WO2006077893A1 - 電解液及び電気化学デバイス - Google Patents

電解液及び電気化学デバイス Download PDF

Info

Publication number
WO2006077893A1
WO2006077893A1 PCT/JP2006/300663 JP2006300663W WO2006077893A1 WO 2006077893 A1 WO2006077893 A1 WO 2006077893A1 JP 2006300663 W JP2006300663 W JP 2006300663W WO 2006077893 A1 WO2006077893 A1 WO 2006077893A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
electrolytic solution
formula
electrolyte
group
Prior art date
Application number
PCT/JP2006/300663
Other languages
English (en)
French (fr)
Inventor
Tetsuo Nishida
Kazutaka Hirano
Megumi Tomisaki
Hitoshi Tsurumaru
Akihiro Nabeshima
Yoshinobu Abe
Hiroaki Tokuda
Akinori Oka
Original Assignee
Otsuka Chemical Co., Ltd.
Stella Chemifa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co., Ltd., Stella Chemifa Corporation filed Critical Otsuka Chemical Co., Ltd.
Publication of WO2006077893A1 publication Critical patent/WO2006077893A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution and an electrochemical device. Specifically, the present invention relates to an electrolytic solution having high withstand voltage and high electrical conductivity and an electrochemical device using the electrolytic solution.
  • organic electrolytes are used more frequently than aqueous ones.
  • organic electrolytes include an alkali metal salt or solid ammonium salt dissolved in an organic solvent such as propylene carbonate.
  • the former is used as an electrolyte for lithium ion batteries, and the latter is used for electric double layer capacity. It is used as an electrolyte solution.
  • Organic electrolytes have poor electrical conductivity compared to aqueous systems, and many studies on organic solvents and electrolytes have been carried out to improve electrical conductivity.
  • the electrical conductivity of the electrolyte changes with the electrolyte concentration.
  • Increasing the concentration of ions in the electrolyte with increasing concentration increases the electrical conductivity, but eventually reaches a maximum.
  • the electrolyte becomes less likely to dissociate as the number of ions in the electrolyte increases and the electrolyte becomes less likely to dissociate. It is thought that the viscosity of the liquid increases. As the electrolyte concentration increases further, it cannot dissociate any more and the electrolyte concentration saturates.
  • tetraammonium tetrafluoroporate and N, N, N-triethyl-N-methyl ammonium tetrafluoroporate have been used favorably. Although it is relatively soluble in dielectric constant solvents, it has a limit of about 2 M at room temperature, and there is a problem that crystals are precipitated at higher concentrations or at low temperatures. In addition, it was hardly soluble in low dielectric constant solvents and could not be used as an electrolyte.
  • the decomposition voltage of the solvent will be dominated even if the electrolyte is converted to the high withstand voltage type.
  • the upper limit of the operating voltage of the conventional capillaries is about 2.5 V. 2.
  • the electrolytic solution mainly solvent
  • the electrolytic solution undergoes electrochemical decomposition, and undesirable phenomena such as significant deterioration of performance and gas generation occur.
  • improvement of energy density is required, and improvement of operating voltage is an effective means of improving energy density.
  • room temperature molten salts are not very soluble in solvents with low dielectric constants, and many of them are separated into two layers.
  • low-voltage aromatic room temperature molten salts such as ethylmethylimidazole
  • high-voltage aliphatic room temperature molten salts have the potential to effectively use the high withstand voltage of chain carbonates, but have low solubility. It cannot be a satisfactory electrolyte.
  • capacitors As described above, it is important to use a solvent with a high withstand voltage in order to improve the energy density of the capacitor.
  • increasing the electrical conductivity of the electrolyte is an effective technique.
  • One of the major features of capacitors is that they can be charged and discharged with a large current compared to secondary batteries. However, when discharging with a large current, the energy lost by the resistance increases. In extreme terms, most of the energy stored in the capacity is lost due to resistance heat. Therefore, reducing the resistance of the capacitor leads to an increase in the energy that can be used substantially among the energy stored in the capacitor, and it is important to increase the electrical conductivity of the electrolyte.
  • a tetraalkylammonium salt and electrical conductivity are disclosed (see Non-Patent Document 1).
  • tetraethylammonium tetrafluoroborate and propylene such as N, N, N 1-triethyl 1-N-methylammonium tetrafluoroporate, which are conventionally used as electrolytes for electric double layer capacitors. It is shown for the electrical conductivity of force-bonate solutions.
  • Tetraethylammonium tetrafluoroborate with a solute concentration of lmo 1/1 in propylene carbonate The electrical conductivity is about 13 mS cm ⁇ N, N, N-triethyl-N-methylammonium tetrafluoroborate with a solute concentration of 1.5 mo 1/1 for propylene carbonate solution.
  • the conductivity is at most about 16 mS cm- 1 .
  • Non-Patent Document 1 Ue et al., J. Electrochem. Soc. 141 (2989) 1994
  • the object of the present invention is to provide an electrolyte and an electrochemical device that are excellent in reliability at low temperatures and have a high withstand voltage. There is. Disclosure of the invention
  • the present invention relates to the following inventions.
  • a non-aqueous electrolyte characterized by containing a quaternary ammonium salt represented by the formula (1) and a chain carbonate.
  • R 1 ! ⁇ 3 represents a linear or branched alkyl group having 1 to 3 carbon atoms
  • R 4 represents a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group or an iso-propoxymethyl group.
  • X— indicates BF 4 _, except when 1 to! ⁇ 3 are all the same.
  • a nonaqueous electrolytic solution comprising a quaternary ammonium salt represented by formula (2) or formula (3) and a chain carbonate.
  • the present invention relates to a nonaqueous electrolytic solution characterized by containing a quaternary ammonium salt represented by the formula (1) and a chain carbonate.
  • Examples of the linear or branched alkyl group having 1 to 3 carbon atoms represented by 1 to! ⁇ 3 include a methyl group, an ethyl group, an n-propyl group, and an iso-propyl group.
  • a methyl group or an ethyl group is preferable.
  • Examples of the group represented by R 4 include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and an iso-propoxymethyl group.
  • a methoxymethyl group or an ethoxymethyl group is preferable.
  • the quaternary ammonium salt of the present invention includes N-ethyl-N-methoxymethyl- N, N—dimethylammonium tetrafluoroporate, N, N—jetyl-N— methoxymethyl-N—methylammonium mutafluorofluorate, N—methylmethyl N, N—dimethyl- N _ n —Propylammonium tetrafluoroporate, N-methoxymethyl—N, N—dimethyl—N—iso—propylammonium tetrafluoroborate, N—ethylyl N—methoxymethyl _ N—methyl _ N—n—Propyl ammonium tetrafluoroborate, N—Ethyru N—Methoxymethyl—N—Methyl—N—iso—Propyl ammonium tetrafluoroborate,
  • N-ethyl-N-methoxymethyl-N, N-dimethylammonium tetrafluoroborate, N, N-jetyl-N-methoxymethyl-N-methylammonium tetrafluoroporate, N-ethoxymethyl-N-ethyl mono-N, N-dimethylammonium tetrafluoroporate and N-ethoxymethyl-N, N-jetyl-N-methylammonium tetrafluoroborate are preferred.
  • N-ethoxymethyl-N-ethyl-N, N-dimethylammonium tetrafluoroborate, N-ethoxymethyl-N, N-jetyl-N_methylammonium tetrafluoroporate is preferable.
  • the quaternary ammonium salt used in the present invention is produced by various methods. A typical synthesis method is shown by the following reaction formula.
  • a class 3 amin represented by the formula (4) ( 1 ⁇ ! ⁇ 3 is the same as above) and the formula (5)
  • a quaternary ammonium salt represented by the formula (1) can be produced by a salt exchange reaction between the quaternary ammonium salt represented by the formula (la) and the compound represented by the formula (6).
  • M contains an alkali metal atom such as H or Na, K or Li, an alkaline earth metal atom such as Ca, Mg or Ba, or a metal atom such as Ag.
  • the tertiary amine represented by the formula (4) and the compound represented by the formula (5) used as starting materials are both known substances.
  • the tertiary amine represented by the formula (4) includes ethyldimethylamine, dimethyl mono-n-propylamine, dimethyl-iso-propylamine, jetylmethylamine, ethylmethyl-n-propylamine, ethylmethyl-iso-propylamine, etc. Can be mentioned.
  • Examples of the compound represented by the formula (5) include chloromethyl methyl ether, promomethyl methyl ether, odomethyl methyl ether, chloromethyl ethyl ether, bromomethyl ethyl ether, odomethyl ethyl ether, Examples include chloromethyl mono-n-propyl ether, bromomethyl-n-propyl ether, odomethyl mono-n-propyl ether, chloromethyl-iso-propyl ether, bromomethyl-iso-propyl ether, and odomethyl-iso-propyl ether.
  • solvent to be used a known solvent is widely used as long as it can dissolve the tertiary amine represented by the formula (4) and the compound represented by the formula (5) and does not adversely influence the reaction.
  • solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane, chloroform, and carbon tetrachloride; methanol, ethanol, iso-propanol, and n-butyl.
  • Lower alcohols such as Yunol and tert-Buunol; Canes such as Acetone and Methylethyl Gain; Ethers such as Jetyl Ether and Di-iso-Propyl Ether; n-Hexane, n-Heptane and the like Aliphatic hydrocarbons; aliphatic hydrocarbons such as cyclohexane.
  • An aromatic hydrocarbon such as toluene, a halogenated hydrocarbon such as black mouth form, and a ketone such as acetone are preferable.
  • Such solvents can be used singly or in combination of two or more.
  • solvents are preferably anhydrous solvents (moisture of 1000 ppm or less).
  • the compound represented by the formula (5) is usually used in an amount of 0.5 to 5 mol, preferably 0.9 to 1.2 mol, with respect to 1 mol of the tertiary amine represented by the formula (4).
  • the reaction is usually performed at 30 to 100 ° C, preferably at -10 to 40 ° C. In general, the reaction is carried out for several hours to 24 hours.
  • reaction of the quaternary ammonium salt represented by the formula (l a) obtained by the above reaction with the compound represented by the formula (6) is carried out by an ordinary salt exchange reaction.
  • the compound represented by the formula (6) used as a raw material is a known compound.
  • HBF 4 Li BF 4 , NaBF 4 , KBF 4 , Ag BF 4 and the like can be mentioned.
  • This salt exchange reaction is carried out in a suitable solvent.
  • Solvents used are known as long as they can dissolve the quaternary ammonium salt represented by the formula (1a) and the compound represented by the formula (6) and do not adversely affect the reaction. Can be widely used.
  • solvents include, for example, water; halogenated hydrocarbons such as dichloromethane, chloroform, and tetrachlorocarbon; methanol, ethanol, iso-propanol, n-butanol, tert-butanol, and the like.
  • Examples include alcohols; canes such as acetone and methylethyl cane; esters such as ethyl acetate and butyl acetate: aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide.
  • aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide.
  • Preferred are lower alcohols such as methanol; halogenated hydrocarbons such as black mouth form: water.
  • the compound represented by the formula (6) is usually used in an amount of 0.3 to 5 mol, preferably 0.9 to 1.2 mol, with respect to 1 mol of the quaternary ammonium salt represented by the formula (1 a). To do. Since the reaction usually proceeds rapidly, for example, a solution obtained by dissolving both in a solvent is reacted at 5 ° C. to 150 ° C. for about 10 minutes to 24 hours.
  • the desired product obtained in each of the above reactions can be easily isolated from the reaction mixture by a conventional separation means such as centrifugation, concentration, washing, organic solvent extraction, chromatography, recrystallization and the like. And purified.
  • the salt exchange reaction can also be performed using an ion exchange resin.
  • the ion exchange resin include an anion exchange resin.
  • the salt exchange reaction can be achieved by exchanging the anion in the resin to the desired anion in advance and passing a solution of the quaternary ammonium salt represented by the formula (la) through the resin.
  • the solvent used here can be widely used as long as it can dissolve the formula (l a) and does not adversely affect the salt exchange reaction. Examples of such a solvent include water and alcohols.
  • reaction conditions for producing the quaternary ammonium salt represented by the formula (1) in which X represents BF 4 from the quaternary ammonium salt represented by the formula (la) are specifically shown.
  • a quaternary ammonium salt represented by the formula (la) is dissolved in the lower alcohol, and a predetermined amount (for example, borohydrofluoric acid concentration of 7 Owt% or less) of methanol borohydrofluoric acid, Add boron fluoride such as silver halide and react at 5 ° C to 150 ° C for about 30 minutes.
  • the target compound can be isolated by distilling off the hydrogen halide produced by the reaction, filtering off a halogen salt such as silver halide, and concentrating the filtrate under reduced pressure and drying.
  • For distilling off the hydrogen halide for example, centrifugal separation, under heat N. Distillation by bubbling (for example, 60 ° C to 150 ° C), Distillation or the like can be applied.
  • the water content of the quaternary ammonium salt represented by the above formula (1) is preferably 1 O O p pm or less. More preferably, it is 50 ppm or less, even more preferably 30 ppm or less, and particularly preferably 10 ppm or less.
  • the chain carbonate used in the present invention is dimethyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, methyl-iso-propyl carbonate, n-butylmethyl carbonate, jetyl carbonate, ethyl
  • examples include n-propyl carbonate, ethyl iso-propyl carbonate, n-butyl ethyl carbonate, di-n-propyl carbonate, di-iso-propyl carbonate, di-n-butyl carbonate.
  • dimethyl carbonate and ethylmethyl carbonate are preferred. More preferably, ethylmethyl carbonate is preferred.
  • solvents may be used alone or in combination of two or more.
  • Examples of the mixed organic solvent include dimethyl carbonate and ethylmethyl carbonate.
  • chain carbonate ester In addition to the above chain carbonate ester, a mixture of cyclic carbonate ester, phosphate ester, cyclic ether, chain ether, lactone compound, chain ester, nitrile compound, amide compound, sulfone compound, etc. Also good.
  • Examples of the cyclic carbonate include ethylene force monoponate, propylene carbonate, butylene force monoponate, and propylene carbonate is preferable.
  • phosphate esters examples include trimethyl phosphate, phosphoric acid ethyl ester, and phosphate ester. Rudimethyl, jetylmethyl phosphate, and the like.
  • cyclic ethers examples include tetrahydrofuran and 2-methyltetrahydrofuran.
  • chain ether examples include dimethoxyethane.
  • lactone compound examples include aptilolactone.
  • chain esters examples include methyl propionate, methyl acetate, ethyl acetate, methyl formate and the like.
  • nitrile compound examples include acetonitrile.
  • Examples of the amide compound include dimethylformamide.
  • the sulfone compound examples include sulfolane and methyl sulfolane.
  • a cyclic carbonate, a nitrile compound, and a sulfone compound are preferable.
  • the nonaqueous electrolytic solution containing the quaternary ammonium salt represented by the formula (1) and the chain carbonate ester of the present invention can be used as an electrolytic solution for electrochemical devices.
  • Examples of the electrochemical device include an electric double layer capacitor and a secondary battery.
  • the nonaqueous electrolytic solution of the present invention can be used in the same manner as the electrolytic solution used in known electric double layer capacitors and secondary batteries.
  • the electrolyte concentration is 0.1 M or more. More preferably, it is 0.5 M or more, more preferably 1 M or more. If the electrolyte concentration is less than 0.1 M, the electrical conductivity will be low, and the performance of the electrochemical device may be reduced.
  • An electrolytic solution for an electrochemical device can be prepared using a nonaqueous electrolytic solution containing a quaternary ammonium salt represented by the formula (1) of the present invention and a chain carbonate.
  • the electrolytic solution obtained by the present invention can be used for an electrochemical device capable of storing electric energy by a physical action or a chemical action, and can be suitably used for, for example, an electric double layer capacitor and a secondary battery.
  • a method for preparing an electrolytic solution for electric double layer capacity using a nonaqueous electrolytic solution containing a quaternary ammonium salt represented by the formula (1) of the present invention and a chain carbonate will be described below.
  • the moisture will adversely affect the performance of the electric double layer capacitor, so it will not be mixed with the atmosphere, for example, an inert atmosphere such as argon gas or nitrogen gas. It is preferable to prepare in the glove box.
  • the moisture in the work environment can be managed with a dew point meter. It is preferable to set the working environment so that the dew point is 160 ° C or less. If the dew point exceeds -60 ° C, if the working time is long, the electrolyte solution absorbs moisture in the atmosphere, which increases the moisture content in the electrolyte solution.
  • the moisture in the electrolyte can be measured with a Karl Fischer moisture meter.
  • the electrolyte concentration is as described above. From the viewpoint of electrical conductivity, it is preferably 0.1 M or more, more preferably 0.5 M or more, and particularly preferably 1 M or more.
  • the upper limit of the electrolyte concentration is not limited as long as the electrolyte does not precipitate and separate.
  • chain carbonate the above-mentioned various chain carbonates can be used, but the physical properties such as dielectric constant, viscosity, melting point and the like differ depending on the type of chain carbonate.
  • the mixed composition of these is preferably determined according to the type of quaternary ammonium salt represented by the formula (1).
  • N-ethoxymethyl-N-ethylmethyl N, N-dimethylammonute trafluoroporate and ethylmethyl carbonate N-ethoxymethyl-N-ethylmethyl N, N-dimethylammonium
  • the composition of tetrafluoroporate is preferably 52 to 90% by weight, more preferably 52 to 80% by weight.
  • the composition of toximethyl-N, N-jetyl-N-methylammonium tetrafluoroborate is preferably 43 to 100% by weight, more preferably 43 to 80% by weight.
  • the non-aqueous electrolyte containing the quaternary ammonium salt represented by the formula (1) and the chain carbonate of the present invention should be used for an electrolyte for a secondary battery, particularly an electrolyte for a lithium secondary battery. You can also.
  • the working environment in which the preparation is performed is preferably in a glove box in which the dew point is controlled.
  • An electrolytic solution for a lithium secondary battery can be obtained by dissolving a lithium salt in a non-aqueous electrolytic solution containing a quaternary ammonium salt represented by the formula (1) of the present invention and a chain carbonate.
  • lithium salt various lithium salts such as lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium sulfonimidimide, lithium sulfonylmethide lithium and the like can be used.
  • the type is not particularly limited as long as the lithium salt does not precipitate.
  • the lithium salt concentration is usually from 0.1 to 2.0 mol, preferably from 0.15 to 1.5 mol, more preferably from 0.2 to 1.2 mol, particularly preferably from 0.3 to 1.0. is there.
  • the lithium salt concentration is less than 0.1 mol, when the charge / discharge rate is high, lithium ions are depleted near the electrode, and the charge / discharge characteristics may be degraded. Further, when the lithium ion concentration exceeds 2.0 mol, the viscosity of the electrolyte solution is increased, and the electrical conductivity may be lowered.
  • BF 4 — is contained in the anion forming the lithium salt.
  • the reason is not clear, but it is thought that when tetrafluoroporate is included, a passive film is formed on the surface of aluminum used as the positive electrode current collector, and the elution of aluminum can be suppressed.
  • the content of BF 4 — should be adjusted so that the number of ions is 0.5% or more of the total number of anions in the electrolyte. It is more preferable that the content is adjusted to 0.8% or more.
  • the upper limit concentration is such that the number of ions contained in BF 4 — is 100% of the total number of anions in the electrolyte.
  • the non-aqueous electrolyte used in the present invention preferably contains a specific organic additive.
  • the specific organic additive include ethylene carbonate, vinylene carbonate, butylene carbonate, and ethylene trithiol.
  • Ponate, vinylene trithiocarbonate, ethylene sulfite and the like can be mentioned. Of these, ethylene carbonate and vinylene carbonate are preferred.
  • These organic additives are used singly or in combination of two or more.
  • a lithium ion selective permeable membrane known as SEI Solid Electrolyte Interface
  • SEI Solid Electrolyte Interface
  • the above specific organic additives contain substances that also function as diluents.
  • the content of these specific organic additives is such that the ratio of the organic additives to the total electrolyte weight is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, and even more preferably 1 -20% by weight, most preferably 1-10% by weight.
  • the content of the specific organic additive is less than 1% by weight, a sufficient film is not formed on the negative electrode surface, and the decomposition of the ammonium cation forming the quaternary ammonium salt and the penetration into the negative electrode material are suppressed. There is a risk that it will be impossible to control.
  • An electric double layer capacity can be suitably produced using the nonaqueous electrolytic solution of the present invention obtained above.
  • An example of this electric double layer capacity is shown in FIG.
  • the shape of the electric double-layer capacitor is not limited to the coin type as shown in Fig. 1, but a laminated type in which electrodes are stacked and stored in a can body, and a wound type in which the electrode is wound and stored. Or what is called the laminate type which is packed in the aluminum laminate may be used.
  • coin-type electricity The structure of the double layer capacity will be described.
  • FIG. 1 is a drawing showing a cross section of a coin-type electric double layer capacitor. Electrodes 1 and 2 are arranged opposite to each other via a separator 3 and are stored in container bodies 4 and 5.
  • the electrode is composed of a polarizable electrode portion made of a carbon material such as activated carbon and a current collector portion.
  • the container bodies 4 and 5 do not have to be corroded by the electrolytic solution, and are made of, for example, stainless steel or aluminum.
  • the container bodies 4 and 5 are electrically insulated by an insulating gasket 6 and at the same time, the inside of the metal can body is sealed so that moisture and air from the outside of the can body do not enter.
  • the current collector and container 4 of the electrode 1 and the current collector of the electrode 2 and the metal spacer 7 are in contact with each other at an appropriate pressure due to the presence of the metal spring 8, and are in electrical contact. Keep.
  • the current collector may be bonded using a conductive paste such as a force-bond paste.
  • the polarizable electrode material is preferably a material having a large specific surface area and high electrical conductivity, and must be electrochemically stable to the electrolyte within the range of applied voltage used. It is. Examples of such a material include a carbon material, a metal oxide material, and a conductive polymer material. In view of cost, the polarizable electrode material is preferably a carbon material.
  • an activated carbon material is preferable, and specific examples include sawdust activated carbon, ashigara activated carbon, pitch coke activated carbon, phenol resin activated carbon, polyacrylonitrile activated carbon, and cellulose activated carbon. .
  • metal oxide material examples include ruthenium oxide, manganese oxide, and oxide oxide.
  • Examples of the conductive polymer material include polyaniline, polypyrrole film, polythiophene film, poly (3,4-ethylenedioxythiophene) film, and the like.
  • the electrode is formed by pressing the polarizable electrode material together with a binder, or mixing the polarizable electrode material with an organic solvent such as pyrrolidone together with a binder into a paste.
  • a current collector such as aluminum foil and then drying.
  • the separator is preferably one having high electronic insulation, excellent wettability of the electrolyte, and high ion permeability, and must be electrochemically stable within the applied voltage range.
  • the material for the separation evening is not particularly limited, but papermaking made of rayon, Manila hemp, etc .; polyolefin-based porous film; polyethylene nonwoven fabric; polypropylene nonwoven fabric and the like are preferably used.
  • a lithium secondary battery can be suitably prepared using the electrolytic solution of the present invention obtained above.
  • Examples of the form of the lithium secondary battery of the present invention include a coin type, a cylindrical type, a square type, and a laminate.
  • As an example of the lithium secondary battery of the present invention for example, the form of a coin-type cell shown in FIG. 2 can be mentioned.
  • the lithium secondary battery will be described with reference to FIG.
  • the positive electrode active material for example, L i C o0 2 L i N I_ ⁇ 2 L i N i X _ X C o x
  • composite oxides of lithium and transition metal T i 0 oxides such as 2 V 2 0 5; T i S 2 can be mentioned F e S sulfides such like. From the viewpoint of battery capacity and energy density, a composite oxide of lithium and a transition metal is preferable.
  • the positive electrode is formed by pressure-molding these positive electrode active materials together with known conductive aids and binders. Or by mixing the positive electrode active material with a known conductive aid and binder in an organic solvent such as pyrrolidone and applying the paste to a current collector such as an aluminum foil, followed by drying. Obtainable.
  • lithium metal As the negative electrode active material, lithium metal, an alloy of lithium metal and another metal, or a material from which lithium ions are inserted and released is used.
  • the alloy of lithium metal and other metals include Li-A1, Li-Sn, Li-Zn, Li-Si, and the like.
  • materials from which lithium ions are inserted and desorbed include carbon materials obtained by firing resins and pitches, carbon materials obtained by adding boron compounds to these carbon materials, and natural black lead. These negative electrode materials are used alone or in combination of two or more.
  • the negative electrode is formed by pressure-molding these negative electrode active materials together with known conductive aids and binders, or the negative electrode active materials are mixed with known conductive aids and binders in organic solvents such as pyrrolidone.
  • the paste can be obtained by coating a current collector such as a copper foil and then drying.
  • the separator is not particularly limited as long as the electrolyte is easy to pass through, is an insulator, and is a chemically stable material.
  • the non-aqueous electrolyte containing a quaternary ammonium salt represented by the formula (1) of the present invention and a chain carbonate ester has high electrical conductivity, excellent reliability at low temperatures, and high withstand voltage. It is suitable as an electrolytic solution for electrochemical devices.
  • the electrochemical device include, but are not limited to, an electric double layer capacitor, a secondary battery, a dye-sensitized solar cell, an electochromic element, and a capacitor.
  • Particularly suitable electrochemical devices are electric double layer capillaries and secondary batteries.
  • FIG. 1 shows a cross-sectional view of an electric double layer capacitor according to the present invention.
  • FIG. 2 shows a cross-sectional view of the lithium secondary battery of the present invention.
  • the organic solvents such as propylene strength monoponate, dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate used were lithium battery grades manufactured by Kishida Chemical Co., Ltd. (Hiranuma Sangyo Co., Ltd., Hiranuma trace moisture measuring device AQ-7) was used.
  • Ethyldimethylamine (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) 82.84 g was dissolved in dehydrated acetone (reagent: manufactured by Wako Pure Chemical Industries, Ltd.) 522 g and purged with nitrogen. Chloromethyl methyl ether (reagent: purified by distillation, manufactured by Tokyo Chemical Industry) 92.42 g was added dropwise over 2 hours at 5 ° C. Next, the mixture was stirred at 15 ° C or lower for 5 hours to complete the reaction. The resulting solid was cooled to 5 ° C and filtered off under nitrogen. Wash with 350 g of acetone, and then dry under reduced pressure. 1
  • Ethyldimethylamine (reagent: manufactured by Tokyo Chemical Industry Co., Ltd.) 24.7 g was dissolved in 220 g of dehydrated 2-buyunon (reagent: manufactured by Wako Pure Chemical Industries, Ltd.) and purged with nitrogen. Chloromethyl ether at 5 ° C (reagent: purified by distillation from Tokyo Kasei) 31.6 g was added dropwise over 1 hour. Next, the mixture was stirred at 15 ° C or lower for 5 hours to complete the reaction. The resulting solid was cooled to 5 ° C and filtered off under nitrogen. After washing with 200 g of acetone, it was dried under reduced pressure to obtain 52.1 g of the desired product (white solid).
  • N-ethoxymethyl-N-ethyl-N, N-dimethylammonium chloride prepared above was dissolved in 50 g of MeOH, and 91.65 g of 30% HBF 4 in methanol was added. . 1 N 2 pulling was performed under heating at 30 ° C, and 64.99 g of the target product (light yellow liquid) was obtained except for methanol, hydrogen chloride and excess HBF 4 .
  • N, N-jetyl-N-methoxymethyl-N_methyl ammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and 30 wt% HB F 4 in methyl alcohol. 9 1.7 g was added. Under heating at 130 ° C in a nitrogen stream, 65.0 g of the desired product was obtained by removing by-product hydrogen chloride, excess HB F 4 and methyl alcohol.
  • N, N-jetyl-N-methylamine (reagent: purified by rectification from Tokyo Kasei) 51.8 g was dissolved in 327 g of dehydrated 2-bubanone (reagent: manufactured by Wako Pure Chemical Industries, Ltd.) and purged with nitrogen. Chloromethylethyl ether at 5 ° C (reagent: purified by rectification from Tokyo Kasei) 56.0 g was added dropwise over 1.5 hours. The reaction was terminated by stirring at 5-10 ° C for 5.5 hours. The 2-bubanone layer was separated at 5 ° C, and the obtained liquid was washed with 120 g of 2-butanone. Drying under reduced pressure gave 39.7 g of the desired product (light yellow liquid). ⁇ -NMR (CDgOD) ⁇ p pm:
  • N-ethoxymethyl_N, N-jetyl-N_methyl ammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and a methyl alcohol solution of 30 wt% HB F 4 84. 6 g was added. Under heating at 130 ° C in a nitrogen stream, 63.8 g of the desired product was obtained except for by-product hydrogen chloride, excess HB F 4 and methyl alcohol.
  • compositions were transferred 4 cc at a time in a dry box to a glass container equipped with a screw cap and taken out of the dry box.
  • a glass container containing various solutions was immersed in a thermostatic bath and kept at 25 ° (:, 0 ° C and 30 ° C for 5 hours, respectively, and the state was visually confirmed.
  • “solid” indicates the solid state.
  • the liquid state composition solution not separated or solidified was again taken out from the dry pox and the electrical conductivity was measured.
  • conductivity meter CDM2 10 Ra diometer ter
  • XE 100 (manufactured by Radiometer) was used for the measurement cell.
  • Example 4 Except for using N_ethyl_N-methoxymethyl-N, N-dimethylammonium tetrafluoroporate, dimethyl carbonate and propylene carbonate prepared in Synthesis Example 1, the same procedure as in Example 1 was performed. The electrical conductivity of various compositions was measured. [Table 3] Example 4
  • N-methoxymethyl-N, N, N-trimethylammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and a methyl alcohol solution of 30 wt% H BF 4 1 1 0.7 g was added. Under heating at 130 ° C in a nitrogen stream, by-product hydrogen chloride, excess HBF 4 and methyl alcohol were removed to obtain 68.8 g of the desired product.
  • N-ethoxymethyl-N, N, N-trimethylammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and 10.00 g of 30 wt% H BF 4 in methyl alcohol was dissolved. Added. Under heating at 130 ° C in a nitrogen stream, by-product hydrogen chloride, excess HBF 4 and methyl alcohol were removed to obtain 66.4 g of the desired product.
  • N—n-propoxymethyl-N, N, N-trimethyl ammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and 30 wt% HBF 4 in methyl alcohol 91. 7 g was added. Under heating at 130 ° C, In a nitrogen stream, 65.0 g of the desired product was obtained by removing by-product hydrogen chloride, excess HBF 4 and methyl alcohol.
  • Triethylamine (reagent: purified by rectification from Tokyo Kasei) 6 1.2 g was dissolved in 590 g of water-free acetone (reagent: manufactured by Kanto Chemical Co., Inc.) and purged with nitrogen. Chloromethyl methyl ether at 5 ° C (reagent: purified by rectification from Tokyo Kasei) 49.7 g was added dropwise over 2.5 hours. The reaction was completed by stirring at 5-10 ° C for 5.5 hours. Filtered and the resulting solid was washed with 400 g of acetone. Drying under reduced pressure gave 86.7 g of the desired product (white solid).
  • N-methoxymethyl-N, N, N-triethylammonumuteto lafluoroborate prepared above and ethylmethyl carbonate were used to measure the electrical conductivity of various compositions in the same manner as in Example 1. did.
  • Triethylamine (reagent: purified by rectification from Tokyo Kasei) 71.6 g was dissolved in 459 g of water-free acetone (reagent: manufactured by Kanto Kagaku) and purged with nitrogen. Chloromethyl ethyl ether (reagent: purified by rectification, manufactured by Tokyo Chemical Industry Co., Ltd.) 66.6 g was added dropwise at 0 ° C over 1 hour. The reaction was terminated by stirring at 5-10 ° C for 5 hours. The reaction solution was filtered, and the resulting solid was washed with 650 g of acetone. Drying under reduced pressure gave 74.6 g of the desired product (white solid).
  • N-ethoxymethyl-N, N, N-triethylammonium chloride prepared above was dissolved in 50.0 g of methyl alcohol, and 78.5 g of 30 wt% HBF 4 in methyl alcohol. was added. Under heating at 130 ° C in a nitrogen stream, 62.8 g of the desired product was obtained by removing by-product hydrogen chloride, excess HBF 4 and methyl alcohol.
  • the mixed composition of N-ethoxymethyl-1-N-ethyl-N, N_dimethylammonium tetrafluoroborate and ethylmethyl carbonate prepared in Example 5 is 60:40 by weight. In a nitrogen atmosphere with a dew point of 1-60 ° C or less. Prepared in a bottle. The water content of the mixed solution was measured with a Karl Fischer moisture meter and confirmed to be 30 ppm or less.
  • Electrode 1 and Electrode 2 are coated with a paste obtained by kneading together with a conductive material mainly composed of activated carbon, a binder, and N-methylpyrrolidone on aluminum foil to a thickness of 150 ⁇ , and then dried.
  • the sheet-like electrode obtained in this way is cut out into a disc shape.
  • Container 1, Container 2, Spacer 1 and Spring are all made of stainless steel, and Separator is a polypropylene nonwoven fabric.
  • the electric double layer capacitor was assembled in a glove box filled with argon gas.
  • Electrode 1 Electrode 2, Container Body 1, Container Body 2, Spring, and Spacer were vacuum dried for 24 hours under heating at 120 ° C and then brought into the glove box.
  • the electrolytic solution prepared above was impregnated in Electrode 1, Electrode 2 and Separation Overnight, and container 1 and container 2 were caulked with a gasket in the configuration shown in FIG. 1 to obtain an electric double layer capacity.
  • the mixed composition of N-ethoxymethyl-N, N-jetyl-N-methylammonium tetrafluoroporate and ethylmethyl carbonate produced in Example 7 is 60:40 by weight ratio.
  • the liquid was prepared in a nitrogen atmosphere dry box having a dew point of ⁇ 60 ° C. or lower.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter and confirmed to be 30 ppm or less.
  • An electric double layer capacity was obtained in the same manner as in Example 8 except that instead of the electrolytic solution used in Example 8, the electrolytic solution prepared above in this example was used.
  • N, N, N-triethyl-N-methylammonium chloride (reagent: manufactured by Tokyo Chemical Industry) 10 O g dissolved in 100 g methanol, 3 0 wt% HBF 4 in methanol solution 20.0 g was added. After stirring for 30 minutes, crystals of N, N, N-triethyl-N-methylammonium tetrafluoroporate were precipitated. After filtering the solution The crystals are washed with isopropyl alcohol, dried in a nitrogen stream under heating at 130 ° C, and the target product (white solid), excluding by-product hydrogen chloride, excess HBF 4 and methanol, and isopropyl alcohol 127. 1 g was obtained.
  • the dew point of the N, N, N-triethyl N-methylammonium tetrafluoroborate prepared above is 1.5M in propylene carbonate (Kishida Chemical Co., Ltd., lithium battery grade)
  • the mixture was prepared in a nitrogen atmosphere dry box at 60 ° C or lower.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter and confirmed to be 30 ppm or less.
  • the leakage current value was measured for the coin-type electric double layer capacitor fabricated in Example 8, Example 9 and Comparative Example 6.
  • the leakage current value was measured at 25 ° C. After setting the coin cell in a dedicated holder, it was immersed in a thermostatic bath to keep the temperature of the coin cell constant. At this time, the entire holder was covered with a plastic bag so that the coin cell did not come into contact with the refrigerant in the thermostatic chamber.
  • the coin-type cell was immersed in a thermostat set to a predetermined temperature and held for 4 hours, after which charging and discharging of the electric double layer capacitor was started. A constant current charge with a current density of 0.5 mAcm 2 was performed, and when the voltage reached 2.5 V, the switch was made to a constant voltage charge.
  • N-ethyl-1-N-methoxymethyl-N-dimethylammonium fluorborate, propylene carbonate, ethylene carbonate, and dimethyl carbonate synthesized in Synthesis Example 1 were mixed at a weight ratio of 4
  • the solution was prepared in an argon atmosphere dry box with a dew point of ⁇ 60 ° C. or lower so that 0: 10: 25: 25.
  • the water content of the mixed solution was measured with a Karl Fischer moisture meter and confirmed to be 30 ppm or less.
  • An electric double layer capacitor was obtained in the same manner as in Example 8 except that the above electrolytic solution prepared in this example was used instead of the electrolytic solution used in Example 8.
  • the i R loss was measured for the coin-type electric double layer capacitors produced in Example 10, Example 11 and Comparative Example 6.
  • the charge / discharge measurement of the electric double layer capacity was performed at 0 ° C in a thermostatic chamber. Constant current charging was performed at a current density of 0.5 mA cm, and when the voltage reached 2.5 V, switching to constant voltage charging was performed. 2. After holding at 5V for 90 minutes, a constant current discharge of 0.5mAcm- 2 was performed, and when the voltage reached 0.4V, it was switched to low voltage discharge and held at 0.IV for 90 minutes. The above charging / discharging is combined into one cycle. The iR loss immediately after the fourth cycle discharge was measured. The results are shown in Table 14. Table 14 shows the results of comparing the iR losses of Example 10 and Example 11 when the iR loss immediately after the fourth cycle discharge in Comparative Example 6 was set to 100.
  • the non-aqueous electrolyte containing a quaternary ammonium salt represented by the formula (1) of the present invention and a chain carbonate is excellent in reliability at low temperatures, has a high withstand voltage, and is used as an electrolyte for an electrochemical device. Is preferred.
  • the quaternary ammonium salt represented by the formula (1) of the present invention can provide an electrolytic solution and an electrochemical device suitable for the purpose of the present invention in the case of an asymmetric in which R 1 to R 3 are not all the same. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

明 細 書 電解液及び電気化学デバイス 技術分野
本発明は、 電解液及び電気化学デバイスに係る。 詳しくは、 耐電圧、 電気伝導 性が高い電解液及びそれを使用した電気化学デバイスに関する。 背景技術
近年、 バッテリーやキャパシ夕をはじめとする電気化学デバイスの出力密度、 エネルギー密度向上の要求が高まっており、 耐電圧性の観点から電解液は水系よ りも有機系が多用されてきている。 有機電解液としてはプロピレンカーボネー卜 などの有機溶媒にアルカリ金属塩や固体アンモニゥム塩を溶解させた例が挙げら れ、 前者はリチウムイオン電池用の電解液として、 後者は電気二重層キャパシ夕 用の電解液として使用されている。 有機電解液は水系に比べて電気伝導性が劣つ ており、 電気伝導性を向上するために有機溶媒や電解質に関する研究が数多くお こなわれてきた。
固体状電解質を溶媒に溶解させた非水電解液では、 電解液の電気伝導性は電解 質の濃度とともに変化する。 濃度の上昇とともに電解液中のイオン濃度が増加す ることによって電気伝導度が増加するがやがて極大点に達する。 電気伝導度が極 '大点に達し減少し始めるのは電解液中にイオンの数が増すにつれて、 溶媒ーィォ ン、 イオン一イオン間の相互作用の増大によって電解質が解離しにくくなり、 同 時に電解液の粘度が増加するためと考えられている。 電解質濃度がさらに増加す るとそれ以上解離できなくなり、 電解質濃度が飽和する。 したがって電解質濃度 を高めようとした場合には電解質が溶解しにくくなるといつた問題があった。 ま た高濃度の電解質を溶解させた電解液を低温環境下で使用すると塩の析出が生じ、 電解液の電気伝導性が悪くなつてしまうといった問題も生じる。 電解質の解離度 を高めるには通常高誘電率溶媒が好まれ、 プロピレンカーボネート、 エチレン力 ーポネート、 ァーブチロラクトン等が使われてきた。 また電解質にはテトラェチ ルアンモニゥムテトラフルォロポレートや N, N, N—トリェチルー N—メチルァ ンモニゥムテトラフルォロポレート等が好適に用いられてきたが、 これらの電解 質は高誘電率溶媒には比較的溶解するものの、 常温において 2 M程度が限界であ り、 それ以上の濃度、 又は低温域では結晶の析出が生じるといった不具合があつ た。 また低誘電率溶媒にはほとんど溶解せず、 電解液としては使用できないレべ ルであった。
また高電圧を求める使用において、 溶媒にプロピレン力一ポネート、 エチレン 力一ポネート、 ァ一プチロラクトン等を使用した場合、 電解質を高耐電圧タイプ に変換しても溶媒の分解電圧に支配されてしまい、 従来のキヤパシ夕の動作電圧 は 2. 5 V程度が上限であった。 2. 5 Vを超える電圧で動作させると電解液 (主 に溶媒) の電気化学的分解が起こり性能の著しい劣化、 ガス発生等の好ましくな い現象が発生する。 ハイブリッド自動車、 電気自動車のような移動体のエネルギ —ストレ一ジデバイスとしてのキャパシ夕の応用においてはエネルギー密度の向 上が求められており、 動作電圧の向上はエネルギー密度を向上させる有効な手段 であるが、 従来の電解液では耐電圧を向上することが不可能であり、 より耐電圧 の高い、 電解質、 溶媒が求められていた。 キャパシ夕の静電エネルギーは、 耐電 圧の 2乗に比例するので、 少しの耐電圧の向上であっても切望されている。 より 耐電圧の高い溶媒としてェチルメチルカーボネート等の鎖状カーボネートが挙げ られるが、 誘電率の低いこれらの溶媒には従来のテトラエチルアンモニゥムテト ラフルォロボレ一トゃ N, N, N—トリェチルー N—メチルアンモニゥムテトラフ ルォロボレート等といった電解質は溶解度が低く、 電解液としては使用できない レベルであった。
近年、 融点を常温近傍にもつ塩、 或いは融点が常温以下である塩 (常温溶融 塩) が見出されている。 こうした塩は常温において固体であっても通常の電解質 に比べて高濃度に有機溶媒に溶解することが知られている。 また常温溶融塩は特 定の有機溶媒とは任意の割合でまざり合う。 それゆえ、 従来の固体状電解質を有 機溶媒に溶解しても達成できなかった高濃度の電解液が得られ、 しかも高濃度で ありながら低温環境下でも塩が析出するといつた問題が生じにくい。 さらに常温 溶融塩は塩そのものが液体であるため、 塩単体を電解液として使用することも可 能である。 しかしながらこれら常温溶融塩でも、 誘電率の低い溶媒への溶解性は 大きくなく、 二層に分離するものが多い。 ェチルメチルイミダゾールといった耐 電圧の低い芳香族系常温溶融塩ではなく、 耐電圧の高い脂肪族系常温溶融塩は鎖 状カーボネートの持つ高い耐電圧を有効利用できるポテンシャルを持ちながら、 溶解性が低く満足できる電解液にはなり得ていない。
上述の通りキャパシ夕のエネルギー密度を向上するには耐電圧が高い溶媒を使 用することは重要である。 その一方、 電解液の電気伝導度を高めることも有効な 手法として挙げられる。 キャパシ夕は二次電池と比較して大電流で充放電できる ことが大きな特徴のひとつであるが、 大電流で放電すると抵抗によって損失する エネルギーが大きくなる。 極端に言えば、 せっかくキャパシ夕にエネルギーを蓄 えても大半が抵抗熱によって失われてしまうことになる。 したがって、 キャパシ 夕の抵抗を低減することはキャパシ夕に蓄えられたエネルギーのうち実質的に利 用できるエネルギーを高めることに繋がり、 電解液の電気伝導度を高めることは 重要となる。
例えば、 テトラアルキルアンモニゥム塩と電気伝導性に関して開示されている (非特許文献 1参照)。 この中で、 従来より電気二重層キャパシタの電解液とし て使用されているテトラエチルアンモニゥムテトラフルォロボレートや N, N, N 一トリェチル一N—メチルアンモニゥムテトラフルォロポレートのプロピレン力 ーボネート溶液の電気伝導性について示されている。 テトラェチルアンモニゥム テ卜ラフルォロボレートの溶質濃度が l m o 1 / 1のプロピレンカーボネート溶 液に関して電気伝導度は約 1 3mS cm~ N, N, N—トリエチルー N—メチ ルアンモニゥムテトラフルォロボレ一卜の溶質濃度が 1. 5mo 1 / 1のプロピ レンカーボネート溶液に関しても電気伝導度は高々 1 6mS cm—1程度である。 耐電圧性が不十分なプロピレンカーボネートを含む電解液を使用する際にはさら なる電気伝導性の改善が求められる。
しかるに、 電気二重層キャパシ夕のエネルギー密度を向上させるには、 より高 い電気伝導度ゃ耐電圧の満足できるものが望まれている。
〔非特許文献 1〕 Ue et al., J. Electrochem. Soc. 141 (2989) 1994 本発明の目的は、 低温での信頼性に優れ、 耐電圧の高い電解液及び電気化学デ バイスを提供することにある。 発明の開示
本発明は以下の発明に係る。
1. 式 (1) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有する とを特徴とする非水電解液。
Figure imgf000006_0001
(式中、 R1 !^3は、 炭素数 1〜 3の直鎖又は分岐のアルキル基を示し、 R4は、 メトキシメチル基、 エトキシメチル基、 プロポキシメチル基又は i s o—プロボ キシメチル基を示す。 X—は B F4_を示す。 但し、 1〜!^3が全て同一である場 合を除く。)
2. 式 (2) 又は式 (3) で表される第 4級アンモニゥム塩と鎖状炭酸エステル を含有することを特徴とする非水電解液。
Figure imgf000007_0001
Figure imgf000007_0002
本発明は、 式 (1) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含 有することを特徴とする非水電解液に係る。
R1
R N—— R" X
(1)
(式中、 1〜!^3は、 炭素数 1〜3の直鎖又は分岐のアルキル基を示し、 R4は、 メトキシメチル基、 エトキシメチル基、 プロポキシメチル基又は i s o—プロボ キシメチル基を示す。 X—は BF4_を示す。 但し、 1〜!^ 3が全て同一である場 合を除く。)
1〜!^ 3で示される炭素数 1から 3の直鎖又は分岐のアルキル基としては、 メチル基、 ェチル基、 n—プロピル基及び i s o—プロピル基を挙げることがで きる。 好ましくは、 メチル基又はェチル基が良い。
R4で示される基としては、 メトキシメチル基、 エトキシメチル基、 プロポキ シメチル基及び i s o—プロポキシメチル基を挙げることができる。 好ましくは、 メトキシメチル基又はエトキシメチル基が良い。
本発明の第 4級アンモニゥム塩としては、 N—ェチル—N—メトキシメチルー N, N—ジメチルアンモニゥムテトラフルォロポレート、 N, N—ジェチルー N— メトキシメチルー N—メチルアンモニゥムテ卜ラフルォロポレート、 N—メ卜キ シメチルー N, N—ジメチルー N _ n—プロピルアンモニゥムテトラフルォロポ レート、 N—メトキシメチル— N, N—ジメチル— N— i s o—プロピルアンモ 二ゥムテトラフルォロボレ一卜、 N—ェチルー N—メトキシメチル _ N—メチル _ N—n—プロピルアンモニゥムテトラフルォロボレ一ト、 N—ェチルー N—メ トキシメチルー N—メチルー N— i s o—プロピルアンモニゥムテトラフルォロ ボレー卜、
N—エトキシメチル— N—ェチル—N, N—ジメチルアンモニゥムテトラフルォ ロボレ一卜、 N—エトキシメチル _ N, N—ジェチルー N—メチルアンモニゥム テトラフルォロポレート、 N—エトキシメチルー N, N—ジメチル一 N— n—プ 口ピルアンモニゥムテトラフルォロボレ一ト、 N—エトキシメチル一N, N—ジ メチルー N— i s o—プロピルアンモニゥムテトラフルォロボレート、 N—エト キシメチルー N—ェチル—N—メチル—N—n—プロピルアンモニゥムテトラフ ルォロボレート、 N—エトキシメチル— N—ェチル _ N—メチルー N— i s o— プロピルアンモニゥムテトラフルォロボレ一ト、
N—n—プロポキシメチル—N—ェチル一 N, N _ジメチルアンモニゥムテトラ フルォロポレート、 N— n—プロポキシメチルー N, N—ジェチルー N—メチル アンモニゥムテトラフルォロポレート、 N _ n—プロポキシメチル— N, N—ジ メチルー N— n—プロピルアンモニゥムテトラフルォロポレート、 N— n—プロ ポキシメチルー N, N—ジメチル一N— i s o —プロピルアンモニゥムテトラフ ルォロポレート、 N— n—プロポキシメチル—N—ェチル—N—メチル—N—n —プロピルアンモニゥムテトラフルォロポレート、 N—n—プロボキシメチル一 N—ェチル— N—メチル— N— i s o —プロピルアンモニゥムテトラフルォロボ レート、 N— i s o—プロポキシメチルー N—ェチル _ N, N—ジメチルアンモ 二ゥムテトラフルォロポレート、 N— i s o—プロポキシメチルー N, N—ジェ チルー N—メチルアンモニゥムテトラフルォロポレート、 N— i s o—プロポキ シメチルー N, N—ジメチルー N— n —プロピルアンモニゥムテトラフルォロボ レート、 N— i s o —プロポキシメチルー N, N—ジメチル一 N— i s o —プロ ピルアンモニゥムテトラフルォロポレート、 N— i s o —プロポキシメチル一N —ェチルー N—メチルー N—n—プロピルアンモニゥムテトラフルォロポレート、 N - i s o —プロポキシメチルー N _ェチル—N—メチル一 N— i s o —プロピ ルアンモニゥムテトラフルォロポレートを挙げることができる。
好ましくは、 N—ェチルー N—メトキシメチルー N, N—ジメチルアンモニゥ ムテトラフルォロボレ一卜、 N, N—ジェチルー N—メトキシメチルー N—メチ ルアンモニゥムテトラフルォロポレート、 N—ェトキシメチルー N—ェチル一N, N—ジメチルアンモニゥムテトラフルォロポレート、 N—エトキシメチル—N, N—ジェチルー N—メチルアンモニゥムテトラフルォロボレートが良い。
より好ましくは、 N—エトキシメチル— N—ェチルー N, N—ジメチルアンモ 二ゥムテトラフルォロボレ一ト、 N—ェトキシメチルー N, N—ジェチルー N _ メチルアンモニゥムテトラフルォロポレートが良い。
本発明で使用する第 4級アンモニゥム塩は種々の方法で製造される。 その代表 的な合成方法を下記反応式で示す。
(常温溶融塩の製造方法)
Figure imgf000009_0001
(1)
式 (4 ) で表される 3級ァミン ( 1〜!^ 3は上記と同じ) と式 (5 ) で表さ れる化合物 (R4は上記と同じで X3は C 1、 B r、 Iなどを示す) を反応させ ることにより、 式 (l a) で表される 4級アンモニゥム塩が製造され、 次に式 (l a) で表される第 4級アンモニゥム塩と式 (6) で表される化合物との塩交 換反応により、 式 (1) で表される第 4級アンモニゥム塩が製造できる。
式 (6) において、 Mは、 H又は Na、 K、 L i等のアルカリ金属原子、 C a、 Mg、 B a等のアルカリ土類金属原子、 Ag等の金属原子を含む。
出発原料として用いられる式 (4) で表される第 3級ァミン及び式 (5) で表 される化合物は、 いずれも公知物質である。
式 (4) で表される第 3級ァミンとしては、 ェチルジメチルァミン、 ジメチル 一 n—プロピルアミン、 ジメチルー i s o—プロピルアミン、 ジェチルメチルァ ミン、 ェチルメチルー n—プロピルアミン、 ェチルメチル— i s o—プロピルァ ミン等を挙げることができる。
式 (5) で表される化合物としては、 クロロメチルメチルエーテル、 プロモメ チルメチルエーテル、 ョードメチルメチルエーテル、 クロロメチルェチルエーテ ル、 ブロモメチルェチルエーテル、 ョードメチルェチルエーテル、 クロロメチル 一 n—プロピルエーテル、 ブロモメチルー n—プロピルエーテル、 ョードメチル 一 n—プロピルェ一テル、 クロロメチル— i s o—プロピルエーテル、 ブロモメ チル— i s o—プロピルエーテル、 ョードメチルー i s o—プロピルエーテル等 を挙げることができる。
式 (4) で表される第 3級ァミンと式 (5) で表される化合物の反応は、 適当 な溶媒中で行われる。
用いられる溶媒としては、 式 (4) で表される第 3級ァミン及び式 (5) で表 される化合物を溶解し得、 反応に悪影響を及ぼさない溶媒である限り、 公知のも のを広く使用できる。 このような溶媒としては、 例えば、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素;ジクロロメタン、 クロ口ホルム、 四塩化炭素等の ハロゲン化炭化水素;メタノール、 エタノール、 i s o—プロパノール、 n—ブ 夕ノール、 t e r t—ブ夕ノール等の低級アルコール;アセトン、 メチルェチル ゲ卜ン等のケ卜ン;ジェチルエーテル、 ジ— i s o—プロピルエーテル等のエー テル; n—へキサン、 n—ヘプタン等の脂肪族炭化水素;シクロへキサン等の脂 肪族炭化水素等を挙げることができる。
好ましくは、 トルエン等の芳香族炭化水素、 クロ口ホルム等のハロゲン化炭化 水素、 アセトン等のケトンが良い。 斯かる溶媒は、 1種単独で又は 2種以上混合 して使用できる。
これらの溶媒は、 好ましくは、 無水溶媒 (水分 1000 p pm以下) が良い。 式 (5) で表される化合物は、 式 (4) で表される第 3級ァミン 1モルに対し て、 通常 0. 5〜5モル、 好ましくは 0. 9〜1. 2モル使用する。 該反応は、 通 常一 30〜100°Cにおいて行われ、 好ましくは _ 10〜40°Cにて行われる。 一般に数時間〜 24時間程度反応させる。
上記反応で得られる式 (l a) で表される第 4級アンモニゥム塩と式 (6) で 表される化合物との反応は、 通常の塩交換反応により行われる。
原料として用いられる式 (6) で表される化合物は、 公知化合物である。 例え ば、 HBF4、 L i BF4、 NaBF4、 KBF4、 A g B F 4等を挙げることがで きる。
この塩交換反応は、 適当な溶媒中で行われる。 使用される溶媒としては、 式 (1 a) で表される第 4級アンモニゥム塩及び式 (6) で表される化合物を溶解 し得、 反応に悪影響を及ぼさない溶媒である限り、 公知のものを広く使用できる。 このような溶媒としては、 例えば、 水;ジクロロメタン、 クロ口ホルム、 四塩 化炭素等のハロゲン化炭化水素;メタノール、 エタノール、 i s o—プロパノ一 ル、 n—ブタノール、 t e r t—ブ夕ノール等の低級アルコール;アセトン、 メ チルェチルケ卜ン等のケ卜ン;酢酸ェチル、 酢酸ブチル等のエステル:ジメチル スルホキシド、 ジメチルホルムアミド等の非プロトン性極性溶媒を挙げることが できる。 好ましくは、 メタノール等の低級アルコール類;クロ口ホルム等のハロゲン化 炭化水素:水が良い。 これらの溶媒は、 1種単独で又は 2種以上混合して使用で きる。
式 (6) で表される化合物は、 式 (1 a) で表される第 4級アンモニゥム塩 1 モルに対して、 通常 0. 3〜5モル、 好ましくは 0. 9〜1. 2モル使用する。 該 反応は、 通常速やかに進行するので、 例えば、 両者を溶媒に溶解した溶液を 5 °C 〜150°Cで 10分〜 24時間程度反応させる。
上記各反応で得られる目的物は、 通常の分離手段、 例えば、 遠心分離、 濃縮、 洗浄、 有機溶媒抽出、 クロマトグラフィー、 再結晶等の慣用の単離及び精製手段 により、 反応混合物から容易に単離、 精製される。
塩交換反応は、 イオン交換樹脂を用いて行うこともできる。 イオン交換樹脂と しては、 例えば、 ァニオン交換樹脂を挙げることができる。
塩交換反応は、 該樹脂中のァニオンを予め目的とするァニオンへ交換しておき、 式 (l a) で表される第 4級アンモニゥム塩を溶解した溶液を該樹脂中に通すこ とで達成できる。 ここで使用される溶媒は、 式 (l a) を溶解でき、 且つ塩交換 反応に悪影響を及ぼさない限り公知のものを広く使用できる。 このような溶媒と しては、 例えば、 水、 アルコール類等を挙げることができる。
式 (l a) で表される第 4級アンモニゥム塩から Xが B F4を示す式 (1) で 表される第 4級アンモニゥム塩を製造する場合の反応条件を具体的に示す。
式 (l a) で表される第 4級アンモニゥム塩を上記低級アルコールに溶解し、 この溶液に所定量 (例えば、 硼フッ化水素酸濃度 7 Owt %以下) のメタノール 硼フッ化水素酸、 硼フッ化銀等のフッ化硼素塩を添加し、 5°C〜150°Cで 30 分程度反応させる。 反応により生成するハロゲン化水素を留去し、 またハロゲン 化銀等のハロゲン塩を濾別し、 濾液を減圧濃縮し、 乾燥することにより、 目的化 合物を単離することができる。 尚、 ハロゲン化水素の留去には、 例えば、 遠心分 離、 熱時下 N。バプリング (例えば、 60°C〜150°C) による留去、 減圧によ る留去等を適用できる。
上記式 (1 ) で表される第 4級アンモニゥム塩の含水分量は、 l O O p p m以 下であることが好ましい。 より好ましくは 5 0 p p m以下、 さらにより好ましく は 3 0 p p m以下であり、 特に好ましいのは 1 0 p p m以下である。
また、 本発明で使用する鎖状炭酸エステルは、 ジメチルカーポネート、 ェチル メチルカーボネート、 メチル— n—プロピルカーボネート、 メチル— i s o—プ 口ピルカーボネート、 n—プチルメチルカーポネート、 ジェチルカーポネ一卜、 ェチル— n—プロピルカーボネート、 ェチルー i s o —プロピルカーボネート、 n—ブチルェチルカーボネート、 ジー n—プロピル力一ポネート、 ジ— i s o— プロピルカーボネート、 ジー n—プチルカ一ボネートなどが挙げられる。
好ましくは、 ジメチルカーポネート、 ェチルメチルカーボネートが良い。 更に 好ましくは、 ェチルメチルカーボネートが良い。
これらの溶媒は 1種類でも 2種類以上を混合してもよい。
混合有機溶媒としては、 例えば、 ジメチルカ一ポネー卜とェチルメチルカーボ ネート等を挙げることができる。
また、 上記の鎖状炭酸エステルに加えて、 環状炭酸エステル、 リン酸エステル、 環状エーテル、 鎖状エーテル、 ラクトン化合物、 鎖状エステル、 二トリル化合物、 アミド化合物、 スルホン化合物等を混合して用いてもよい。
これら溶媒を鎖状炭酸エステルに加えて混合使用することは電解液の電気伝導 度を高めるうえで有利である。
具体的には、 例えば、 以下の化合物が挙げられるがこれらに限定されるもので はない。
環状炭酸エステルとしては、 エチレン力一ポネート、 プロピレンカーボネート、 ブチレン力一ポネートなどが挙げられ、 好ましくは、 プロピレンカーボネートが 良い。
リン酸エステルとしては、 リン酸トリメチル、 リン酸卜リエチル、 リン酸ェチ ルジメチル、 リン酸ジェチルメチルなどが挙げられる。
環状エーテルとしては、 テトラヒドロフラン、 2—メチルテトラヒドロフラン などが挙げられる。
鎖状エーテルとしては、 ジメトキシェタンなどが挙げられる。
ラクトン化合物としては、 ァープチロラクトンなどが挙げられる。
鎖状エステルとしては、 メチルプロピオネー卜、 メチルアセテート、 ェチルァ セテート、 メチルホルメートなどが挙げられる。
二トリル化合物としては、 ァセトニトリルなどが挙げられる。
アミド化合物としては、 ジメチルホルムアミドなどが挙げられる。
スルホン化合物としては、 スルホラン、 メチルスルホランなどが挙げられる。 好ましくは、 環状炭酸エステル、 二トリル化合物、 スルホン化合物が良い。 本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液は、 電気化学デバイス用電解液として使用することができる。 電気化学デバイスとしては、 例えば、 電気二重層キャパシタ、 二次電池等を挙 げることができる。 本発明の非水電解液は、 公知の電気二重層キャパシ夕及び二 次電池に使用されている電解液と同じように使用できる。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液を、 電気化学デバイス用電解液として使用する場合、 電解質濃度 は、 0 . 1 M以上、 より好ましくは 0. 5 M以上、 さらに好ましくは 1 M以上とす るのが良い。 電解質濃度が 0. 1 Mに満たない場合には、 電気伝導性が低くなり、 電気化学デバイスの性能を低下させてしまう虞がある。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液を用いて電気化学デバイス用電解液を調製することができる。 本 発明で得られる電解液は、 電気エネルギーを物理的な作用又は化学的な作用によ り蓄電できる電気化学デバイスに使用でき、 例えば、 電気二重層キャパシタ及び 二次電池に好適に使用できる。 本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液を用いた電気二重層キャパシ夕用電解液の調製方法を以下に説明 する。
電気二重層キャパシタ用電解液を調製するに当っては、 水分が電気二重層キヤ パシ夕の性能に悪影響を与える為、 大気が混入しない環境、 例えば、 アルゴンガ ス、 窒素ガス等の不活性雰囲気のグローブボックス内において調製することが好 ましい。 作業環境の水分を露点計で管理することができる。 露点が一 6 0 °C以下 になるように、 作業環境を設定するのが好ましい。 露点が— 6 0 °Cを超えた場合、 作業時間が長くなると、 電解液が雰囲気中の水分を吸収する為、 電解液中の水分 が上昇するので好ましくない。 電解液中の水分は、 カールフィッシャー水分計で 測定することができる。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液を電気化学デバイス用電解液として使用する場合、 上述した通り 電解質濃度は、 電解液の電気伝導性の観点から、 好ましくは 0 . 1 M以上、 より 好ましくは 0. 5 M以上、 特に好ましくは 1 M以上である。 電解質濃度の上限は、 電解質の析出及び分離を生じない限り限定されない。
鎖状炭酸エステルとしては、 上述した種々の鎖状炭酸エステルを使用すること ができるが、 鎖状炭酸エステルの種類によって誘電率、 粘性、 融点等の物性が異 なるため、 使用する鎖状炭酸エステルの種類と式 (1 ) で表される第 4級アンモ ニゥム塩の種類に応じて、 これらの混合組成を決定するのが好ましい。
例えば、 N—エトキシメチル— N—ェチルー N, N—ジメチルアンモニゥムテ トラフルォロポレートとェチルメチルカ一ポネ一トからなる電解液の場合、 N— ェトキシメチルー N—ェチルー N, N—ジメチルアンモニゥムテトラフルォロポ レートの組成は 5 2〜9 0重量%が好ましく、 更に好ましくは 5 2〜8 0重量% である。 N—ェトキシメチルー N, N _ジェチルー N—メチルアンモニゥムテト ラフルォロボレートとェチルメチルカーボネ一卜からなる電解液の場合、 N—ェ トキシメチルー N, N—ジェチルー N—メチルアンモニゥムテトラフルォロボレ ートの組成は 4 3〜1 0 0重量%が好ましく、 更に好ましくは 4 3〜8 0重量% である。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液は、 二次電池用電解液、 特にリチウム二次電池用電解液に使用す ることもできる。 電気二重層キャパシ夕用電解液の調製時と同様に、 水分がリチ ゥム二次電池特性に悪影響を与えるため、 調製作業をおこなう作業環境としては、 露点が管理されたグローブボックス内が好ましい。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液に、 リチウム塩を溶解させることによりリチウム二次電池用電解 液が得られる。
リチウム塩は、 6フッ化リン酸リチウム、 硼フッ化リチウム、 過塩素酸リチウ ム、 トリフロロメタンスルホン酸リチウム、 スルホ二ルイミドリチウム、 スルホ ニルメチドリチウムなど、 種々のリチウム塩を使用できる。 リチウム塩の析出が 生じない限り、 その種類は特に限定されない。
リチウム塩濃度は、 通常 0. 1〜2. 0モル、 好ましくは 0. 1 5〜 1 . 5モル、 さらに好ましくは 0. 2〜1 . 2モル、 特に好ましくは 0. 3〜1 . 0である。 リチ ゥム塩濃度が 0. 1モルに満たない場合は、 充放電レートが大きい場合に電極近 傍においてリチウムイオンの枯渴が生じ、 充放電特性が低下する虞がある。 また、 リチウムイオン濃度が 2. 0モルを超えると電解液の粘度が高くなり、 電気伝導 性が低くなつてしまう虞がある。
本発明においては、 リチウム塩を形成するァニオンに、 B F 4—が含まれてい ることが好ましい。 理由は定かではないが、 テトラフルォロポレートを含む場合 には正極集電体として使用されるアルミニウムの表面に不働態皮膜が形成され、 アルミニウムの溶出を抑制できるためではないかと考えられる。 B F 4—の含有 量イオン数は、 電解液中の全ァニオン数の 0. 5 %以上になるように調製するの が好ましく、 0. 8 %以上になるように調製するのがより好ましい。 上限濃度は、 B F 4—の含有イオン数が電解液中の全ァニオン数の 1 0 0 %である。
本発明で使用される非水電解液は、 特定の有機添加剤を含有するのが好ましレ 特定の有機添加剤としては、 例えば、 エチレンカーボネート、 ビニレンカーボ ネート、 ブチレンカーボネート、 エチレントリチォ力一ポネート、 ビニレントリ チォカーボネート、 エチレンサルファイト等を挙げることができる。 これらの中 で、 エチレンカーボネート、 ビニレンカーボネートが好ましい。 これらの有機添 加剤は、 1種単独で又は 2種以上混合して使用される。
上記特定の有機添加剤を含むことにより、 リチウム二次電池負極表面に S E I (Sol id Elec trolyte Interface) として知られるリチウムイオン選択的透過膜 が形成され、 第 4級アンモニゥム塩を形成するアンモニゥムカチオンの分解及び 負極材料への挿入を抑制でき、 その結果、 リチウム二次電池に安定した充放電特 性を与えることができる。
上記特定の有機添加剤は、 希釈剤としての機能も併せ持つ物質が含まれている。 これら特定の有機添加剤の含有量は、 全電解液重量に対する該有機添加剤の割 合が、 好ましくは 1〜4 0重量%、 より好ましくは 1〜3 0重量%、 更に好まし くは 1〜2 0重量%、 最も好ましくは 1〜1 0重量%である。 特定の有機添加剤 の含有量が 1重量%未満の場合、 負極表面に十分な皮膜が形成されず、 第 4級ァ ンモニゥム塩を形成するアンモニゥムカチオンの分解及び負極材料への侵入を抑 制できなくなる虞がある。
上記で得られる本発明の非水電解液を用いて電気二重層キャパシ夕を好適に作 製できる。 この電気二重層キャパシ夕の一例としては、 例えば、 図 1に示すよう なものを挙げることができる。 電気二重層キャパシ夕の形状は図 1のようなコィ ン型に限定されるものではなく、 缶体中に電極を積層して収納されてなる積層型、 捲回して収納されてなる捲回型、 又はアルミラミネート中にパッキングされてな るラミネート型と称されるものであってもよい。 以下、 一例としてコイン型電気 二重層キャパシ夕の構造について説明する。
図 1は、 コイン型電気二重層キャパシ夕の断面を示す図面である。 電極 1、 2 がセパレー夕 3を介して対向配置され、 容器体 4、 5に収納されている。 電極は、 活性炭等の炭素材料からなる分極性電極部分と集電体部分とからなる。 容器体 4、 5は、 電解液によって腐食されなければよく、 例えば、 ステンレス鋼、 アルミ等 からなる。 容器体 4、 5は、 絶縁性のガスケット 6により電気的に絶縁されてお り、 同時に金属製缶体内部を密封し、 缶体外部からの水分や空気が浸入しないよ うになつている。 電極 1の集電体及び容器体 4、 並びに電極 2の集電体と金属製 のスぺーサー 7は、 それぞれ金属製のスプリング 8の存在により適度な圧力で接 触しており、 電気的接触を保っている。 電気伝導性を高めるために、 集電体を力 —ボンペースト等の導電性ペーストを用いて接着してもよい。
分極性電極材料は、 比表面積が大きく、 電気伝導性が高い材料であることが好 ましく、 また使用する印加電圧の範囲内で電解液に対して電気化学的に安定であ ることが必要である。 このような材料としては、 例えば、 炭素材料、 金属酸化物 材料、 導電性高分子材料等を挙げることができる。 コストを考慮すると、 分極性 電極材料は、 炭素材料であるのが好ましい。
炭素材料としては、 活性炭材料が好ましく、 具体的には、 おがくず活性炭、 や しがら活性炭、 ピッチ ·コークス系活性炭、 フエノール樹脂系活性炭、 ポリアク リロニ卜リル系活性炭、 セルロース系活性炭等を挙げることができる。
金属酸化物系材料としては、 例えば、 酸化ルテニウム、 酸化マンガン、 酸化コ ノ レト等を挙げることができる。
導電性高分子材料としては、 例えば、 ポリア二リン、 ポリピロール膜、 ポリチ ォフェン膜、 ポリ (3 , 4—エチレンジォキシチォフェン) 膜等を挙げることが できる。
電極は、 上記分極性電極材料を結着剤と共に加圧成型するか、 又は上記分極性 電極材料を結着剤と共にピロリドン等の有機溶剤に混合し、 ペースト状にしたも のをアルミニウム箔等の集電体に塗工後、 乾燥して得ることができる。
セパレー夕としては、 電子絶縁性が高く、 電解液の濡れ性に優れイオン透過性 が高いものが好ましく、 また、 印加電圧範囲内において電気化学的に安定である 必要がある。 セパレー夕の材質は、 特に限定は無いが、 レーヨンやマニラ麻等か らなる抄紙;ポリオレフィン系多孔質フィルム;ポリエチレン不織布;ポリプロ ピレン不織布等が好適に用いられる。
上記で得られる本発明の電解液を用いてリチウム二次電池を好適に作成できる。 本発明のリチウム二次電池の形態は、 コイン型、 円筒型、 角型、 ラミネート等を 挙げることができる。 本発明のリチウム二次電池の一例としては、 例えば、 図 2 に示すコイン型セルの形態を挙げることができる。 以下、 図 2に基づいてリチウ ムニ次電池を説明する。
正極缶 14と負極缶 15とで形成される内部空間に、 正極缶 14側から正極 1
1、 セパレー夕 13、 負極 12、 スぺーサ一 17の順に積層された積層体が収納 されている。 負極缶 15とスぺーサー 17との間にスプリング 18を介在させる ことによって、 正極 11と負極 12を適度に圧着固定している。 電解液は、 正極 11、 セパレーター 13及び負極 12の間に含浸されている。 正極缶 14及び負 極缶 1 5の間にガスケット 16を介在させた状態で、 正極缶 14及び負極缶 1 5 をかしめることによって両者を結合し、 上記積層体を密閉状態にしている。
正極活物質として、 例えば、 L i C o02 L i N i〇2 L i N i X_XC ox
02 L i N i y_z C o yMn z 02 L i N i 0 5Mn 0.502 L i Mn02 L i Mn 204 L i N i .5M n 504等のリチウムと遷移金属との複合酸化 物; T i 02 V205等の酸化物; T i S2 F e S等の硫化物等を挙げること ができる。 電池容量 ·エネルギー密度の観点からリチウムと遷移金属との複合酸 化物が好ましい。
上記において、 l〉x>0 l>y>0 1>ζ>0 y + z<lである。 正極は、 これらの正極活物質を、 公知の導電助剤及び結着剤と共に加圧成型す ることにより、 又は正極活物質を公知の導電助剤及び結着剤と共にピロリドン等 の有機溶剤に混合し、 ペースト状にしたものをアルミニウム箔等の集電体に塗工 後、 乾燥することにより得ることができる。
負極活物質には、 リチウム金属、 リチウム金属と他金属との合金、 リチウムィ オンが挿入脱離する材料が使用される。 リチウム金属と他金属との合金としては、 L i—A l、 L i—S n、 L i— Z n、 L i一 S i等を挙げることができる。 リ チウムイオンが挿入脱離する材料としては、 樹脂及びピッチ等を焼成したカーボ ン材料、 これらのカーボン材料にホウ素化合物を添加したカーボン材料、 天然黒 鉛等を挙げることができる。 これらの負極材料は、 1種単独で、 又は 2種以上を 混合して使用される。
負極は、 これらの負極活物質を、 公知の導電助剤及び結着剤と共に加圧成型す ることにより、 又は負極活物質を公知の導電助剤及び結着剤と共にピロリドン等 の有機溶剤に混合し、 ペースト状にしたものを銅箔等の集電体に塗工後、 乾燥す ることにより得ることができる。
セパレー夕としては、 電解液が通過しやすく、 絶縁体で、 化学的に安定な材質 である限り、 特に限定はない。
本発明の式 (1 ) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液は、 電気伝導性が高く、 低温での信頼性に優れ、 耐電圧が高い為、 電気化学デバイスの電解液として好適である。 電気化学デバイスとしては、 例え ば、 電気二重層キャパシタ、 二次電池、 色素増感型太陽電池、 エレクト口クロミ ック素子、 コンデンサ等が例示されるが、 これらに限定されない。 特に好適な電 気化学デバイスは、 電気二重層キヤパシ夕及び二次電池である。 図面の簡単な説明
図 1は本発明の電気二重層キャパシ夕の断面図を示す。 図 2は本発明のリチウ ムニ次電池の断面図を示す。 1 電極、 2 電極、 3 セパレー夕、 4 容器体、 5 容器体、 6 ガスケッ ト、 7 スぺーサ一、 8 スプリング、 1 1 正極、 12 負極、 1 3 多孔質 セパレー夕、 14 正極缶、 15 負極缶、 16 ガスケット、 17 スぺーサ
—、 18 スプリング 発明を実施するための最良の形態
以下、 本発明を実施例に基づいて具体的に説明するが何らこれらに限定される ものではない。 なお使用したプロピレン力一ポネート、 ジメチルカーポネート、 ェチルメチルカーボネー卜、 エチレンカーボネート等の有機溶媒はキシダ化学株 式会社製のリチウムバッテリーグレードで、 水分の測定は力一ルフィッシャ一水 分計 (平沼産業株式会社製、 平沼微量水分測定装置 AQ— 7) を用いた。
合成例 1 N—ェチルー N—メ卜キシメチルー N, N—ジメチルアンモニゥムテ トラフルォロボレートの合成
ェチルジメチルァミン (試薬:東京化成製) 82. 84 gを脱水アセトン (試 薬:和光純薬製) 522 gに溶解し、 窒素置換した。 5°C下クロロメチルメチル エーテル (試薬:東京化成製を蒸留精製) 92.42 gを 2時間で滴下した。 次 いで、 15°C以下にて 5時間攪拌し、 反応を終了した。 5°Cまで冷却し、 生成し た固体を窒素下濾別した。 350 gのアセトンにて洗浄した後、 減圧乾燥し、 1
65. 49 gの目的物 (白色固体) を得た。
XH-NMR (CD3OD) (5 p m:
1. 36 (m 3H), 3. 04 (s 6 H), 3.41 (q 2 H), 3. 68 ( s
3H), 4.63 (s 2H)
続いて、 上記で製造した N—ェチルー N—メトキシメチルー N, N—ジメチル アンモニゥムクロライド 40.0 gをメチルアルコール 40. 0 gに溶解し、 30 wt %HBF4のメチルアルコール溶液 62. 8 gを添加した。 130°Cの加熱 下、 窒素気流中にて、 副生する塩化水素と過剰の HBF4およびメチルアルコー ルを除き目的物 49. 7 gを得た。
JH-NMR (CD3OD) δ p pm:
1. 34 (m 3H) , 3.00 (s 6 Η) , 3.38 (q 2 Η) , 3. 66 (s 3Η) , 4. 57 (s 2Η)
合成例 2 Ν—エトキシメチルー Ν—ェチル一Ν, Ν_ジメチルアンモニゥムテ トラフルォロポレートの合成
ェチルジメチルァミン (試薬:東京化成製) 24. 7 gを脱水 2—ブ夕ノン (試薬:和光純薬製) 220 gに溶解し、 窒素置換した。 5°C下クロロメチルェ チルエーテル (試薬:東京化成製を蒸留精製) 31.6 gを 1時間で滴下した。 次いで、 15°C以下にて 5時間攪拌し、 反応を終了した。 5°Cまで冷却し、 生成 した固体を窒素下濾別した。 200 gのアセトンにて洗浄した後、 減圧乾燥し、 52. 1 gの目的物 (白色固体) を得た。
XH-NMR (CD3OD) δ p p m:
1. 33 (m 6 H) , 3.03 (s 6 H) , 3.41 (q 2 H) , 3. 89 (q 2H) , 4. 67 (s 2 H)
続いて、 上記で製造した N—エトキシメチル— N—ェチルー N, N—ジメチル アンモニゥムクロライド 50. 0 gを Me OH50 gに溶解し、 30 %HBF4 のメタノール溶液 91. 65 gを添加した。 1 30°Cの加熱下、 N2 プリング をおこない、 メタノール、 塩化水素と過剰の HBF4を除き目的物 (薄黄色液 体) 64. 99 gを得た。
^-NM (CD3OD) (5 ppm :
1. 34 (m 3H) , 3. 00 (s 6 Η) , 3.38 (q 2 Η) , 3.66 (s 3Η) , 4. 57 (s 2Η)
合成例 3 Ν, Ν—ジェチルー Ν—メトキシメチルー Ν—メチルアンモニゥムテ トラフルォロボレートの合成 N, N—ジェチル— N—メチルァミン (試薬:東京化成製を精留により精製) 52. 3 gを 307 gの脱水 2—ブ夕ノン (試薬:和光純薬製) に溶解し、 窒素 置換した。 5 °C下クロロメチルメチルエーテル (試薬:東京化成製を精留精製) 48. 2 gを 1. 75時間で滴下した。 5〜10 °Cにて 5時間攪拌し反応を終了し た。 反応液を濾別し、 得られた個体を 300 gの冷 2—ブ夕ノンにて洗浄した。 減圧乾燥し、 88. 3 gの目的物 (白色固体) を得た。
— NMR (CD3OD) (5 p pm:
1.33 (m 6 H) , 2.97 (s 3 H) , 3. 38 (m 4 H) , 3. 65 (s 3 H) , 4. 59 (s 2H)
続いて、 上記で製造した N, N—ジェチル— N—メトキシメチル—N_メチル アンモニゥムクロライド 50. 0 gをメチルアルコール 50. 0 gに溶解し、 30 wt %HB F4のメチルアルコール溶液 9 1. 7 gを添加した。 130°Cの加熱 下、 窒素気流中にて、 副生する塩化水素と過剰の HB F4およびメチルアルコー ルを除き目的物 65.0 gを得た。
^-NMR (CD3OD) δ p pm:
1.32 (m 6 H), 2.95 ( s 3 H), 3. 36 (m 4H), 3.63 ( s 3H), 4. 56 (s 2 H)
合成例 4 N—エトキシメチル _N, N—ジェチルー N—メチルアンモニゥムテ トラフルォロポレー卜の合成
N, N—ジェチルー N—メチルァミン (試薬:東京化成製を精留により精製) 51. 8 gを 327 gの脱水 2—ブ夕ノン (試薬:和光純薬製) に溶解し、 窒素 置換した。 5°C下クロロメチルェチルエーテル (試薬:東京化成製を精留精製) 56. 0 gを 1. 5時間で滴下した。 5〜 10°Cにて 5. 5時間攪拌し反応を終了 した。 5°Cにて 2—ブ夕ノン層を分液し、 得られた液体を 120 gの 2—ブタノ ンで洗浄した。 減圧乾燥し、 39.7 gの目的物 (薄黄色液体) を得た。 ^-NMR (CDgOD) δ p pm :
1. 3 3 (m 9H), 2. 9 8 (s 3H), 3. 3 8 (m 4H), 3. 86 (q 2H), 4. 66 (s 2H)
続いて、 上記で製造した N—エトキシメチル _N, N—ジェチルー N_メチル アンモニゥムクロライド 50. 0 gをメチルアルコール 50. 0 gに溶解し、 30 w t %HB F4のメチルアルコール溶液 84. 6 gを添加した。 13 0°Cの加熱 下、 窒素気流中にて、 副生する塩化水素と過剰の HB F4およびメチルアルコー ルを除き目的物 63. 8 gを得た。
— NMR (CD3OD) (5 p pm:
1. 3 2 (m 9H), 2. 9 6 (s 3H), 3. 36 (m 4H), 3. 84 (q 2H), 4. 63 (s 2H)
実施例 1
合成例 1で製造した N—ェチル—N—メトキシメチルー N、 N—ジメチルアン モニゥムテトラフルォロボレートとェチルメチルカーボネートとを、 種々濃度で、 露点が一 60°C以下の窒素雰囲気ドライボックス内で混合した。 混合後の溶液の 水分をカールフィッシヤー水分計で測定し、 30 p pm以下であることを確認し た。 混合濃度は表 1に掲げる通りとし、 各種組成物の電気伝導度を測定した。 <混合状態の観察 >
上記各種組成物を、 ドライボックス内で 4 c cずつ、 スクリュー栓が付いたガ ラス容器に移し、 ドライボックスの外に取り出した。 各種溶液が入ったガラス容 器を恒温槽に浸漬し、 25° (:、 0°C、 一 30°Cでそれぞれ 5時間保持し、 目視で 状態を確認した。 表において、 「一」 は二層分離を、 「固」 は固体状態を示す。 ぐ電気伝導度の測定 >
混合状態の観察後、 分離していない、 或いは固化していない液体状態の組成溶 液について、 再度ドライポックス内から溶液を取り出し電気伝導度を測定した。 電気伝導度の測定には、 導電率計 (CDM2 1 0 Ra d i ome t e r社製) を使用した。 測定セルには X E— 1 0 0 ( R a d i o m e t e r社製) を使用し た。
【表 1】
Figure imgf000025_0001
実施例 2
合成例 1で製造した N—ェチル— N—メトキシメチルー N、 N—ジメチルアン モニゥムテトラフルォロポレート、 ェチルメチルカ一ポネート及びジメチルカ一 ポネートを用いた以外は実施例 1と同様にして各種組成物の電気伝導度を測定し た。
【表 2】
Figure imgf000025_0002
実施例 3
合成例 1で製造した N _ェチル _ N—メ卜キシメチル— N、 N—ジメチルアン モニゥムテトラフルォロポレート、 ジメチルカーポネート及びプロピレンカーボ ネートを用いた以外は実施例 1と同様にして各種組成物の電気伝導度を測定した。 【表 3】
Figure imgf000026_0001
実施例 4
合成例 1で製造した N—ェチル—N—メ 1、キシメチル _N、 N—ジメチルアン モニゥムテトラフルォロボレ一ト、 ジメチルカーボネー卜、 エチレンカーボネー ト及びプロピレンカーボネートを用いた以外は実施例 1と同様にして各種組成物 の電気伝導度を測定した。
【表 4】
Figure imgf000026_0002
実施例 5
合成例 2で製造した N—エトキシメチル— N—ェチル—N, N—ジメチルアン モニゥムテトラフルォロポレートとェチルメチルカーボネートを用いた以外は実 施例 1と同様にして各種組成物の電気伝導度を測定した。
【表 5】
伝導度 伝導度 伝導度 電解質 EMC
(25°C) (0°C) (-30°C)
(w t %) (wt %) (mS / c m) (mSZcm) (mS / c m)
20 80 ― ― ―
40 60 ― ― ―
実施例 5 52 48 10. 0 5.4 1. 7
60 40 10. 3 5.2 1. 5
70 30 9.4 4.2 1. 0
80 20 7. 6 3.0 固 実施例 6
合成例 3で製造した N, N—ジェチルー N—メトキシメチルー N—メチルアン モニゥムテトラフルォロポレートとェチルメチルカーボネートを用いた以外は実 施例 1と同様にして各種組成物の電気伝導度を測定した。
【表 6】
Figure imgf000027_0001
実施例 7
合成例 4で製造した N—ェトキシメチルー N, N_ジェチルー N—メチルアン モニゥムテトラフルォロポレートとェチルメチルカーボネートを用いた以外は実 施例 1と同様にして各種組成物の電気伝導度を測定した。
【表 7】
伝導度 伝導度 電解質 EMC
(25°C) (-30°C) (wt %) (w t ) (mS/ c m) (m S / c m)
20 80 一 一 ―
40 60 一 一 一
実施例 7 43 57 8. 5 5. 0 1.7
60 40 10. 3 5.2 1.4
80 20 7.4 2. 8 0.4
100 0 2. 8 0. 7 <0· 1 比較例 1 N—メトキシメチルー N, N, N—トリメチルアンモニゥムテトラフル ォロポレートの合成 トリメチルァミン (試薬: A 1 d r i c h製) 50. 57 gを 538. 04 gの トルエンに溶解し、 窒素置換した。 _ 30°Cでクロロメチルメチルエーテル (試 薬:東京化成製) 60.73 gを 3時間かけて滴下した。 徐々に昇温し、 室温に て 12時間攪拌し、 反応を終了した。 5°Cまで冷却し、 生成した固体を窒素中で 濾別した。 500 gのトルエンにて洗浄した後、 減圧乾燥した。 得られた白色固 体を 500 gのアセトンに懸濁し、 室温にて攪拌洗浄し、 窒素中で濾別した (こ れを 2回繰り返した) 。 減圧乾燥し、 白色固体 95.49 gを得た。
^-NMR (CD3OD) δ p pm:
3. 10 (S 9H), 3. 71 (S 3H), 4. 63 (S 2 H)
続いて、 上記で製造した N—メトキシメチルー N, N, N—トリメチルアンモニ ゥムクロライド 50.3 gをメチルアルコール 50. 0 gに溶解し、 30w t %H BF4のメチルアルコール溶液 1 1 0. 7 gを添加した。 130°Cの加熱下、 窒 素気流中にて、 副生する塩化水素と過剰の HBF4およびメチルアルコールを除 き目的物 68. 8 gを得た。
^-NMR (CD3OD) (5 p pm:
3.07 (S 9H), 3. 69 (S 3H), 4. 57 (S 2 H)
上記で製造した N—メトキシメチル—N, N, N—トリメチルアンモニゥムテト ラフルォロボレートとェチルメチルカーボネートを用いた以外は実施例 1と同様 にして各種組成物の電気伝導度を測定した。 【表 8】
Figure imgf000029_0001
比較例 2 N—エトキシメチル— N, N, N—トリメチルアンモニゥムテトラフル ォロボレ一卜の合成 トリメチルァミン (試薬: A 1 d r i c h製) 40. 2 gを無水アセトン (試 薬:関東化学製) 342 gに溶解し、 窒素置換した。 5°C下クロロメチルェチル エーテル (試薬:東京化成製を蒸留精製) 64. 0 gを 1時間で滴下した。 次い で、 15°C以下にて 4時間攪拌し、 反応を終了した。 5°Cまで冷却し、 生成した 固体を窒素下濾別した。 650 gのアセトンにて洗浄した後、 減圧乾燥し、 88. 0 gの目的物 (白色固体) を得た。
^-NMR (CD3OD) δ p pm:
1. 30 ( t 3H), 3. 1 1 (s 9H), 3. 92 (q 2H), 4. 69 ( s 2H)
続いて、 上記で製造した N—エトキシメチル—N, N, N—トリメチルアンモニ ゥムクロライド 50. 0 gをメチルアルコール 50.0 gに溶解し、 30w t %H BF4のメチルアルコール溶液 1 00. 0 gを添加した。 130°Cの加熱下、 窒 素気流中にて、 副生する塩化水素と過剰の HBF4およびメチルアルコールを除 き目的物 66.4 gを得た。
一 NMR (CD3OD) δ p pm:
1. 29 ( t 3H), 3. 06 (s 9H), 3. 90 (q 2H), 4. 61 ( s 2H)
上記で製造した N—エトキシメチルー N, N, N-トリメチルアンモニゥムテト ラフルォロポレートとェチルメチルカーボネートを用いた以外は実施例 1と同様 にして各種組成物の電気伝導度を測定した。
【表 9】
Figure imgf000030_0001
比較例 3 N_n—プロボキシメチルー N, N, N—トリメチルアンモニゥムテ卜 ラフルォロポレー卜の合成 トリメチルァミン (試薬: A 1 d r i c h製) 20. 9 gを脱水 2—ブタノン (試薬:和光純薬製) 316 gに溶解し、 窒素置換した。 5°C下クロロメチルプ 口ポキシエーテル (試薬:和光純薬製) 24. 5 gを 1時間で滴下した。 次いで、
15°C以下にて 4時間攪拌し、 反応を終了した。 5°Cまで冷却し、 生成した固体 を窒素下濾別した。 320 gの 2—ブ夕ノンにて洗浄した後、 減圧乾燥し、 28.
8 gの目的物 (白色固体) を得た。
1H— NMR (CD3〇D) <5 p p m:
0. 99 (t 3H), 1. 70 (m 2 H), 3. 09 (s 9H), 3. 83 ( t
2H), 4.67 (s 2H)
続いて、 上記で製造した N— n—プロポキシメチル—N, N, N—トリメチルァ ンモニゥムクロライド 50. 0 gをメチルアルコール 50.0 gに溶解し、 30w t %HBF4のメチルアルコール溶液 91. 7 gを添加した。 130°Cの加熱下、 窒素気流中にて、 副生する塩化水素と過剰の HBF4およびメチルアルコールを 除き目的物 65. 0 gを得た。
一 NMR (CD3OD) (5 p pm:
0. 98 ( t 3H), 1. 70 (m 2 H), 3.06 ( s 9H), 3. 81 ( t 2 H), 4. 62 (s 2 H)
上記で製造した N—n—プロポキシメチルー N, N, N—トリメチルアンモニゥ ムテトラフルォロポレートとェチルメチルカーボネートを用いた以外は実施例 1 と同様にして各種組成物の電気伝導度を測定した。
【表 10】
Figure imgf000031_0001
比較例 4 N—メトキシメチルー N, N, N—トリエチルアンモニゥムテトラフル ォロポレートの合成
トリェチルァミン (試薬:東京化成製を精留精製) 6 1. 2 gを 590 gの無 水アセトン (試薬:関東化学製) に溶解し、 窒素置換した。 5°C下クロロメチル メチルエーテル (試薬:東京化成製を精留精製) 49. 7 gを 2. 5時間で滴下し た。 5~10°Cにて 5. 5時間攪拌し反応を終了した。 濾過し、 得られた固体を 400 gのアセトンで洗浄した。 減圧乾燥し、 86. 7 gの目的物 (白色固体) を得た。
一 NMR (CD3OD) (5 p pm:
1. 31 (m 9H), 3. 34 (q 6 H), 3.62 ( s 3H), 4. 58 ( s 2H) 続いて、 上記で製造した N—メトキシメチル— N, N, N—トリェチルアンモニ ゥムクロライド 50.0 gをメチルアルコール 50. 0 gに溶解し、 30 w t %H BF4のメチルアルコール溶液 84. 6 gを添加した。 1 30°Cの加熱下、 窒素 気流中にて、 副生する塩化水素と過剰の HBF 4およびメチルアルコールを除き 目的物 63. 8 gを得た。
^-NMR (CD3OD) (5 p pm:
1. 30 (m 9H), 3. 32 (q 6 H), 3. 61 (s 3 H), 4. 54 ( s
2H)
上記で製造した N—メトキシメチルー N, N, N—トリェチルアンモニゥムテト ラフルォロボレートとェチルメチルカーボネートを用いた以外は実施例 1と同様 にして各種組成物の電気伝導度を測定した。
【表 1 1】
Figure imgf000032_0001
比較例 5 N—エトキシメチル— N, N, N—トリェチルアンモニゥムテトラフル ォロポレー卜の合成
トリェチルァミン (試薬:東京化成製を精留精製) 71.6 gを 459 gの無 水アセトン (試薬:関東化学製) に溶角 し、 窒素置換した。 0°C下クロロメチル ェチルエーテル (試薬:東京化成製を精留精製) 66.6 gを 1時間で滴下した。 5〜10°Cにて 5時間攪拌し反応を終了した。 反応液を濾過し、 得られた固体を 650 gのアセトンで洗浄した。 減圧乾燥し、 74. 6 gの目的物 (白色固体) を得た。
Figure imgf000033_0001
1. 3 1 (m 12 H), 3. 34 (q 6H), 3. 83 (q 2 H), 4. 62 (s 2H)
続いて、 上記で製造した N—エトキシメチル—N, N, N—トリェチルアンモニ ゥムクロライド 50. 0 gをメチルアルコール 50. 0 gに溶解し、 30 w t %H B F4のメチルアルコール溶液 78. 5 gを添加した。 130°Cの加熱下、 窒素 気流中にて、 副生する塩化水素と過剰の HBF4およびメチルアルコールを除き 目的物 62. 8 gを得た。
XH-NMR (CD3OD) δ p pm:
1. 30 (m 12 H), 3. 32 (q 6 H), 3. 82 (q 2 H), 4. 58 (s 2H)
上記で製造した N—ェトキシメチルー N, N, N—トリメチルアンモニゥムテト ラフルォロポレートとェチルメチルカーボネートを用いた以外は実施例 1と同様 にして各種組成物の電気伝導度を測定した。
【表 12】
Figure imgf000033_0002
ぐ電気二重層キャパシ夕の製造 >
実施例 8
実施例 5で製造した N—エトキシメチル一 N—ェチルー N, N_ジメチルアン モニゥムテトラフルォロボレ一トとェチルメチルカーボネートとを、 混合組成が 重量比で 60 : 40となるように、 露点が一 60°C以下の窒素雰囲気ドライポッ クス内で調液した。 混合後の溶液の水分をカールフィッシヤー水分計で測定し、 3 0 p p m以下であることを確認した。
上記電解液を使用して図 1の構造を有する電気二重層キャパシ夕を製造した。 電極 1及び電極 2は、 活性炭を主成分とする電導性物質、 バインダー、 N—メチ ルピロリドンとともに混練して得られたペーストをアルミニウム箔に 1 5 0 μ πι の厚さで塗工後、 乾燥して得られたシート状電極を円板状に切り出したものであ る。 容器体 1、 容器体 2、 スぺーサ一、 スプリングは共にステンレス鋼製であり、 セパレー夕は、 ポリプロピレン不織布である。 電気二重層キャパシ夕の組み立て はアルゴンガスを満たしたグローブボックス内でおこなった。 電極 1、 電極 2、 容器体 1、 容器体 2、 スプリング、 スぺーサ一は 1 2 0 °Cの加熱下、 2 4時間真 空乾燥した後、 グローブボックス内に持ち込んだ。 上記調製した電解液を電極 1、 電極 2、 セパレ一夕に含浸させ、 図 1の構成で容器体 1と容器体 2をガスケット を介してかしめることによって電気二重層キャパシ夕を得た。
実施例 9
実施例 7で製造した N—エトキシメチル—N, N—ジェチルー N—メチルアン モニゥムテトラフルォロポレートとェチルメチルカーボネー卜とを、 混合組成が 重量比で 6 0 : 4 0となるように、 露点が— 6 0 °C以下の窒素雰囲気ドライポッ クス内で調液した。 混合後の溶液の水分をカールフィッシヤー水分計で測定し、 3 0 p p m以下であることを確認した。 実施例 8において使用した電解液に代え て、 本実施例において上記調製した電解液を使用した以外は、 実施例 8と同様に して電気二重層キャパシ夕を得た。
比較例 6
N, N, N—トリェチルー N—メチルアンモニゥムクロライド (試薬:東京化成 製) 1 0 O g をメタノール 1 0 0 g に溶解し、 3 0 w t % H B F 4のメタノール 溶液 2 0 0 . 0 gを添加した。 3 0分攪拌すると N, N, N—トリェチルー N—メ チルアンモニゥムテトラフルォロポレートの結晶が析出した。 溶液を濾過後、 結 晶をイソプロピルアルコールで洗浄してから、 130°Cの加熱下、 窒素気流中に て乾燥し、 副生した塩化水素と過剰の HBF 4およびメタノール、 イソプロピル アルコールを除き目的物 (白色固体) 127. 1 gを得た。
一 NMR (CD3OD) δ p pm:
1. 31 (m 9H), 2. 95 (S 3 H), 3. 34 (q 6 H)
上記で製造した N, N, N—トリェチルー N—メチルアンモニゥムテトラフルォ ロボレートをプロピレンカーボネート (キシダ化学株式会社製、 リチウムバッテ リーグレード) に濃度が 1. 5Mになるように、 露点が— 60°C以下の窒素雰囲 気ドライボックス内で混合調液した。 混合後の溶液の水分をカールフィッシヤー 水分計で測定し、 30 p pm以下であることを確認した。
実施例 8において使用した電解液に代えて、 本比較例において調製した上記電 解液を使用した以外は、 実施例 8と同様にして電気二重層キャパシ夕を得た。 ぐ漏れ電流値の測定例 >
実施例 8、 実施例 9及び比較例 6で作製されたコィン型電気二重層キャパシ夕 に関し、 漏れ電流値の測定をおこなった。 漏れ電流値の測定は 25 °Cにおいて実 施した。 コイン型セルを専用のホルダにセットした後、 恒温槽に浸漬してコイン 型セルの温度を一定に保つようにした。 この際、 ホルダ全体をビニール袋で覆い、 コィン型セルが恒温槽内の冷媒に接液しないようにした。 所定の温度に設定した 恒温槽に、 コイン型セルを浸漬し、 4時間保持した後、 電気二重層キャパシ夕の 充放電を開始した。 電流密度が 0.5mAcm一2の定電流充電をおこない、 電圧 が 2. 5 Vに達した時点で定電圧充電に切り替えた。 2.5 Vで 300分保持した 後、 0. 5mAcm一2の定電流放電をおこない、 電圧が 0 Vに達した時点で低電 圧放電に切り替え 0Vで 300分間保持した。 続いて 0. 5 mA cm— 2の定電流 充電をおこない 2. 7 Vで 300分保持した後、 0. 5mA cm一2の定電流放電 をおこない、 電圧が 0Vに達した時点で定電圧放電に切り替え 0Vで 300分保 持した。 以降、 定電圧充電の設定を 3. 0V、 3. 3 Vとし同様にサイクルをおこ なった。 定電圧充電時の 3 0 0分後における電流値を漏れ電流値とした。 結果を 表 1 3に示した。
【表 1 3】
Figure imgf000036_0001
実施例 1 0
合成例 1で合成された N一ェチル一 N—メトキシメチルー N—ジメチルアンモ 二ゥムテ卜ラフルォロボレ一トとプロピレンカーボネートとエチレンカーボネー 卜とジメチルカ一ポネ一トを、 混合組成が重量比で 4 0 : 1 0 : 2 5 : 2 5とな るように、 露点が— 6 0 °C以下のアルゴン雰囲気ドライボックス内で調液した。 混合後の溶液の水分をカールフィッシヤー水分計で測定し、 3 0 p p m以下であ ることを確認した。 実施例 8において使用した電解液に代えて、 本実施例におい て調製した上記電解液を使用した以外は、 実施例 8と同様にして電気二重層キヤ パシ夕を得た。
実施例 1 1
合成例 3で合成された N, N—ジェチル— N—メトキシメチルー N—メチルァ ンモニゥムテトラフルォロポレートとプロピレンカーボネートとエチレンカーボ ネートとジメチルカーボネートを、 混合組成が重量比で 4 0 : 1 0 : 2 5 : 2 5 となるように、 露点が一 6 0 °C以下のアルゴン雰囲気ドライボックス内で調液し た。 混合後の溶液の水分をカールフィッシャー水分計で測定し、 3 0 p p m以下 であることを確認した。 実施例において使用した電解液に代えて、 本実施例にお いて上記調製した電解液を使用した以外は、 実施例 8と同様にして電気二重層キ ャパシ夕を得た。 < i R損の測定 >
実施例 10、 実施例 11及び比較例 6で作製されたコイン型電気二重層キャパ シ夕に関し、 i R損の測定をおこなった。 電気二重層キャパシ夕の充放電測定は 恒温槽にて 0°Cで実施した。 電流密度が 0. 5 mA cm一2の定電流充電をおこな い、 電圧が 2. 5 Vに達した時点で定電圧充電に切り替えた。 2. 5Vで 90分保 持した後、 0. 5mAcm— 2の定電流放電をおこない、 電圧が 0. IVに達した 時点で低電圧放電に切り替え 0. I Vで 90分間保持した。 以上の充電/放電を 併せて 1サイクルとした。 4サイクル目の放電直後の i R損を測定した。 結果を 表 14に示した。 なお、 比較例 6の 4サイクル目の放電直後における i R損を 1 00とした際の実施例 10及び実施例 1 1の i R損を比較した結果を表 14に示 した。
【表 14】
Figure imgf000037_0001
産業上の利用可能性
本発明の式 (1) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有 する非水電解液は、 低温での信頼性に優れ、 耐電圧の高く、 電気化学デバイスの 電解液として好適である。 本発明の式 (1) で表される第 4級アンモニゥム塩は、 R l〜R 3が全て同一でない非対称の場合において本発明の目的に適応した電解 液及び電気化学デバイスを提供することができる。

Claims

請求の範囲
1.式 (1) で表される第 4級アンモニゥム塩と鎖状炭酸エステルを含有する とを特徴とする非水電解液。
Figure imgf000038_0001
(1)
(式中、 1〜!^3は、 炭素数 1〜3の直鎖又は分岐のアルキル基を示し、 R4は、 メトキシメチル基、 エトキシメチル基、 プロポキシメチル基及びイソプロポキシ メチル基を示す。 X は BF4 を示す。 但し、 R1 !^3が全て同一である場合を 除く。)
2. 1〜!^3が、 炭素数 1又は 2のアルキル基を示し、 R4が、 メトキシメチル 基又はェトキシメチル基である請求の範囲第 1項に記載の非水電解液。 '
3. 式 (2) 又は式 (3) で表される第 4級アンモニゥム塩と鎖状炭酸エステル を含有することを特徴とする非水電解液。
Figure imgf000038_0002
Figure imgf000038_0003
4.鎖状炭酸エステルが、 ェチルメチルカーボネー卜及びジメチルカーポネート から選ばれる 1種以上の鎖状炭酸エステルであることを特徴とする請求の範囲第 1〜 3項のいずれかに記載の非水電解液。
5.鎖状炭酸エステルが、 ェチルメチルカ一ポネ一トであることを特徴とする請 求の範囲第 4項に記載の非水電解液。
6 .環状炭酸エステルを更に含有させた請求の範囲第 1〜 5項のいずれかに記載 の非水電解液。
7.請求の範囲第 1〜 6項のいずれかに記載の非水電解液を用いたことを特徴と する電気化学デバイス。
8.請求の範囲第 1〜 6項のいずれかに記載の非水電解液を用いたことを特徴と する電気二重層キャパシ夕。
Figure imgf000040_0001
Figure imgf000040_0002
T · Βτ,ί
l/l
£9900C/900Zdf/X3d C68..0/900Z OAV
PCT/JP2006/300663 2005-01-12 2006-01-12 電解液及び電気化学デバイス WO2006077893A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-005790 2005-01-12
JP2005005790 2005-01-12

Publications (1)

Publication Number Publication Date
WO2006077893A1 true WO2006077893A1 (ja) 2006-07-27

Family

ID=36692281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300663 WO2006077893A1 (ja) 2005-01-12 2006-01-12 電解液及び電気化学デバイス

Country Status (1)

Country Link
WO (1) WO2006077893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087099A1 (ja) * 2010-01-15 2011-07-21 宇部興産株式会社 二核ルテニウム錯体色素により増感された半導体微粒子と、アンモニウム塩化合物またはホスホニウム塩化合物を含有する電解質溶液とを備える光化学電池
JP2020194713A (ja) * 2019-05-29 2020-12-03 株式会社リコー 蓄電素子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (fr) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Liquide ionique, sel electrolytique et solution electrolytique pour dispositif de stockage, condensateur electrique a double couche et pile secondaire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076924A1 (fr) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Liquide ionique, sel electrolytique et solution electrolytique pour dispositif de stockage, condensateur electrique a double couche et pile secondaire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087099A1 (ja) * 2010-01-15 2011-07-21 宇部興産株式会社 二核ルテニウム錯体色素により増感された半導体微粒子と、アンモニウム塩化合物またはホスホニウム塩化合物を含有する電解質溶液とを備える光化学電池
JP5682574B2 (ja) * 2010-01-15 2015-03-11 宇部興産株式会社 二核ルテニウム錯体色素により増感された半導体微粒子と、アンモニウム塩化合物またはホスホニウム塩化合物を含有する電解質溶液とを備える光化学電池
JP2020194713A (ja) * 2019-05-29 2020-12-03 株式会社リコー 蓄電素子

Similar Documents

Publication Publication Date Title
KR100900132B1 (ko) 제4급 암모늄염, 전해질, 전해액 및 전기 화학 디바이스
JP5279764B2 (ja) 第4級アンモニウム塩およびその製造方法
EP2207234B1 (en) Non-aqueous electrolyte
US20080138704A1 (en) Material for Electrolytic Solution, Ionic Material-Containing Composition and Use Thereof
JP4802108B2 (ja) 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス
JP5366460B2 (ja) イオン性化合物
JP2007157584A (ja) 電解質材料
JP4836578B2 (ja) 第四級アンモニウム塩、電解質、電解液及び電気化学デバイス
JP4751629B2 (ja) 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス
JPWO2005043668A1 (ja) 電解液および非水電解液リチウム二次電池
JP4732764B2 (ja) イオン性化合物の製造方法
JP2006193460A (ja) 第4級アンモニウム塩、電解液及び電気化学デバイス
JP6921825B2 (ja) 電気化学デバイス用電解質、電解液ならびに電気化学デバイス
WO2006077893A1 (ja) 電解液及び電気化学デバイス
JP5473296B2 (ja) 第4級アンモニウム塩
JP2009105028A (ja) アンモニウム塩、並びにそれを用いた電解質、電解液、添加剤及び蓄電デバイス
WO2014042124A1 (ja) リチウム電池用電解液及びその製造方法、並びに当該リチウム電池用電解液を備えるリチウム電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06700845

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6700845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP