WO2018021566A1 - 分化細胞の製造方法、及びその製造方法のために使用する培養バッグ - Google Patents

分化細胞の製造方法、及びその製造方法のために使用する培養バッグ Download PDF

Info

Publication number
WO2018021566A1
WO2018021566A1 PCT/JP2017/027557 JP2017027557W WO2018021566A1 WO 2018021566 A1 WO2018021566 A1 WO 2018021566A1 JP 2017027557 W JP2017027557 W JP 2017027557W WO 2018021566 A1 WO2018021566 A1 WO 2018021566A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pluripotent stem
stem cells
perfluoropolymer
embryoid body
Prior art date
Application number
PCT/JP2017/027557
Other languages
English (en)
French (fr)
Inventor
梢 駒澤
達也 樋口
新 金子
裕 安井
Original Assignee
ダイキン工業株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 国立大学法人京都大学 filed Critical ダイキン工業株式会社
Priority to EP17834568.2A priority Critical patent/EP3492577A4/en
Priority to CN201780047084.6A priority patent/CN109563466A/zh
Priority to US16/321,265 priority patent/US20190161726A1/en
Priority to JP2018530441A priority patent/JP7039473B2/ja
Publication of WO2018021566A1 publication Critical patent/WO2018021566A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a method for producing differentiated cells and a culture bag used for the production method.
  • pluripotent stem cells having the ability to differentiate into various cells will be used for clinical and drug discovery research.
  • pluripotent stem cells research on the use of induced pluripotent stem cells (induced Pluripotent Stem cell: iPS cell) and embryonic stem cells (Embryonic Stem cell: ES cell) is in progress.
  • iPS cell induced Pluripotent Stem cell
  • ES cell embryonic stem cells
  • embryonic bodies embryonic bodies (embryoid bodies: EB), which are three-dimensional clusters, are obtained by naturally aggregating pluripotent stem cells by culturing them in a low-adhesion culture dish (petri dish).
  • petri dish low-adhesion culture dish
  • EB embryoid body
  • a non-adhesive petri dish coated with a hydrophilic polymer having a phospholipid-like structure such as 2-methacryloyloxyethyl phosphorylcholine or a hydrogel has been used as a non-adherent culture dish (petri dish).
  • petri dish a non-adherent culture dish
  • This invention makes it a subject to provide the method which can perform EB method on a larger scale and a closed system compared with the method of using the conventional culture dish.
  • the inventors of the present invention have made extensive studies in order to achieve the above-mentioned object.
  • bag culture capable of suspension culture of a larger amount of pluripotent stem cells is more advantageous than conventional dish culture.
  • the present inventors have made further trial and error, a method using a conventional culture dish by using a culture bag having a perfluoropolymer having sufficient gas permeability and superhydrophobicity on the inner surface. It has been found that the EB method can be carried out in a closed system and on a larger scale with the same efficiency, and the present invention has been completed.
  • the present invention has been completed based on these findings and has the following embodiments.
  • Item 1 A method for producing differentiated cells from pluripotent stem cells by the embryoid body (EB) method, (1) a step of forming an embryoid body by culturing pluripotent stem cells using a culture bag having a perfluoropolymer on the inner surface, and (2) an embryoid body obtained in the step (1)
  • a method comprising a step of obtaining a differentiated cell by inducing differentiation of a contained pluripotent stem cell.
  • a method for inducing differentiation of pluripotent stem cells by an embryoid body (EB) method (1) a step of forming an embryoid body by culturing pluripotent stem cells using a culture bag having a perfluoropolymer on the inner surface, and (2) an embryoid body obtained in the step (1)
  • a method comprising the step of inducing differentiation of a pluripotent stem cell contained. Item 3.
  • the perfluoropolymer is selected from the group consisting of a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, and a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer.
  • Item 3. The method according to Item 1 or 2, which is at least one perfluoropolymer.
  • Item 4. Item 4. The method according to any one of Items 1 to 3, wherein the pluripotent stem cell is an induced pluripotent stem cell (iPS cell) or an embryonic stem cell (ES cell).
  • iPS cell induced pluripotent stem cell
  • ES cell embryonic stem cell
  • the perfluoropolymer is selected from the group consisting of a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, and a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer.
  • Item 7. The culture bag according to Item 6, which is at least one perfluoropolymer.
  • Item 8 The culture bag according to Item 6 or 7, wherein the pluripotent stem cell is an induced pluripotent stem cell (iPS cell) or an embryonic stem cell (ES cell).
  • Item 9. Item 5. An embryoid body obtainable by the step (1) according to any one of Items 1 to 4.
  • a differentiated cell population obtainable by the production method according to any one of Items 1 and 3 to 5.
  • the EB method can be performed on a larger scale than the conventional method using a culture dish.
  • the method for producing differentiated cells of the present invention is a method for producing differentiated cells from pluripotent stem cells by the embryoid body (EB) method, (1) a step of forming an embryoid body by culturing pluripotent stem cells using a culture bag having a perfluoropolymer on the inner surface, and (2) an embryoid body obtained in the step (1)
  • a method comprising a step of inducing differentiation of a pluripotent stem cell contained therein.
  • the culture bag is a culture bag having a perfluoropolymer on the inner surface, and the surface that can be contacted by cultured cells during culture is covered with at least the perfluoropolymer. Thereby, a pluripotent stem cell cannot adhere easily to the culture bag surface, and an embryoid body can be normally formed.
  • the culture bag may be formed of perfluoropolymer itself having sufficient gas permeability.
  • the film forming the culture bag is formed by the perfluoropolymer itself, and further, one or more kinds of coatings may be applied as necessary.
  • the perfluoropolymer is present in a portion in contact with the cell.
  • it is usually the outside of the culture bag or the part that does not come into contact with the cells.
  • the size of the culture bag is not particularly limited and can be set as appropriate.
  • the lower limit of the capacity may be 10 ml, 20 ml, 50 ml, or 100 ml.
  • the upper limit of the capacity may be 500 ml, 400 ml, 300 ml or 200 ml.
  • An example of the range of the culture bag capacity is 10 ml to 500 ml.
  • the “perfluoropolymer” basically includes a polymer containing no hydrogen in the molecule and composed of carbon and fluorine, or basically composed of carbon and fluorine. It means a polymer containing oxygen or the like.
  • the perfluoropolymer may contain a non-fluorinated group end.
  • the term “non-fluorinated group terminal” means a terminal that exhibits reactivity and is generally referred to as an unstable terminal. Specifically, —COF, —COOH, —COOH associated with water, —CH And functional groups such as 2 OH, —CONH 2 and —COOCH 3 . These non-fluorinated group terminals are derived from a reaction initiator or the like during the polymerization reaction.
  • the perfluoropolymer is preferably a perfluoropolymer having a total number of non-fluorinated group terminals of 70 or less per 1 ⁇ 10 6 carbon atoms. In this case, strong cell non-adhesiveness can be exhibited.
  • the perfluoropolymer has a total number of —COF, —COOH, —COOH associated with water, —CH 2 OH, —CONH 2 and —COOCH 3 of 1 ⁇ carbon. 10 is preferably 70 or less perfluoropolymer per 6.
  • the perfluoropolymer is preferably a perfluoropolymer having a total number of non-fluorinated group ends and —CF 2 H group ends of 70 or less per 1 ⁇ 10 6 carbon atoms.
  • the total number of non-fluorinated group ends and —CF 2 H group ends described above per 1 ⁇ 10 6 carbons is preferably 35 or less, 20 or less and 10 or less in this order. .
  • the perfluoropolymer preferably does not contain a —CF 2 H group end.
  • the number of non-fluorinated group ends and —CF 2 H group ends can be calculated by FT-IR.
  • the amount of the non-fluorinated group terminal in the perfluoropolymer is not particularly limited, and the following method can be employed.
  • generation of a non-fluorinated group terminal is mentioned.
  • the method of making the polymer obtained by polymerization reaction and the fluorine-containing compound used as a fluorine radical source contact, and fluorinating the non-fluorinated group terminal etc. are also mentioned.
  • the operation of bringing the perfluoropolymer obtained by the polymerization reaction into contact with the fluorine-containing compound serving as the fluorine radical source is obtained by subjecting the perfluoropolymer to a method such as suspension polymerization or emulsion polymerization and then melt extrusion. It can be carried out at any stage before and after. Further, this operation can be performed at a stage after the perfluoropolymer is molded. Further, the operation may be effective even if it is repeated in two or more of the three stages before and after the melt extrusion and after the molding process.
  • the fluorine-containing compound used as the fluorine radical source used in the method of fluorinating the non-fluorinated group terminal is not particularly limited and can be widely used.
  • halogen fluoride such as IF 5 and ClF 3 , fluorine gas (F 2 ), CoF 3 , AgF 2 , UF 6 , OF 2 , N 2 F 2, and CF 3 OF can be used.
  • the mixing ratio is not particularly limited, and for example, the fluorine gas concentration can be 5 to 50% by mass, and the fluorine gas concentration is preferably 15 to 30% by mass.
  • the inert gas is not particularly limited, and a wide range of nitrogen gas, helium gas, argon gas, and the like can be used, but nitrogen gas is preferable in terms of cost effectiveness.
  • the treatment temperature is preferably 20 to 220 ° C., preferably 100 to More preferably, the temperature is set to 200 ° C.
  • the treatment time is preferably 5 to 30 hours, more preferably 10 to 20 hours.
  • the perfluoropolymer is preferably a homopolymer or copolymer having a repeating unit derived from at least one perfluoroethylenic monomer.
  • the perfluoropolymer is represented by tetrafluoroethylene (TFE) and hexafluoropropylene (HFP); and CF 2 ⁇ CF—ORf (wherein Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms). It is preferable to have a repeating unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ether) (PAVE).
  • the PAVE is not particularly limited.
  • perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether), perfluoro (Pentyl vinyl ether), perfluoro (hexyl vinyl ether), perfluoro (heptyl vinyl ether) and the like.
  • perfluoropolymer examples include polytetrafluoroethylene (PTFE), TFE / HFP copolymer (FEP), TFE / PAVE copolymer (PFA), and TFE / HFP / PAVE copolymer. Of these, FEP and PFA are preferred, and FEP is more preferred.
  • the mass ratio of TFE: HFP in FEP is preferably 80:20 to 97: 3, more preferably 84:16 to 92: 8.
  • the mass ratio of TFE: PAVE in PFA is preferably 90:10 to 98: 2, more preferably 92: 8 to 97: 3.
  • the mass ratio of TFE: HFP: PAVE in the TFE / HFP / PAVE copolymer is preferably 70 to 97 / 2.5 to 20 / 0.1 to 10.
  • the culture bag can be produced, for example, by a method in which two films made of the above perfluoropolymer are overlapped, and then the edges are heat sealed using laser welding or an impulse sealer.
  • the pluripotent stem cells are not particularly limited, and are capable of proliferating while maintaining an undifferentiated state, and can be differentiated into all three germ layers. Undifferentiated cells that combine pluripotency can be used.
  • pluripotent stem cells include embryonic cancer (EC) cells derived from ES cells, iPS cells, and teratocarcinoma cells (embryonal Carcinoma cells), embryonic germ cells (EG) cells derived from primordial germ cells (Embryonic Germ cell), multipotent Germline Stem (mGS) cells that can be isolated in the process of establishing and culturing GS cells from testis tissue, and Multipotent Agent Progenitor Cell (MAPC) that can be isolated from bone marrow.
  • EC embryonic cancer
  • EG embryonic germ cells
  • Embryonic Germ cell Embryonic Germ cell
  • mGS multipotent Germline Stem
  • MMC Multipotent Agent Progenitor Cell
  • ES cells As ES cells, ES cells generated by nuclear reprogramming from somatic cells can also be used.
  • pluripotent stem cells preferably ES cells or iPS cells can be used.
  • pluripotent stem cells are not particularly limited among mammals, and may be selected according to the intended use of differentiated cells. For example, as long as it can be established, it can be selected from humans, monkeys, pigs, rabbits, dogs, rats and mice.
  • iPS cells The origin of iPS cells is not particularly limited, and can be appropriately selected from various somatic cells. Examples include fibroblasts, synoviocytes, T lymphocytes, dental pulp stem cells, umbilical cord blood cells, and peripheral blood mononuclear cells.
  • the concentration of the pluripotent stem cell in the culture solution is not particularly limited, and can be set as appropriate according to the cell type used. For example, may be 3.3 ⁇ 10 3 ⁇ 3.3 ⁇ 10 5 cells / ml, preferably if 3.3 ⁇ 10 4 ⁇ 3.3 ⁇ 10 5 cells / ml, 3.3 ⁇ 10 About 4 / ml may be more preferable.
  • Culture conditions are not particularly limited, and can be performed according to a normal EB method, and may be appropriately modified.
  • the outline until the embryoid body is formed is as follows.
  • a pluripotent stem cell is disperse
  • This cell suspension is placed in the culture vessel of the present invention and cultured in a predetermined environment such as in a CO 2 incubator.
  • An embryoid body can be usually formed in about 2 to 7 days after the start of culture.
  • Cultivation is preferably performed while shaking the culture bag.
  • the shaking conditions are not particularly limited and can be set as appropriate.
  • Step (2) is a step of obtaining differentiated cells by inducing differentiation of the pluripotent stem cells contained in the embryoid body obtained in the step (1).
  • the conditions for inducing differentiation are not particularly limited, and can be appropriately set according to the cell type used and the target differentiated cell type.
  • differentiation can be induced by adding a predetermined cytokine, growth factor or other compound to a culture solution at a predetermined concentration and culturing.
  • Process (1) and process (2) may be performed simultaneously.
  • the step (1) can be performed in the presence of the compound used in the step (2).
  • Differentiated cells are not particularly limited, and may be various progenitor cells.
  • hematopoietic progenitor cells can be obtained by performing steps (1) and (2) under predetermined conditions using T lymphocyte-derived T-iPS cells as pluripotent stem cells.
  • the embryoid body of the present invention is an embryoid body that can be obtained by step (1) of the production method of the present invention.
  • the embryoid body of the present invention is considered to have at least the same characteristics as the embryoid body obtained by the conventional EB method.
  • the differentiated cell population of the present invention is a differentiated cell population that can be obtained by the production method of the present invention.
  • Examples 1-4 FEP and PFA were used as materials for preparing the culture bag, and these pellets were melt-molded to obtain respective films.
  • a 106mm x 66mm size film with a thickness of 100 ⁇ m is heat-sealed using an impulse sealer under the conditions of a sealing time of 50 seconds, a sealing pressure of 0.2MPa, and a sealing width of 3mm.
  • Four types of attached bags (Examples 1 to 4) were produced (FIG. 1).
  • Samples of each material having a thickness of about 250 to 300 ⁇ m were prepared by overlapping each film, and analyzed using FT-IR Spectrometer 1760X (manufactured by Perkin-Elmer).
  • the above samples were prepared by overlapping the respective films.
  • FIG. Production of differentiation-inducing cell population (1) Preparation of EBs T-iPS cells were cultured on plastic plates (BD Biosciences) coated with Matrigel (Corning Life Sciences).
  • T-iPS cells The cultured undifferentiated T-iPS cells were treated with Tryp-LE (GIBCO) and gently detached. T-iPS cells are described in publicly known literature (Nishimura, 20 others, “Generation of Rejuvenated Anti-Specific TCells by Reprogramming to Pluripotency and Refferentiation, p. 14th, -14 Cell, p. 14). What was obtained by the method of was used.
  • Cell aggregates were penicillin / streptomycin (10 ng / mL), L-glutamine (2 mM), ascorbic acid (1 mM), monothioglycerol (MTG, 4 ⁇ 10 ⁇ 4 M; Sigma), transferrin (150 ⁇ g / mL) and Resuspended in StemPro-34 (Invitrogen) supplemented with BMP-4 (bone morphogenetic protein-4) (10 ng / mL).
  • BMP-4 bone morphogenetic protein-4
  • bFGF basic fibroblast growth [proliferation] factor
  • CD34 fluorescently labeled with APC
  • CD34 fluorescently labeled with Pacific Blue
  • CD43 fluorescently labeled with PE
  • CD-14 fluorescently labeled with PE-Cy7
  • CD235a fluorescently labeled with APC Fluorescently labeled antibodies for each were used.
  • FIGS. 3 and 4 Example 1, cell number 5 ⁇ 10 5 cells
  • FIGS. 5 and 6 Example 1, cell number 5 ⁇ 10 6 cells
  • FIGS. 7 and 8 Example 2, cell number
  • FIGS. 9 and 10 Example 2, cell number 5 ⁇ 10 6 cells
  • FIGS. 11 and 12 Example 3, cell number 5 ⁇ 10 5 cells
  • FIGS. 13 and 14 Example 3
  • cell number 5 ⁇ 10 6 cells FIGS. 15 and 16
  • FIGS. 17 and 18 Example 4, cell number 5 ⁇ 10 6 cells).
  • Monocyte cells (CD14 + ), erythroid cells (CD235a + ) and the like were observed.
  • the number of hematopoietic progenitor cells that were CD34 + / CD43 + fractionated using the CD34 / CD43 antibody was measured. The number was 10,401 at 5 ⁇ 10 5 / bag and 3,836 at 5 ⁇ 10 6 / bag.
  • Gamma-irradiated OP9-DL1 cells (provided by RIKEN BioResource Center; Watarai H, 14 others, "Generation of functional NKT cells in vitro emblemic stem") cells bearing rearranged invariant Va14-Ja18 TCRa gene ", 2010, Blood, 115, pp.
  • OP9 medium (15% fetal calf serum, 2 mM L-glutamine, 100 U / ml penicillin, and 100 ng) / Ml streptomycin added ⁇ MEM medium
  • FLT-3L FLT-3L (FMS-related tyrosine kinase 3)
  • Igand Igand
  • IL-7 interleukin-7
  • CD45 fluorescently labeled with brilliant violet 510
  • TCRab fluorescently labeled with FITC
  • CD3 fluorescently labeled with APC-Cy7
  • CD7 fluorescently labeled with APC
  • CD5 fluorescently labeled with PE-Cy7
  • Fluorescently labeled antibodies against CD4 fluorescently labeled with brilliant violet 421
  • CD8 ⁇ fluorescently labeled with PerCP-Cy5.5
  • CD8 ⁇ fluorescently labeled with PE
  • FIGS. 19 to 24 also show the results of similar analysis using peripheral blood as a control.
  • the cell group (CD4 + / CD8 + ) in the middle of differentiation was also confirmed in the cell group in which the cells obtained from the bag were induced to differentiate (day 30) (FIGS. 25 to 30).
  • the expression levels of CD4 and CD8 were the same as those of peripheral blood T cells. Thereby, it was confirmed that the hematopoietic progenitor cells obtained by induction in the bag also have the ability to differentiate into the T cell lineage with very high efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

EB法を、従来の培養皿を用いる方法と比べて、より大スケールで且つ閉鎖系で行うことのできる方法を提供することを課題とする。 多能性幹細胞から胚様体(EB)法により分化細胞を製造する方法であって、 (1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び (2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させることにより分化細胞を得る工程 を含む、方法。

Description

分化細胞の製造方法、及びその製造方法のために使用する培養バッグ
 本発明は、分化細胞の製造方法、及びその製造方法のために使用する培養バッグに関する。
 さまざまな細胞に分化する能力を有する多能性幹細胞(pluripotent stem cell)の、臨床や創薬研究等への利用が期待されている。多能性幹細胞としては、人工多能性幹細胞(induced Pluripotent Stem cell:iPS cell)及び胚性幹細胞(Embryonic Stem cell:ES cell)の利用に関する研究が進んでいる。
 多能性幹細胞の利用に際しては、所望の分化細胞に分化誘導する効率的な方法が求められている。多能性幹細胞の分化誘導には、低接着性の培養皿(シャーレ)で培養することにより、多能性幹細胞を自然凝集させて三次元の塊である胚様体(Embryoid Body: EB)を形成させる、いわゆる胚様体(EB)法が頻用されている。胚様体の培養に分化誘導作用を有するサイトカイン、増殖因子又はその他の化合物を添加すること等により、目的細胞腫への誘導効率を高めることができる。
 EB法においては、従来、非付着性の培養皿(シャーレ)として、2-メタクリロイルオキシエチルホスホリルコリン等のリン脂質類似構造を有する親水性ポリマーやハイドロゲル等をコーティングした低接着性のシャーレ等が用いられてきた(特許文献1)。
国際公開第2005/001019号
 本発明は、EB法を、従来の培養皿を用いる方法と比べて、より大スケールかつ閉鎖系で行うことのできる方法を提供することを課題とする。
 本発明者らは、上記目的を達成すべく、鋭意検討を重ねていたところ、まず、従来のようなシャーレ培養よりも、より大量の多能性幹細胞を浮遊培養できるバッグ培養が有利であると着想するに至った。しかし、従来EB法のために使用されてきた培養シャーレで用いられている材料と同種の材料を用いて、ガス透過性を有する培養バッグを製造することは困難であることが判った。本発明者らは、さらなる試行錯誤を重ね、十分なガス透過性を有し、かつ超疎水性であるパーフルオロポリマーを内側表面に有する培養バッグを用いることにより、従来の培養皿を用いる方法と同様の効率で、閉鎖系で、かつより大スケールでEB法を行うことができることを見出し、本発明を完成するに至った。
 本発明はこれらの知見に基づいて完成したものであり、下記の実施形態を有する。
項1.
多能性幹細胞から胚様体(EB)法により分化細胞を製造する方法であって、
(1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び
(2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させることにより分化細胞を得る工程
を含む、方法。
項2.
多能性幹細胞を胚様体(EB)法により分化誘導する方法であって、
(1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び
(2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させる工程
を含む、方法。
項3.
前記パーフルオロポリマーが、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体及びテトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体からなる群より選択される少なくとも一種のパーフルオロポリマーである、項1又は2に記載の方法。
項4.
多能性幹細胞が、人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)である、項1~3のいずれか一項に記載の方法。
項5.
前記工程(2)において、多能性幹細胞を前駆細胞へと分化誘導させる、項1~4のいずれか一項に記載の方法。
項6.
パーフルオロポリマーを内側表面に有する培養バッグであって、多能性幹細胞を胚様体(EB)法により分化誘導するために用いられる、培養バッグ。
項7.
前記パーフルオロポリマーが、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体及びテトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体からなる群より選択される少なくとも一種のパーフルオロポリマーである、項6に記載の培養バッグ。
項8.
多能性幹細胞が、人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)である、項6又は7に記載の培養バッグ。
項9.
項1~4のいずれか一項に記載の工程(1)により得られうる、胚様体。
項10.
項1及び3~5のいずれか一項に記載の製造方法により得られうる、分化細胞集団。
 本発明によれば、EB法を、従来の培養皿を用いる方法と比べて、より大スケールで行うことができる。
本発明の培養バッグの一例である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。 実施例の結果を示す図面である。
1.分化細胞の製造方法及びその方法のために使用する培養バッグ
 本発明の分化細胞の製造方法は、多能性幹細胞から胚様体(EB)法により分化細胞を製造する方法であって、
(1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び
(2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させる工程
を含む、方法である。
1.1 工程(1)
1.1.1 培養バッグ
 培養バッグは、パーフルオロポリマーを内側表面に有する培養バッグであり、培養時に培養細胞が接触しうる表面が、少なくともパーフルオロポリマーで覆われている。これにより、培養バッグ表面に多能性幹細胞が付着しにくく、胚様体が正常に形成されうる。
 培養バッグは、十分なガス透過性を有するパーフルオロポリマー自体により成形されているものであってもよい。その場合は、培養バッグを形成するフィルムが、パーフルオロポリマー自体により成形されており、さらに必要に応じて、一種又は二種以上のコーティングがなされていてもよい。
 本発明の効果が得られるためには、パーフルオロポリマーが細胞と接触する部分に存在する必要があり、その限りにおいて、そのようなコーティングがなされていてもよい。したがって、コーティングがなされている場合、特別な事情がある場合を除き、通常、それは培養バッグの外側であるか、あるいは、細胞と接触しない部分である。
 培養バッグの大きさは特に制限されず、適宜設定しうる。特に限定されず、例えば、容量の下限が、10ml、20ml、50ml又は100mlであってもよい。また、容量の上限が、500ml、400ml、300ml又は200mlであってもよい。培養バッグの容量の範囲の一例として、10ml~500ml等が挙げられる。
 本明細書において、「パーフルオロポリマー」とは、基本的に、分子内に水素を含まず、炭素とフッ素とから構成されるポリマー、又は基本的に炭素とフッ素とから構成され、一部に酸素等を含むポリマーを意味する。
 ただし、パーフルオロポリマーは、非フッ素化基末端を含んでいてもよい。本発明において、「非フッ素化基末端」とは、反応性を示し、一般に不安定末端といわれる末端を意味し、具体的には、-COF、-COOH、水と会合した-COOH、-CHOH、-CONH及び-COOCH等の官能基が挙げられる。これら非フッ素化基末端は、重合反応時において、反応開始剤等に由来して生じるものである。
 パーフルオロポリマーは、非フッ素化基末端を合計した数が、炭素1×10当たり70個以下のパーフルオロポリマーであることが好ましい。この場合、強い細胞非接着性が発揮されうる。本発明のより具体的な態様においては、パーフルオロポリマーは、-COF、-COOH、水と会合した-COOH、-CHOH、-CONH及び-COOCHを合計した数が、炭素1×10当たり70個以下のパーフルオロポリマーであることが好ましい。
 また、上記の、非フッ素化基末端を合計した、炭素1×10当たりの数の範囲としては、50個以下、35個以下、15個以下、10個以下、5個以下及び2個以下が、この順で好ましい。-COF、-COOH、水と会合した-COOH、-CHOH、-CONH及び-COOCHを合計した数についても同様である。
 パーフルオロポリマーは、非フッ素化基末端と-CFH基末端とを合計した数が、炭素1×10当たり70個以下のパーフルオロポリマーであることが好ましい。上記の、非フッ素化基末端と-CFH基末端とを合計した、炭素1×10当たりの数の範囲としては、35個以下、20個以下及び10個以下が、この順で好ましい。
 パーフルオロポリマーは、-CFH基末端を含まないことが好ましい。
 非フッ素化基末端及び-CFH基末端の数は、FT-IRにより算出することができる。
 パーフルオロポリマー中の非フッ素化基末端の量を上記範囲内とするには、特に限定されず、以下の方法を採用することができる。例えば、重合反応時に連鎖移動剤又は重合触媒等を使用することにより末端基を制御して非フッ素化基末端の生成を抑制する方法が挙げられる。また、重合反応により得られたポリマーと、フッ素ラジカル源となるフッ素含有化合物とを接触させて非フッ素化基末端をフッ素化する方法等も挙げられる。
 上記において、重合反応により得られたパーフルオロポリマーと、フッ素ラジカル源となるフッ素含有化合物とを接触させる操作は、パーフルオロポリマーを懸濁重合又は乳化重合等の方法により得た後、溶融押出する前後のいずれの段階においても行うことができる。さらに、該操作は、パーフルオロポリマーを成形加工した後の段階においても行うことができる。また、該操作は、溶融押出する前後、並びに成形加工した後、という三段階のうち二段階以上において重ねて行っても効果的であり得る。
 非フッ素化基末端をフッ素化する方法において用いられるフッ素ラジカル源となるフッ素含有化合物としては、特に限定されず、幅広く用いることができる。例えば、IF及びClF等のフッ化ハロゲン、並びにフッ素ガス(F)、CoF、AgF、UF、OF、N及びCFOF等が挙げられる。
 フッ素ガスを使用する場合、100%濃度のガスを使用してもよいが、安全面からは不活性ガスと混合した上で使用することが推奨されうる。その場合の混合比率としては、特に限定されず、例えば、フッ素ガス濃度5~50質量%とすることができ、なかでもフッ素ガス濃度15~30質量%が好ましい。不活性ガスとしては、特に限定されず、窒素ガス、ヘリウムガス及びアルゴンガス等を幅広く使用できるが、費用対効果の面では窒素ガスが好ましい。
 重合反応により得られたポリマーと、フッ素ラジカル源となるフッ素含有化合物とを接触させて非フッ素化基末端をフッ素化する方法においては、処理温度を20~220℃とすることが好ましく、100~200℃とすることがより好ましい。処理時間は、5~30時間が好ましく、10~20時間がより好ましい。
 パーフルオロポリマーは、少なくとも1種のパーフルオロエチレン性単量体から誘導される繰り返し単位を有する単独重合体又は共重合体であることが好ましい。
 パーフルオロポリマーは、テトラフルオロエチレン(TFE)及びへキサフルオロプロピレン(HFP);並びにCF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)(PAVE)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する繰り返し単位を有することが好ましい。
 PAVEとしては、特に限定されず、例えば、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)、パーフルオロ(ペンチルビニルエーテル)、パーフルオロ(ヘキシルビニルエーテル)及びパーフルオロ(ヘプチルビニルエーテル)等が挙げられる。
 パーフルオロポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE/HFP共重合体(FEP)、TFE/PAVE共重合体(PFA)及びTFE/HFP/PAVE共重合体等を挙げることができる。これらのうち、FEP及びPFAが好ましく、FEPがより好ましい。
 FEPにおけるTFE:HFPの質量比は、80:20~97:3が好ましく、84:16~92:8がより好ましい。
 PFAにおけるTFE:PAVEの質量比は、90:10~98:2が好ましく、92:8~97:3がより好ましい。
 TFE/HFP/PAVE共重合体におけるTFE:HFP:PAVEの質量比は、70~97/2.5~20/0.1~10が好ましい。
 培養バッグは、例えば、上記パーフルオロポリマーからなるフィルムを二枚、重ね合わせた上で、縁部を、レーザー溶着又はインパルスシーラー等を用いてヒートシールする方法等により製造することができる。
 1.1.2 多能性幹細胞
 多能性幹細胞としては、特に限定されず、未分化状態を保持したまま増殖できるという意味での自己再生能と、三胚葉系列すべてに分化できるという意味での分化多能性(pluripotency)、とを兼ね備える未分化細胞を使用できる。
 多能性幹細胞の具体的としては、例えば、ES細胞、iPS細胞、奇形癌腫細胞由来である胚性癌(EC)細胞(Embryonal Carcinoma cell)、始原生殖細胞由来である胚性生殖(EG)細胞(Embryonic Germ cell)、精巣組織からGS細胞を樹立培養する過程で単離されうるmultipotent Germline Stem(mGS)細胞及び骨髄から単離されうるMultipotent Adult Progenitor Cell(MAPC)等が挙げられる。
 ES細胞としては、体細胞から核初期化されて生じたES細胞も使用できる。
 多能性幹細胞として、好ましくはES細胞又はiPS細胞を使用できる。
 多能性幹細胞の由来は哺乳動物の中から特に限定されず、目的とする分化細胞の使用用途に応じて選択すればよい。例えば、樹立可能な限りにおいて、ヒト、サル、ブタ、ウサギ、イヌ、ラット及びマウス等の中から選択することができる。
 iPS細胞の由来については特に限定されず、各種体細胞から適宜選択することができる。例えば、線維芽細胞、滑膜細胞、Tリンパ球、歯髄幹細胞、臍帯血細胞及び末梢血単核球等が挙げられる。
 多能性幹細胞の培養液中の濃度は、特に限定されず、使用細胞種等に応じて適宜設定できる。例えば、3.3×10~3.3×10個/mlであってもよく、3.3×10~3.3×10個/mlであれば好ましく、3.3×10個/ml程度であればより好ましい場合がある。
 1.1.3 培養条件
 培養条件は、特に限定されず、通常のEB法に準じて行うことができ、適宜改変を行ってもよい。
 胚様体が形成されるまでの概略は以下の通りである。多能性幹細胞を、必要に応じて血清や成長因子等の各種添加物を含みうる培養液に分散させ、細胞懸濁液を得る。この細胞懸濁液を、本発明の培養容器内に入れ、COインキュベーター内等の、所定の環境下で培養する。培養開始後、通常2~7日間程度で胚様体が形成されうる。
 培養は、培養バッグを振とうしながら行うことが好ましい。振とう条件は、特に限定されず、適宜設定しうる。
 1.2 工程(2)
 工程(2)は、前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させることにより分化細胞を得る工程である。
 分化誘導の条件は、特に限定されず、使用細胞種及び目的とする分化細胞種等に応じて適宜設定できる。通常、所定のサイトカイン、増殖因子又はその他の化合物を培養液中に所定濃度添加して培養を行うことにより分化を誘導しうる。
 工程(1)と工程(2)とを同時に行ってもよい。この場合、工程(2)において用いる上記化合物の存在下で、工程(1)を行うことができる。
 分化細胞は、特に限定されず、各種前駆細胞でありうる。例えば、Tリンパ球由来のT-iPS細胞を多能性幹細胞として用いて工程(1)及び(2)を所定条件下で行うことにより、造血前駆細胞が得られうる。
 2.胚様体及び分化細胞集団
 本発明の胚様体は、本発明の製造方法の工程(1)により得られうる、胚様体である。
 本発明の胚様体は、少なくとも従来のEB法により得られる胚葉体と同様の特性を有していると考えられる。
 本発明の分化細胞集団は、本発明の製造方法により得られうる、分化細胞集団である。
 以下に本発明の構成及び効果をより明らかに示すために、実験例(実施例及び比較例を含む)を示す。ただし、当該実験例は本発明の理解を容易にするための一例であり、本件発明の範囲は、かかる実験例によって拘束されるものではない。
 実施例1~4.培養バッグの作成
 材質として、FEP及びPFAをそれぞれ用い、これらのペレットを溶融成形することにより、それぞれのフィルムを得た。
 また、上記のペレット溶融押出時に、フッ素化を行った他は同様にして、二種類のフィルムを得た。
 106mm×66mmサイズで厚さ100μmのフィルムを、インパルスシーラーを用いてシール時間50秒、シール圧0.2MPa、シール幅3mmの条件でヒートシールし、上部に各フィルムと同じ材質のポートを1個付けた4種類の各バッグ(実施例1~4)を製造した(図1)。
 厚さ250~300μm程度の各材質のサンプルを、各フィルムを重ね合わせることにより作製し、FT-IR Spectrometer 1760X(Perkin-Elmer社製)を用いて分析を行った。
 上記サンプルは、各フィルムを重ね合わせることにより作製した。
 標準スペクトル(もはやスペクトルに実質的に差異がみられなくなるまで十分にフッ素化したサンプル)との差スペクトルを取得し、各ピークの吸光度を読み取り、次式にしたがって炭素数1×10個あたりの非フッ素化基末端数及び-CFH基末端数を算出した。培養バッグそれぞれの、非フッ素化基末端数及び-CFH基末端数を表2に示す。
 非フッ素化基末端及び-CFH基末端の合計数(炭素数1×10個あたり)=l・k/t
 l:吸光度
 k:補正係数(表1)
 t:サンプルの厚さ(mm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例5.分化誘導細胞集団の製造
 (1)EBの作成
 Matrigel(Corning Life Sciences)でコーティングしたプラスチックプレート(BD Biosciences)で、T-iPS細胞を培養した。
 培養した未分化のT-iPS細胞をTryp-LE(GIBCO)で処理し、緩やかに細胞をはがした。なお、T-iPS細胞は、公知文献(Nishimura、他20名、「Generation of Rejuvenated Antigen-Specific TCells by Reprogramming to Pluripotency and Redifferentiation」、 Cell Stem Cell、2013年、12、pp.114-126)に記載の方法により得たものを使用した。
 細胞凝集物を、ペニシリン/ストレプトマイシン(10ng/mL)、L-グルタミン(2mM)、アスコルビン酸(1mM)、モノチオグリセロール(MTG、4×10-4M;Sigma)、トランスフェリン(150μg/mL)及びBMP-4(骨形成タンパク質-4)(10ng/mL)を添加したStemPro-34(Invitrogen)に再懸濁した。
 実施例1~4の各バッグに、15mlの上記細胞懸濁液を加えて培養した。細胞数は、培養開始時の量が、5×10/バッグ及び5×10/バッグとなるようにした。
 24時間後に、最終濃度が5ng/mlになるようにbFGF(塩基性線維芽細胞成長[増殖]因子)を加えて培養を続けた。その結果、全てのバッグにおいてEBの形成が認められた(図2)。
 培養開始後14日目に細胞を回収し、FACSを用いて分化傾向を解析した。フローサイトメーターとして、BD Biosciences社製、FACSAriaTMIIを使用した。
 本解析には、CD34(APCで蛍光標識)、CD34(パシフィックブルーで蛍光標識)、CD43(PEで蛍光標識)、CD-14(PE-Cy7で蛍光標識)及びCD235a(APCで蛍光標識)のそれぞれに対する蛍光標識抗体を使用した。
 解析結果を図3及び4(実施例1、細胞数5×10cells)、図5及び6(実施例1、細胞数5×10cells)、図7及び8(実施例2、細胞数5×10cells)、図9及び10(実施例2、細胞数5×10cells)、図11及び12(実施例3、細胞数5×10cells)、図13及び14(実施例3、細胞数5×10cells)、図15及び16(実施例4、細胞数5×10cells)、並びに図17及び18(実施例4、細胞数5×10cells)に示す。
 単球系細胞(CD14)、赤血球系細胞(CD235a)等が観察された。
 実施例1の培養バッグを用いて分化誘導を行った後、CD34/CD43抗体を用いて分画したCD34/CD43である造血前駆細胞の数量を測定した結果、培養開始時の細胞数が5×10/バッグのときに10,401個、5×10/バッグのときに3,836個であった。
 さらに、実施例3及び4の培養バッグをそれぞれ用いて分化誘導を行った後、上記と同様に分画したCD34/CD43である造血前駆細胞の数量を測定した結果、表3の通りであった。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、いずれの培養バッグを用いた場合においても、大量にかつ効率よく、T-iPS細胞から造血前駆細胞へと分化誘導できることが確認された。
 培養開始時の細胞数については、5×10/バッグのときのほうが、5×10/バッグのときよりも、造血前駆細胞の収量がより高かった。
 (2)T細胞への分化誘導
 上記の実験でソートして得られたCD34細胞のT細胞への分化誘導能を、先述の公知文献Nishimuraに記載の方法に準じて確認した。
 4つのバッグから得られた細胞を回収して混合したものを、ガンマ線を照射したOP9-DL1細胞(理研バイオリソースセンターより提供;Watarai H、他14名、「Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Va14-Ja18 TCRa gene」、2010年、Blood、115、pp.230-237)の上に移し、OP9培地(15%ウシ胎仔血清、2mM L-グルタミン、100U/mlペニシリン、及び100ng/mlストレプトマイシンが添加されたαMEM培地)を加えて、FLT-3L(FMS-relatedtyrosine kinase 3 Ligand)及びIL-7(インターロイキン-7)存在下で共培養することにより、T細胞系の分化誘導を行い、FACSを用いて上記と同様に分化傾向を解析した。尚、培養は、5%COの環境下で行った。
 本解析には、CD45(ブリリアントバイオレット510で蛍光標識)、TCRab(FITCで蛍光標識)、CD3(APC-Cy7で蛍光標識)、CD7(APCで蛍光標識)、CD5(PE-Cy7で蛍光標識)、CD4(ブリリアントバイオレット421で蛍光標識)、CD8α(PerCP-Cy5.5で蛍光標識)及びCD8β(PEで蛍光標識)のそれぞれに対する蛍光標識抗体を使用した。
 解析結果を図19~30に示す。
 図19~24には、末梢血をコントロールとして同様に解析を行った結果を合わせて示している。バッグから得られた細胞を分化誘導した(30日目)細胞群(図25~30)においても、分化の途中にある細胞群(CD4/CD8)が確認された。CD4及びCD8の発現量としては、それぞれ末梢血のT細胞と同等であった。これにより、バッグ内で誘導を行って得られた造血前駆細胞も、非常に高い効率でT細胞系列へ分化する能力を有していることが確認された。
  1  培養バッグ
  11 ポート
  12 シール部

Claims (8)

  1. 多能性幹細胞から胚様体(EB)法により分化細胞を製造する方法であって、
    (1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び
    (2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させることにより分化細胞を得る工程
    を含む、方法。
  2. 多能性幹細胞を胚様体(EB)法により分化誘導する方法であって、
    (1)パーフルオロポリマーを内側表面に有する培養バッグを用いて多能性幹細胞を培養することにより胚様体を形成する工程、及び
    (2)前記工程(1)において得られた胚様体に含まれる多能性幹細胞を分化誘導させる工程
    を含む、方法。
  3. 前記パーフルオロポリマーが、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体及びテトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体からなる群より選択される少なくとも一種のパーフルオロポリマーである、請求項1又は2に記載の方法。
  4. 多能性幹細胞が、人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)である、請求項1~3のいずれか一項に記載の方法。
  5. 前記工程(2)において、多能性幹細胞を前駆細胞へと分化誘導させる、請求項1~4のいずれか一項に記載の方法。
  6. パーフルオロポリマーを内側表面に有する培養バッグであって、多能性幹細胞を胚様体(EB)法により分化誘導するために用いられる、培養バッグ。
  7. 前記パーフルオロポリマーが、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体及びテトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体からなる群より選択される少なくとも一種のパーフルオロポリマーである、請求項6に記載の培養バッグ。
  8. 多能性幹細胞が、人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)である、請求項6又は7に記載の培養バッグ。
PCT/JP2017/027557 2016-07-29 2017-07-28 分化細胞の製造方法、及びその製造方法のために使用する培養バッグ WO2018021566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17834568.2A EP3492577A4 (en) 2016-07-29 2017-07-28 METHOD FOR PRODUCING DIFFERENTIATED CELLS AND CULTURE POCKET USED THEREFOR
CN201780047084.6A CN109563466A (zh) 2016-07-29 2017-07-28 分化细胞的制造方法和用于该制造方法的培养袋
US16/321,265 US20190161726A1 (en) 2016-07-29 2017-07-28 Differentiated cell production method and culture bag used therefor
JP2018530441A JP7039473B2 (ja) 2016-07-29 2017-07-28 分化細胞の製造方法、及びその製造方法のために使用する培養バッグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150725 2016-07-29
JP2016-150725 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021566A1 true WO2018021566A1 (ja) 2018-02-01

Family

ID=61017432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027557 WO2018021566A1 (ja) 2016-07-29 2017-07-28 分化細胞の製造方法、及びその製造方法のために使用する培養バッグ

Country Status (5)

Country Link
US (1) US20190161726A1 (ja)
EP (1) EP3492577A4 (ja)
JP (2) JP7039473B2 (ja)
CN (1) CN109563466A (ja)
WO (1) WO2018021566A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137438A (ja) * 2019-02-27 2020-09-03 東洋製罐グループホールディングス株式会社 培養容器の製造方法、及び培養容器
WO2023074649A1 (ja) * 2021-10-26 2023-05-04 住友化学株式会社 細胞培養基材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377924A1 (en) 2006-04-14 2011-10-19 Advanced Cell Technology, Inc. Hemangio-colony forming cells
US20190365604A1 (en) * 2017-01-18 2019-12-05 Daikin Industries, Ltd. Container for administration, storage, delivery or transportation of protein having low protein adsorbability or protein-containing composition, and apparatus for producing protein or protein composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (ja) * 1988-02-17 1988-08-17 Daikin Ind Ltd 培養器
WO2005037984A1 (ja) * 2003-10-20 2005-04-28 Jms Co., Ltd. 細胞取扱装置、組織再生用組成物及び組織再生方法
JP2012519005A (ja) * 2009-02-27 2012-08-23 セルラー ダイナミクス インターナショナル, インコーポレイテッド 多能性細胞の分化
WO2014200030A1 (ja) * 2013-06-12 2014-12-18 国立大学法人京都大学 人工多能性幹細胞の選別方法および血球への分化誘導方法
JP2014239742A (ja) * 2013-06-11 2014-12-25 ダイキン工業株式会社 カテーテルチューブ
JP2015519890A (ja) * 2012-04-24 2015-07-16 ダン エス. カウフマン, 幹細胞よりナチュラルキラー細胞を発生させる方法
JP2016520307A (ja) * 2013-04-30 2016-07-14 コーニング インコーポレイテッド スフェロイド細胞培養ウェル製品およびその方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001019A1 (ja) * 2003-06-25 2005-01-06 Nof Corporation 胚様体形成用容器及び胚様体の形成方法
CN100497580C (zh) * 2003-10-20 2009-06-10 株式会社Jms 细胞处理装置、组织再生用组合物及组织再生方法
JP5878033B2 (ja) * 2012-02-07 2016-03-08 住友電気工業株式会社 フッ素樹脂フィルム製圧電素子
US9926524B2 (en) * 2014-12-22 2018-03-27 Saint-Gobain Performance Plastics Corporation Gas permeable material
WO2016104596A1 (ja) * 2014-12-26 2016-06-30 国立大学法人 奈良先端科学技術大学院大学 低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (ja) * 1988-02-17 1988-08-17 Daikin Ind Ltd 培養器
WO2005037984A1 (ja) * 2003-10-20 2005-04-28 Jms Co., Ltd. 細胞取扱装置、組織再生用組成物及び組織再生方法
JP2012519005A (ja) * 2009-02-27 2012-08-23 セルラー ダイナミクス インターナショナル, インコーポレイテッド 多能性細胞の分化
JP2015519890A (ja) * 2012-04-24 2015-07-16 ダン エス. カウフマン, 幹細胞よりナチュラルキラー細胞を発生させる方法
JP2016520307A (ja) * 2013-04-30 2016-07-14 コーニング インコーポレイテッド スフェロイド細胞培養ウェル製品およびその方法
JP2014239742A (ja) * 2013-06-11 2014-12-25 ダイキン工業株式会社 カテーテルチューブ
WO2014200030A1 (ja) * 2013-06-12 2014-12-18 国立大学法人京都大学 人工多能性幹細胞の選別方法および血球への分化誘導方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NISHIMURA ET AL.: "Generation of Rejuvenated Antigen-Specific T Cells by Reprogramming to Pluripotency and Redifferentiation", CELL STEM CELL, vol. 12, 2013, pages 114 - 126, XP055218131, DOI: doi:10.1016/j.stem.2012.11.002
NISHIMURA, T . ET AL.: "Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation", CELL STEM CELL, vol. 12, no. 1, January 2013 (2013-01-01), pages 114 - 126, XP055218131 *
See also references of EP3492577A4
WATARAI H. ET AL.: "Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Val4-Jal8 TCRa gene", BLOOD, vol. 115, 2010, pages 230 - 237

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137438A (ja) * 2019-02-27 2020-09-03 東洋製罐グループホールディングス株式会社 培養容器の製造方法、及び培養容器
WO2020175211A1 (ja) * 2019-02-27 2020-09-03 東洋製罐グループホールディングス株式会社 培養容器の製造方法、及び培養容器
CN113474446A (zh) * 2019-02-27 2021-10-01 东洋制罐集团控股株式会社 培养容器的制造方法及培养容器
JP7006634B2 (ja) 2019-02-27 2022-02-10 東洋製罐グループホールディングス株式会社 培養容器の製造方法、及び培養容器
WO2023074649A1 (ja) * 2021-10-26 2023-05-04 住友化学株式会社 細胞培養基材

Also Published As

Publication number Publication date
CN109563466A (zh) 2019-04-02
US20190161726A1 (en) 2019-05-30
JPWO2018021566A1 (ja) 2019-05-30
JP7039473B2 (ja) 2022-03-22
EP3492577A1 (en) 2019-06-05
JP2020127439A (ja) 2020-08-27
EP3492577A4 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP2020127439A (ja) 分化細胞の製造方法、及びその製造方法のために使用する培養バッグ
Lachmann et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies
MacDonald et al. Methods to manufacture regulatory T cells for cell therapy
Spanholtz et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy
CN107922925B (zh) 用于自然杀伤细胞扩增的方法
JP2022027790A (ja) ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
AU2006252576B2 (en) Method of forming dendritic cells from embryonic stem cells
Lee et al. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells
JP2012521215A5 (ja)
JP2015519890A5 (ja)
US20230106769A1 (en) Serum-free medium and culturing method suited for culturing blood cells such as human hematopoietic stem cells
CN1213661A (zh) 不污的、具有可润湿性涂层的部件
JP2021078525A (ja) 細胞投与用、保存用、又は培養用容器
KR20060057543A (ko) 배양체 형성용 용기 및 배양체의 형성 방법
JP2008220205A (ja) 神経幹細胞凝集塊形成用容器、その製造方法、及び神経幹細胞凝集塊の作成方法。
EP1572989B1 (fr) Lignee de cellules dendritiques gen2.2
JP6565928B2 (ja) 胚様体形成用容器の製造方法
TW200540270A (en) Medium for feeder-free differentiation and feeder-free differentiation method from primate embryonic stem cell
WO2023176949A1 (ja) 細胞利用効率の高い細胞培養容器
Park et al. In vitro generation of functional dendritic cells differentiated from CD34 negative cells isolated from human umbilical cord blood
CN109593715B (zh) 扩增造血干细胞的培养体系、方法及其用途
JPS5942890A (ja) セルロ−ス系多孔質材料を含む固定化増殖菌体組成物の製造方法
WO2024010053A1 (ja) 胚葉体細胞組成物、分化細胞組成物及び分化細胞組成物の製造方法
WO2023155009A1 (en) Compositions and methods for expanding lymphocytes
KR20170104694A (ko) 면역 억제 능력을 가지는 수지상세포-유사 세포 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834568

Country of ref document: EP

Effective date: 20190228