45%.
  • Example 3 2-hydroxy-N, N-dimethylpyrrolidinium tetrafluoroborate was produced in the same manner as in Example 1 except that methyl iodide was used in place of ethyl bromide in Example 1. Yield 55%.
  • Example 4 2-Hydroxy-N-methyl-N-propylpyrrolidinium tetrafluoroborate was produced in the same manner as in Example 1 except that propyl bromide was used instead of ethyl bromide. Yield 40%.
  • Example 5 2-Hydroxy-N-butyl-N-methylpyrrolidinium tetrafluoroborate was produced in the same manner as in Example 1 except that butyl bromide was used instead of ethyl bromide. Yield 40%.
  • Example 6 2-Hydroxy-1,1′-spiro-bispyrrolidinium tetrafluoroborate was produced by reacting in the same manner as in Example 1 using dibromobutane instead of ethyl bromide. Yield 30%.
  • Example 7 N-ethyl-N-methylpyrrolidinium tetrafluoroborate (EMPy-BF4) 99.9 g produced according to the example of JP-B-8-31401 was mixed with high-purity propylene carbonate (purity 99.9% or more, moisture 100 ppm). The following was added to 100.0 g, and then 10.0 g of a 1% (W / W) propylene carbonate solution of 2-hydroxy-N-ethyl-N-methylpyrrolidinium tetrafluoroborate prepared in Example 1 was added. It was set as the solution. This solution was dehydrated and concentrated until the water content was 100 ppm or less.
  • EMPy-BF4 N-ethyl-N-methylpyrrolidinium tetrafluoroborate
  • the propylene carbonate used in Example 1 and Comparative Examples 1 to 3 described later is high-purity propylene carbonate (purity 99.99%, GC analysis value) obtained by precision distillation.
  • Comparative Example 1 An electrolyte solution was prepared by diluting N-ethyl-N-methylpyrrolidinium tetrafluoroborate with propylene carbonate to 1.5 mol / L at room temperature in a dry nitrogen atmosphere with a dew point of ⁇ 40 ° C. The alkalinization test was performed using this electrolytic solution.
  • Comparative Example 2 1.
  • An electrolytic solution was prepared by dissolving at 5 mol / L. The alkalinization test was performed using this electrolytic solution.
  • Comparative Example 3 A 1,1′-spiro-bispyrrolidinium tetrafluoroborate (SBP-BF4) crystal produced by a known production method in a dry nitrogen atmosphere at a dew point of ⁇ 40 ° C. at room temperature at 1.5 mol / L in propylene carbonate. It melt
  • SBP-BF4 1,1′-spiro-bispyrrolidinium tetrafluoroborate
  • Comparative Example 4 At room temperature, in a dry nitrogen atmosphere with a dew point of ⁇ 40 ° C., commercially available ethylmethylimidazolium tetrafluoroborate (EMI-BF4) was diluted with propylene carbonate to 1.5 mol / L. An electrolyte solution was prepared. The alkalinization test was performed using this electrolytic solution.
  • EMI-BF4 ethylmethylimidazolium tetrafluoroborate
  • FIG. 3 shows changes with time in pH values of the negative electrode (cathode) for constant current electrolysis in Example 7 and Comparative Examples 1 to 4.
  • the electrolyte composition of the present invention ie, 2-hydroxy-N-ethyl-N-methylpyrrolidinium tetrafluoroborate and N-ethyl-N-methylpyrrolidinium tetrafluoroborate (EMPy-BF4
  • EMPy-BF4 The electrolyte solution (Example 7) using) has a pH value of 10 or less for 5 hours after the start of constant current electrolysis, although the pH becomes slightly alkaline even when constant current electrolysis is performed. It was confirmed that the increase in alkalinity was suppressed even when compared with an electrolytic solution using (EMI-BF4) (Comparative Example 4).
  • the electrochemical device in an electrochemical device, since an increase in the concentration of OH ⁇ ions can be suppressed even during electrochemical alteration of the electrolyte, such as application of a voltage, a high alkalinity can be suppressed. It is possible to reduce the deterioration or corrosion of rubber or metal and improve the reliability of electrochemical devices. As a result, the electrochemical device using the electrolytic solution of the present invention can improve reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

電気化学的な変質時においてもOHイオンの濃度上昇を抑制し、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させる電解液、該電解液に使用される電解質及び該電解液を用いた電気化学デバイスを提供することを課題とする。 電解質を、例えば、下記式で表されるカチオン単位を有する化合物と、電解質(第4級アンモニウム塩など)とで構成する。 (式中、R、R、R及びRは同一又は異なってアルキル基又はアルコキシアルキル基を示し、R及びR並びにR及びRは、それぞれ一緒になって、ピロリジン環、ピペリジン環などの環を形成してもよい。)

Description

電気化学デバイス用電解質、電解液ならびに電気化学デバイス
 本発明は、電気化学的な変質時においてもOHイオンの生成すなわちアルカリ化を抑制し、pH10以上の強アルカリ溶液となることなく、その結果として、電気化学デバイスの封止材料として使用されている樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させる電解液、該電解液に使用される電解質及び該電解液を用いた電気化学デバイスに関する。
 電気二重層キャパシタは、従来の、例えば電解コンデンサのようなコンデンサ(もしくはキャパシタ)に比べて蓄電容量が飛躍的に大きく、従来使われていなかった分野、例えば電源アシスト用途等に使われ始めている。特に近年、自動車の回生エネルギー用途等に使用され、省エネルギー社会に貢献し始めている。
 一方、電解コンデンサをはじめとするコンデンサや電気二重層キャパシタ等の電気化学デバイスでは、電解液の電解質として第四級アンモニウム塩等が用いられているが、これら電気二重層キャパシタ等の電気化学デバイスでは、電圧を印加した時に電解液中の微量の水分が酸素と共に還元されて、負極近傍でOHイオン(水酸化物イオン)が発生し、電解液が徐々に強アルカリ性を示すようになる。このOHイオンは、負極の封口部の樹脂、ゴムあるいは金属等を腐食させて電解液の漏れの原因となり、電気化学デバイスの信頼性を低下させる問題があった。
 なお、発生した水酸化物イオンは使用する電解質に対応する塩を形成するものと考えられ、例えば、N-エチル-N-メチルピロリジン塩(例えば、テトラフルオロボレート塩など)を電解質として用いたときには、下記式で表される塩の生成が想定される。
Figure JPOXMLDOC01-appb-C000005
 従来、このような負極近傍でのOHイオンの発生を防ぐ及び/又は発生したOHイオンを捕捉して消滅させ電解液が徐々に強アルカリ性になるのを解決する手段として、アミジン系電解質を使用することにより発生したOHイオンを効果的に低減する方法(特許文献1及び2)やアルカリ化抑制効果のある物質を添加する方法(特許文献3及び4)、さらにテトラメチルアンモニウムテトラフルオロボレート(特許文献5)を少量添加する方法等が開示されている。
 特許文献1及び2によれば、アミジン基を有する四級塩を電解質として使用した電解液にすることにより、従来電解質として使用されている第四級アンモニウム塩を使用した電解液の場合と比較して定電流電解時の封口ゴムの劣化による液漏れ等の異常は観察されず、OHイオンが効果的に低減されることが開示されている。しかし、これらアミジン基を有する四級塩を使用した電解液は、一般的に第四級アンモニウム塩と比較して耐電圧が低く、使用できる電圧に制限がある為、今後高容量化、高性能化が要求される電気化学デバイスへの適用が難しいという問題がある。
 また、特許文献3では、電解質自身を反応により消費する為、電解質濃度の低下により、徐々に性能が低下してしまう懸念がある。一方、特許文献4においては、電解液にキャパシタ性能にとっては不要な物質を、添加することとなり、またそれ自身も電圧印加条件下で電気化学的に活性な(酸化還元されやすい)ため、電気分解等を引き起こしやすくキャパシタ性能を低下させる懸念があった。
 さらに、特許文献5の方法は、主たる第四級アンモニウムからなる電解質のほかに、同じ第四級アンモニウム塩(電解質)であるテトラメチルアンモニウムテトラフルオロボレートを少量添加する方法であり、電解液の低抵抗化により電気分解を抑え、結果として副次的にアルカリ化を抑止する(アルカリ化速度を遅くする)ものであり、アルカリ化抑制に効果的ではない。
WO95/15572公報 特開平08-321439号公報 特開2014-99443号公報 特開2009-65062号公報 特開2012-69931号公報
 本発明の課題は、上記現状に鑑み、電気化学的な変質時においてもOHイオン濃度の上昇を抑制し、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させることができる電解液及び該電解液に使用される電解質を提供すること、並びに該電解液を用いた電気化学デバイスを提供することにある。
 本発明者らは、上記の課題に取り組むべく鋭意検討を行なった結果、特定の化合物を含む電解質(例えば、第4級アンモニウム塩)が、該電解質を含有する電解液に電圧を印加したときに電解液が高アルカリ化しない、すなわち高アルカリ化抑制効果のある電解質であることを見出し、さらに鋭意検討を重ねて本発明を完成するに至った。
 すなわち、本発明の組成物(電解質組成物)は、下記式(1)で表されるカチオン単位を有する化合物と電解質とを含む。
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R及びRは同一又は異なってアルキル基又はアルコキシアルキル基を示し、R及びR並びにR及びRは、それぞれ一緒になって環を形成してもよく、Rは下記式(X)
Figure JPOXMLDOC01-appb-C000007
(式中、Rはアルキレン基を示し、R、R及びRは前記と同じ)
で表されるカチオン性基であってもよい。]
 前記式(1)において、R及びRは、それぞれ、C1-6アルキル基又はC1-4アルコキシC1-6アルキル基であってもよく、R及びRが一緒になって環を形成していてもよい。
 前記式(1)で表されるカチオン単位は、代表的には下記式(1A)で表されるカチオン単位であってもよい。
Figure JPOXMLDOC01-appb-C000008
(式中、mは1又は2の整数を示し、R及びRは前記と同じ。)
 また、前記式(1)(又は(1A))で表されるカチオン単位において、特に、Rがメチル基であるカチオン単位であってもよく、Rがメチル基、Rがエチル基であるカチオン単位であってもよい。
 本発明の電解質組成物において、電解質は、例えば、第4級アンモニウムカチオン単位を有する化合物(又は第4級アンモニウム塩)であってもよく、代表的には、下記式(2)で表されるカチオン単位を有する化合物であってもよい。
Figure JPOXMLDOC01-appb-C000009
(式中、nは1又は2の整数を示し、R及びRは前記と同じ。)
 前記式(2)で表されるカチオン単位は特に、Rがメチル基であるカチオン単位であってもよく、Rがメチル基、Rがエチル基であるカチオン単位であってもよい。
 本発明の好ましい組成物では、式(1)で表されるカチオン単位を有する化合物が前記式(1A)で表されるカチオン単位を有する化合物を含み、電解質が前記式(2)で表されるカチオン単位を有する化合物を含んでいてもよい。
 前記式(1)で表されるカチオン単位を有する化合物及び電解質を構成するアニオンは、限定されないが、特に、フッ素含有アニオン[又は含フッ素アニオン、例えば、テトラフルオロホウ酸イオン(BF )]であってもよい。
 本発明の組成物において、前記式(1)で表されるカチオン単位を有する化合物の割合は、例えば、電解質1重量部に対して、1×10-7~0.1重量部程度であってもよい。
 本発明は、前記電解質組成物を含有する電解液を包含する。このような電解液は、代表的には、前記電解質組成物と有機溶媒とを含有する電解液であってもよい。
 このような有機溶媒を含む電解液において、有機溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、アセトニトリル、スルホランからなる群から選ばれる少なくとも1種であってもよい。
 また、本発明は、前記電解液を用いた(又は前記電解液を備えた)電気化学デバイスを包含する。このような電気化学デバイスは、例えば、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン電池などであってもよい。
 前記式(1)で表されるカチオン単位を有する化合物は、後で詳述するように、電解液(又は電解質との組み合わせ)において、pH値の上昇を抑制できる。
 そのため、本発明には、電解液(又は電解質との組み合わせ)におけるpH上昇を抑制するための剤であって、前記式(1)で表されるカチオン単位を有する化合物で構成されたpH上昇抑制剤を包含する。
 また、本発明には、電解液(又は電解質との組み合わせ)におけるpH上昇を抑制する方法であって、前記式(1)で表されるカチオン単位を有する化合物(又は前記式(1)で表されるカチオン単位を有する化合物で構成されたpH上昇抑制剤)を電解液に含有させる(混合又は添加する)方法を包含する。
 また、前記式(1)で表されるカチオン単位を有する化合物の多くは新規化合物である。そのため、本発明には、前記式(1)で表されるカチオン単位を有する化合物も包含する。なお、このような化合物は、前記式(1)において、R、R及びRがイソプロピル基、Rがエチル基である化合物を除くものであってもよい。
 本発明の電解質及び電解液は、電圧の印加等、電解液の電気化学的な変質時においてもOHイオン濃度の上昇を抑制し、高アルカリ化を抑制することができるため、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させることができる。その結果、本発明の電解液を用いた電気化学デバイスは、信頼性を向上することができる。
図1は、ラミネート型電気二重層キャパシタの正面図である。 図2は、ラミネート型電気二重層キャパシタの内部構成図である。 図3は、実施例7及び比較例1~4の定電流電解の負極(陰極)におけるpH値の経時変化を示すグラフである。
 以下、本発明を詳細に説明する。
[電解質組成物]
 本発明の電解質組成物は、特定のカチオン単位を有する化合物と電解質とを含む。
(カチオン単位を有する化合物)
 カチオン単位を有する化合物は、下記式(1)で表されるカチオン単位を有する。
Figure JPOXMLDOC01-appb-C000010
[式中、R、R、R及びRは同一又は異なってアルキル基又はアルコキシアルキル基を示し、R及びR並びにR及びRは、それぞれ一緒になって環を形成してもよく、Rは下記式(X)
Figure JPOXMLDOC01-appb-C000011
(式中、Rはアルキレン基を示し、R、R及びRは前記と同じ)
で表されるカチオン性基であってもよい。]
 上記式(1)で表されるカチオン単位において、R、R、R及びRにおけるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基などのC1-20アルキル基(例えば、C1-10アルキル基)、好ましくはC1-6アルキル基、さらに好ましくはC1-4アルキル基を挙げることができ、これらの基の中でも、メチル基、エチル基が好ましい。
 R、R、R及びRにおけるアルコキシアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、メトキシエチル基、エトキシエチル基などのC1-10アルコキシC1-20アルキル基(例えば、C1-8アルコキシC1-10アルキル基)、好ましくはC1-6アルコキシC1-6アルキル基、さらに好ましくはC1-4アルコキシC1-6アルキル基を挙げることができ、これらの基の中でも、メトキシメチル基、エトキシメチル基などのC1-4アルコキシメチル基が好ましい。
 上記式(1)で表されるカチオン単位において、R及びR並びにR及びRは、それぞれ一緒になって環を形成してもよい。
 このような環としては、アルキル基又はアルコキシアルキル基[又はそれに対応する基、例えば、アルキレン基(エチレン基、トリメチレン基、プロピレン基、テトラメチレン基などのC2-6アルキレン基、好ましくはC2-4アルキレン基、さらに好ましくはC2-3アルキレン基)など]を連結基として窒素原子とともに環を形成すれば特に限定されるものではないが、例えば、アゼチジン環、ピロリジン環、ピペリジン環、アザシクロヘプタン環(アザヘキサメチレンイミン環)、アザシクロヘプタン環などが挙げられ、ピロリジン環及びピペリジン環(特にピロリジン環)が好ましい。
 式(1)で表されるカチオン単位において、R及びRとR及びRのいずれか一方及び両方が環を形成していてもよく、特に、少なくともR及びRが環を形成していてもよい。このようなR及びRが環を形成した代表的なカチオン単位としては、例えば、下記式(1A)で表されるカチオン単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式中、mは1又は2の整数を示し、R及びRは前記と同じ。)
 なお、代表的なR及びRとR及びRの両方が環を形成したカチオン単位としては、上記式(1A)で表されるカチオン単位において、R及びRが環を形成したカチオン単位、例えば、下記式(1A-1)で表されるカチオン単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、m’は1又は2の整数を示し、mは前記と同じ。)
 また、上記式(1)で表されるカチオン単位において、Rが上記式(X)で表される基である場合は、下記式(1X)で表されるカチオン単位である。
Figure JPOXMLDOC01-appb-C000014
(式中、R、R、R及びRは前記と同じ。)
 上記式(1X)で表されるカチオン単位において、Rにおけるアルキレン基(又はアルキリデン基)としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などのC1-20アルキレン基、好ましくはC2-10アルキレン基、さらに好ましくはC2-6アルキレン基、特にC2-4アルキレン基を挙げることができる。
 なお、上記式(1X)で表されるカチオン単位において、2つのR、R及びRは、それぞれ同一又は異なっていてもよい。また、前記のように、R及びRは一緒になって環状を形成していてもよい。このようなR及びRが環を形成した代表的なカチオン単位としては、例えば、下記式(1XA)で表されるカチオン単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、m、m’、R及びRは前記と同じ。)
 具体的な前記式(1)で表されるカチオン単位としては、例えば、
 2-ヒドロキシ-N,N-ジアルキルピロリジニウム(前記式(1A)においてmが1、R及びRがアルキル基である単位、例えば、2-ヒドロキシ-N,N-ジメチルピロリジニウム、2-ヒドロキシ-N,N-ジエチルピロリジニウム、2-ヒドロキシ-N-エチル-N-メチルピロリジニウム、2-ヒドロキシ-N-メチル-N-プロピルピロリジニウム、2-ヒドロキシ-N-ブチル-N-メチルピロリジニウム、2-ヒドロキシ-N-エチル-N-プロピルピロリジニウムなどの2-ヒドロキシ-N,N-ジC1-6アルキルピロリジニウム)、
 2-ヒドロキシ-N-アルキル-N-アルコキシアルキルピロリジニウム(前記式(1A)においてmが1、Rがアルキル基、Rがアルコキシアルキル基である単位、例えば、2-ヒドロキシ-N-メチル-N-メトキシメチルピロリジニウム、2-ヒドロキシ-N-メチル-N-エトキシメチルピロリジニウム、2-ヒドロキシ-N-エチル-N-メトキシメチルピロリジニウム、2-ヒドロキシ-N-エチル-N-エトキシメチルピロリジニウムなどの2-ヒドロキシ-N-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム、2-ヒドロキシ-N-メチル-N-メトキシエチルピロリジニウム、2-ヒドロキシ-N-エチル-N-メトキシエチルピロリジニウムなどの2-ヒドロキシ-N-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム)、
 2-ヒドロキシ-N-アルコキシアルキル-N-アルコキシアルキルピロリジニウム(前記式(1A)においてmが1、R及びRがアルコキシアルキル基である単位、例えば、2-ヒドロキシ-N,N-ビスメトキシメチルピロリジニウム、2-ヒドロキシ-N-メトキシメチル-N-メトキシエチルピロリジニウム、2-ヒドロキシ-N-メトキシメチル-N-エトキシメチルピロリジニウム、2-ヒドロキシ-N,N-ビスエトキシメチルピロリジニウム、2-ヒドロキシ-N-エトキシメチル-N-エトキシエチルピロリジニウム、2-ヒドロキシ-N,N-ビスメトキシエチルピロリジニウムなどの2-ヒドロキシ-N-C1-4アルコキシC1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム)、
 2-ヒドロキシ-N,N-ジアルキルピペリジニウム(前記式(1A)においてmが2、R及びRがアルキル基である単位、例えば、2-ヒドロキシ-N,N-ジメチルピペリジニウム、2-ヒドロキシ-N-メチル-N-エチルピペリジニウム、2-ヒドロキシ-N-メチル-N-プロピルピペリジニウム、2-ヒドロキシ-N-エチル-N-プロピルピペリジニウムなどの2-ヒドロキシ-N,N-ジC1-6アルキルピペリジニウム)、
 2-ヒドロキシ-N-アルキル-N-アルコキシアルキルピペリジニウム(前記式(1A)においてmが2、Rがアルキル基、Rがアルコキシアルキル基である単位、例えば、2-ヒドロキシ-N-メチル-N-メトキシメチルピペリジニウム、2-ヒドロキシ-N-メチル-N-エトキシメチルピペリジニウム、2-ヒドロキシ-N-エチル-N-メトキシメチルピペリジニウム、2-ヒドロキシ-N-エチル-N-エトキシメチルピペリジニウムなどの2-ヒドロキシ-N-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピペリジニウム)、
 2-ヒドロキシ-N-アルコキシアルキル-N-アルコキシアルキルピペリジニウム(前記式(1A)においてmが2、R及びRがアルコキシアルキル基である単位、例えば、2-ヒドロキシ-N,N-ビスメトキシメチルピペリジニウム、2-ヒドロキシ-N,N-ビスエトキシメチルピペリジニウム、2-ヒドロキシ-N,N-ビスメトキシメチルピペリジニウム、2-ヒドロキシ-N,N-ビスエトキシメチルピペリジニウム、2-ヒドロキシ-N-メトキシメチル-N-メトキシエチルピペリジニウム、2-ヒドロキシ-N-メトキシメチル-N-エトキシメチルピペリジニウム、2-ヒドロキシ-N-メトキシメチル-N-エトキシエチル-ピペリジニウム、2-ヒドロキシ-N-エトキシメチル-N-エトキシエチル-ピペリジニウムなどの2-ヒドロキシ-N-C1-4アルコキシC1-6アルキル-N-C1-4アルコキシC1-6アルキルピペリジニウム)、
 2-ヒドロキシ-1,1’-スピロ-ビスピロリジニウム、
 2-ヒドロキシ-1,1’-スピロ-ビスピペリジニウム、
 ビス(2-ヒドロキシ-N-アルキルピロリジニル)アルカン[例えば、ビス(2-ヒドロキシ-N-メチルピロリジニル)メタン、1,2-ビス(2-ヒドロキシ-N-メチルピロリジニル)エタン、1,3-ビス(2-ヒドロキシ-N-メチルピロリジニル)プロパン、1,4-ビス(2-ヒドロキシ-N-メチルピロリジニル)ブタン、1,2-ビス(2-ヒドロキシ-N-エチルピロリジニル)エタンなどのビス(2-ヒドロキシ-N-C1-6アルキルピロリジニル)C1-6アルカン]のカチオン、
 ビス(2-ヒドロキシ-N-アルコキシアルキルピロリジニル)アルカン[例えば、ビス(2-ヒドロキシ-N-メトキシメチルピロリジニル)メタン、1,4-ビス(2-ヒドロキシ-N-エトキシメチルピロリジニル)ブタンなどのビス(2-ヒドロキシ-N-C1-4アルコキシC1-6アルキルピロリジニル)C1-6アルカン]のカチオン、
などが挙げられる。
 これらの中でも、特に、R及びRのいずれか一方がアルキル基(例えば、メチル基、エチル基)であるカチオン、例えば、2-ヒドロキシ-N,N-ジメチルピロリジニウム、2-ヒドロキシ-N-エチル-N-メチルピロリジニウムなどのRがメチル基、Rがメチル基又はエチル基(特にエチル基)であるカチオンが好ましい。
 なお、2-ヒドロキシ-N-エチル-N-メチルピロリジニウムをはじめ、前記式(1)で表されるカチオン単位を有する多くの化合物は、新規化合物である。
 そのため、本発明には、このような新規化合物も含まれる。
 カチオン単位は単独で又は2種以上組み合わせて使用してもよい。
 カチオン単位を有する化合物は、前記式(1)で表される単位を有する限り、電解質組成物における含有形態は特に限定されるものではないが、例えば、アニオン(カウンターアニオン)とともに塩を形成して含有されていてもよい。なお、組成物において、塩は、イオン化していてもよい。
 また、本発明では、カチオン単位を有する化合物と別に電解質を使用するが、カチオン単位を有する化合物もまた、電解質として機能してもよい。
 具体的なアニオンとしては、例えば、ハロゲン(又はハロゲン化物イオン、塩素、臭素、ヨウ素又はこれらのイオンなど)、フッ素含有アニオン[テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、ヘキサフルオロアンチモン酸(SbF )、CFCO 、CFSO 、N(FSO 、N(CFSO 、N(CFCFSO 、N(FSO)(CFSO、N(CFSO)(CFCFSO、C(CFSO 、N(CFSO)(CFCO)、CFBF 、CBF 、(CFBF 、(CF)(C)BF 、(CBF 、(CFBFなど]、無機酸のアニオン(リン酸イオン、ホウ酸イオン、過塩素酸イオンなど)、有機酸[例えば、モノカルボン酸(例えば、ギ酸、酢酸、プロピオン酸、ステアリン酸、アクリル酸、オレイン酸などの脂肪族モノカルボン酸;安息香酸、サリチル酸などの芳香族モノカルボン酸)、ポリカルボン酸(例えば、シュウ酸、マロン酸、マレイン酸などの脂肪族ポリカルボン酸;フタル酸、テレフタル酸などの芳香族ポリカルボン酸)]のアニオンなどが挙げられる。
 組成物において、アニオンは単独で又は2種以上組み合わせて使用してもよい。
 これらのアニオンのうち、ハロゲン、フッ素含有アニオンなどが好ましく、特に、テトラフルオロホウ酸イオン(BF )が好ましい。
 カチオン単位を有する化合物は、単独で又は2種以上組み合わせて使用してもよい。
 カチオン単位を有する化合物(又はカチオン単位)は、慣用の手法により製造でき、その製造方法は特に限定されない。例えば、韓国特許KR1325589に記載の方法等に従って製造される2-ヒドロキシ第三級アミンを四級化することにより製造することができる。四級化の方法としては既知の方法たとえば該2-ヒドロキシ第三級アミンとハロゲン化アルキルとの反応等を用いればよい。
(電解質)
 電解質は、前記カチオン単位を有する化合物の範疇に属さず、電解質として機能するものであれば特に限定されないが、例えば、第4級アンモニウムカチオン単位を有する化合物(第4級アンモニウム塩)が挙げられる。
 第4級アンモニウムカチオン単位としては、鎖状アンモニウム単位[テトラアルキルアンモニウム(例えば、テトラエチルアンモニウム、トリエチルメチルアンモニウム、トリメチルプロピルメチルアンモニウム、ジメチルジエチルアンモニウムなどのテトラC1-6アルキルアンモニウム)、アルキルアルコキシアルキルアンモニウム(例えば、N,N,N-トリメチル-N-メトキシメチルアンモニウム、N-エチル-N,N-ジメチル-N-メトキシメチルアンモニウムなどのトリC1-6アルキルモノC1-4アルコキシC1-6アルキルアンモニウム)]、環状アンモニウム単位[例えば、イミダゾール系カチオン(例えば、1,3-ジメチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,3-ジメチル-2-フェニルイミダゾリウムなどのモノ乃至テトラC1-6アルキルイミダゾリウム)、ピロリジン系カチオン、ピペリジン系カチオンなど]が挙げられる。
 これらのうち、特に、ピロリジン系カチオン又はピペリジン系カチオン、例えば、下記式(2)で表されるカチオン単位を有する化合物を好適に使用してもよい。
Figure JPOXMLDOC01-appb-C000016
(式中、nは1又は2の整数を示し、R及びRは前記と同じ。)
 上記式(2)で表されるカチオン単位において、R及びRは、前記式(1)で表されるカチオン単位における態様と同じ、すなわち、アルキル基又はアルコキシアルキル基であり、環を形成してもよい。
 アルキル基及びアルコキシアルキル基の好ましい態様についても、前記と同様である。
 R及びRにおける代表的なアルキル基には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基などのC1-20アルキル基(例えば、C1-10アルキル基)、好ましくはC1-6アルキル基、さらに好ましくはC1-4アルキル基を挙げることができ、これらの基の中でも、メチル基、エチル基が好ましい。
 また、R及びRにおけるアルコキシアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、メトキシエチル基、エトキシエチル基などのC1-10アルコキシC1-20アルキル基(例えば、C1-8アルコキシC1-10アルキル基)、好ましくはC1-6アルコキシC1-6アルキル基、さらに好ましくはC1-4アルコキシC1-4アルキル基を挙げることができ、これらの基の中でも、メトキシメチル基、エトキシメチル基などのC1-4アルコキシメチル基が好ましい。
 具体的な前記式(2)で表されるカチオン単位としては、例えば、
 N,N-ジアルキルピロリジニウム(前記式(2)で表されるカチオン単位においてnが1、R及びRがアルキル基である単位、例えば、N,N-ジメチルピロリジニウム、N,N-ジエチルピロリジニウム、N-エチル-N-メチルピロリジニウム、N-メチル-N-プロピルピロリジニウム、N-ブチル-N-メチルピロリジニウム、N-エチル-N-プロピルピロリジニウムなどのN,N-ジC1-6アルキルピロリジニウム)、
 N-アルキル-N-アルコキシアルキルピロリジニウム(前記式(2)で表されるカチオン単位においてnが1、Rがアルキル基、Rがアルコキシアルキル基である単位、例えば、N-メチル-N-メトキシメチルピロリジニウム、N-メチル-N-エトキシメチルピロリジニウム、N-エチル-N-メトキシメチルピロリジニウム、N-エチル-N-エトキシメチルピロリジニウムなどのN-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム)、
 N,N-ビス(アルコキシアルキル)ピロリジニウム(前記式(2)で表されるカチオン単位においてnが1、R及びRがアルコキシアルキル基である単位、例えば、N-メチル-N-メトキシエチルピロリジニウム、N-エチル-N-メトキシエチルピロリジニウムなどのN-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム)、N,N-ビスメトキシメチルピロリジニウム、N-メトキシメチル-N-メトキシエチルピロリジニウム、N-メトキシメチル-N-エトキシメチルピロリジニウム、N,N-ビスエトキシメチルピロリジニウム、N,N-ビスメトキシエチルピロリジニウムなどのN-C1-4アルコキシC1-6アルキル-N-C1-4アルコキシC1-6アルキルピロリジニウム)、
 N,N-ジアルキルピペリジニウム(前記式(2)で表されるカチオン単位においてnが2、R及びRがアルキル基である単位、例えば、N,N-ジメチルピペリジニウム、N-メチル-N-エチルピペリジニウム、N-メチル-N-プロピルピペリジニウム、N-エチル-N-プロピルピペリジニウムなどのN,N-ジC1-6アルキルピペリジニウム)、
 N-アルキル-N-アルコキシアルキルピペリジニウム(前記式(2)で表されるカチオン単位においてnが2、Rがアルキル基、Rがアルコキシアルキル基である単位、例えば、N-メチル-N-メトキシメチルピペリジニウム、N-メチル-N-エトキシメチルピペリジニウム、N-エチル-N-メトキシメチルピペリジニウム、N-エチル-N-エトキシメチルピペリジニウムなどのN-C1-6アルキル-N-C1-4アルコキシC1-6アルキルピペリジニウム)、
 N,N-ビス(アルコキシアルキル)ピペリジニウム(前記式(2)で表されるカチオン単位においてnが1、R及びRがアルコキシアルキル基である単位、例えば、N-メチル-N-メトキシエチルピペリジニウム、N-エチル-N-メトキシエチルピペリジニウムなどのN-C1-4アルコキシC1-6アルキル-N-C1-4アルコキシC1-6アルキルピペリジニウム)、N,N-ビス(メトキシメチル)ピペリジニウム、N-メトキシメチル-N-メトキシエチルピペリジニウム、N-メトキシメチル-N-エトキシメチルピペリジニウム、N,N-ビス(エトキシメチル)ピペリジニウム、N,N-ビス(メトキシエチル)ピペリジニウムなどのN-C1-4アルコキシC1-6アルキル-N-C1-4アルコキシC1-6アルキルピペリジニウム)、
などが挙げられる。
 これらの中でも、式(2)で表されるカチオン単位において、R及びRのいずれか一方がアルキル基(例えば、メチル基、エチル基)であるカチオン、例えば、N,N-ジメチルピロリジニウム、N-エチル-N-メチルピロリジニウムなどのRがメチル基、Rがメチル基又はエチル基(特にエチル基)であるカチオンが好ましく、特にN-エチル-N-メチルピロリジニウムが好ましい。
 カチオン単位は単独で又は2種以上組み合わせて使用してもよい。
 第4級アンモニウムカチオン単位を有する化合物(又は電解質)は、第4級アンモニウムカチオン単位を有する限り、電解質組成物における含有形態は特に限定されるものではないが、例えば、アニオン(カウンターアニオン)とともに塩を形成して含有されていてもよい。なお、組成物において、塩は、イオン化していてもよい。
 具体的なアニオンとしては、前記と同様のアニオンが例示できる。中でも、ハロゲン、フッ素含有アニオン(含フッ素アニオン)が好ましく、特に、テトラフルオロホウ酸イオン(BF )が好ましい。
 電解質(又は第4級アンモニウムカチオン単位を有する化合物カチオン単位を有する化合物)は、単独で又は2種以上組み合わせて使用してもよい。
 なお、電解質は、市販品を利用してもよく、公知の方法(例えば、特公平08-31401号公報に記載の方法など)に従って製造したものを用いてもよい。
 電解質組成物において、前記式(1)で表されるカチオン単位を有する化合物の割合は、電解質1重量部に対して、例えば、1重量部以下(例えば、1×10-8~1重量部)、好ましくは0.1重量部以下(例えば、1×10-7~0.1重量部)、さらに好ましくは0.01重量部以下(例えば、1×10-6~0.01重量部)程度であってもよい。
 なお、本発明の電解質組成物は、本発明の効果を奏する限り、所望により、既知の各種添加剤等、前記式(1)で表されるカチオン単位を有する化合物及び電解質以外の物質を含有しても構わない。
[電解液]
 本発明は、上述した本発明の電解質組成物を含有する電解液を包含する。このような電解液は、電解質組成物が液体(イオン性液体)である場合等、必ずしも有機溶媒をしないものであってもよいが、通常、有機溶媒を含有してもよい。
 このような有機溶媒を含有する電解液は、本発明の電解質組成物を有機溶媒に溶解することにより得ることができる。電解質組成物を有機溶媒に溶解して電解液を調製する方法は、従来十分に確立されており、本発明もそれに従ってよい。
 電解液の調製作業を行う環境としては、水分及び酸素が電気二重層キャパシタの性能に悪影響を与えるため、大気が混入しない環境であれば特に限定されないが、作業環境は露点マイナス30℃以下であることが好ましい。露点マイナス30℃を越えると、作業時間の経過に伴い、電解液が雰囲気中の水分を吸収するため電解液中の水分が上昇してしまう。なお、電解液中の水分はカールフィッシャー水分計で測定することができ、該水分は、例えば、100ppm以下が好ましい。
 本発明において用いられる有機溶媒としては、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、アセトニトリル、スルホラン等が挙げられる。これらの溶媒は1種類単独で又は2種類以上を混合して使用することができる。有機溶媒は、好ましくは、プロピレンカーボネートである。これらの有機溶媒は、市販されているものを使用しても良いし、必要に応じて蒸留等によりさらに精製したものを用いても良い。
 本発明の電解液(有機溶媒を含有する電解液)において、電解質又は電解質組成物の含有量は、特に限定されないが、該電解液の使用中に電解質組成物が析出しない程度の含有量であることが好ましい。該含有量は、電解液全量に対して、通常は約0.1~70重量%であり、好ましくは約1~50重量%であり、さらに好ましくは約10~30重量%程度である。
 また、本発明の電解液は、本発明の効果を奏する限り、所望により、LiBF、LiPF等のリチウム塩等、本発明の電解質組成物及び前記有機溶媒以外の物質を含有してもよい。
 本発明の電解液は、前記式(1)で表されるカチオン単位を有する化合物を含有しない電解液と比較して、電圧の印加等、電気化学的な変質時において、高アルカリ化を抑制することができ、例えば、pH値が高アルカリ性(例えば、pH10≦)にならない。
 本発明において、電解液に電圧を印加する方法は、特に限定されず、従来公知の方法を用いることができ、例えば、定電流電解等を使用することができる。
 電解液に電圧を印加したときのアルカリ度を測定する方法としては、特に限定されないが、定電流電解におけるpH値を測定する方法として、常法に従ってよく、例えば、特許第4802243号公報に記載の方法等に従って測定することができる。
 本発明の電解液(及び電解質組成物)は、電解液に電圧を印加したときのpH値が、通常は、電圧印加開始から5時間後までの間において、10未満であることが好ましい。尚、pH値は、後述の実施例に記載の方法を用いて測定した値である。
[電気化学デバイス]
 本発明は、上述した本発明の電解液が用いられている電気化学デバイスをも包含する。
 該電気デバイスとしては、特に限定されないが、例えば、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン電池、太陽電池、燃料電池等が挙げられ、好ましくは、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン電池等である。
 本発明の電気化学デバイスは、電解液として本発明の電解液を使用するものであればよく、その製造方法は特に限定されず、従来公知の方法を使用することができる。電解液を用いた電気化学デバイスの製造方法は、従来十分に確立されており、本発明もそれに従ってよい。本発明の電気化学デバイスは、公知の方法、例えば、特許5430464号公報、特許5063172号公報、特許5439009号公報、特開2012-18916号公報、特開平8-107048号公報、特開2013-20835号公報に記載の方法等に従って製造することができる。
 本発明の電気化学デバイスは、上述した本発明の電解液を使用することにより、電圧の印加等、電解液の電気化学的な変質時においても電解液中のOHイオン濃度の上昇を抑制し、電解液の高アルカリ化を抑制することができるため、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させることができるものである。
(電気二重層キャパシタ)
 電気化学デバイスとして電気二重層キャパシタを製造する場合、電気二重層キャパシタの一例としては、例えば、ラミネート型を挙げることができる。しかし、電気二重層キャパシタの形状はラミネート型に限定されるものではなく、缶体中に電極を積層して収納されてなる積層型、捲回して収納されてなる捲回型、又は絶縁性のガスケットにより電気的に絶縁された金属製缶からなるコイン型と称されるものであってもよい。以下、一例としてラミネート型電気二重層キャパシタの構造について説明する。
 図1及び図2は、ラミネート型電気二重層キャパシタを示す図面である。該キャパシタは、キャパシタ電極3とアルミタブ1が接着されていて、2つの電極3がセパレータ4を介して対向配置され、ラミネート2に収納されている。電極は、活性炭等の炭素材料からなる分極性電極部分と、集電体部分とからなる。ラミネート容器体2は、熱圧着により密封し、容器外部からの水分や空気が侵入しないようになっている。
 分極性電極材料は、比表面積が大きく、電気伝導性が高い材料であることが好ましく、また使用する印加電圧の範囲内で電解液に対して電気化学的に安定であることが必要である。このような材料としては、例えば、炭素材料、金属酸化物材料、導電性高分子材料等を挙げることができる。コストを考慮すると、分極性電極材料は、炭素材料であるのが好ましい。
 炭素材料としては、活性炭材料が好ましく、具体的には、おがくず活性炭、やしがら活性炭、ピッチ・コークス系活性炭、フェノール樹脂系活性炭、ポリアクリロニトリル系活性炭、セルロース系活性炭等を挙げることができる。
 金属酸化物系材料としては、例えば、酸化ルテニウム、酸化マンガン、酸化コバルト等を挙げることができる。導電性高分子材料としては、例えば、ポリアニリン膜、ポリピロール膜、ポリチオフェン膜、ポリ(3,4-エチレンジオキシチオフェン)膜等を挙げることができる。
 電極は、公知技術に従って得ることができ、例えば、上記分極性電極材料をPTFE(ポリテトラフルオロエチレン)などの結着剤と共に混練し、加圧成型したものを導電性接着剤でアルミニウム箔等の集電体に結着させるか、又は上記分極性電極材料を結着剤と共にCMC(カルボキシメチルセルロース)等の増粘剤もしくは、ピロリドン等の有機溶剤に混合し、ペースト状にしたものをアルミニウム箔等の集電体に塗工後、乾燥して得ることができる。
 セパレータとしては、電子絶縁性が高く、電解液の濡れ性に優れイオン透過性が高いものが好ましく、また、印加電圧範囲内において電気化学的に安定である必要がある。セパレータの材質は、特に限定は無いが、レーヨンやマニラ麻等からなる抄紙;ポリオレフィン系多孔質フィルム;ポリエチレン不織布;ポリプロピレン不織布等が好適に用いられる。
(リチウムイオンキャパシタ)
 電気化学デバイスとしてのリチウムイオンキャパシタは、例えば、セパレー夕を挟んで対向する電極と、電解液とを容器中に収容したキャパシタであって、正極が活性炭であり、負極がリチウムをイオン化した状態で吸蔵、離説しうる炭素材料であり、かつ予めリチウムを吸蔵させた電極であり、電解液が非水系電解液であるもの等が挙げられる。
 リチウムイオンキャパシタは2種類の電極が使用され、各々の分極性電極は、リチウムをイオン化した状態で吸蔵、脱離しうる炭素材料で構成されるものであり、これが負極となり、また、一方の分極性電極は活性炭にアニオンを吸着でき、これが正極となる。正極は、好ましくは活性炭と電子電導性を付与する導電剤で構成される。
 電極を構成する炭素材料としては、正極に使用できる活性炭には、やしがら系活性炭、石油コークス系活性炭等を挙げられる。
 電子電導性を付与する導電剤としては、他に高導電性カーボンブラック、アセチレンブラック、天然黒鉛、人造黒鉛等が挙げられる。これら導電剤の使用量は活性炭の1~50重量%とすればよい。
 負極の主な構成材料である、リチウムをイオン化した状態で吸蔵、脱離しうる炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛化メソフェーズカーボン繊維、黒鉛ウィスカ、黒鉛化炭素繊維、フルフリルアルコール樹脂の熱分解物、ノボラック樹脂の熱分解物、ピッチ、コークス等の縮合多環炭化水素化合物の熱分解物等を挙げる事ができる。
 電極は、公知技術に従って得ることができる。例えば、正極は、上記活性炭粉末、導電剤及びポリテトラフルオロエチレン等の結合剤をアルコールの存在下で混練し、シート状に成形し、次いで乾燥すれば正極側の分極性電極が得られる。
 また、電極のうち、リチウムをイオン化した状態で吸蔵、脱離うる炭素材料に予めリチウムを吸蔵させた炭素質材料を主体とする負極は、好ましくはリチウムをイオン化した状態で吸蔵しうる炭素材料と結合剤で構成される。この負極は、例えば次のような方法で形成できる。
 リチウムをイオン化した状態で吸蔵しうる炭素材料の粉末と結合剤とをアルコールの存在下で混練し、シート状に成形後乾燥して負極とする。次いでこの負極を導電性接着剤等を用いて集電体に接合し、リチウム箔を負極に接触させた状態で容器中に封入した後加温し、リチウムを炭素材料に吸蔵させればよい。結合剤の使用量は0.5~20重量%とすればよい。
 セパレータとしては、絶縁性が高く電解液の濡れ性に優れイオン透過性の高いものが好ましく、電気化学的に安定なものが良い。材質は特に限定されないがセルロース(紙)、ポリオレフィン系多孔質フィルム等が好適である。
 以上のように作製されるリチウムイオンキャパシタにおいて、本発明の電解液を用いる場合には、該電解液にLiBF、LiPF等のリチウム塩を添加する事ができる。これらリチウム塩は、前記式(1)で表される化合物を含有してなる電解液に、0.1~2.5moL/Lとなるよう添加するのが好ましく、さらには0.2~2.0moL/Lとなるよう添加するのがより好ましい。
(リチウムイオン電池)
 電気化学デバイスとしてのリチウムイオン電池としては、負極の容量が電極反応物質であるリチウムの吸蔵及び捲回による容量成分により表わされる二次電池であり、金属製あるいはフィルム状の外装部材の内部にセパレータを挟んで対向された正極及び負極と共に前記非水電解液又は非水電解質を備えたものであって、例えば、正極リード及び負極リードが取り付けられた捲回電極体をフィルム状の外装部材の内部に収納した構成を有しているものが挙げられる。
 正極は、正極活物質と結着剤と導電剤とを混合して正極合剤を調製し、N-メチル-2-ピロリドン等の溶剤に分散させたスラリーを正極集電体に塗布して乾燥させ、圧縮成型して作製することができる。
 正極活物質としては、電極反応物質であるリチウムを吸蔵及び捲回することが可能な正極材料の1種又は2種以上から成り、リチウム複合酸化物、リチウムリン酸化物、リチウム硫化物、リチウムを含む層間化合物等のリチウム含有化合物が挙げられる。
 結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンゴム等の合成ゴム;ポリフッ化ビニリデン等の高分子材料が挙げられる。
 導電剤としては、例えば、黒鉛、カーボンブラック等の炭素材料が挙げられ、これらの1種又は2種以上を混合して用いてもよい。
 また、負極は、負極活物質と結着剤とを混合して負極合剤を調製し、N-メチル-2-ピロリドン等の溶剤に分散させたスラリーを負極集電体に塗布して乾燥させ、圧縮成型して作製することができる。
 負極活物質としては、電極反応物質であるリチウムを吸蔵及び捲回することが可能な負極材料から成り、金属元素及び半金属元素のうちの少なくとも1種を構成元素として含む材料が挙げられる。このような材料としては、リチウム金属を挙げることができ、これらと合金を形成する材料であってもよい。
 結着剤としては、上記正極の場合で示したものを使用することができる。
 作製した正極と負極とをセパレー夕を介して積屑して捲回し捲回電極体を形成し、これを外装部材の内部に収納する。続いて、電解液を外装部材の内部に注入した後、外装部材の開口部を密閉させて電池とする。
 セパレータとしては、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等の合成樹脂製の多孔質膜、又はセラミック製の多孔質膜等が挙げられる。
 以上のように作製されるリチウムイオン電池において、本発明の電解液を用いる場合には、該電解液にLiBF、LiPF等のリチウム塩を添加したものを用いる事ができる。これらリチウム塩は、電解液に、0.1~2.5moL/Lとなるよう添加するのが好ましく、さらには0.2~2.0moL/Lとなるよう添加するのがより好ましい。
 本発明を以下の実施例及び比較例によって具体的に説明するが、本発明はこれらによって限定されるものではない。
[アルカリ化試験(pH値の測定)]
 電解液の定電流電解により、電解液への電圧の印加を行った。
 定電流電解における電解液のアルカリ度を観測する手法として、pH値を指標とした。定電流電解の負極(陰極)における電気分解は、室温、大気中でH型セルの負極室及び正極室にそれぞれ20mLの電解液を入れ、3cm白金プレートを電極として使用し、50mAで行った。該電気分解開始からの負極付近のpH値の経時変化を測定した。pH値測定には、HORIBA社製のpHメーターを用いた。
 実施例1 2-ヒドロキシ-N-エチル-N-メチルピロリジニウム テトラフルオロボレート(2-OH-EMPy-BF4)の合成
 (1)2-ヒドロキシ-N-メチルピロリジン
韓国特許KR 1325589に記載の方法等に準拠して、2-ヒドロキシ-N-メチルピロリジンを製造した。すなわち、300mlの反応容器にN-メチルピロリドン20.95gを無水メタノール120mLに溶解し、4gのホウ酸水素ナトリウムを少しづつ加えた。添加終了後2時間撹拌した。得られた溶液を0℃に冷却し、水50mLを少しづつ添加した。ジクロロメタン200mLを加え抽出し水相と分液した。得られたジクロロメタン溶液を濃縮すると2-ヒドロキシ-N-メチルピロリジンを含む粗生成物20gが得られた。これを精製することなくそのまま次の反応に用いた。
 (2)2-ヒドロキシ-N-エチル-N-メチルピロリジニウム テトラフルオロボレート
 特開2005-325067号公報の実施例1の方法を参考に、実施例1においてTEMA-CL(トリエチルメチルアンモニウム-クロリド)の代わりに上記2-ヒドロキシ-N-メチルピロリジンを用いることで目的物を得た。
 すなわち、上記2-ヒドロキシ-N-メチルピロリジン1.01gを反応器に秤取り、アセトン10mLを加え溶解した。臭化エチル1.1gを加え80℃で8時間加熱した。得られた2-ヒドロキシ-N-エチル-N-メチルピロリジニウム 臭化物をアセトンに溶解し、カリウムテトラフルオロボレート(KBF)1.26gを加え、40℃で4時間撹拌した。
 反応液を液体クロマトグラフ質量分析計(LC/MS)で分析し、目的とする2-ヒドロキシ-N-エチル-N-メチルピロリジニウム テトラフルオロボレート(2-OH-EMPy-BF4)の生成を確認した後、反応液を濾過し、ろ液を濃縮して得られた残渣に、プロピレンカーボネート(純度99.99%、GC分析値)を加えて1%プロピレンカーボネート溶液を調製した。なお、目的物の生成収率は、原料2-ヒドロキシ-N-メチルピロリジンの消費量から推定し、本反応においては50%であった。
 2-OH-EMPy-BF4のMASSスペクトルから得られた質量電荷比m/Zは、130.1241であり、その理論(計算値)m/Z(130.12)と完全に一致した。
 実施例2
 N-メチルピロリドンの代わりにN-エチルピロリドンを用いて実施例1と同様に反応させて得られる2-ヒドロキシ-N-エチルピロリジンから2-ヒドロキシ-N,N-ジエチル-N-メチルピロリジニウム テトラフルオロボレートを製造した。収率45%。
 実施例3
 実施例1において臭化エチルの代わりにヨウ化メチルを用いて実施例1と同様に反応させて2-ヒドロキシ-N,N-ジメチルピロリジニウム テトラフルオロボレートを製造した。収率55%。
 実施例4
 臭化エチルの代わりに臭化プロピルを用いて実施例1と同様に反応させて2-ヒドロキシ-N-メチル-N-プロピルピロリジニウム テトラフルオロボレートを製造した。収率40%。
 実施例5
 臭化エチルの代わりに臭化ブチルを用いて実施例1と同様に反応させて2-ヒドロキシ-N-ブチル-N-メチルピロリジニウム テトラフルオロボレートを製造した。収率40%。
 実施例6
 臭化エチルの代わりにジブロモブタンを用いて実施例1と同様に反応させて2-ヒドロキシ-1,1’-スピロ-ビスピロリジニウム テトラフルオロボレートを製造した。収率30%。
 実施例7
 特公平8-31401の実施例に準じて製造したN-エチル-N-メチルピロリジニウム テトラフルオロボレート(EMPy-BF4)99.9gを、高純度プロピレンカーボネート(純度99.9%以上、水分100ppm以下)100.0gに加えた後、実施例1で調製した2-ヒドロキシ-N-エチル-N-メチルピロリジニウム テトラフルオロボレートの1%(W/W)プロピレンカーボネート溶液10.0gを加えて溶液とした。この溶液を水分が100ppm以下になるまで脱水濃縮した。得られた濃縮物に、室温下、露点-40℃の乾燥窒素雰囲気下で、高純度プロピレンカーボネートを電解質EMPy-BF4の濃度が1.5mol/L(電解質濃度25%溶液)となるまで添加して電解液を調製した。この電解液を用いて上記アルカリ化試験を行なった。
 尚、本実施例1及び後述の比較例1~3において使用したプロピレンカーボネートは、精密蒸留した高純度のプロピレンカーボネート(純度99.99%、GC分析値)である。
 比較例1
 室温下、露点-40℃の乾燥窒素雰囲気中で、N-エチル-N-メチルピロリジニウム テトラフルオロボレートをプロピレンカーボネートで1.5mol/Lとなるように希釈して電解液を調製した。この電解液を用いて上記アルカリ化試験を行なった。
 比較例2
 室温下、露点-40℃の乾燥窒素雰囲気下で、市販(cap-chem社製)のN,N,N-トリエチル-N-メチルアンモニウム テトラフルオロボレート(TEMA-BF4)結晶をプロピレンカーボネートに1.5mol/Lとなるように溶解して電解液を調製した。この電解液を用いて上記アルカリ化試験を行なった。
 比較例3
 室温下、露点-40℃の乾燥窒素雰囲気中で、公知の製法で製造した1,1’-スピロ-ビスピロリジニウム テトラフルオロボレート(SBP-BF4)結晶をプロピレンカーボネートに1.5mol/Lとなるように溶解して電解液を調製した。この電解液を用いて上記アルカリ化試験を行なった。
 比較例4
 室温下、露点-40℃の乾燥窒素雰囲気中で、市販(関東化学社製)のエチルメチルイミダゾリウムテトラフルオロボレート(EMI-BF4)をプロピレンカーボネートで1.5mol/Lとなるように希釈して電解液を調製した。この電解液を用いて上記アルカリ化試験を行なった。
 実施例7及び比較例1~4の、定電流電解の負極(陰極)におけるpH値の経時変化を、図3に示す。
 図3の結果から、本発明の電解質組成物(すなわち、2-ヒドロキシ-N-エチル-N-メチルピロリジニウム テトラフルオロボレート及びN-エチル-N-メチルピロリジニウム テトラフルオロボレート(EMPy-BF4)を用いた電解液(実施例7)は、定電流電解を行なっても僅かにpHがアルカリになるものの、定電流電解開始から5時間後までの間、pH値10以下であり、また、(EMI-BF4)を用いた電解液(比較例4)と比較しても高アルカリ化が抑制されることが確認された。
 一方、N-エチル-N-メチルピロリジニウム テトラフルオロボレート単独(比較例1)やN,N,N-トリエチル-N-メチルアンモニウム テトラフルオロボレート(TEMA-BF4)(比較例2)や1,1’-スピロ-ビスピロリジニウム テトラフルオロボレート(SBP-BF4)を電解質に用いた電解液(比較例3)は、電流電解を行うと経時的に強いアルカリ性を示すようになることが分かる。
 このように本発明の電解液は、従来の電解液と比べてアルカリ化しにくい電解液であることが示された。
 本発明によれば、電気化学デバイスにおいて、電圧の印加等、電解液の電気化学的な変質時においてもOHイオンの濃度上昇を抑制し、高アルカリ化を抑制することができるため、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させることができる。その結果、本発明の電解液を用いた電気化学デバイスは、信頼性を向上することができる。
1 アルミタブ
2 ラミネート
3 電極
4 セパレータ

Claims (15)

  1.  下記式(1)で表されるカチオン単位を有する化合物と電解質とを含む電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R、R及びRは同一又は異なってアルキル基又はアルコキシアルキル基を示し、R及びR並びにR及びRは、それぞれ一緒になって環を形成してもよく、Rは下記式(X)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはアルキレン基を示し、R、R及びRは前記と同じ)
    で表されるカチオン性基であってもよい。]
  2.  式(1)で表されるカチオン単位を有する化合物が、R及びRが、それぞれ、C1-6アルキル基又はC1-4アルコキシC1-6アルキル基であり、R及びRが一緒になって環を形成している化合物である請求項1記載の電解質組成物。
  3.  式(1)で表されるカチオン単位を有する化合物が、下記式(1A)で表されるカチオン単位を有する化合物である請求項1又は2記載の電解質組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、mは1又は2の整数を示し、R及びRは前記と同じ。)
  4.  式(1)で表されるカチオン単位を有する化合物において、Rがメチル基である請求項1~3のいずれかに記載の電解質組成物。
  5.  式(1)で表されるカチオン単位を有する化合物において、Rがメチル基、Rがエチル基である請求項1~4のいずれかに記載の電解質組成物。
  6.  電解質が、第4級アンモニウムカチオン単位を有する化合物である請求項1~5のいずれかに記載の電解質組成物。
  7.  電解質が、下記式(2)で表されるカチオン単位を有する化合物である請求項1~6のいずれかに記載の電解質組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは1又は2の整数を示し、R及びRは前記と同じ。)
  8.  式(1)で表されるカチオン単位を有する化合物の割合が、電解質1重量部に対して、1×10-7~0.1重量部である請求項1~7のいずれかに記載の電解質組成物。
  9.  請求項1~8のいずれかに記載の電解質組成物と有機溶媒とを含有する電解液。
  10.  請求項9記載の電解液を用いた電気化学デバイス。
  11.  電気二重層キャパシタである請求項10記載の電気化学デバイス。
  12.  リチウムイオンキャパシタである請求項10記載の電気化学デバイス。
  13.  リチウムイオン電池である請求項10記載の電気化学デバイス。
  14.  電解液におけるpH上昇を抑制するための剤であって、前記式(1)で表されるカチオン単位を有する化合物で構成されたpH上昇抑制剤。
  15.  前記式(1)で表されるカチオン単位を有する化合物(ただし、前記式(1)において、R、R及びRがイソプロピル基、Rがエチル基である化合物を除く)。
PCT/JP2017/027584 2016-07-29 2017-07-31 電気化学デバイス用電解質、電解液ならびに電気化学デバイス WO2018021577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780039465.XA CN109478472B (zh) 2016-07-29 2017-07-31 电化学设备用电解质、电解液以及电化学设备
JP2018530445A JP6921825B2 (ja) 2016-07-29 2017-07-31 電気化学デバイス用電解質、電解液ならびに電気化学デバイス
US16/320,208 US11114695B2 (en) 2016-07-29 2017-07-31 Electrolyte for electrochemical device, electrolytic solution, and electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150773 2016-07-29
JP2016150773 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021577A1 true WO2018021577A1 (ja) 2018-02-01

Family

ID=61017147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027584 WO2018021577A1 (ja) 2016-07-29 2017-07-31 電気化学デバイス用電解質、電解液ならびに電気化学デバイス

Country Status (4)

Country Link
US (1) US11114695B2 (ja)
JP (1) JP6921825B2 (ja)
CN (1) CN109478472B (ja)
WO (1) WO2018021577A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363513A (zh) * 2021-06-25 2021-09-07 中国计量大学 一种铝空气电池电解液浓度控制与优化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021241333A1 (ja) * 2020-05-26 2021-12-02

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262896A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び該化合物の製造法
JP2005225843A (ja) * 2004-02-16 2005-08-25 Tosoh Corp アルコキシアルキル基含有4級アンモニウム塩の製造方法
JP2012056897A (ja) * 2010-09-09 2012-03-22 Otsuka Chem Co Ltd 環状第4級アンモニウム塩、それを用いた電解質組成物、及び該電解質組成物を用いた電気化学デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870275A (en) 1993-12-03 1999-02-09 Sanyo Chemical Industries, Ltd. Electrolyte and electronic component using same
TW278192B (ja) 1993-12-03 1996-06-11 Sanyo Chemical Ind Ltd
JP3751048B2 (ja) 1995-05-26 2006-03-01 松下電器産業株式会社 電解液およびそれを用いた電気化学素子
DE10128581B4 (de) * 2001-06-13 2005-04-07 Epcos Ag Elektrolytlösung für elektrochemische Kondensatoren
JP4239537B2 (ja) * 2002-09-18 2009-03-18 株式会社ジーエス・ユアサコーポレーション 常温溶融塩型電解質およびそれを用いた電気化学デバイス
EP1819005A1 (en) * 2006-02-13 2007-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) Ionic liquid electrolyte
JP5184013B2 (ja) 2007-09-07 2013-04-17 ステラケミファ株式会社 電気二重層キャパシタ用電解液
JP2012069931A (ja) 2010-08-26 2012-04-05 Sanyo Chem Ind Ltd 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
WO2012053395A1 (ja) * 2010-10-19 2012-04-26 ダイキン工業株式会社 非水電解液
JP5667328B2 (ja) * 2011-08-30 2015-02-12 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 2つの中心を有するビス第四級アンモニウム塩のイオン液体、その調製方法及び使用
US9300009B2 (en) * 2012-10-22 2016-03-29 Ut-Battelle, Llc Electrolyte compositions for lithium ion batteries
JP2014099443A (ja) 2012-11-13 2014-05-29 Panasonic Corp 電解液およびそれを用いた電気二重層キャパシタ
JP6342230B2 (ja) * 2013-06-21 2018-06-13 株式会社半導体エネルギー研究所 非水溶媒、非水電解質および蓄電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262896A (ja) * 2003-03-04 2004-09-24 Tosoh Corp 4級アンモニウム系常温溶融塩及び該化合物の製造法
JP2005225843A (ja) * 2004-02-16 2005-08-25 Tosoh Corp アルコキシアルキル基含有4級アンモニウム塩の製造方法
JP2012056897A (ja) * 2010-09-09 2012-03-22 Otsuka Chem Co Ltd 環状第4級アンモニウム塩、それを用いた電解質組成物、及び該電解質組成物を用いた電気化学デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363513A (zh) * 2021-06-25 2021-09-07 中国计量大学 一种铝空气电池电解液浓度控制与优化方法
CN113363513B (zh) * 2021-06-25 2022-08-05 中国计量大学 一种铝空气电池电解液浓度控制与优化方法

Also Published As

Publication number Publication date
US20190273284A1 (en) 2019-09-05
US11114695B2 (en) 2021-09-07
JP6921825B2 (ja) 2021-08-18
JPWO2018021577A1 (ja) 2019-05-23
CN109478472A (zh) 2019-03-15
CN109478472B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
JP4802243B2 (ja) 電解液用添加剤及び電解液
TWI430304B (zh) Storage element
KR100970918B1 (ko) 이온성 액체 및 탈수 방법, 및 전기 이중층 커패시터, 및2차 전지
KR100900132B1 (ko) 제4급 암모늄염, 전해질, 전해액 및 전기 화학 디바이스
JPWO2005003108A1 (ja) 第4級アンモニウム塩および電解質並びに電気化学デバイス
KR20180038476A (ko) 인산디에스테르염, 그의 제조 방법, 축전 소자의 비수 전해액 및 축전 소자
KR102118480B1 (ko) 축전 디바이스용 전해질염 및 전해액 및 축전 디바이스
US20090268377A1 (en) Electrolyte solution and super capacitor including the same
WO2006077895A1 (ja) 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス
US7391603B2 (en) Electric double layer capacitor and electrolytic solution therefor
JP6921825B2 (ja) 電気化学デバイス用電解質、電解液ならびに電気化学デバイス
JP4836578B2 (ja) 第四級アンモニウム塩、電解質、電解液及び電気化学デバイス
JPWO2008123286A1 (ja) 電気二重層キャパシタ
JP2945890B2 (ja) 電気二重層コンデンサ
KR20110080913A (ko) 초고용량 커패시터용 전해질 용액
JP2003173936A (ja) 電気化学キャパシタ用電解液およびそれを用いた電気化学キャパシタ
WO2024111310A1 (ja) 電解液、および、それを用いた蓄電素子
WO2024043043A1 (ja) 電解液、および、それを用いた蓄電素子
JP2019114661A (ja) 電解質及び電解液
KR101896835B1 (ko) 비스(옥살레이트)보레이트를 음이온으로 갖는 전해질 염을 함유하는 전해액 조성물 또는 이를 포함하는 전기이중층 커패시터
JP2024075278A (ja) 電解液、および、それを用いた蓄電素子
JP2010235526A (ja) イミダゾリウム塩、電解液並びに電気化学デバイス
WO2006077893A1 (ja) 電解液及び電気化学デバイス
JPWO2008059990A1 (ja) キャパシタ
JP2019029570A (ja) 電解液用溶媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834577

Country of ref document: EP

Kind code of ref document: A1